2006

Reproducing Published Results from *In Silico* Computer Models of the Acute Inflammatory Response to Severe Sepsis

Wayne W. Wakeland
Portland State University, wakeland@pdx.edu

Joe Fusion
Portland State University

Brahm Goldstein
Novo Nordisk, Inc.

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/sysc_fac

Part of the [Biomedical Engineering and Bioengineering Commons](http://pdxscholar.library.pdx.edu/sysc_fac) and the [Chemicals and Drugs Commons](http://pdxscholar.library.pdx.edu/sysc_fac)

Citation Details

Wakeland, W., Fusion, J., and Goldstein, B. (2006). Reproducing Published Results from In Silico Computer Models of the Acute Inflammatory Response to Severe Sepsis. Poster presentation at the International Conference on Complexity in Acute Illness (ICCAI), in Washington D.C.
Reproducing Published Results from *In Silico* Computer Models of the Acute Inflammatory Response to Severe Sepsis

Wayne Wakeland¹, Joe Fusion¹, Brahm Goldstein²

¹ System Science Graduate Program, Portland State University, Portland, OR, USA
² Novo Nordisk, Inc., Princeton, NJ, USA

Background

Recent studies¹,² describe computer simulation models of the acute or systemic inflammatory response (AIR or SIR) to severe sepsis, a condition that can lead to multiple organ failure and death. One study used an agent-based model, while the other used differential equations (DEs) to simulate a randomized clinical trial. Both studies obtained results similar to the actual results from a successful clinical drug trial of severe sepsis³, suggesting that *in silico* (simulated) randomized clinical trials may be used to design more effective *in vivo* clinical trials.

Objective

- Reproduce published results of two *in silico* models of severe sepsis
- Study relationship between model complexity and experimental outcomes

Methods

1. Used original investigator’s agent-based model to re-run experiments; then ran same experiments with key model logic missing
2. Implemented equations & parameters in original paper; later, obtained equations and #'s from the investigators and used them to run simulations
3. Created very simple model; ran similar experiments

Results

1. Agent-based model results successfully replicated. But nearly identical results were obtained with key portions of the model logic missing
2. Unable to replicate the published DE model results due to numerous discrepancies in the equations and parameter values: simulated tissues always failed to recover
3. Very simple model demonstrated outcomes ranging from full recovery to partial recovery (eradication of the initial infection, but oxygen deficit remains high) to failure to recover from the initial infection

Discussion/Conclusion

- Replicating outcomes from model-based research is important
- Researchers must determine the simplest model that can generate the phenomenon of interest
- More research needed before *in silico* experiments can be used to improve clinical trial design.