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Non-bacterial GH25 muramidases arose from HGT
To establish parallel HGT, i.e., the independent transfer of the same gene family to multiple lineages, 
we conducted a phylogenetic analysis on 86 GH25 muramidase sequences using Bayesian and max-
imum likelihood inference methods (Figure 2A). We combined non-redundant Aciduliprofundum, 
Selaginella, and WO sequences obtained from PCR and Sanger sequencing with blastp results to 
reconstruct the phylogeny. Putative instances of HGT are diagrammed in Figure 3. Additionally, trans-
ferred lysozymes in nonbacterial taxa were used as queries to identify homologs and make a second 
set of phylogenetic trees to confirm the HGT (Figure 2B–D, Figure 2—figure supplements 1 and 2, 
Supplementary file 4). Three key results emerge from these phylogenetic analyses: (i) at least three 
independent instances of interdomain HGT of the bacterial GH25 muramidase occurred in nonbacterial 
taxa (Aciduliprofundum, Selaginella, and Insecta) as well as a number of transfers to bacteriophages, 
(ii) vertical transmission of the transferred gene ensues in some descendant taxa (i.e., Aciduliprofundum 
and Selaginella), and (iii) frequent HGT of the muramidase between bacterial clades accompanies the 
interdomain transfer, indicating unusually frequent and broad-ranging HGT of this niche-transcending 
gene family.

To statistically validate parallel HGT across the tree of life, we performed a Shimodaira–Hasegawa 
test (SH-test) (Shimodaira and Hasegawa, 1999) by comparing our consensus tree (Figure 2A) against 
a hypothetical tree with a binary constraint in which bacterial sequences are monophyletic and sepa-
rate from monophyletic nonbacterial sequences. In this hypothetical tree consistent with the tree of 
life, lineage relationships within the bacterial and nonbacterial groups were permissively set as uncon-
strained. Results indicate that the hypothetical tree is significantly worse than the HGT tree, as 
expected (p<0.01, D(LH) = −133.9, SD = 31.5). We repeated this analysis with the hypothetical tree 
compared to 100 randomly sampled HGT trees from maximum likelihood bootstrapping and found 
the hypothetical tree was also worse than each of these trees (p<0.01). Finally, we performed SH tests 
between the HGT tree and either 1) a three-domain constraint tree or 2) a monophyletic eukaryote 
branch constraint tree, and again found that the constraint trees were significantly worse than the HGT 
tree (p<0.01). Thus, the null hypothesis of vertical descent is rejected, even under the most permissive 
conditions.

We observed that each interdomain HGT event (Figure 2) occurred between taxa that coexist 
in the same ecological niche, a likely prerequisite for HGT. For instance, the A. boonei lysozyme is in a 
clade dominated by Firmicutes whose members can be common in deep ocean sediments (Orcutt 
et al., 2011a). Indeed, Bacillus species have even been found in hydrothermal vents of the same fields 
in which Aciduliprofundum strains were isolated (Reysenbach et al., 2000). The A. pisum lysozyme 
clade includes Wolbachia prophages and Proteobacteria, which are common endosymbionts of 
aphids and other insects (Gomez-Valero et al., 2004; Augustinos et al., 2011; Wang et al., 2014). 
The S. moellendorffii plant lysozyme is closely related to Actinobacteria, which are dominant microbes 
in soil (Bulgarelli et al., 2013). These associations, while not proof of HGT, establish interactions that 
may have facilitated the transfers, although any number of intermediate gene carriers is possible. While 
the phylogenetic pattern of the GH25 muramidase found in fungi is consistent with HGT (Figure 2A, 
Figure 2—figure supplement 2), the transfer occurred anciently in fungal evolution prior to the diver-
gence of Dikarya, as the domain is present in both Basidiomycota and Ascomycota, but not other 
fungal phyla. As is the case with most putative ancient transfers, the deep branches of the tree are 
poorly supported and a definitive donor taxon cannot be established. Additionally, the possibility 
of multiple ancient transfers between bacteria and fungi or among fungi and plants cannot be 
excluded. However, a nucleotide-level phylogeny also supports HGT from an ancestral Actinobacterium 
(Figure 2—figure supplement 3).

The following figure supplements are available for figure 1:

Figure supplement 1. Presence of HGT lysozyme genes in field samples. 
DOI: 10.7554/eLife.04266.004

Figure supplement 2. PCR amplifications testing genomic integration with primers within and outside of lysozyme genes. 
DOI: 10.7554/eLife.04266.005

Figure supplement 3. Protein phylogeny of neighboring genes to transferred lysozymes. 
DOI: 10.7554/eLife.04266.006

Figure 1. Continued
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Figure 2. Phylogeny of GH25 muramidase. (A) Phylogeny based on alignment of 113aa without indels consisting of top E-value hits to blastp using 
WORiA phage lysozyme as a query. Taxon of origin for each amino acid sequence is indicated by color. Posterior probability (Bayesian phylogeny) and 
bootstrap values (maximum likelihood phylogeny) are indicated at all nodes with values above 50. Branch lengths represent number of substitutions per 
site as indicated by scale bar. Tree is arbitrarily rooted. Iterative phylogenies based on top E-value blastp hits to A. boonei lysozyme (B), A. pisum 
lysozyme (C), and S. moellendorffii lysozyme (D) are also shown.
DOI: 10.7554/eLife.04266.007
The following figure supplements are available for figure 2:

Figure supplement 1. Iterative HGT analysis alignments. 
DOI: 10.7554/eLife.04266.008

Figure supplement 2. Protein phylogeny of A. oryzae GH25 muramidase and relatives. 
DOI: 10.7554/eLife.04266.009

Figure supplement 3. DNA phylogeny of A. oryzae GH25 muramidase and relatives. 
DOI: 10.7554/eLife.04266.010

Interestingly, the lysozyme gene in the aphid A. pisum consists of a fusion of a bacterial GH25 
muramidase domain and a eukaryotic carboxypeptidase domain. The gene includes five introns (Nikoh 
et al., 2010), none of which interrupt the GH25 domain, consistent with a relatively recent HGT event 
and the absence of the gene from most sequenced insects (Figure 1). The lysozyme in the fungus 
A. oryzae, meanwhile, contains only a single intron, but it does interrupt the GH25 domain, consistent 
with the domain’s long association with fungi from the subkingdom Dikarya (Figure 1). We found no 
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evidence of a GH25 muramidase in 323 sequenced archaeal genomes spanning all the major phyla and 
sister taxa to A. boonei (Reysenbach et al., 2006; Flores et al., 2012). This lack of homology does not 
appear to be due to insufficient representation of archaeal diversity, as the 323 members span all of 
the major phyla: Crenarchaeota (56), Euryarchaeota (205), Nanoarchaeota (10), and Thaumarchaeota 
(39). Indeed, if vertical descent were assumed for a recent Bayesian phylogeny of archaea with 
sequenced genomes (Brochier-Armanet et al., 2011), this would require at least 10 independent 
losses of the lysozyme gene, an assumption that is certainly less parsimonious than a single HGT event. 
Moreover, the relative divergence of the small subunit rRNA gene in A. boonei compared to the puta-
tive bacterial HGT donors is greater than the relative divergence of the lysozyme gene (Figure 4), a 
finding that is inconsistent with both genes being transmitted by vertical descent. Also, there are no 
other homologs beyond those presented in this study in 132 plant genomes, and only one insect spe-
cies with additional homologs out of 109 insect genomes. Thus, if the lysozyme were present in the 
last common ancestor of all domains, it would require the unlikely loss of the gene in dozens of line-
ages while maintaining it in an exceedingly small number of species. In summary, the presence of a 
GH25 muramidase in nonbacterial species represents a series of recurrent, independent horizontal 
gene transfer events derived from diverse, ecologically associated bacteria.

A. boonei GH25 muramidase is antibacterial
We next undertook a series of experiments to test the hypothesis that the transferred muramidase 
functions as an antibacterial molecule. Since HGT frequently results in pseudogenized and nonfunc-
tional genes (Kondrashov et al., 2006; Nikoh et al., 2010, 2008; Dunning Hotopp et al., 2007), we 
first investigated the amino acid sequences for preserved antibacterial action of the transferred 
lysozymes in nonbacterial genomes. We aligned all 86 GH25 muramidase sequences to identify 

Figure 3. Schematic of HGT events. Bayesian phylogeny based on the 16S rRNA gene from selected taxa is shown. 
Colored lines indicate putative horizontal gene transfer events, although other possible HGT patterns cannot be 
definitively excluded. Posterior probabilities are noted at each node.
DOI: 10.7554/eLife.04266.011

http://dx.doi.org/10.7554/eLife.04266
http://dx.doi.org/10.7554/eLife.04266.011
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conserved sites (Figure 5A). We then mapped the conserved amino acids to a three-dimensional 
structure prediction of the A. boonei GH25 muramidase domain (Figure 5B). Highly conserved resi-
dues (>85% identity between all taxa) invariably mapped to the previously identified active site pocket 
(Martinez-Fleites et al., 2009). Conservation was also evident for structure predictions of other GH25 
muramidases in the phylogeny such as S. moellendorffii (Figure 5C).

Second, we cloned, expressed, and purified the GH25 muramidase domain from the archaeon A. 
boonei as well as from closely related homologs in Paenibacillus polymyxa and PhiBP. We obtained 
each muramidase in a pure elution (Figure 6—figure supplement 1) and tested for antibacterial 

Figure 4. Comparison of GH25 muramidase and rRNA divergence. (A) Unrooted Bayesian phylogeny of the GH25 muramidase from A. boonei and 
selected relatives, based on an alignment of 185aa without indels. Taxon of origin for each nucleic acid sequence is indicated by color. Posterior 
probability is indicated at all nodes with values above 50. Branch lengths represent number of substitutions per site as indicated by scale bar.  
(B) Unrooted Bayesian phylogeny of the 16S rRNA gene for the same taxa as in (A), based on an alignment of 1,156 bp without indels.
DOI: 10.7554/eLife.04266.012

Figure 5. Conservation of A. boonei GH25 muramidase domain. (A) Consensus alignment of 86 GH25 murami-
dases with insertions and deletions removed. Conservation is indicated by amino acid symbol size and bar graphs 
below the consensus sequence. Active site residues and highly conserved amino acids modeled below are indicated 
with red and orange asterisks, respectively. (B) Space-filling model of the active site face of the predicted structure 
of A. boonei GH25 muramidase domain and (C) S. moellendorffii GH25 muramidase domain. Active site residues 
are indicated in red and the eight additional residues most highly conserved across all 86 proteins are orange.
DOI: 10.7554/eLife.04266.013

http://dx.doi.org/10.7554/eLife.04266
http://dx.doi.org/10.7554/eLife.04266.012
http://dx.doi.org/10.7554/eLife.04266.013
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storage at −20°C for a maximum of 3 weeks before use in antibacterial assays. Purifications were 
analyzed with denaturing polyacrylamide gel electrophoresis and stained with GelCode Blue (Thermo 
Scientific).

Full-length A. boonei lysozyme and WORiA lysozyme were cloned into a pET-20b vector (EMD 
Millipore, Darmstadt, Germany) with a C-terminal 6× histidine tag and sequence-confirmed plasmids 
were transformed into BL21 (DE3) E. coli (EMD Millipore). Three colonies from each transformation 
were inoculated into LB media and grown to an OD600 of ∼0.5, induced for 4 hr with 1 mM IPTG and 
harvested for analysis on PAGE gels. Overnight cultures without induction were examined for bac-
terial death with a BacLight Live/Dead Stain (Life Technologies).

Antibacterial assays
Purified A. boonei GH25 muramidase, P. polymyxa lysozyme, PhiBP lysozyme, CFP, and commercially 
purchased CEWL (Sigma-Aldrich, St. Louis, MO) were diluted to 100 μg/ml in buffer EG (60% nickel 
column elution buffer, 40% glycerol) and filter sterilized. Bacteria to be tested were grown over-
night in tryptic soy broth, split 1:10, and incubated to exponential growth before being diluted into 
each enzyme solution. Samples were incubated with shaking for 20 min at 37°C and then 5 μl was 
spotted onto tryptic soy agar and incubated overnight at 37°C. To evaluate whether antibacterial 
activity is dose-dependent, B. subtilis was incubated with A. boonei GH25 muramidase at 100 μg/ml, 
75 μg/ml, 50 μg/ml, 25 μg/ml and 0 μg/ml and 100 μl was spread on tryptic soy agar plates. Replicates 
of 10 were performed for each concentration, plates were incubated overnight at 37°C, and colo-
nies were counted the following morning. Bacterial strains used in these experiments are listed in 
Supplementary file 1.

A. boonei cultures
A. boonei and M. lauensis cultures were performed as previously described (Reysenbach et al. 2006) 
with the following modifications: yeast extract was added at 2.0 g/l, pH was adjusted to 4.8, and cul-
tures were incubated at 65°C. For gene expression studies, 8.2 × 105 cells were inoculated into 5 ml 
cultures in 6 replicates each of monocultures and cocultures at 0.1:1, 1:1, and 1:0.1 ratios and 500 μl 
samples were collected after 4 and 12 hr of co-incubation and frozen for expression analysis. RNA was 
isolated from frozen samples using an RNeasy Mini Kit (Qiagen) and QIAshredder (Qiagen), DNA con-
tamination was removed with a Turbo DNAfree Kit (Life Technologies), and reverse transcription was 
performed using a Superscript III first Strand Synthesis System (Life Technologies) along with no-reverse 
transcriptase controls. Quantitative PCR was performed with GoTaq qPCR Master Mix (Promega) 
using a CFX96 Real-Time System (Bio-Rad, Hercules, CA). Primers are listed in Supplementary file 1. 
For competition studies, 5 replicates of 5 ml cultures were inoculated as monocultures or 1:1 cocultures 
and 175 μl was collected every 4 hr for counting of relative species abundance with a hemocytometer. 
Relative fitness was calculated based on Malthusian parameters over the period of exponential growth 
as previously described (Lenski et al., 1991).
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