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at Site 1 were taken from within the sand cap (Tables 2.2 and 2.3).  At every location the 

DOC was higher in the deep porewater sample relative to the shallow sample taken at 

that same location.  Higher concentrations of DOC in porewater samples from Site 2-L 

and Site 3-L suggest the partial breakdown of organic compounds within the sediments.  

Site 3 porewater, with elevated CO2 levels and increased alkalinity, indicates the 

mineralization of organic compounds to inorganic species.  In the absence of oxygen, the 

accumulation of reduced species, such as Fe (II), H2S and NH4
+ results from 

microorganisms readily consuming electron-accepting compounds in the biodegradation 

of organic compounds [33].  Again, the porewater at Site 3 displays these characteristics, 

with the exception of the accumulation of H2S.  Sulfide is a reactive compound and thus 

its concentration can be affected by its precipitation with metals such as iron.  Sulfide 

concentrations were insignificant at all of the site locations; however, due to the high 

concentrations of Fe (II) at Site 3, the binding of sulfide to Fe (II) may mask sulfide 

production (Table 2.3).  Moreover, sulfate is present at all other sampling locations, 

except at Site 3, suggesting the reduction of sulfate to sulfide at this location. 

Table 2.2.  Measured in situ parameters.a 

        

Sampling Site Depth pH DO  Temperature  Conductivity  TDS  ORP 
 feet  mg/l °C ms/cm g/l mV 

Surface Water  n/a 6.7 n/a 8.3 0.09 0.06 331 
1-U 1 6.7 n/a 9.6 0.12 0.10 309 
1-L 3 6.8 n/a 10.6 0.15 0.10 145 
2-U 1.5 6.3 0.8 11.3 0.18 0.11 153 
2-L 3.5 6.7 0 11.4 0.20 0.13 -65 
3-U 1.5 6.7 0 11.1 0.46 0.31 -99 
3-L 2.5 6.8 0 10.7 0.57 0.37 -173 

        
            a n/a, not analyzed. 
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Figure 4.4. Numbers of methanogens in the native sediment and sediment cap field samples (grey) and 
after 215 days of incubation (black).  N/A indicates that the DNA was not amplifiable. 
 

from WC-1-NS field sample and TFA-13-OC incubation (Figure 4.4).  Of the field 

samples, WC-2-OC had the greatest number of copies of the mcrA gene (8.7 x 105).  

Conversely, TFA-13-OC field sample contained significantly fewer mcrA gene copies 

compared to the adjacent sand cap and native sediment located above and below this 

capping layer, and more than two orders of magnitude less gene copies than WC-2-OC 

(Figure 4.4).  Considering the significantly higher gas production rates measured in the 

field at TFA-13 (compared to the rate measured outside of the organophilic clay cap 

footprint) and the comparable methane production rates in the TFA-13-OC and WC-2-

OC laboratory incubations, it would be expected that the number mcrA gene copies in the 

TFA-13-OC field sample would be similar to that of WC-2-OC.  However, this 

difference may indicate some spatial heterogeneity in the microbial community within 
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the organophilic clay cap in situ.  Copies of the mcrA gene in sand cap and native 

sediment field samples ranged from 1.5 x 103 to 2.8 x 104.  At all locations the mcrA gene 

copies were lower in the native sediment field samples than in the sand cap (excluding 

WC-1-NS; DNA could not be amplified from this field sample).  However, this may be 

due to the ease by which DNA can be extracted from sand compared to contaminated 

river sediment or sediments with high organic content.  Thus, the methanogens in the 

sediments may be underrepresented, in both the field and incubation samples. 

The number of mcrA gene copies in the WC-2-NS incubation was comparable to that 

of WC-2-OC, although the rates of methane production were almost five times greater in 

the organophilic clay incubations.  Because qPCR provides only the absolute number of 

copies of the mcrA gene in the extracted samples, these results do not necessarily imply 

that all cells are actively expressing the gene and therefore performing methanogenesis. 

The number of methanogens among the different capping materials is only an indication 

of the approximate number of methanogens, but may not be directly related to the 

observed rates of methane production in laboratory incubations or in situ.  Activity is 

based not only on the number of cells but also on the availability of substrate and the 

efficiency of the individual species of organisms and this is clearly demonstrated in the 

qPCR results. 

In every instance, incubation under methanogenic conditions resulted in increased 

numbers of methanogens.  Surprisingly, methanogens from the native sediment from 

WC-2 and TFA-14 increased over 1000 fold (Figure 4.4).  This suggests that, in situ, 

methanogens may be inhibited by the presence of other terminal electron acceptors 

besides CO2 [50], whereas, in a closed system (i.e., laboratory incubations without these 
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electron acceptors), methanogens were able to grow in the native sediments.  The 

organophilic clay exhibited the smallest change in the number of methanogens between 

the field sample and incubation, only a 3-fold difference, suggesting that cell growth is 

limited both in the field and in the laboratory.  Sand cap from TFA-13 and TFA-14 also 

displayed relatively small increases in methanogens.  This is likely due to substrate 

availability considering the low organic content typically found in sand.  It is clear in this 

study and those of others, that measuring gene abundance alone, without lab metabolic 

studies, such as slurry incubations, or without looking specifically at the expression of 

functional genes (i.e., quantifying mRNA transcripts) does not provide a realistic 

estimation of the true metabolic capacity of a microbial community [95-98].  

 

Organophilic clay as a carbon source.  Laboratory incubations were constructed to 

determine whether the addition of organophilic clays to already microbially-active 

organophilic clay could stimulate greater levels of methane production.  Two 

organophilic clay products (Aqua Technologies ET-1 and CETCO Organoclay) were 

compared to assess whether the methane production is just a function of Aqua 

Technologies ET-1 or if organophilic clays, in general, have the potential to produce high 

levels of methane.  The addition of both Aqua Technologies ET-1 and CETCO 

Organoclay produced significantly higher levels of methane compared to the unamended 

controls over a 485-day period suggesting that anaerobic microorganisms may use these 

organophilic clays, or some component therein, as a carbon source for respiration and 

growth (Figure 4.5).  If organophilic clay can be used as a carbon source, at least a 66% 

increase in methane production could be expected with the addition of 10 g fresh 
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organophilic clay to 15 g of organophilic clay capping material (ET-1) retrieved from the 

field.  The washed and the unwashed CETCO Organoclay additions produced nearly the 

same amount of methane over the duration of the experiment, 70 and 62% more methane 

than the unamended controls, respectively.  These results indicate that washing did little 

to modify the CETCO Organoclay and the carbon available to the microbial community 

could not be removed solely by washing the material.  The unwashed Aqua Technologies 

ET-1 addition produced 135% more methane than the unamended controls compared to 

an 81% increase in the washed Aqua Technologies ET-1 treatment.  Clearly, washing did 

affect the fresh Aqua Technologies ET-1.  These results suggest that some biodegradable 

material, perhaps an excess of the quaternary amine used to manufacture the ET-1 

organophilic clay remains unbound or loosely bound, and can be washed away to some 

extent.  Over the first 208 days, the unamended controls (15 g TFA-13-OC) have a rate of 

methane production of 1.017 µmol CH4·day-1·g-1.  This rate is similar to that of the TFA-

13-OC incubations described earlier (50 g; 1.021 µmol CH4·day-1·g-1 over 80-day period).  

Methane production slowed after day 208 to a rate of 0.478 µmol CH4·day-1·g-1.  

However, even at day 485, the unamended controls continued to steadily produce 

methane.  No methane was produced in the incubations that contained only fresh, unused 

CETCO Organoclay and Aqua Technologies ET-1 without the organophilic clay 

retrieved from the field serving as the inoculum.  This suggests that the microorganisms 

inhabiting the organophilic clay in situ likely originated from the contaminated sediments 

below rather than from the organophilic clay.  

 The unamended control treatment continued to produce methane at a moderately high 

rate for at least 485 days suggesting that a large pool of carbon must be available to the 
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microbial community (Line 1, Figure 4.5).  If the carbon is coming from the organophilic 

clay then the carbon content of the organophilic clay should decrease over time.  If we 

assume the Aqua Technologies ET-1 initially deployed in the field had a total carbon 

content similar to the fresh ET-1 we analyzed, the ET-1 organophilic clay retrieved 4 

years after cap construction did, in fact, show significant reductions in carbon content, 

especially in the Willamette Cove (Table 4.2).  Of the environmental core samples taken  

 

 
Figure 4.5. Methane production of ET-1 organophilic clay (TFA-13-OC) incubated with fresh, unused 
organophilic clays under different conditions as follows: (line 1) unamended control, (line 2) inoculum with 
10 g unwashed CETCO Organoclay, (line 3) inoculum with 10 g washed CETCO Organoclay, (line 4) 
inoculum with 10 g washed Aqua Technologies ET-1, and (line 5) inoculum with 10 g unwashed Aqua 
Technologies ET-1.  These incubations contained 15 g organophilic clay (Aqua Technologies ET-1) 
retrieved from TFA-13 at the McCormick and Baxter Superfind Site (serving as the inoculum) and 60 ml 
native porewater.  Error bars represent 1 standard deviation of the mean of replicate incubations (lines 1, 2 
and 5 in quadruplicate; lines 3 and 4 in triplicate). 
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Table 4.2. Total carbon (umol C/g) and apparent carbon loss in various organophilic clay 
                  samples.  Apparent carbon loss is an estimated value based on the ratio of total 
                  carbon in a sample to that of fresh, unused Aqua Technologies ET-1 
                  organophilic clay. 

 
Sample name Total carbon Apparent carbon loss (%) 

Fresh Aqua Technologies ET-1 OC 11,697  0  
WC-2-OC (core 1) 5,378  54  
WC-2-OC (core 2) 6,155  47  
WC-2-OC incubation 0 days 5,696  51  
WC-2-OC incubation 300 days 4,564  61  
TFA-13-OC (core 1) 8,621  26  
TFA-13-OC (core 2) 10,555  10  
TFA-13-OC (core 3) 10,203  13  
TFA-13-OC incubation 0 days 10,739  8  
TFA-13-OC incubation 300 days 9,739  17  

 
 

from WC-2-OC, the total carbon was about half that of the fresh, unused ET-1.  The 

samples from TFA-13-OC were more variable, with the apparent loss in total carbon 

ranging from 10 to 26% (Table 4.2).  This variability indicates that carbon loss may be 

occurring in discrete pockets in the Tank Farm Area, providing support that heterogeneity 

exists within the capping material in situ, as suggested earlier, regarding mcrA gene 

copies in the environmental sample from TFA-13-OC.  More definitively, about a 10% 

decrease in total carbon was observed in the organophilic clay incubated under anaerobic 

conditions in the laboratory.  The organophilic clay in the WC-2-OC and TFA-13-OC 

incubations lost about 1100 and 1000 µmol C·g-1 over a 300-day period, respectively 

(Table 4.2).  It appears that the loss of carbon relates to the observed methane production, 

but it is not feasible to accurately quantify this correlation due to uncertainties regarding 

the exact chemical make-up the organophilic clay and the production of other carbon-

containing compounds.  Nonetheless, the amount of methane produced in TFA-13-OC 
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(unamended control; Line 1, Figure 4.5), over the first 300 days of incubation was about 

259 µmol CH4·g-1, which is about a quarter of the total carbon removed from the 

organophilic clay in the TFA-13-OC incubation.  

 

Microbial community analysis of the native sediment and sediment cap.  DGGE is one of 

the most frequently used methods for molecular fingerprinting [99].  In addition to 

providing a rapid fingerprinting comparison for many samples, specific phylogenetic 

information can be derived from the DGGE bands.  All samples extracted for archaeal 

and bacterial DNA were analyzed using DGGE.  However, due to sequencing difficulties, 

only 9 of the 81 archaeal bands and 39 of the 65 bacterial bands produced readable 

sequences.  Thus our DGGE results are not comprehensive enough to understand the true 

microbial diversity of these sampling locations.  However, the results do show that most 

of the bands analyzed contained sequences not closely affiliated to any cultured species 

(Tables 4.3 and 4.4).  The microbial diversity in contaminated sediments and associated 

remedial caps therefore remains relatively unknown.  The two archaeal groups identified 

were affiliated with Crenarchaeota and Euryarchaeota.  The sequences within the 

Crenarchaeota group were most closely related (>97%) to organisms involved in 

anaerobic digestion of sludge.  The sequences within the Euryarchaeota were not closely 

related to any specific group.  Several bacterial phylogenetic groups were recovered by 

DGGE in the native sediments, including fermentative bacteria associated with 

Bacteroidetes, Firmicutes (specifically Clostridia), and Chloroflexi, organisms frequently 

observed in highly reduced and contaminated environments (Table 4.4) [35].  The sand 

cap contained groups similar the native sediments, however, sequences related to bacteria  
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associated with iron cycling (Geobacter sp. and Gallionella sp.) were also present. 

The largest number of the bacterial sequences (49%) recovered by DGGE were most 

closely affiliated with the group Deltaproteobacteria, which were present in every 

sampling location (Table 4.4).  Of particular interest are the sequences similar (>97%) to 

Syntrophus sp. obtained from environmental core samples and laboratory incubations 

containing organophilic clay.  Syntrophus sp. is associated with the degradation of long-

chain fatty acids (stearate, C18:0; heptanoate, C17:0), long-chain hydrocarbon 

degradation, and benzoate degradation [100-102].  Based on the 16S rRNA gene 

sequence information acquired from DGGE, the sequences recovered from the 

organophilic clay are most closely related to a species that breaks down hexadecane 

under methanogenic conditions [101].  Syntrophus sp. is a type of syntrophic bacteria, a 

group that cooperates with methanogens to make the breakdown of complex organic 

molecules thermodynamically favorable under methanogenic conditions.  Syntrophic 

bacteria rely heavily on methanogens to remove inhibitory levels of H2 and acetate.  In 

turn, methanogens depend on syntrophic organisms to break these compounds down to 

simpler molecules they can use (e.g., acetate, CO2 and H2) [102, 103].  This cooperation 

of organisms can be highly productive; in fact, in the presence of methanogens, the 

degradation of 1 g of lipids by syntrophic bacteria can produce up to a liter of methane 

[103].   

The exact chemical formulation of the proprietary Aqua Technologies ET-1 is not 

publically available, but the company website indicates that it is synthesized from 

bentonite clay treated with a long-chain (12-18 C) quaternary amine [104].  Similarly, 

CETCO produces their organophilic clay, PM-199 Organoclay, using a quaternary amine 
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made from tallow—a compound extracted from animal fat and tissue consisting of long 

chain triglycerides [105].  Because syntrophic organisms can oxidize complex organic 

molecules, such as long-chain fatty acids and hydrocarbons, with high yields of methane, 

it is plausible that the observed anaerobic, highly methanogenic breakdown of the organic 

component of organophilic clay may proceed by this mechanism. 

The purpose of this study was to take an integrated approach to understand ebullition 

observed at the McCormick and Baxter Superfund Site.  The results demonstrate that the 

majority of the methane originates in the organophilic clay used as a reactive sediment 

cap, and suggest that a syntrophic consortium of microorganisms may be using 

organophilic clay as carbon source.  The capacity of organophilic clay to sequester 

organic contaminants will change over time as the organic component is removed from 

the clay.  This, in turn, affects the use of this material as a long-term remedial strategy in 

reduced, contaminated environments.  If the extent of carbon loss observed in the 

laboratory incubations reported here are reflective of losses in situ, the effective lifespan 

of the sorptive capacity of organophilic clay may be on the order of years or tens of years, 

rather than the expected hundreds of years.  Assessing the heterogeneity of carbon 

content that may exist within the organophilic clay cap in the field could provide a better 

picture as to whether organophilic clay degradation (i.e., carbon loss) is widespread 

throughout the capping material or is only occurring in localized areas.  Also, the 

mechanism by which microorganisms access the organic molecules ionically bonded to 

the clay surface in organophilic clay is not known.  The bacteria may directly attack the 

bound molecules or, perhaps the surfactants must first move into solution.  It is possible 

that a point may be reached where the organic material can no longer be degraded and a 
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residual level of the quaternary ammonium cationic surfactant remains, extending the 

lifetime of the material.  Another situation to investigate is that organophilic clay may 

initially sorb the contaminants but the subsequent breakdown of the organic component 

of the clay could result in a slow release of contaminants that, in turn, may or may not be 

degraded by resident microorganisms.  In any case, future studies need to assess how 

microorganisms affect the capacity of organophilic clay to act as a long-term remedial 

cap, and appropriate modifications be made to improve this commercially available 

product.  
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CHAPTER 5 
 

 
Conclusions and implications for further research 

 
 
 
 

 

The work presented herein expands what is currently known about anaerobic microbial 

activity in PAH-contaminated groundwater and sediments, and in sediment capping 

materials.  This research also provides environmental managers with site-specific 

information, allowing for better understanding and management of the McCormick and 

Baxter Superfund Site. 

Naphthalene was degraded under anaerobic conditions in the upland contaminated 

aquifer, as well as within the adjacent river sediments.  In fact, wherever naphthalene was 

present, the metabolites of anaerobic naphthalene degradation were detected.  It is 

possible that PAHs other than naphthalene may also be degraded at the site, however, 

higher molecular weight PAHs have lower solubilities, possibly limiting biodegradation.  

Microcosm experiments using sediment or aquifer porous media would help define the 

parameters that are controlling natural attenuation at the McCormick and Baxter 

Superfund Site, as well as reveal the terminal electron accepting process that may control 

the extent of biodegradation, both spatially and quantitatively.  The capacity of the native 
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microbial community to break down compounds containing more than two-fused benzene 

rings could be determined with the addition of other PAHs, such as phenanthrene or 

pyrene, to the microcosms. 

An in situ rate of anaerobic naphthalene transformation was successfully quantified 

using the push-pull method.  However, this push-pull experiment almost certainly 

underestimated the actual in situ rate of degradation.  Labeling the parent compound with 

deuterium precluded our ability to measure naphthalene mineralization.  Rather, we were 

confined to describing the in situ breakdown of naphthalene as the rate of naphthalene 

transformation to naphthoic acid.  One alternative would be to use carbon isotopes as a 

method to measure naphthalene degradation.  In this way, the mineralization of labeled 

naphthalene could be quantified by measuring the production of labeled carbon dioxide 

and possibly even labeled methane.  However, this method also has its limitations, as not 

all degraded naphthalene would be converted solely to these compounds, and this rate, 

too, would be considered conservative.  Moreover, the use of radioactive C14 and C13 in 

the field embodies additional respective setbacks, namely environmental red tape and 

cost. 

Multiple lines of evidence indicate that the organophilic clay used as a reactive 

sediment cap at the McCormick and Baxter Superfund Site stimulates methanogenesis.  

This stimulus is likely caused by a syntrophic relationship of anaerobic microorganisms 

converting the organic component of the organophilic clay ultimately to methane.  This 

process is not limited to a single brand of organophilic clay; a significant increase in 

methane production was observed in both of two brands tested.  Ideally, the next phase of 

research would be to isolate the active microbial consortium from the organophilic clay 
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retrieved from the field and conduct similar experiments to those described here, but 

having only fresh, unused organophilic clay available to the microorganisms (i.e., no 

residual organophilic clay from the field).  As discussed earlier, the ability of bacteria to 

access sorbed organic compounds is unclear.  Future studies should include looking at the 

physical characteristics of organophilic clay, specifically equilibrium partitioning and 

sorption/desorption kinetics of the surfactant used to manufacture organophilic clay, 

thereby specifying the ratio of surfactant in solution compared to the sorbed fraction at 

some moment in time.  Thus, the availability of the organic component to the 

microorganisms would be better understood.  Another aspect to investigate is whether 

different types of surfactants could be used to make a less “biodegradable” organophilic 

clay, possibly extending the lifetime of this material. 

Because the organophilic clay was used to cap areas with NAPL seepage in order to 

impede contamination of the overlying river water, studies concerning the ability of 

microbial communities to actively degrade PAHs and other organic contaminants sorbed 

to organophilic clay would be particularly interesting.  Furthermore, considering the 

capacity of these syntrophic microorganisms to degrade long-chain hydrocarbons, 

organophilic clay could provide a habitat perfect for the selection and success of 

microorganisms capable of degrading organic contaminants under methanogenic 

conditions. 
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