May 10th, 11:00 AM - 1:00 PM

Comparing the Effects of Phonomotor Treatment and Semantic Feature Analysis on Discourse Production for Individuals with Aphasia

Kasey Graue
Portland State University, kgraue@pdx.edu

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/studentsymposium
Part of the Communication Sciences and Disorders Commons, and the Semantics and Pragmatics Commons

Graue, Kasey, 'Comparing the Effects of Phonomotor Treatment and Semantic Feature Analysis on Discourse Production for Individuals with Aphasia' (2017). Student Research Symposium. 5.
http://pdxscholar.library.pdx.edu/studentsymposium/2017/posters/5

This Event is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Comparing the effects of phonomotor treatment and semantic feature analysis on discourse production for individuals with aphasia

Kasey Graue¹, Amy Aronson¹, Gerasimos Fergadiotis¹, & Diane Kendall²
¹Portland State University, ²University of Washington

Introduction

- Anomia is the cardinal deficit of aphasia, an acquired neurogenic language disorder that approximately 1 million people in the United States suffer from [8]. Currently, there is a lack of effective treatments that can improve discourse production.
- Phonomotor treatment is a rigorous, multi-modal program designed to increase language production of persons with aphasia (PWA) [6]. Specifically, it has been shown to:
 - Increase accuracy of trained words [6],
 - Improve overall aphasia severity scores,
 - Generalize to both non-word and real word reading [2], and
 - Generalize to improved discourse production in structured tasks [5].
- Limited research is currently available on how phonomotor treatment generalizes to less structured discourse tasks, more typical of daily life.
- Discourse abilities, analyzed by Correct Information Units (CIUs) [9], reflect a speaker’s overall communication accuracy and efficiency.

Research Questions

- Do people with aphasia (PWA) exhibit improved discourse informativeness immediately post-treatment and 3 months post-treatment?
- Is either treatment associated with greater gains post- and 3 months post-treatment?
- Do people with aphasia (PWA) exhibit improved discourse informativeness immediately post-treatment and 3 months post-treatment?

Materials

- Samples were elicited using the story retell procedure [4].
- Six of twelve pre-recorded stories at each time point (A-B-A) were used.
- All stories were accompanied by six-plate black & white illustrations during the elicitation of the language sample.

CIU Scoring

- CIUs [9] scored at pre-, post-, and three-months post-treatment:
 - Defined as words which are “intelligible in context, accurate in relation to the picture(s) or topic, and relevant to and informative about the content of the picture(s) or topic” [9].
 - Scoring completed by two students from PSU who had been trained on CIU protocol.
- Two scores estimated per transcript related to CIU production: CIUs per number of words and CIUs per minute.

CIU Reliability

- The Pearson Product Moment Correlation was greater than .92 across all three time points.

Results

- Pre-Tx (Time 1) .432 (.080) .433 (.080)
- Post-Tx (Time 2) .476 (.083) .468 (.083)
- 3 months post-Tx (Time 3) .439 (.076) .481 (.076)

Discussion

Main Findings

- Descriptively, both treatments appear to be associated on average with improved outcomes immediately after treatment.
- However, only participants who received the phonomotor treatment appear to have additional improvement three months-post treatment.
- The 5% increase in CIU’s associated with the phonomotor treatment 3 months post-treatment is consistent with the findings of Horton et al. [3].
- Improvement after the end of the treatment is consistent with the theoretical framework of the phonomotor treatment.

Limitations

- Sample size is low as there was only complete data for statistical analysis for 23 participants; CIU scoring of the remaining participants is ongoing.
- Even though relative agreement between CIU scorers was high, absolute agreement was problematic.

Future directions

- Currently, data from 56 PWA have been collected but language sample analysis is ongoing. Once all samples are analyzed (expect ~60), a more powerful 2x3 mixed ANOVA followed up with pairwise comparisons will be computed.

Method

Participants

- Criteria:
 - Inclusionary: chronic aphasia, anomia, and impaired phonology due to stroke with left hemisphere damage.
 - Exclusionary: severe AOS, major depressive/psychiatric illnesses, degenerative diseases, chronic illnesses, or severe/uncorrected vision/hearing impairments.
- Language samples elicited at pre-, post-, and three-months post-treatment.
- All participants received 60 hours of treatment total over 6 weeks.

Procedure

- Participants randomly assigned to either phonomotor treatment (PM) or semantic feature analysis (SFA) [1] treatment groups.
- Language samples elicited at pre-, post-, and three-months post-treatment.
- All participants received 60 hours of treatment total over 6 weeks.

Treatment

- First stage: Isolated sound training
- Second stage: Sound combination training, progressing from simple combinations to increasingly complex sound combinations, single words.
- Both stages trained multi-modally through perception and production tasks.
- Example tasks include: Mouth pictures, colored blocks, motor descriptions, verbal responses, and letters tasks.

Table 1. Demographic and clinical characteristics

<table>
<thead>
<tr>
<th>Measure</th>
<th>SFA</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>5M-4F</td>
<td>5M-4F</td>
</tr>
<tr>
<td>Education, Years Mean (SD)</td>
<td>63 (14.9)</td>
<td>62.7 (9.5)</td>
</tr>
<tr>
<td>Age, Years</td>
<td>46 (2.9)</td>
<td>46.5 (29.2)</td>
</tr>
<tr>
<td>Months Post-Onset Mean (SD)</td>
<td>39.7 (147)</td>
<td>46.5 (29.2)</td>
</tr>
<tr>
<td>CAT</td>
<td>16.3 (4.3)</td>
<td>17.2 (2.9)</td>
</tr>
<tr>
<td>BNT</td>
<td>28.8 (20.8)</td>
<td>20.4 (15.9)</td>
</tr>
</tbody>
</table>

Table 2. Mean CIUs scores produced at time points

<table>
<thead>
<tr>
<th>Time Points</th>
<th>Measures</th>
<th>SFA</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Tx (Time 1)</td>
<td>CIUs per number of words (SE)</td>
<td>.432 (.080)</td>
<td>.433 (.080)</td>
</tr>
<tr>
<td>Post-Tx (Time 2)</td>
<td>CIUs per number of words (SE)</td>
<td>.476 (.083)</td>
<td>.468 (.083)</td>
</tr>
<tr>
<td>3 months post-Tx</td>
<td>CIUs per number of words (SE)</td>
<td>.439 (.076)</td>
<td>.481 (.076)</td>
</tr>
</tbody>
</table>

References