1-1-2011

Developing and Calibrating the Hydrodynamic and Water Quality Model CE-QUAL-W2 for Banks Lake Washington

Andrew John McCulloch

Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Recommended Citation

10.15760/etd.180

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Developing and Calibrating the Hydrodynamic and Water Quality Model
CE-QUAL-W2 for Banks Lake Washington

By
Andrew John McCulloch

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in
Civil and Environmental Engineering

Thesis Committee:
Scott Wells, Chair
Chris Berger
Mark Sytsma

Portland State University
©2011
ABSTRACT

Located in central Washington State, Banks Lake serves as an irrigation storage reservoir for the Columbia Basin Irrigation Project and is home to a diverse fisheries population. The current hydrologic management strategies used for Banks Lake have been chosen to serve two purposes: to adequately store and provide irrigation water for the Columbia Basin Irrigation Project and to maintain a healthy aquatic environment suitable for the growth and habitation of local flora and fauna. Increased needs for irrigation water within arid central Washington poses additional challenges to reservoir managers so that irrigation needs are met without damaging the present aquatic environment within Banks Lake. Future plans by the Washington Department of Ecology to use Banks Lake storage as an additional source of irrigation water in lieu of the depleted ground water reserves of the Odessa Subarea aquifer have required an investigation into how increased seasonal drawdown may affect fish growth, fish habitat and overall limnology of Banks Lake.

The goal of this project is to produce a hydrodynamic and water quality model of Banks Lake that can predict the impacts of management strategies on the lake’s water quality and the linkage of lake management to fish habitat.
Acknowledgements

Funds for this project were provided by the Washington Department of Ecology. Andy Miller of the Spokane Tribe of Indians, Dr. Ross Black of Eastern Washington University, Jama Hamel of the US Bureau of Reclamation, Matt Polacek and Danny Didrickson of the Washington Department of Fish and Wildlife provided data water quality and meteorological data for Banks Lake and Lake Roosevelt. Patrick O’Callaghan, Cory Stolsig and David Cordner of the US Bureau of Reclamation provided bathymetric data for Banks Lake and helped with system interpretation. Dr. Scott Wells, Dr. Chris Berger and Vanessa Wells of the Portland State University Water Quality Research Group provided technical assistance and advice for the hydrodynamic and water quality model.
Table of Contents

ABSTRACT... i
Acknowledgements ... ii
List of Tables .. vi
List of Figures ... viii
Abbreviations .. xiv
Project Overview ... 1
Banks Lake Overview .. 2
Lake Geometry ... 6
Hydraulic Structures .. 8
 Feeder Canal & North Dam .. 9
 Lake Roosevelt Pumping Plant .. 10
 Main Canal & Dry Falls Dam ... 12
Work Impetus ... 15
Overview of Models Used .. 18
 CE-QUAL-W2 Overview ... 18
Lake Roosevelt Fish Bioenergetics Model Review .. 22
Model Background ... 23
Banks Lake Data Summary ... 25
Bathymetry Data & Grid Development ... 26
Hydraulic Boundary Conditions .. 32
 Feeder Canal Inflow .. 34
 Feeder Canal Return Flow ... 36
 Main Canal Outflow .. 38
Water Surface Elevation .. 40
Boundary Condition Water Temperature Data ... 42
Meteorological Data .. 47
Topographical and Vegetative Shading ... 51
Water Quality Data ... 53
 WDFW Water Quality Data ... 56
Appendix D: pH Calibration Profiles ...251
Appendix E: Alternative Action Management Scenario Fish Habitat Percentages........281
Appendix F: Lake Roosevelt Fish Bioenergetics FORTRAN Source Code Routine......289
List of Tables

Table 1. Banks Lake dimensions ... 7
Table 2. Lake Roosevelt pump summary ... 11
Table 3. EIS action alternatives ... 16
Table 4. CE-QUAL-W2 governing equations (Cole and Wells, 2010) 22
Table 5. Summary of model grid layout and dimensions 29
Table 6. Banks Lake flow gage summary .. 33
Table 7. Feeder Canal inflow summary statistics ... 34
Table 8. Feeder Canal return flow annual statistics 36
Table 9. Main Canal annual flow annual statistics 38
Table 10. Banks Lake annual water surface elevation summary statistics (m-NAVD88) 40
Table 11. Lake Roosevelt Dam forebay surface water temperature (°C) annual summary statistics .. 45
Table 12. Annual summary statistics for the calculated water temperature (°C) at the intake to the Lake Roosevelt pumping plant ... 45
Table 13. AGRIMET stations summary ... 47
Table 14. Banks Lake air temperature (°C) summary statistics 2002-2009 49
Table 15. Relative humidity (%) summary statistics 50
Table 16. Calculated dew point temperature (°C) summary statistics 50
Table 17. Wind speed (m/s) statistics summary ... 50
Table 18. Cloud cover data calculated from solar data (W/m²) 2002-2009 50
Table 19. Short wave solar radiation (W/m²) summary statistics 2002-2009 ... 50
Table 20. Annual precipitation (cm) summary statistics 50
Table 21. WDFW Banks Lake water quality sampling sites 54
Table 22. Washington Fish and Wildlife phytoplankton summary statistics, average biovolume (mm³/l) ... 69
Table 23. Washington Fish and Wildlife zooplankton density summary statistics (organisms/l) ... 73
Table 24. Water quality constituents and data types 75
Table 25. Water surface elevation and distributed tributary flow statistics: 2002-2009 .. 77
Table 26. Comparison of secchi disk depths, theoretical light extinction coefficients and model predicted light extinction coefficients .. 80
Table 30. Banks Lake 2007 and 2008 meteorological summary statistics and comparison ... 122
Table 31. Odessa Subarea Special Study EIS reservoir draw downs for Banks Lake 123
Table 32. The mean difference for all action alternative temperatures compared with the no ... 133
Table 33. The mean difference for all action alternative temperatures compared with the no-action .. 134
Table 34. Optimal growth habitat criteria for Banks Lake sport fish 149
Table 35. Zooplankton group 1 monthly average mass flow rates through the Main Canal (g/s) .. 160
Table 36. Zooplankton group 2 monthly average mass flow rates through the Main Canal (g/s) .. 161
List of Figures

Figure 1. Model study area and Washington State ... 3
Figure 2. Banks Lake with Grand Coulee Dam, North Dam and Dry Falls Dam 4
Figure 3. Banks Lake sub-pools and Devil’s Lake ... 7
Figure 4. Map of hydraulic structures within the greater extent of the Banks Lake study area .. 8
Figure 5. Banks Lake Feeder canal, facing South ... 9
Figure 6. Side view of a generic pump/turbine from the Lake Roosevelt pumping plant (Hubbard, 1995) ... 11
Figure 7. A side view schematic of the Dry Falls Dam powerhouse and the Main Canal headworks ... 13
Figure 8. A top view schematic of Dry Falls Dam and the Main Canal headworks 14
Figure 9. USGS aerial photograph of Devil’s Lake prior to the creation of Banks Lake. 28
Figure 10. Contour map of Devil’s Lake before and after correcting USBE bathymetry data ... 29
Figure 11. Close up view of the surface polygons with polygon numbers and direction of flow .. 30
Figure 12. Model grid side view of branch 7 ... 30
Figure 13. Model grid end view ... 31
Figure 14. Banks Lake flow gage locations ... 32
Figure 15. Feeder Canal daily average inflow rates (m3/s & ft3/s) 2008 35
Figure 16. Feeder Canal daily average return flow rates (m3/s & ft3/s) 2008 37
Figure 17. Main Canal daily average flow rates (m3/s & ft3/s) 2008 39
Figure 18. Banks Lake daily average water surface elevation 2002-2009 41
Figure 19. Banks Lake daily average water surface elevation 2002-2004 41
Figure 20. Linear regression used to predict feeder canal inflow temperatures where Y is Spring Canyon water temperature (oC) at a depth of 30 meters and Y is the Grand Coulee Dam forebay daily average surface water temperature (oC) ... 44
Figure 21. Boundary condition temperature gages ... 45
Figure 22. Spring Canyon water temperature (oC) isopleths 2002 46
Figure 23. Surface water temperature (oC) for hydromet station FDRW and calculated inflow temperatures (oC) at the Lake Roosevelt Pumping Plant 2002 46
Figure 24. AGRIMET weather station locations ... 49
Figure 25. CE-QUAL-W2 dynamic topographic shading angles diagram 52
Figure 26. Banks Lake maximum, minimum and average angles of inclination moving downstream from the Feeder Canal ... 52
Figure 27. WDFW Banks Lake water quality sampling sites ... 55
Figure 28. Banks Lake 2009 water temperature (oC) isopleths: Lim site 1 57
Figure 29. Banks Lake 2009 dissolved oxygen (mg/l) isopleths: Lim site 1 58
Figure 30. Banks Lake 2009 pH isopleths: Lim site 1 ... 58
Figure 31. Banks Lake 2005 chlorophyll-a (µg/l) isopleths: Lim site 1 58
Figure 32. Banks Lake 2002-2003 chlorophyll-a concentrations (µg/l) measured at 5 meters .. 60
Figure 33. Banks Lake 2003-2004 chlorophyll-a (µg/l) isopleths: Lim site 4 60
Figure 34. Orthophosphate data collected by EWU at Lim site 1: 2002-2004 63
Figure 35. Nitrate data collected by EWU at Lim site 1: 2002-2004 64
Figure 36. Lake Roosevelt orthophosphorus and total phosphorus concentrations 2002-2008 .. 64
Figure 37. Lake Roosevelt nitrite, nitrate and total nitrogen concentrations 2002-2008 . 64
Figure 38. Historical orthophosphate concentrations for 1974-1976 (Stober et al., 1976) ... 65
Figure 39. Theoretical total phosphorus concentrations based on observed chlorophyll-a data and ortho-phosphorus data collected by EWU for Lim site 1 66
Figure 40. Banks Lake phytoplankton biovolume concentrations (mm3/l): Lim sites 1 . 69
Figure 41. Banks Lake phytoplankton mass concentrations (mg/l) converted from biovolume (mm3/l): Lim site 1 ... 70
Figure 42. Algae biovolume to mass conversion curve and equation where X is algae biovolume (mm3) and Y is algae mass (pg) (Reynolds, 1984) 70
Figure 43. Banks Lake zooplankton densities (organisms/l): Lim 1 73
Figure 44. Banks Lake zooplankton concentrations (mg/m3) converted from density: Lim 1 .. 73
Figure 45. Correlation between Lake Roosevelt monthly averaged Daphnia biomass and monthly averaged densities, where Y is Daphnia biomass (mg/m3) and X is Daphnia density (#/m3) .. 74
Figure 46. Correlation between Lake Roosevelt monthly averaged Copepoda biomass and monthly averaged densities, where Y is Copepoda biomass (mg/m3) and X is copepoda density (#/m3) .. 74
Figure 47. Model predicted water surface elevation with observed data from Banks Lake, 2002 ... 77
Figure 48. Outflow discharge from the Main Canal at Dry Falls Dam with water balance flows, 2002 ... 78
Figure 49. Model predicted water surface elevation (red) with observed data (black) and distributed tributary flow (blue), 2002-2009 .. 78
Figure 50. Secchi depths (m), model predicted light extinction coefficients and theoretical light extinction coefficients for Lim 2 during 2008-2009 (Williams 1980) (Poole & Atkins 1929) .. 80
Figure 51. Effect of wind on predicted water temperature profile for Lim site 9 on 7/2/2008 with a wsc=0.8 and wsc=1.5 83
Figure 52. Wind sheltering coefficients used for model temperature calibration 83
Figure 53. A regression plot of model predicted water temperature profile data and water temperature profile data collected by WDFW .. 85
Figure 54. A flow chart of dissolved oxygen sources and sinks (Cole and Wells, 2010) 88
Figure 55. Effects of SOD on dissolved oxygen profile predictions for Lim site 6 on 7/30/2008 with a SOD=0.3 and SOD=0.50 .. 88
Figure 56. A regression plot of model predicted dissolved oxygen profile data and dissolved oxygen profile data collected by WDFW ... 90
Figure 57. A regression plot of model predicted pH profile data and pH profile data collected by WDFW ... 93
Figure 58. A regression plot of model predicted chlorophyll-a data and chlorophyll-a data collected by WDFW and EWU at a depth of 5 meters .. 95
Figure 59. Chlorophyll-a model predictions compared against data collect by EWU and WDFW at a depth of 5 meters for Lim sites 1, 2, 3 and 4................................. 96
Figure 60. Chlorophyll-a model predictions compared against data collect by EWU and WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8................................. 97
Figure 61. A regression plot of model predicted Algae 1(diatoms) (mg/l) and Algae 1 data (mg/l) collected by the WDFW at a depth of 5 meters .. 99
Figure 62. Algal group 1 (Diatoms) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 1, 2, 3 and 4........ 100
Figure 63. Algal group 1 (Diatoms) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8............ 101
Figure 64. A regression plot of model predicted Algae 2 (Cryptophyta) (mg/l) and Algae 2 data (mg/l) collected by the WDFW at a depth of 5 meters 102
Figure 65. Algal group 2 (Cryptophyta) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 1, 2, 3 and 4....... 103
Figure 66. Algal group 2 (Cryptophyta) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8............. 104
Figure 67. A regression plot of model predicted Algae 3(Green & Bluegreen) (mg/l) and Algae 3 data (mg/l) collected by the WDFW at a depth of 5 meters 105
Figure 68. Algal group 3 (Green and Bluegreen) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 1, 2, 3 and 4...... 106
Figure 69. Algal group 3 (Green and Bluegreen) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8...... 107
Figure 70. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 1, 2 and 3 ... 110
Figure 71. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 4, 5 and 6 ... 111

Figure 72. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 7, 8 and 9 .. 112

Figure 73. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 10 and 11 .. 113

Figure 74. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 1, 2 and 3 114

Figure 75. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 4, 5 and 6 115

Figure 76. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 7, 8 and 9 116

Figure 77. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 10 and 11 117

Figure 78. Banks Lake Feeder Canal flow annual totals .. 121

Figure 79. Banks Lake water surface elevation: 2008 .. 121

Figure 80. Prepared water surface elevations and flows rates for the no-action alternative .. 125

Figure 81. Prepared water surface elevations and flows rates for management scenario Average 2A .. 126

Figure 82. Prepared water surface elevations and flows rates for management scenario Average 3A .. 126

Figure 83. Prepared water surface elevations and flows rates for management scenario Dry 2A .. 127

Figure 84. Prepared water surface elevations and flows rates for management scenario Dry 3A .. 127

Figure 85. Prepared water surface elevations and flows rates for management scenario Drought 2A ... 128

Figure 86. Prepared water surface elevations and flows rates for management scenario Drought 3A ... 128

Figure 87. Prepared water surface elevations and flows rates for management scenario Wet 2A .. 129

Figure 88. Prepared water surface elevations and flows rates for management scenario Wet 3A .. 129

Figure 89. Water temperature profiles at Lim 3 under action alternative Average 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th ... 135
Figure 90. Water temperature profiles at Lim 3 under action alternative Drought 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th ... 135
Figure 91. Water temperature profiles at Lim 3 under action alternative Wet 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th......... 136
Figure 92. Water temperature profiles at Lim 3 under action alternative Dry 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th 136
Figure 93. Water temperature profiles at Lim 3 under action alternative Average 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th ... 137
Figure 94. Water temperature profiles at Lim 3 under action alternative Drought 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th ... 137
Figure 95. Water temperature profiles at Lim 3 under action alternative Dry 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th 138
Figure 96. Water temperature profiles at Lim 3 under action alternative Wet 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th......... 138
Figure 97. Water temperature profiles at Lim 4 under action alternative Wet 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th......... 139
Figure 98. Water temperature profiles at Lim 4 under action alternative Drought 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th 139
Figure 99. Water temperature profiles at Lim 4 under action alternative Dry 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th ... 140
Figure 100. Water temperature profiles at Lim 4 under action alternative Average 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th
... 140
Figure 101. Water temperature profiles at Lim 4 under action alternative Average 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th ... 141
Figure 102. Water temperature profiles at Lim 4 under action alternative Drought 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th 141
Figure 103. Water temperature profiles at Lim 4 under action alternative Dry 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th......... 142
Figure 104. Water temperature profiles at Lim 4 under action alternative Wet 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th 142
Figure 105. Discharge from the Dry Falls dam under the no-action alternative and alternative action scenario 3A... 143
Figure 106. Temporal and volume weighted average water temperature for each one year management scenario run. ... 145
Figure 107. Temporal and volume weighted average dissolved oxygen concentration for each one year management scenario run. ... 145
Figure 108. Average flow year time averaged volume fraction of dissolved oxygen for all scenarios.. 147
Figure 109. Drought flow year time averaged volume fraction of dissolved oxygen for all scenarios.. 147
Figure 110. Dry flow year time averaged volume fraction of dissolved oxygen for all scenarios.. 148
Figure 111. Wet flow year time averaged volume fraction of dissolved oxygen for all scenarios.. 148
Figure 112. Percent of reservoir volume that is optimal fish habitat for scenario Average-2A.. 152
Figure 113. Percent of reservoir volume that is optimal fish habitat for scenario Drought-2A.. 152
Figure 114. Percent of reservoir volume that is optimal fish habitat for scenario Dry-2A ... 153
Figure 115. Percent of reservoir volume that is optimal fish habitat for scenario Wet-2A ... 153
Figure 116. Percent of reservoir volume that is optimal fish habitat for the no-action alternative... 154
Figure 117. Annual average percent of reservoir volume that is optimal fish habitat for kokanee... 155
Figure 118. Annual average percent of reservoir volume that is optimal fish habitat for rainbow trout... 155
Figure 119. Annual average percent of reservoir volume that is optimal fish habitat for walleye... 156
Figure 120. Annual average percent of reservoir volume that is optimal fish habitat for smallmouth bass.. 156
Figure 121. Zooplankton concentrations (mg/l) and mass flow rates (g/s) into the Main Canal for the... 158
Figure 122. Annual average mass flow rate of zooplankton group 1 through the Main Canal (g/s)... 159
Figure 123. Annual average mass flow rate of zooplankton group 2 through the Main Canal (g/s)... 159
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLFEP</td>
<td>Banks Lake Fisheries Evaluation Program</td>
</tr>
<tr>
<td>cfs</td>
<td>Cubic Feet Per Second (ft³/s)</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DRYW</td>
<td>Dry Falls Dam, Washington AGRIMET Weather Station</td>
</tr>
<tr>
<td>EWU</td>
<td>Eastern Washington University</td>
</tr>
<tr>
<td>FDRW</td>
<td>Grand Coulee Dam Forebay Hydromet Water Gage</td>
</tr>
<tr>
<td>GCDW</td>
<td>Grand Coulee Dam, Washington AGRIMET Weather Station</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>LRFEP</td>
<td>Lake Roosevelt Fisheries Evaluation Program</td>
</tr>
<tr>
<td>MASW</td>
<td>Manson, Washington AGRIMET weather station</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>NAVD88</td>
<td>North American Vertical Datum 1988</td>
</tr>
<tr>
<td>ODSW</td>
<td>Odessa, Washington AGRIMET Weather Station</td>
</tr>
<tr>
<td>rad</td>
<td>Radians</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>RM</td>
<td>River Mile</td>
</tr>
<tr>
<td>STOI</td>
<td>Spokane Tribe of Indians</td>
</tr>
<tr>
<td>Tair</td>
<td>Air Temperature</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>Tdew</td>
<td>Dew Temperature</td>
</tr>
</tbody>
</table>
USBR United States Bureau of Reclamation
USGS United States Geological Survey
UTM Universal Transverse Mercator
WDFW Washington Department of Fish and Wildlife
Project Overview

The current hydrologic management strategies used for Banks Lake have been chosen to serve two purposes: to adequately store and provide irrigation water for the Columbia Basin Irrigation Project and to maintain a healthy aquatic environment suitable for the growth and habitation of local flora and fauna. Increased needs for irrigation water within arid central Washington poses additional challenges to reservoir managers so that irrigation needs are met without damaging the present aquatic environment within Banks Lake. Future plans by the Washington Department of Ecology (WDOE) to use Banks Lake storage to irrigate land located in the Odessa Subarea have required an investigation into how increased seasonal drawdown may affect fish growth, fish habitat and overall limnology of Banks Lake.

The following steps will be taken

1. Set up a CE-QUAL-W2 (Cole and Wells, 2010) model for Banks Lake
2. Calibrate the model for hydrodynamics, temperature, water quality, algae and zooplankton
3. Use the model to evaluate potential management scenarios for fish habitat and water quality
Banks Lake Overview

Banks Lake was created in 1951 by the US Bureau of Reclamation as an equalizing reservoir for the Columbia Basin Irrigation Project. Water from Lake Roosevelt was pumped into the adjacent upper Grand Coulee and retained by two earthen dams. The Grand Coulee was created when the Columbia River was diverted south of its current path by an ancient ice dam and scoured deep into the basalt bedrock.

Banks Lake resides within the central Washington State, on the border between Grant and Douglas County (Figure 1). Banks Lake is located approximately 134 km (83 mi) west of Spokane, Washington, 132 km (82 mi) South of the US-Canada border and 220 km (137 mi) East of Seattle, Washington. The cities of Grand Coulee and Electric City border the lake on its northeast banks and Coulee City on the lake’s southeast bank. Surrounding land cover classifications include agriculture, scrub/shrub and urban developed land.
Figure 1. Model study area and Washington State
Figure 2. Banks Lake with Grand Coulee Dam, North Dam and Dry Falls Dam

Banks Lake is bordered by North Dam to the north and Dry Falls Dam to the south. Figure 2 shows the location of both dams relative to the main body of water. Banks Lake provides irrigation water storage/distribution, hydroelectric power generation and outdoor/aquatic tourism opportunities. Source water is pumped from Lake Roosevelt to Banks Lake and then is disturbed to the greater central Washington State area for
agriculture. Waters from Lake Roosevelt and Banks Lake irrigate roughly 2200 km\(^2\) (550,000 acres) of agricultural land within the Columbia Irrigation Project. Since Banks Lake is an off stream reservoir and has a relatively small watershed, it is not used for flood control. Banks Lake hydroelectric power generation is operated by returning flow to Lake Roosevelt through turbines and by allowing outflow to run through a low head generator located at Dry Falls Dam.
Lake Geometry

Figure 3 shows how Banks Lake can be characterized into three sub-pools: the North Pool, the Middle Pool and the South Pool. The North Pool is characterized by the area south of North Dam to the southern tip of Steamboat Rock. The North Pool is surrounded by steep cliffs and contains a large pool area on the western border of Steamboat Rock. The Middle Pool contains the area south of Steamboat Rock to where the cliffs on the East bank subside to a gentle slope. The South Pool consists of the area North of Dry Falls Dam meeting the Middle Pool at the beginning of the East Bank cliffs.

In relation to the NAVD88 vertical datum, Banks Lake full pool elevation is measured at 479 m (1570 ft). At full pool Banks Lake has a volume of approximately 1.6 x 10^9 m^3. While the mean depth at full pool is 14 m, several deep pools exist, mostly in the southern half of the North Pool, the southern tip of the Middle Pool and most of the Southern Pool. At full pool a maximum depth of 54 meters occurs at Devils Lake, a cove located northwest of Steamboat Rock in the Middle Pool. Table 1 shows a summary of Banks Lake dimensions.
Figure 3. Banks Lake sub-pools and Devil’s Lake

Table 1. Banks Lake dimensions

<table>
<thead>
<tr>
<th></th>
<th>Surface Area</th>
<th>108.81 km²</th>
<th>10881 ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoreline Length</td>
<td>218 km</td>
<td>135.5 mi</td>
<td></td>
</tr>
<tr>
<td>Max Depth</td>
<td>54 m</td>
<td>177 ft</td>
<td></td>
</tr>
<tr>
<td>Mean Depth</td>
<td>14 m</td>
<td>46 ft</td>
<td></td>
</tr>
<tr>
<td>Max Volume</td>
<td>1.65×10^9 m³</td>
<td>56.3×10^9 ft³</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>43 km</td>
<td>27 mi</td>
<td></td>
</tr>
</tbody>
</table>
Hydraulic Structures

Figure 4 shows a map of upper Columbia Basin Irrigation project with bodies of water and hydraulic structures of interest labeled.

Figure 4. Map of hydraulic structures within the greater extent of the Banks Lake study area
Feeder Canal & North Dam

Figure 5 shows the south end of the Feeder Canal draining into Banks Lake. The 24.4 m (80.1 ft) wide and 7.6 m (25 ft) deep concrete lined Feeder Canal spans the 2.9 km (1.8 mi) distance from the end of the pumping pipes to the head works of the North Dam. The Feeder Canal can operate at a maximum flow rate of 736.24 m3/s (26,000 cfs). The North dam is 442 m (1450 ft) long and has a crest height of 44.2 m (145 ft) at an elevation of 481.6 m (1580 ft) (NAVD88).

Figure 5. Banks Lake Feeder canal, facing South
(Photo by Dr. Chris Berger)
Lake Roosevelt Pumping Plant

Water is drawn from Lake Roosevelt via 4.26 m (14 ft) diameter intake pipes and pumped uphill 83.5 m (274 ft) via twelve 3.66 m (12 ft) diameter pipes to the Banks Lake Feeder Canal. The center line of each pump’s intake pipe is located at 363.74 m (1193.2 ft) (NAVD 88), providing 29.48 m (96.73 ft) of head when Lake Roosevelt is at full pool. Figure 6 shows a side view schematic of a generic pump/generator found at the pumping plant. Pumps one through six were installed at the beginning of operations in 1951, each rated at 65,000 horsepower and 45.31 m3/s (1600 cfs). Construction began in 1961 on what would become six additional pumps also capable of power generation through return flow to Lake Roosevelt. Pumps seven through nine were installed in 1973, pumps ten and eleven were installed in 1983 and pump twelve was installed in 1984. Pumps seven and eight are rated at 67,500 horsepower, 45.31 m3/s and are capable of producing 50 MW of electrical power. Pumps nine through twelve are rated at 70,000 horsepower, 45.45 m3/s and are able to produce 53.5 MW of electrical power. Table 2 shows the power rate, pumping rate, power generation potential and year of installation for all pumps. The total capacity for power generation at the Grand Coulee Pump Generating Plant is 314 MW.
Figure 6. Side view of a generic pump/turbine from the Lake Roosevelt pumping plant (Hubbard, 1995)

Table 2. Lake Roosevelt pump summary

<table>
<thead>
<tr>
<th>Pump #</th>
<th>Power Rating (hp)</th>
<th>Maximum Flow Rate (m³/s)</th>
<th>Power Generation Potential (MW)</th>
<th>Year of Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65,000</td>
<td>45.31</td>
<td>0</td>
<td>1951</td>
</tr>
<tr>
<td>2</td>
<td>65,000</td>
<td>45.31</td>
<td>0</td>
<td>1951</td>
</tr>
<tr>
<td>3</td>
<td>65,000</td>
<td>45.31</td>
<td>0</td>
<td>1951</td>
</tr>
<tr>
<td>4</td>
<td>65,000</td>
<td>45.31</td>
<td>0</td>
<td>1951</td>
</tr>
<tr>
<td>5</td>
<td>65,000</td>
<td>45.31</td>
<td>0</td>
<td>1951</td>
</tr>
<tr>
<td>6</td>
<td>65,000</td>
<td>45.31</td>
<td>0</td>
<td>1951</td>
</tr>
<tr>
<td>7</td>
<td>67,500</td>
<td>45.45</td>
<td>50</td>
<td>1973</td>
</tr>
<tr>
<td>8</td>
<td>67,500</td>
<td>45.45</td>
<td>50</td>
<td>1973</td>
</tr>
<tr>
<td>9</td>
<td>70,000</td>
<td>48.14</td>
<td>53.5</td>
<td>1973</td>
</tr>
<tr>
<td>10</td>
<td>70,000</td>
<td>48.14</td>
<td>53.5</td>
<td>1983</td>
</tr>
<tr>
<td>11</td>
<td>70,000</td>
<td>48.14</td>
<td>53.5</td>
<td>1983</td>
</tr>
<tr>
<td>12</td>
<td>70,000</td>
<td>48.14</td>
<td>53.5</td>
<td>1984</td>
</tr>
</tbody>
</table>
Main Canal & Dry Falls Dam

Water used for irrigation exits the lake through Dry Falls Dam via the Main Canal at the southern end of the lake. During times of peak energy consumption flow can be diverted through the Dry Falls Dam spillway turbine for energy production. Dry Falls Dam is 2,987 m (9800 ft) long, has a crest height of 37.5 m (123 ft) at an elevation of 481.6 m (1580 ft) (NAVD 88) and supports a two lane highway. The unlined and concrete lined Main Canal is 29,612 m (18.4 miles) long and can support a maximum flow rate of 46.52 m3/s (19,300 cfs). Water leaving Banks Lake travels 2,896 m (1.8) down the Main Canal before entering the Bacon Siphon. The Bacon Siphon consists of two 1000 ft long siphons and two tunnels each two miles long which lead irrigation water underground to the Billy Clap Lake storage reservoir. Figure 7 and Figure 8 show a top view and a side view schematic of Dry Falls Dam and the headworks of the Main Canal.
Figure 7. A side view schematic of the Dry Falls Dam powerhouse and the Main Canal headworks
Figure 8. A top view schematic of Dry Falls Dam and the Main Canal headworks
Work Impetus

The Odessa Subarea is located approximately 90 miles west of Spokane, Washington and is considered to be within the eastern boundary of Columbia Basin Project (CBP). The Washington State legislature officially recognized in 1967 that over pumping had led to significant declines of water table elevation and subsequently designated the Odessa Subarea as a groundwater management area. Continued irrigation pumping within the area has resulted in an overall decrease in the water table elevation and an increase in the surface extent of the affected land. Recent direction from the Washington State Legislature to the Washington State Department of Ecology (WDOE) to direct attention towards developing alternative water sources for users in the Odessa Subarea has prompted the development of a draft environmental impact statement (EIS) (USBR and WDOE, 2010). The EIS aims to evaluate the impact and feasibility of potential alternatives that would supply surface water for irrigation within the Odessa Subarea.

The draft EIS outlines eight potential action alternatives and one no-action alternative. The action alternatives are split into two groups: partial and complete irrigation of the Odessa Subarea. The partial alternatives (group 2) are estimated to irrigate 57,000 acres of land and the complete alternatives (group 3) to irrigate 102,600 acres of land. Groups 2 and 3 are further divided into 4 water source combinations, listed as water source A, B, C, and D. Table 3 shows the action alternatives and their water sources. Water source A uses only Banks Lake, source B uses a combination of Banks Lake and Lake Roosevelt water, source C involves Banks Lake and the use of a yet to be constructed retention

15
reservoir named Rocky Coulee Reservoir and source D would use a combination of all three water bodies. Each action alternative is additionally mandated by the draft EIS to be evaluated under 4 flow years. The draft EIS outlines 1995 as an average flow year, 1982 as a wet flow year, 1998 as a dry flow year and 1931 as a drought flow year.

<table>
<thead>
<tr>
<th>Alternative 1</th>
<th>No-Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 2A</td>
<td>Partial-Banks</td>
</tr>
<tr>
<td>Alternative 2B</td>
<td>Partial-Banks+FDR</td>
</tr>
<tr>
<td>Alternative 2C</td>
<td>Partial-Banks+Rocky</td>
</tr>
<tr>
<td>Alternative 2D</td>
<td>Partial-Combined</td>
</tr>
<tr>
<td>Alternative 3A</td>
<td>Full-Banks</td>
</tr>
<tr>
<td>Alternative 3B</td>
<td>Full-Banks+FDR</td>
</tr>
<tr>
<td>Alternative 3C</td>
<td>Full-Banks+Rocky</td>
</tr>
<tr>
<td>Alternative 3D</td>
<td>Full-Combined</td>
</tr>
</tbody>
</table>

This project will evaluate each of the 8 action alternatives under 4 flow years and the no-action alternative, for a total of 33 model runs. The CE-QUAL-W2 model will be used to assess the suitability of each management alternative for providing fish habitat and water quality.

The management scenarios will be assessed through evaluating the following:

1.) Percent of total reservoir volume that meets dissolved oxygen and temperature levels that agree with the optimal growth conditions for selected sport fish species

2.) Mass flow rate of zooplankton entrainment from Dry Falls Dam
3.) Effects of changing water surface elevations on temperature stratification

4.) Effects of management scenarios on the abundance of dissolved oxygen in the reservoir system

5.) Use of a fish bioenergetics model to evaluate output from CE-QUAL-W2 to predict fish growth in kokanee salmon (Oncorhynchus nerka).
Overview of Models Used

CE-QUAL-W2 Overview

CE-QUAL-W2 (Cole and Wells, 2010) is a two dimensional laterally averaged hydrodynamic and water quality model. Originally developed in 1975 as the LARM (Laterally Averaged Reservoir Model) by Edinger and Buchak (1975), the model’s source code has steadily improved under the development of researchers, such as T. Cole and S. Wells, into a commonly used, powerful and open source hydrodynamic and water quality model. Modifications to the model have included improvements to computational efficiency and accuracy, transport and mixing schemes, as well as additional water quality algorithms, hydraulic structures and the ability to connect multiple water bodies. Because the model assumes lateral homogeneity, it is best suited for relatively long and narrow water bodies exhibiting longitudinal and vertical water quality gradients such as Banks Lake.

• The application of CE-QUAL-W2 requires knowledge in the following areas according to Cole and Wells (2010):

1. Hydrodynamics
2. Aquatic biology
3. Aquatic chemistry
4. Numerical methods
5. Computers and FORTRAN coding
6. Statistics
7. Data assembly and reconstruction

• CE-QUAL-W2 includes the following state variables according to Cole and Wells (2010):

1. Water Temperature
2. any number of generic constituents defined by a 0th and/or a 1st order decay rate and/or a settling velocity and/or an Arrhenius temperature rate multiplier that can be used to define any number of the following:
 a. conservative tracer(s)
 b. water age or hydraulic residence time
 c. coliform bacteria(s)
 d. contaminant(s)
3. any number of inorganic suspended solids groups
4. any number of phytoplankton groups
5. any number of epiphyton groups
6. any number of CBOD groups
7. ammonium
8. bioavailable phosphorus (commonly represented by orthophosphate or soluble reactive phosphorus)
9. labile dissolved organic matter
10. refractory dissolved organic matter
11. labile particulate organic matter
12. refractory particulate organic matter
13. total inorganic carbon
14. alkalinity
15. total iron
16. dissolved oxygen
17. organic sediments
18. zooplankton
19. macrophytes
Hydrodynamic & Water Quality Governing Equations

The governing equations are listed in Table 4. Assumptions made are:

1. Incompressible fluid
2. Centripetal acceleration is a minor correction to gravity
3. Boussinesq approximation
4. Lateral homogeneity
Table 4. CE-QUAL-W2 governing equations (Cole and Wells, 2010)

<table>
<thead>
<tr>
<th>Equation</th>
<th>Governing Equation</th>
</tr>
</thead>
</table>
| x-momentum | \[
\frac{\partial U_B}{\partial t} + \frac{\partial U_B}{\partial x} + \frac{\partial W_B}{\partial z} = g B \sin \alpha \\
+ g \cos \alpha B \frac{\partial \eta}{\partial x} - \frac{g \cos \alpha B}{\rho} \int \frac{\partial \rho}{\partial x} \, dz + \\
\frac{1}{\rho} \frac{\partial B \tau_{\xi x}}{\partial x} + \frac{1}{\rho} \frac{\partial B \tau_{\zeta z}}{\partial z} + q B U_z, \]
| z-momentum | \[0 = g \cos \alpha - \frac{1}{\rho} \frac{\partial p}{\partial z}\] |
| continuity | \[\frac{\partial U_B}{\partial x} + \frac{\partial W_B}{\partial z} = q B\] |
| state | \[\rho = f(T_w, \Phi_{TDS}, \Phi_{ss})\] |
| free surface | \[B_{\eta} \frac{\partial \eta}{\partial \eta} = \frac{\partial}{\partial \eta} \int U_B dz - \int q B dz\] |
| Mass(heat) | \[\frac{\partial \bar{c}}{\partial t} + \bar{u} \frac{\partial \bar{c}}{\partial x} + \bar{v} \frac{\partial \bar{c}}{\partial y} + \bar{w} \frac{\partial \bar{c}}{\partial z} = D \left(\frac{\partial^2 \bar{c}}{\partial x^2} + \frac{\partial^2 \bar{c}}{\partial y^2} + \frac{\partial^2 \bar{c}}{\partial z^2} \right) \]
\[- \frac{\partial}{\partial x} \left(\bar{u} \bar{c} \right) - \frac{\partial}{\partial y} \left(\bar{v} \bar{c} \right) - \frac{\partial}{\partial z} \left(\bar{w} \bar{c} \right) + \bar{S}\]

U = horizontal velocity m/s
W = vertical velocity m/s
B = channel width
p = pressure
Tx = x-direction lateral average shear stress
Ty = y-direction lateral average shear stress
ρ = density
η = water surface
Lake Roosevelt Fish Bioenergetics Model Review

This project desires to use the Lake Roosevelt fish bioenergetics model developed by McKillip (2008) to model fish growth in association with the CE-QUAL-W2 model output. The following covers a brief background of the bioenergetics model (Bevelhimer and Adams, 1993).

Model Background

The overall goal of bioenergetics models is to adequately trace energy within an organism, from metabolism to growth to waste. In many ways, bioenergetics is treated like a mass balance equation. Equation 1 outlines the energy budget used in the Lake Roosevelt bioenergetics model (Kitchell, et al., 1977):

\[G = C - (R + F + U) \]

Eq. 1

where \(G \) (\(\text{g} \cdot \text{g}^{-1} \cdot \text{day}^{-1} \)) is the specific growth rate, \(C \) (\(\text{cal} \cdot \text{g}^{-1} \cdot \text{day}^{-1} \)) is the specific rate of consumption, \(R \) is the specific rate of respiration (\(\text{g} \cdot \text{g}^{-1} \cdot \text{day}^{-1} \)), \(F \) is the specific rate of egestion (\(\text{g} \cdot \text{g}^{-1} \cdot \text{day}^{-1} \)) and \(U \) is the specific rate of excretion (\(\text{g} \cdot \text{g}^{-1} \cdot \text{day}^{-1} \)). Most bioenergetics models either use known consumption rates to measure growth, or they use known growth rates to predict metabolism. Additional complications arise as use of bioenergetics models advance in complexity. Variability among typical species size, weight and metabolic costs are not factored into most bioenergetics models. Therefore
the potential for large errors in predicting population growth does exist. In most situations, a bioenergetics model is considered successful if it is able to predict data values within a 50% error margin.
Banks Lake Data Summary

This section summarizes available data used to develop the Banks Lake CE-QUAL-W2 model. Data used for this model focused on the calibration time period of 2002-2009. A more detailed description of the model data can be accessed from the report “Banks Lake Model: Boundary Conditions and Model Set-up (McCulloch, Berger and Wells, 2011)” which contains:

- Physical Lake Description and Background
- Bathymetry Data and Grid Set-Up
- Hydraulic Boundary Conditions
- Water Temperature Boundary Conditions
- Water Quality Boundary Conditions
- Meteorological Data
- Dynamic Topographical Shading
- Abiotic Water Quality Data
- In-Lake nutrient Analysis
- Algae data
- Zooplankton Data
- Fish Data
Bathymetry Data & Grid Development

The primary bathymetric data used to create the model grid was a USBR generated DEM file with a 5 meter resolution. Data used to develop the DEM was collected by the USBR prior to inundation during the 1940’s via surface surveying methods. Original data was collected to develop five foot contours from the elevation of 1490 ft to 1530 ft and two foot contours from the elevation of 1530 ft to 1580 ft based on the NAVD 29 datum.

Processing the DEM file included converting the DEM raster file to a contour map using ArcGIS. The developed contour map was arranged in alignment with the UTM ZONE 11 N spatial coordinate projection (WGS84 datum) and NAVD 88 vertical datum.

The preliminary contour map displayed some irregularly shallow areas within the bathymetry data. Prior to the inundation of Banks Lake in 1951, several small lakes existed in the coulee. Figure 9 shows an aerial photograph of Devil’s Lake and an adjacent lake prior to inundation. When surveyors collected the surface elevation data of the coulee used to develop the USBR DEM file in the 1940’s, the land covered by these small lakes where assigned the surface elevation of their corresponding lake’s shoreline. This assumption led to data loss in some areas of the DEM. The data loss was not significant in most areas, but all of Devil’s Lake was found to be shallow. Additional 1-foot resolution bathymetric data were acquired via NAVIONICS HOT MAPS, an independent company that produces high resolution fishing maps. Using the NAVIONICS HOT MAPS as a guide, the Devil’s lake bathymetry was repaired by hand.
digitizing correct bathymetry elevations. Figure 10 shows contour maps of Devil’s Lake before and after the bathymetry data correction.

The updated bathymetry data was then used to develop the two-dimensional grid. The bathymetry contour map was delineated into one main branch extending the length of the lake from the Feeder Canal to the Main Canal. Nine complimentary branches that extend from the main branch through a cove to the shoreline were also delineated. Branch delineation was performed by hand digitizing the most likely path of flow through the thalweg. Using the branch delineation data and by specifying the direction of flow, the two-dimensional grid surface layer was created with 182 segments. Table 5 shows a summary of branch lengths and geometry. The surface grid laterally and longitudinally divides the two dimensional bathymetry data into individual and workable pieces. Figure 11 shows the model grid segments and the direction of flow covering part of branch 1 and all of branch 7 near Steamboat Rock. Each segment is a surface representation of the lake’s bathymetry and represents an area which CE-QUAL-W2 assumes water quality constituents to be laterally and longitudinal homogenous.

The three dimensional grid was then created by adding depth to the newly developed two dimensional grid. Through selecting a maximum water surface elevation of 470 m (NAVD88), minimum bathymetry elevation of 425 m (NAVD88) and using the bathymetry data contained within the two dimensional grid, a series of layers were added to each segment independent of other segments. Figure 12 and Figure 13 show a lateral view of branch 7 and the end view of the three dimensional grid, respectively. The final
model grid consists of one meter deep cells that extend to the maximum depth of each segment as dictated by the bathymetry overlayed by the two dimensional grid surface layer, resulting in a three dimensional representation of the Banks Lake bathymetry.

Figure 9. USGS aerial photograph of Devil’s Lake prior to the creation of Banks Lake (Image taken from http://edcsns17.cr.usgs.gov/EarthExplorer/)
Table 5. Summary of model grid layout and dimensions

<table>
<thead>
<tr>
<th>Branch #</th>
<th>Starting Segment</th>
<th>Ending Segment</th>
<th>Segment Length (m)</th>
<th>Branch Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>107</td>
<td>503.3</td>
<td>52850.7</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>117</td>
<td>536.2</td>
<td>3753.4</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>124</td>
<td>596.6</td>
<td>2386.4</td>
</tr>
<tr>
<td>4</td>
<td>127</td>
<td>131</td>
<td>536.0</td>
<td>2144.1</td>
</tr>
<tr>
<td>5</td>
<td>134</td>
<td>138</td>
<td>571.8</td>
<td>2287.2</td>
</tr>
<tr>
<td>6</td>
<td>141</td>
<td>144</td>
<td>441.0</td>
<td>1323.0</td>
</tr>
<tr>
<td>7</td>
<td>147</td>
<td>156</td>
<td>500.9</td>
<td>4507.8</td>
</tr>
<tr>
<td>8</td>
<td>159</td>
<td>162</td>
<td>259.9</td>
<td>779.6</td>
</tr>
<tr>
<td>9</td>
<td>165</td>
<td>169</td>
<td>295.6</td>
<td>1182.2</td>
</tr>
<tr>
<td>10</td>
<td>172</td>
<td>177</td>
<td>572.2</td>
<td>2861.1</td>
</tr>
</tbody>
</table>
Figure 11. Close up view of the surface polygons with polygon numbers and direction of flow

Figure 12. Model grid side view of branch 7
Figure 13. Model grid end view
Hydraulic Boundary Conditions

Figure 14 shows the locations of flow gages on the boundary of Banks Lake. Table 6 lists the name, station ID, management agency, coordinates, data frequency and data range from each boundary condition flow gage.

Figure 14. Banks Lake flow gage locations
Table 6. Banks Lake flow gage summary

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Station ID</th>
<th>Agency</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Data Frequency</th>
<th>Data Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder Canal</td>
<td>12435500</td>
<td>*USGS</td>
<td>47° 57' 05"</td>
<td>118° 59' 40"</td>
<td>Daily</td>
<td>1/1/2002-12/31/2009</td>
</tr>
<tr>
<td>Main Canal</td>
<td>Main Canal</td>
<td>USBR</td>
<td>47° 37' 02"</td>
<td>119° 18' 00"</td>
<td>Sub-Hourly & Daily</td>
<td>1/1/2002-12/31/2009</td>
</tr>
</tbody>
</table>

Gage is registered as a USGS gage but data is collected by USBR
Feeder Canal Inflow

Feeder Canal inflow data was collected as daily average flow (m3/s). Source water for the Feeder Canal is withdrawn from Lake Roosevelt via the Lake Roosevelt Pumping Plant. Pumping is continuous from late March to late October with some rare days of zero flow. Occasionally pumping will occur during winter months. Pumping was most active in 2008 with 260 days of pumping. The highest volume of water was pumped in 2007 and 2008, both years having the highest annual average flow rate of 122 m3/s. Peak flows took place mostly from late March to mid-July and ranged from 481.4 – 574.2 m3/s. The average flow for days when flow was measured was highest in 2004 with 184.8 m3/s and lowest in 2006 with 168.4 m3/s. Table 7 summarizes Feeder Canal flow rates and pumping time periods. Figure 15 shows Feeder Canal flow for 2008.

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Days With Flow</td>
<td>237</td>
<td>236</td>
<td>223</td>
<td>235</td>
<td>237</td>
<td>241</td>
<td>260</td>
<td>237</td>
</tr>
<tr>
<td>Max Flow (m3/s)</td>
<td>455.9</td>
<td>458.7</td>
<td>574.8</td>
<td>481.4</td>
<td>523.9</td>
<td>521</td>
<td>556.1</td>
<td>574.2</td>
</tr>
<tr>
<td>Annual Average Flow (m3/s)</td>
<td>111.6</td>
<td>112.1</td>
<td>113.1</td>
<td>109.8</td>
<td>109.3</td>
<td>122</td>
<td>122</td>
<td>119.7</td>
</tr>
<tr>
<td>Average Flow When Flow Was Measured (m3/s)</td>
<td>171.8</td>
<td>173.3</td>
<td>184.8</td>
<td>170.5</td>
<td>168.4</td>
<td>183.3</td>
<td>171.7</td>
<td>183.6</td>
</tr>
</tbody>
</table>
Figure 15. Feeder Canal daily average inflow rates (m3/s & ft3/s) 2008
Feeder Canal Return Flow

Feeder Canal return flow data was collected as daily average flow (m3/s). Most of the return flow at the Feeder Canal took place during winter months with the exception of 2009 which had most of its flow between May and August. Continuous pumping normally lasted no more than one day, but occasionally reached up to four days. Return flow was most active in 2008 with 52 days of flow. The highest volume of water was pumped back to Lake Roosevelt in 2007 which had an annual average flow rate of 7.9 m3/s. The average flow of days when flow was measured was highest in 2004 with 127.2 m3/s and lowest in 2008 with 10.9 m3/s. Table 8 summarizes Feeder Canal return flow rates and days when return flow occurred. Figure 16 shows Feeder Canal return flow for 2008.

Table 8. Feeder Canal return flow annual statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Days With Flow</td>
<td>20</td>
<td>23</td>
<td>9</td>
<td>12</td>
<td>19</td>
<td>37</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>Max Flow (m3/s)</td>
<td>148.1</td>
<td>199.4</td>
<td>229.4</td>
<td>129.1</td>
<td>202.2</td>
<td>243</td>
<td>108.5</td>
<td>166</td>
</tr>
<tr>
<td>Annual Average Flow (m3/s)</td>
<td>3.1</td>
<td>4.6</td>
<td>3.1</td>
<td>1.2</td>
<td>4.1</td>
<td>7.9</td>
<td>1.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Average of Days Flow Was Measured (m3/s)</td>
<td>55.7</td>
<td>72.3</td>
<td>127.2</td>
<td>36.5</td>
<td>77.9</td>
<td>78</td>
<td>10.9</td>
<td>46.7</td>
</tr>
</tbody>
</table>
Figure 16. Feeder Canal daily average return flow rates (m3/s & ft3/s) 2008
Main Canal Outflow

Flow at the Main Canal is continuous from mid March to late October and was measured at a sub hourly time interval. Peak flows took place from mid-May to mid-August and ranged from 242.1 – 317.7 m3/s. Average flow of days when flow was measured was highest in 2007 with 171.9 m3/s and lowest in 2006 with 162.4 m3/s. Table 9 summarizes Main Canal outflow rates and days when outflow occurred. Figure 17 shows Feeder Canal return flow for 2008.

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Days With Flow</td>
<td>223</td>
<td>220</td>
<td>138</td>
<td>227</td>
<td>223</td>
<td>226</td>
<td>231</td>
<td>234</td>
</tr>
<tr>
<td>Max (m3/s)</td>
<td>242.1</td>
<td>243.8</td>
<td>257.2</td>
<td>242.9</td>
<td>244.9</td>
<td>317.7</td>
<td>262.1</td>
<td>246.5</td>
</tr>
<tr>
<td>Annual Average (m3/s)</td>
<td>165.2</td>
<td>169.8</td>
<td>170.4</td>
<td>161.8</td>
<td>161.6</td>
<td>171.1</td>
<td>168.2</td>
<td>165.5</td>
</tr>
<tr>
<td>Average of Days Flow Was Measured (m3/s)</td>
<td>166.8</td>
<td>171.4</td>
<td>171.8</td>
<td>162.5</td>
<td>162.4</td>
<td>171.9</td>
<td>168.9</td>
<td>166.1</td>
</tr>
</tbody>
</table>
Figure 17. Main Canal daily average flow rates (m3/s & ft3/s) 2008
Water Surface Elevation

Water surface elevation data was collected daily by the USBR at the North Dam. Average annual water surface elevation was consistent around 478.0 meters (NAVD88) and daily data ranged from 476.7 – 478.5 meters (NAVD88). Table 10 summarizes the maximum, minimum and average water surface elevation for 2002-2009. Figure 18 shows daily water surface elevation for 2002-2009. Figure 19 shows daily water surface elevation for 2002 with the only water surface elevation data gap, which was filled by linear interpolation. Water surface elevation was steady during the first half of most years followed by a late summer drawdown beginning around August.

Table 10. Banks Lake annual water surface elevation summary statistics (m-NAVD88)

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>478.3</td>
<td>478.5</td>
<td>478.5</td>
<td>478.5</td>
<td>478.5</td>
<td>478.5</td>
<td>478.5</td>
<td>478.5</td>
</tr>
<tr>
<td>Min</td>
<td>477</td>
<td>477</td>
<td>476.7</td>
<td>476.9</td>
<td>477</td>
<td>477</td>
<td>477</td>
<td>476.5</td>
</tr>
<tr>
<td>Average</td>
<td>477.9</td>
<td>478</td>
<td>477.8</td>
<td>477.9</td>
<td>478</td>
<td>478</td>
<td>478</td>
<td>477.9</td>
</tr>
</tbody>
</table>
Figure 18. Banks Lake daily average water surface elevation 2002-2009

Figure 19. Banks Lake daily average water surface elevation 2002-2004
Boundary Condition Water Temperature Data

Inflow water temperature was not available at the Feeder Canal, so water temperature at the Lake Roosevelt Pumping Plant intake pipes was estimated. To approximate water temperature at the depth from which the Lake Roosevelt Pumping Plant withdrawals water (29.6 m) (97.1 ft), a linear regression was fit between daily average surface water temperature data at hydromet station FDRW and water temperature profile data measured at the Spring Canyon Boat Ramp. Figure 20 shows the regression relationship between the surface water temperature at the Grand Coulee Dam forebay (FDRW) and water temperature measured from a depth of 30 meters at Spring Canyon. The regression between Lake Roosevelt forebay surface water temperature (FDRW) and Spring Canyon water temperature profile data was limited by the number of profile samples collected between 2002 and 2009. The regression used 81 points and yielded a goodness of fit of 0.98. From the regression equation a time series of daily average water temperatures at a depth of 30 m at the Grand Coulee dam was calculated.

This approach assumes that stratification/mixing processes are consistent longitudinally from hydromet station FDRW to Spring Canyon and laterally from the Lake Roosevelt Pumping Plant to the hydromet station FDRW. This approach also assumes that heat attenuation/cooling while the waters of Lake Roosevelt are in transit to the Banks Lake Feeder Canal is negligible.
Lake Roosevelt surface water temperature was available from the hydromet station FDRW. Hydromet station FDRW is located at the forebay of Grand Coulee Dam, approximately 0.9 km (0.6 mi) east of the Lake Roosevelt Pumping Plant (Figure 21). Surface water temperature was measured at hourly time intervals for the entire 1/1/02 – 12/31/09 time period without data gaps. Table 11 shows the maximum, minimum and average surface water temperature at the Grand Coulee Dam forebay (FDRW).

The Spring Canyon boat ramp is located in a cove of Lake Roosevelt, approximately 4.2 km (2.6 mi) upstream from Grand Coulee Dam (Figure 21). Profile data were collected by the Spokane Tribes of Indians (STOI) on a monthly basis from 1/16/02 – 10/10/07. Figure 22 shows an isopleths plot of water temperature taken from Spring Canyon for 2002. Spring Canyon water temperature profile data show that the lower pool of Lake Roosevelt is typically isothermal from January to March and warms slowly until stratification begins to set in around mid June. Stratification temperatures of up to 20 °C extended to depths of 80 meters in most years with temps of 22-24 °C present within the upper 10 meters of the epilimnion. The stratification process was less pronounced in 2007.

Table 12 shows the maximum, minimum, average and average deviation of the calculated water temperature values from the measured surface water temperature data collected at the Grand Coulee Dam forebay. Figure 23 shows the Grand Coulee Dam forebay surface water temperature with the calculated water temperature at the intake to the Lake Roosevelt Pumping Plant for 2002. Grand Coulee Dam forebay surface water
temperatures ranged from 1.5 – 25 °C. Temperatures calculated at the Lake Roosevelt Pumping Station intake pipes were typically 0.5°C cooler and followed a similar annual trend to the forebay temperature data. Annual average forebay water temperature ranged from 11-11.5 °C, except for 2002 which had a cooler average temperature of 10.4 °C. The regression equation accurately shows this drop in annual average water temperature in the calculated annual average water temperature for 2002.

Figure 20. Linear regression used to predict feeder canal inflow temperatures where Y is Spring Canyon water temperature (°C) at a depth of 30 meters and Y is the Grand Coulee Dam forebay daily average surface water temperature (°C)
Table 11. Lake Roosevelt Dam forebay surface water temperature (°C) annual summary statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>18.8</td>
<td>24</td>
<td>25</td>
<td>23.5</td>
<td>21.7</td>
<td>21.2</td>
<td>21.8</td>
<td>22.8</td>
</tr>
<tr>
<td>Min</td>
<td>2.5</td>
<td>3.3</td>
<td>2.2</td>
<td>2.8</td>
<td>3.4</td>
<td>2.1</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Average</td>
<td>10.4</td>
<td>11.6</td>
<td>11.9</td>
<td>11.5</td>
<td>11.7</td>
<td>11.3</td>
<td>11.1</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Figure 21. Boundary condition temperature gages

Table 12. Annual summary statistics for the calculated water temperature (°C) at the intake to the Lake Roosevelt pumping plant

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>18.2</td>
<td>23.3</td>
<td>24.3</td>
<td>22.8</td>
<td>21</td>
<td>20.5</td>
<td>21.1</td>
<td>22.1</td>
</tr>
<tr>
<td>Min</td>
<td>2</td>
<td>2.8</td>
<td>1.7</td>
<td>2.3</td>
<td>2.9</td>
<td>1.6</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>9.9</td>
<td>11.1</td>
<td>11.3</td>
<td>11</td>
<td>11.1</td>
<td>10.8</td>
<td>10.6</td>
<td>10.6</td>
</tr>
<tr>
<td>Average Difference from Observed Forebay Temperature</td>
<td>-0.55</td>
<td>-0.57</td>
<td>-0.57</td>
<td>-0.57</td>
<td>-0.57</td>
<td>-0.57</td>
<td>-0.56</td>
<td>-0.56</td>
</tr>
</tbody>
</table>
Figure 22. Spring Canyon water temperature (°C) isopleths 2002

Figure 23. Surface water temperature (°C) for hydromet station FDRW and calculated inflow temperatures (°C) at the Lake Roosevelt Pumping Plant 2002
Meteorological Data

Meteorological data were gathered from four AGRIMET weather stations: Grand Coulee Dam (GCDW), Odessa (ODSW) Dry Falls Dam (DRYW) and Manson (MASW) (Table 13). AGRIMET is a satellite based network of automated weather stations operated and maintained by the U.S. Bureau of Reclamation. Figure 24 shows the proximity of these AGRIMET stations to Banks Lake. The Odessa, Manson and Grand Coulee Dam AGRIMET stations are 56.8 km (35.3 mi), 69.6 km (43.2 mi) and 44.5 km (27.6 mi) from the Dry Falls Dam AGRIMET station, respectively.

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Station ID</th>
<th>Agency</th>
<th>Elevation, m (NAVD88)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Meteorological Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Coulee Dam, WA</td>
<td>GCDW</td>
<td>AGRIMET (Bureau Of Reclamation)</td>
<td>402.3</td>
<td>47.945278</td>
<td>118.95361</td>
<td>Air Temperature, Humidity, Wind Speed, Wind Direction, Precipitation, Solar Radiation</td>
</tr>
<tr>
<td>Dry Falls Dam</td>
<td>DRYW</td>
<td>AGRIMET (Bureau Of Reclamation)</td>
<td>376.4</td>
<td>47.614167</td>
<td>119.29917</td>
<td>Air Temperature, Wind Speed, Wind Direction, Precipitation</td>
</tr>
<tr>
<td>Odessa, WA</td>
<td>ODSW</td>
<td>AGRIMET (Bureau Of Reclamation)</td>
<td>502.9</td>
<td>47.312778</td>
<td>118.8725</td>
<td>Air Temperature, Humidity, Solar Radiation, Wind Speed, Wind Direction</td>
</tr>
<tr>
<td>Manson, WA</td>
<td>MASW</td>
<td>AGRIMET (Bureau Of Reclamation)</td>
<td>601.1</td>
<td>47.917222</td>
<td>120.13167</td>
<td>Humidity</td>
</tr>
</tbody>
</table>
The majority of meteorological data were gathered as hourly data from the Grand Coulee Dam AGRIMET station from 4/16/02 through 12/31/09. The GCDW station had the most complete record of hourly data of all AGRIMET stations located near Banks Lake. Limited meteorological data was available at DRYW from 4/1/07 to 7/9/2009. Meteorological data gathered from DRYW superseded the use of data collected at GCDW due to the proximity of the DRYW AGRIMET station to the main body of Banks Lake. Small data gaps were filled using linear interpolation. Larger gaps were filled with data generated by linear regressions between GCDW and the ODSW AGRIMET station or the MASW AGRIMET station; other substantial data gaps where linear regressions were not appropriate were filled by direct data substitution from other AGRIMET stations.

Statistical summaries of complete meteorological data records are provided for air temperature (Table 14), relative humidity (Table 15), dew point temperature (Table 16), wind speed (Table 17), cloud cover (Table 18), shortwave solar radiation (Table 19) and cumulative annual precipitation (Table 20).
Figure 24. AGRIMET weather station locations

Table 14. Banks Lake air temperature (°C) summary statistics 2002-2009

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>40.5</td>
<td>39.5</td>
<td>39.3</td>
<td>37.2</td>
<td>41.5</td>
<td>39.8</td>
<td>41</td>
<td>38.6</td>
</tr>
<tr>
<td>Min</td>
<td>-5.2</td>
<td>-8.1</td>
<td>-24</td>
<td>-16.1</td>
<td>-14.3</td>
<td>-12</td>
<td>-17.3</td>
<td>-12.8</td>
</tr>
<tr>
<td>Median</td>
<td>10.8</td>
<td>11</td>
<td>11.6</td>
<td>11.1</td>
<td>10.6</td>
<td>10.8</td>
<td>10.1</td>
<td>9.7</td>
</tr>
<tr>
<td>Average</td>
<td>12.19</td>
<td>12.05</td>
<td>12.04</td>
<td>11.21</td>
<td>11.79</td>
<td>11.41</td>
<td>10.67</td>
<td>10.86</td>
</tr>
</tbody>
</table>
Table 15. Relative humidity (%) summary statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99.7</td>
</tr>
<tr>
<td>Min</td>
<td>10.1</td>
<td>9.4</td>
<td>11.8</td>
<td>9.5</td>
<td>8.7</td>
<td>9.1</td>
<td>9.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Median</td>
<td>65</td>
<td>63.6</td>
<td>65.8</td>
<td>67.5</td>
<td>67.1</td>
<td>61.5</td>
<td>59.3</td>
<td>60.2</td>
</tr>
<tr>
<td>Average</td>
<td>63.8</td>
<td>62.7</td>
<td>63.7</td>
<td>65</td>
<td>64.2</td>
<td>60.4</td>
<td>58.9</td>
<td>59.1</td>
</tr>
</tbody>
</table>

Table 16. Calculated dew point temperature (°C) summary statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>17.9</td>
<td>19.9</td>
<td>22.5</td>
<td>5.58</td>
<td>18.1</td>
<td>17.6</td>
<td>16.9</td>
<td>16.2</td>
</tr>
<tr>
<td>Min</td>
<td>-4.6</td>
<td>-7.4</td>
<td>-18.7</td>
<td>-14.1</td>
<td>-9.6</td>
<td>-10.6</td>
<td>-12.2</td>
<td>-10.3</td>
</tr>
<tr>
<td>Median</td>
<td>5.7</td>
<td>5.6</td>
<td>5.9</td>
<td>5.8</td>
<td>5.7</td>
<td>5.2</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Average</td>
<td>5.88</td>
<td>5.52</td>
<td>5.83</td>
<td>5.58</td>
<td>5.65</td>
<td>4.81</td>
<td>4.3</td>
<td>4.37</td>
</tr>
</tbody>
</table>

Table 17. Wind speed (m/s) statistics summary

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>38.45</td>
<td>10.28</td>
<td>9.52</td>
<td>1.8</td>
<td>8.69</td>
<td>19.84</td>
<td>10.53</td>
<td>12.19</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median</td>
<td>1.79</td>
<td>1.51</td>
<td>1.44</td>
<td>1.53</td>
<td>1.51</td>
<td>0.8</td>
<td>1.62</td>
<td>1.76</td>
</tr>
<tr>
<td>Average</td>
<td>2.17</td>
<td>1.82</td>
<td>1.75</td>
<td>1.8</td>
<td>1.82</td>
<td>1.29</td>
<td>1.97</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Table 18. Cloud cover data calculated from solar data (W/m²) 2002-2009

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4.56</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median</td>
<td>3.62</td>
<td>4.43</td>
<td>4.19</td>
<td>3.91</td>
<td>3.86</td>
<td>2.37</td>
<td>2.39</td>
<td>1.47</td>
</tr>
<tr>
<td>Average</td>
<td>4.35</td>
<td>4.69</td>
<td>4.51</td>
<td>4.56</td>
<td>4.56</td>
<td>4.28</td>
<td>4.16</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Table 19. Short wave solar radiation (W/m²) summary statistics 2002-2009

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>984.6</td>
<td>984.6</td>
<td>1017</td>
<td>169.1</td>
<td>1057</td>
<td>1019</td>
<td>1068</td>
<td>1003</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median</td>
<td>10.6</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.6</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Average</td>
<td>169.6</td>
<td>166.2</td>
<td>165.8</td>
<td>169.1</td>
<td>169.5</td>
<td>170.6</td>
<td>170.9</td>
<td>173</td>
</tr>
</tbody>
</table>

Table 20. Annual precipitation (cm) summary statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>13.71</td>
<td>16.78</td>
<td>17.7</td>
<td>29.74</td>
<td>31.03</td>
<td>14.88</td>
<td>11.43</td>
<td>17.62</td>
</tr>
</tbody>
</table>
Topographical and Vegetative Shading

CE-QUAL-W2 is able to calculate the amount of topographic and vegetative shading that takes place on Banks Lake. Referencing Figure 25, when the angle of solar inclination (α) is less than that of the angle of topographical or vegetative inclination (α_r) the model will reduce short wave solar radiation intensity by 90%, leaving 10% to account for diffuse radiation. Figure 26 shows the maximum, minimum and average angles of inclination of Banks Lake while traveling downstream from the Feeder Canal. This feature is useful for water bodies surrounded by mountains or water bodies located within deep canyons, such as Banks Lake. Due to the lack of shoreline vegetation surrounding Banks Lake, vegetative shading was not considered in the model. Further discussion on CE-QUAL-W2 topographical shading is available in Cole and Wells (2010).
Figure 25. CE-QUAL-W2 dynamic topographic shading angles diagram

Figure 26. Banks Lake maximum, minimum and average angles of inclination moving downstream from the Feeder Canal
Water Quality Data

Water quality data that were relevant to the development and evaluation of the Banks Lake CE-QUAL-W2 model were shown in McCulloch, Berger and Wells (2011).

In-reservoir water quality profile data and chlorophyll-a data were collected by the WDFW during 2002, 2003, 2008 and 2009. Profile data were measured on a monthly to bimonthly basis from April to December with occasional profiles taken in January. Profile data were gathered from eleven sample sites throughout Banks Lake. Table 21 and Figure 27 show the location of the WDFW sample sites.

In-reservoir orthophosphorus, nitrate and chlorophyll-a data were collected by Dr. Ross Black of Eastern Washington University (EWU) from 2002 through 2004 (Black et al., 2008). Sampling frequency was site specific, but most sites were sampled on a monthly to bi-monthly basis during spring, summer and fall months. In-reservoir nitrate, orthophosphorus and chlorophyll-a data were sampled from the same sites used by the WDFW, so for the purpose of this report these sample sites will be referred to as Lim sites 1-11.
Table 21. WDFW Banks Lake water quality sampling sites

<table>
<thead>
<tr>
<th>Station</th>
<th>Site Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lim 1</td>
<td>North Basin</td>
<td>47.935036</td>
<td>-119.067857</td>
<td>2/21/2002</td>
<td>12/3/2009</td>
</tr>
<tr>
<td>Lim 3</td>
<td>Mid-Reservoir</td>
<td>47.884251</td>
<td>-119.138469</td>
<td>2/21/2002</td>
<td>12/3/2009</td>
</tr>
<tr>
<td>Lim 8</td>
<td>Osborne Bay</td>
<td>47.928174</td>
<td>-119.060059</td>
<td>4/24/2008</td>
<td>12/3/2009</td>
</tr>
<tr>
<td>Lim 10</td>
<td>Middle Barrier Net</td>
<td>47.621845</td>
<td>-119.298556</td>
<td>4/24/2008</td>
<td>12/3/2009</td>
</tr>
</tbody>
</table>

Eastern Washington State University

<table>
<thead>
<tr>
<th>Station</th>
<th>Site Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lim 1</td>
<td>North Basin</td>
<td>47.935036</td>
<td>-119.067857</td>
<td>4/23/2002</td>
<td>8/19/2004</td>
</tr>
<tr>
<td>Lim 3</td>
<td>Mid-Reservoir</td>
<td>47.884251</td>
<td>-119.138469</td>
<td>4/23/2002</td>
<td>8/19/2004</td>
</tr>
</tbody>
</table>
Figure 27. WDFW Banks Lake water quality sampling sites
WDFW Water Quality Data

Figure 28 shows Banks Lake 2009 water temperature profile data for Lim site 1. Water temperature profile data were available for Lim sites 1, 3 and 5 in 2002, Lim sites 1-6 in 2003 and Lim sites 1-11 for 2008 and 2009. Summer highs often reached 20°C, sometimes as high as 28°C, and annual lows ranged 0-5°C. Most summer heating trends showed the onset of stratification from late June to mid July and lasting through September. Warming of upstream Lim sites 1, 2 and 8 showed less prominent summer stratification, most likely due to the seasonal pumping and mixing from Lake Roosevelt water coming into the system. Available winter water temperature data showed no winter stratification.

Figure 29 shows Banks Lake 2009 dissolved oxygen profile data for Lim site 1. Dissolved oxygen profile data were available for Lim sites 1, 3 and 5 in 2002, Lim site 1-6 in 2003 and Lim sites 1-11 for 2008 and 2009. Annual highs were measured during late winter/early spring months or during mid-summer algal blooms and ranged from 10 to 15 mg/l. Most Lim sites experienced some hypolimnetic dissolved oxygen depletion beginning around July and lasting throughout September with concentrations ranging 0.5-4 mg/l. Lim site 7 showed oxygen depletion in both the hypolimnion and at the thermocline during summer and fall months.

Figure 30 shows Banks Lake 2009 pH profile data for Lim site 1. pH profile data were available for Lim sites 1, 3 and 5 in 2002, Lim sites 1-6 in 2003 and Lim sites 1-11 for
2008 and 2009. pH extrema ranged from 5.1-9.0 but most values fell between 7.5-8.5. Annual trends show a general drop in pH values during summer months in the hypolimnion and occasionally in the lower epilimnion. Data show these summer drops in pH to be more pronounced during 2008, reaching values as low as 6.38 at Lim site 7.

Figure 31 shows Banks Lake chlorophyll-a profile data. Chlorophyll-a profile data were available for Lim sites 1-8 in 2004 and Lim sites 1-7 in 2005. Limited chlorophyll-a data was available for 2003 with most sites sampled only two or three times annually, during the late summer or early fall. Maximum and minimum concentrations for 2003 ranged from 0.1 to 5.7 µg/l, but most values measured between 2-3 µg/l. Data from 2004 covered May through October and showed most sites had high algae growth during late spring months followed by intermediate growth through October. Maximum and minimum values for 2005 ranged from 0.4-10.3 µg/l with most values measured between 2-3 µg/l. Most sites showed algal production was highest at depths of 6-12 meters. Consistently Lim site 4 was the most productive site sampled.
Figure 29. Banks Lake 2009 dissolved oxygen (mg/l) isopleths: Lim site 1

Figure 30. Banks Lake 2009 pH isopleths: Lim site 1

Figure 31. Banks Lake 2005 chlorophyll-a (µg/l) isopleths: Lim site 1
EWU Water Quality Data

Eastern Washington University (EWU) sampled Lim sites 1-8 from 2002 through 2004. Most sites were only sampled during the summer months of 2003 and 2004, but Lim sites 1, 3 and 5 were also sampled throughout the fall and winter months of 2002. Chlorophyll-a samples were collected in triplicate at a depth of 5 meters from Lim sites 1, 3 and 5 from 9/2002-6/2003. Chlorophyll-a profile data were collected from 6/2003-8/2004 and 5/2004-8/2004 for Lim sites 1-6 and Lim sites 7-8, respectfully. All orthophosphate and nitrate samples were collected in triplicate at a depth of 5 meters. Continued discussion of EWU nutrient data continues in the following section: EWU Nutrient Data Analysis

Figure 32 shows chlorophyll-a grab samples data from 2002-2003 for Lim sites 1, 3 and 5. Figure 33 shows chlorophyll-a profile data from 2003-2004 for Lim 4. Chlorophyll-a samples taken from 5 meters ranged from 0.88-5.14 µg/l. Lim site 1 chlorophyll-a concentrations peaked during the winter and spring months of 2003, Lim site 3 peaked during 10/2002, 12/2002 and 6/2003, and Lim site 5 concentrations peaked during 11/2002. Profile chlorophyll-a data normally ranged between 0-4 µg/l for all dates sampled, with short peak concentrations exceeding 4 µg/l occurring during the summer of 2004 for Lim sites 1, 5 and 6. Lim site 4 showed higher chlorophyll-a production from 2/2004-6/2004 with concentrations increasing from 4 µg/l to 7 µg/l. Limited profile data collected at Lim site 8 also showed high concentrations ranging from 2-8.5 µg/l during the summer of 2004. Lim site 4 and 8 were shown to have the highest productivity.
Figure 32. Banks Lake 2002-2003 chlorophyll-a concentrations (µg/l) measured at 5 meters

Figure 33. Banks Lake 2003-2004 chlorophyll-a (µg/l) isopleths: Lim site 4
EWU Nutrient Data Analysis

Orthophosphate and nitrate grab samples were collected by EWU at Lim sites 1-8 over 9/2002-8/2004 from a depth of 5 meters. EWU orthophosphate and nitrate concentrations ranged from 0-400 µg/l and 0-3.5 mg/l, respectively. Figure 34 and Figure 35 show orthophosphate and nitrate concentrations collected by EWU at Lim site 1. While these were the only Banks Lake nutrient data available during the calibration time period, the legitimacy of the magnitude of the EWU nutrient data required some further investigation. Ultimately, the EWU nutrient data were discarded and nutrient calibration for Banks Lake was not attempted. The following explains how the nutrient data was examined and also shows why the nutrient data collected by EWU was not used.

• The orthophosphate and nitrate concentrations of Banks Lake’s source water in Lake Roosevelt ranged from 1-7 µg/l and 0.02-0.15 mg/l over the same time period the EWU data was collected, respectively. Figure 36 and Figure 37 show scatter plots of Lake Roosevelt phosphorus and nitrate concentrations from 2002-2008. This comparison suggests that either a large nutrient source exists within the Banks Lake watershed or the EWU nutrient data were incorrect. Further investigation found that both major municipalities within the Banks Lake watershed (Coulee City and Electric City) have waste water treatment sites, neither of which discharge into Banks Lake. Also, a significant portion of the Banks Lake watershed has been developed for agricultural production and would pose a high risk for non-point source nutrient discharge into the lake, but scant
precipitation records would suggest that not a likely possibility (McCulloch et al., 2011).

•Historical records from 1974-1976 produced by the U.S. Bureau of Reclamation (USBR) show orthophosphate concentrations ranging from 0-25 µg/l (Stober et al., 1976). Figure 38 shows a scanned image of the orthophosphate graph published by the USBR.

•The orthophosphate field samples were processed colorimetrically within 8 hours of sampling using a HACH DR/850 colorimeter (Black et al., 2003). Analysis with the HACH DR/850 involved using the HACH Phosver 3 method (Black et al., 2003). According to the Hach website, using the HACH DR/850 with the HACH Phosver 3 method yields an estimated detection limit of 70µg/l. This instrument would allow the researchers at EWU to accurately detect, at best, nutrient levels that would be considered highly eutrophic (>> 20 µg/l) and nothing less than that (Chapra, 1997).

•The EWU orthophosphate data would classify Banks Lake as highly eutrophic (>> 20 µg/l TP) while the chlorophyll-a data collected by both EWU and WDFW would classify Banks Lake as mesotrophic (4-10 µg/l CHLA) (Chapra, 1997). To better show this lack of nutrient agreement, EWU orthophosphate data was compared against theoretical total phosphorus concentrations that were calculated from in-lake chlorophyll-a data.
Equation 2 was taken from Dillon and Rigler (1974), equation 3 was taken from Rast and Lee (1978) and equation 4 was taken from Bartsch and Gakstatter (1978), where TP is total phosphorus in µg/l and Chlα is chlorophyll-a in µg/l.

\[
\log(\text{TP}) = 0.69\log(\text{Chlα}) + 0.783 \quad \text{Eq. 2}
\]

\[
\log(\text{TP}) = 1.315\log(\text{Chlα}) + 0.341 \quad \text{Eq. 3}
\]

\[
\log(\text{TP}) = 1.239\log(\text{Chlα}) + 0.24 \quad \text{Eq. 4}
\]

Figure 39 shows a scatter plot of the EWU orthophosphate data plotted with the theoretically calculated total phosphorus concentrations for Lim site 1.
Figure 35. Nitrate data collected by EWU at Lim site 1: 2002-2004

Figure 36. Lake Roosevelt orthophosphorus and total phosphorus concentrations 2002-2008

Figure 37. Lake Roosevelt nitrite, nitrate and total nitrogen concentrations 2002-2008
Figure 38. Historical orthophosphate concentrations for 1974-1976 (Stober et al., 1976)
Figure 39. Theoretical total phosphorus concentrations based on observed chlorophyll-a data and ortho-phosphorus data collected by EWU for Lim site 1.
Biological Data

Algae

Algae data were collected by the Washington Department of Fish and Wildlife (WDFW) on roughly a monthly basis from 9/2002-8/2004. Lim sites 1, 3 and 5 were sampled monthly from 9/2002-12/2002, Lim sites 1-6 were sampled monthly during all of 2003 and Lim sites 1-8 were sampled monthly from 3/2004-8/2004. Algae samples were collected in triplicate at a depth of 5 meters. Samples were classified and separated by phylum, then measured as biovolume (mm3/l). Table 22 shows the total annual biovolume and the percent of total annual algae biovolume for each algae group. Figure 40 shows algae biovolume data at Lim site 1 from 2002-2004.

Chrysophytes (diatoms) were the dominate group for all years with 70%, 79% and 59% of the total biovolume for 2002, 2003 and 2004 respectively. The cryptophytes were the second most abundant phyla with 16%, 12% and 24% of the total biovolume for 2002, 2003 and 2004 respectively. Chlorophyta were the third most frequently sampled algal group with an annual percentage of the total biovolume ranging from 3-7%.

Chrysophytes populations were highest during late winter/early spring months and would typically begin to decrease during mid to late summer. Pyrrophyta showed little presence for all years and euglenaopryta were measured only four times at Lim 2 and Lim 4 during late summer months. Eubacteria (bluegreen) would typically bloom during mid to late
summer months. Eubacteria made up at least 10% of the total sample abundance at Lim site 5 and 6 for all years.

Since CE-QUAL-W2 reads and outputs algae data as mass per volume concentrations, algae data collected by the WDFW were converted from biovolume (mm3/l) to mass concentration (mg/l). The two most dominant algal groups, including the chrysophytes and cryptophytes, were converted to mass concentrations and used in the CE-QUAL-W2 model. Although the eubacteria and the chlorophyta did not make up a large percentage of the total sampled algal biovolume, their biovolumes were combined and converted to mass concentrations to make the third algal group used in the CE-QUAL-W2 model. Figure 41 shows the converted algae mass concentrations for Lim 1. Figure 42 shows the exponential curve equation developed by Reynolds (1984) that was used to convert algal biovolume to mass. The Reynolds biovolume to mass equation (equation 5) was developed using algae mass to biovolume relationships among multiple taxonomic groups, where Y is mass in pictograms and X is biovolume in cubic millimeters.

$$Y = 0.47 \cdot X^{0.99} \quad \text{Eq. 5}$$

Thus, within certain biovolume ranges the conversion from biovolume to mass will be more accurate for some algal groups over others. The conversion equation was not published with any error statistics, so it should be noted that although using equation 5 is assumed to be reliable, some leeway should be also assumed in its conversion accuracy.
The alternative of using an empirically based conversion equation did not present itself, as there were no available algal mass data to accompany the algal biovolume data.

Table 22. Washington Fish and Wildlife phytoplankton summary statistics, average biovolume (mm³/l)

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>Ratio</th>
<th>2003</th>
<th>Ratio</th>
<th>2004</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyta</td>
<td>0.44</td>
<td>0.03</td>
<td>2.26</td>
<td>0.04</td>
<td>2.26</td>
<td>0.07</td>
</tr>
<tr>
<td>Chrysophyta</td>
<td>11.58</td>
<td>0.7</td>
<td>39.79</td>
<td>0.75</td>
<td>18.81</td>
<td>0.59</td>
</tr>
<tr>
<td>Cryptophyta</td>
<td>2.69</td>
<td>0.16</td>
<td>6.48</td>
<td>0.12</td>
<td>7.58</td>
<td>0.24</td>
</tr>
<tr>
<td>Pyrrophyta</td>
<td>0.04</td>
<td>0</td>
<td>0.82</td>
<td>0.02</td>
<td>0.66</td>
<td>0.02</td>
</tr>
<tr>
<td>Euglenophyta</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eubacteria</td>
<td>1.78</td>
<td>0.11</td>
<td>3.97</td>
<td>0.07</td>
<td>2.37</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Figure 40. Banks Lake phytoplankton biovolume concentrations (mm³/l): Lim sites 1
Figure 41. Banks Lake phytoplankton mass concentrations (mg/l) converted from biovolume (mm3/l): Lim site 1

Figure 42. Algae biovolume to mass conversion curve and equation where X is algae biovolume (mm3) and Y is algae mass (pg) (Reynolds, 1984).
Zooplankton

Zooplankton data were collected by the Washington Department of Fish and Wildlife from Lim sites 1-11 on a mostly bi-monthly basis from 4/2008-11/2008 and 4/2009-11/2009. All Lim sites were sampled three times for each day sampled via a 0.15 meter radius zooplankton tow net. Samples were sorted by genus and counted. To achieve an accurate representation of zooplankton abundance in the water column the total number of zooplankton counted were then divided by the volume of water sampled by each tow, resulting in a zooplankton density of organisms per liter (organisms/l).

Copepoda were the dominate group for both years with 58% and 57% of the total density for 2008 and 2009 respectively. The rotoiferas were the second most abundant zooplankton group with 25% and 26% of the total density for 2008 and 2009 respectively. Copepoda populations peaked either in late spring or late fall depending on the Lim site. Rotoimage populations peaked during late spring and dropped to annual lows during late summer and early fall. Daphnia populations consistently made up 10-20% of the total zooplankton density for all Lim sites, except for Lim 2 where daphnia made up 26% and 29% of the total zooplankton population for 2008 and 2009 respectively. Table 23 shows Banks Lake annual zooplankton density summaries. Figure 43 shows Banks Lake zooplankton densities for Lim site 1.

While the CE-QUAL-W2 modeling software reads and outputs zooplankton data in mass per volume concentrations, zooplankton density data collected by the WDFW were
converted to mass using regression equations developed with the monthly average zooplankton mass concentrations and densities from Lake Roosevelt collected by the Lake Roosevelt Fisheries Evaluation Program (LRFEP). Since the LRFEP collected mass and density data for only copepoda and daphnia groups, they were the groups that were converted to mass concentration values for Banks Lake. Figure 44 shows the converted zooplankton mass concentrations for Lim 1. Figure 45 and Figure 46 show the linear regressions used to convert zooplankton density data for daphnia and copepoda into mass concentration values. It should be noted that although the regression conversion equations are assumed to be accurate and have relatively high R^2 values, there is the potential for high levels of error in these conversions since density data does not provide any information into the size or length of the individual zooplankton organisms counted in each sample.
Table 23. Washington Fish and Wildlife zooplankton density summary statistics (organisms/l)

<table>
<thead>
<tr>
<th></th>
<th>Copepoda</th>
<th>Rotoifera</th>
<th>Daphnia</th>
<th>Other Cladocera</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Total Count</td>
<td>9078.87</td>
<td>3961.92</td>
<td>2248.90</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td>0.58</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>2009</td>
<td>Total Count</td>
<td>6699.45</td>
<td>3016.53</td>
<td>1764.41</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td>0.57</td>
<td>0.26</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Figure 43. Banks Lake zooplankton densities (organisms/l): Lim 1

Figure 44. Banks Lake zooplankton concentrations (mg/m^3) converted from density: Lim 1
Figure 45. Correlation between Lake Roosevelt monthly averaged Daphnia biomass and monthly averaged densities, where Y is Daphnia biomass (mg/m3) and X is Daphnia density (#/m3)

$$Y = 0.01732 \times X - 0.02995$$

$R^2 = 0.78$

Figure 46. Correlation between Lake Roosevelt monthly averaged Copepoda biomass and monthly averaged densities, where Y is Copepoda biomass (mg/m3) and X is Copepoda density (#/m3)

$$Y = 0.00168 \times X + 0.23854$$

$R^2 = 0.72$
Banks Lake CE-QUAL-W2 Model Calibration

The Banks Lake model calibration period lasted from January 1st, 2002 to December 31st, 2009. The calibration time period was determined by data availability and data frequency. Model calibration consisted of first evaluating reservoir hydrodynamics, followed by water temperature, abiotic water quality constituents and then biotic water quality constituents. Table 24 shows the water quality constituents used for calibration and their data types. Calibration coefficients and setup are shown as the model control file in Appendix A.

<table>
<thead>
<tr>
<th>Calibration Constituent</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Surface Elevation</td>
<td>Daily Time series, meters</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>Vertical Profiles, °C</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>Vertical Profiles, mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>Vertical Profiles</td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>Grab Sample, μg/l</td>
</tr>
<tr>
<td>Algae</td>
<td>Grab Sample, mg/l</td>
</tr>
<tr>
<td>Zooplankton</td>
<td>Net Tows, mg/l</td>
</tr>
</tbody>
</table>
Hydrodynamic Calibration

Hydrodynamic calibration was achieved by balancing inflow rates with outflow discharges while reproducing the corresponding water surface elevations for the given calibration period. Inaccurate flow gages, ground water seepage and evaporation act as sinks to the flow regime, and are accounted for in the calibration process by adding a user created distributed tributary. The distributed tributary is capable of adding or subtracting water from the system when needed, thus allowing for accurate water surface elevation predictions. Further discussion on hydrodynamic boundary conditions is available in McCulloch, Berger and Wells (2011).

Water surface elevation error statistics and average distributed tributary flows are shown in Table 25. Model predicted water surface elevations and observed water surface elevations for 2002 are plotted in Figure 47. Outflows from the Main Canal at Dry Falls Dam and distributed tributary flows for 2002 are plotted in Figure 48. Figure 49 shows model predicted and observed water surface elevations with distributed tributary flows for the entire 2002-2009 calibration period.
Table 25. Water surface elevation and distributed tributary flow statistics: 2002-2009

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean Error, m</th>
<th>Absolute Mean Error, m</th>
<th>Root Mean Square Error, m</th>
<th>Average Annual Distributed Tributary Flow, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0.005</td>
<td>0.03</td>
<td>0.051</td>
<td>-4.92</td>
</tr>
<tr>
<td>2003</td>
<td>0.014</td>
<td>0.035</td>
<td>0.052</td>
<td>-4.41</td>
</tr>
<tr>
<td>2004</td>
<td>0.01</td>
<td>0.024</td>
<td>0.037</td>
<td>-4.22</td>
</tr>
<tr>
<td>2005</td>
<td>0.028</td>
<td>0.048</td>
<td>0.075</td>
<td>-4.9</td>
</tr>
<tr>
<td>2006</td>
<td>0.028</td>
<td>0.051</td>
<td>0.078</td>
<td>-5.72</td>
</tr>
<tr>
<td>2007</td>
<td>0.026</td>
<td>0.043</td>
<td>0.058</td>
<td>-5.74</td>
</tr>
<tr>
<td>2008</td>
<td>0.036</td>
<td>0.045</td>
<td>0.061</td>
<td>-11.85</td>
</tr>
<tr>
<td>2009</td>
<td>0.035</td>
<td>0.051</td>
<td>0.064</td>
<td>-4.95</td>
</tr>
<tr>
<td>Average</td>
<td>0.023</td>
<td>0.041</td>
<td>0.06</td>
<td>-5.84</td>
</tr>
</tbody>
</table>

Figure 47. Model predicted water surface elevation with observed data from Banks Lake, 2002
Figure 48. Outflow discharge from the Main Canal at Dry Falls Dam with water balance flows, 2002

Figure 49. Model predicted water surface elevation (red) with observed data (black) and distributed tributary flow (blue), 2002-2009
Light Extinction

Light extinction data were collected as secchi depths at all 11 Lim sites from 2008-2009. The secchi depths can be converted to light extinction coefficients by using two theoretical equations from the literature. The Poole and Atkins (1929) equation is $\lambda = \frac{1.7}{S_d}$ where λ is the light extinction coefficient in meters$^{-1}$ and S_d is the secchi depth in meters. The Williams et al. (1980) equation is $\lambda = 1.11S_d^{-0.73}$. Both equations were used to convert the secchi depths to light extinction coefficient values and then compared against light extinction coefficient data calculated by CE-QUAL-W2 on the same day that secchi depths were measured. Table 26 shows the average secchi depth, the average model predicted light extinction coefficients and the theoretically calculated light extinction coefficients for Lim Sites 1-11 during 2008-2009. Figure 50 shows the secchi depths, the model predicted light extinction coefficients and the light extinction coefficients theoretically calculated from Poole and Atkins (1929) and Williams et al. (1980) for Lim site 2 during 2008-2009. The model typically over calculated the light extinction coefficients with an average error of 0.08 m$^{-1}$ when compared to the Williams et al. (1980) light extinction coefficients and a mean error of 0.06 m$^{-1}$ when compared to the Poole and Atkins (1929) light extinction coefficients. Light extinction coefficients are shown in the control file located in Appendix A, under the subheading “EX COEF”.
Table 26. Comparison of secchi disk depths, theoretical light extinction coefficients and model predicted light extinction coefficients

<table>
<thead>
<tr>
<th>Lim Site</th>
<th>Average Secchi Depth, m</th>
<th>Average Model Predicted Light Extinction Coefficient, m⁻¹</th>
<th>Average Light Extinction Coefficient (Williams, et al. 1980), m⁻¹</th>
<th>Average Light Extinction Coefficient (Poole and Atkins, et al. 1980), m⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.27</td>
<td>0.44</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>3.56</td>
<td>0.46</td>
<td>0.46</td>
<td>0.51</td>
</tr>
<tr>
<td>3</td>
<td>4.46</td>
<td>0.48</td>
<td>0.40</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>3.52</td>
<td>0.47</td>
<td>0.46</td>
<td>0.52</td>
</tr>
<tr>
<td>5</td>
<td>4.72</td>
<td>0.47</td>
<td>0.37</td>
<td>0.36</td>
</tr>
<tr>
<td>6</td>
<td>5.44</td>
<td>0.47</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>7</td>
<td>4.84</td>
<td>0.46</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>8</td>
<td>3.75</td>
<td>0.44</td>
<td>0.45</td>
<td>0.50</td>
</tr>
<tr>
<td>9</td>
<td>4.86</td>
<td>0.47</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>10</td>
<td>4.71</td>
<td>0.48</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>11</td>
<td>5.06</td>
<td>0.48</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Figure 50. Secchi depths (m), model predicted light extinction coefficients and theoretical light extinction coefficients for Lim 2 during 2008-2009 (Williams 1980) (Poole & Atkins 1929).
Water Temperature Calibration

Calibrating water temperature consisted of matching model profile predictions to water temperature profile data that was collected by the WDFW. Major drivers that dictate correct water temperature calibration include:

1.) Developing a correct bathymetry grid that is representative of the actual bathymetry and facilitates water and energy flow that is true to nature

2.) Accurately calibrating the hydrodynamics of the system through the use of distributed tributary flows and using correct boundary condition flows

3.) Using accurate and spatially relevant meteorological input data. Daily heating from short wave solar radiation and cooling from evaporation can have substantial effects on the energy budget of the lake

Further fine tuning of water temperature profile data was executed by altering the wind sheltering coefficients (WSC), which are used to increase or decrease the magnitude of wind driven mixing on a segment by segment basis through multiplying the current wind velocity by a user defined coefficient. The wind sheltering coefficient is vital in reproducing mixing characteristics for larger system such as Banks Lake since wind data are often measured offsite. Correct wind data will also provide for more correct evaporation rates. Figure 51 shows a comparison of the effects two different wind sheltering coefficients have on water temperature profiles predicted by the model. Figure 52 show the wind sheltering coefficients used in model calibration.
The calibrated model did well to match temperature data on days that were relatively isothermal. On days when stratification was prominent the model would typically do well to match either or both the epilimnion and hypolimnion temperatures but then miss parts of the thermocline. This is most likely attributed to incorrect wind driven mixing. The majority of available wind data used in the model was collected from the Grand Coulee Dam AGRIMET station (GCDW), which has a predominant east-west wind direction, where the actual prominent wind direction at Banks Lake is South-North.

Table 27 shows model-data error statistics and the number of model-data comparisons for temperature. Figure 53 shows a regression plot of model predicted water temperature profile data regressed against corresponding field data. Temperature calibration model-data vertical profile plots are shown in Appendix B.
Figure 51. Effect of wind on predicted water temperature profile for Lim site 9 on 7/2/2008 with a \(wsc=0.8 \) and \(wsc=1.5 \).

Figure 52. Wind sheltering coefficients used for model temperature calibration.

<table>
<thead>
<tr>
<th>Station</th>
<th>Model Segment</th>
<th>Number of Days with Data</th>
<th>Number of Comparisons</th>
<th>Mean Error, °C</th>
<th>Absolute Mean Error, °C</th>
<th>Root Mean Square Error, °C</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>60</td>
<td>612</td>
<td>-0.73</td>
<td>0.79</td>
<td>0.84</td>
<td>2002, 2003, 2008 & 2009</td>
</tr>
<tr>
<td>2</td>
<td>173</td>
<td>34</td>
<td>108</td>
<td>-0.7</td>
<td>0.82</td>
<td>0.91</td>
<td>2003, 2008 & 2009</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>59</td>
<td>570</td>
<td>-0.68</td>
<td>0.98</td>
<td>1.09</td>
<td>2002, 2003, 2008 & 2009</td>
</tr>
<tr>
<td>4</td>
<td>158</td>
<td>39</td>
<td>203</td>
<td>-0.1</td>
<td>0.91</td>
<td>1.02</td>
<td>2003, 2008 & 2009</td>
</tr>
<tr>
<td>5</td>
<td>82</td>
<td>58</td>
<td>689</td>
<td>0.15</td>
<td>1.08</td>
<td>1.2</td>
<td>2002, 2003, 2008 & 2009</td>
</tr>
<tr>
<td>6</td>
<td>99</td>
<td>39</td>
<td>425</td>
<td>0.18</td>
<td>1.03</td>
<td>1.19</td>
<td>2003, 2008 & 2009</td>
</tr>
<tr>
<td>7</td>
<td>147</td>
<td>29</td>
<td>670</td>
<td>0.46</td>
<td>1.1</td>
<td>1.33</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>8</td>
<td>181</td>
<td>33</td>
<td>124</td>
<td>0.05</td>
<td>0.73</td>
<td>0.86</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>32</td>
<td>357</td>
<td>0.16</td>
<td>0.76</td>
<td>0.88</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>10</td>
<td>109</td>
<td>31</td>
<td>115</td>
<td>0.84</td>
<td>0.99</td>
<td>1.02</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>30</td>
<td>177</td>
<td>0.81</td>
<td>1.09</td>
<td>1.15</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>AVE</td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>0.94</td>
<td>1.04</td>
<td></td>
</tr>
</tbody>
</table>
Figure 53. A regression plot of model predicted water temperature profile data and water temperature profile data collected by WDFW.

Water Temperature: Model vs Data

Y = 0.90 * X + 1.33

R^2 = 0.94

of points used: 4050
Dissolved Oxygen Calibration

Calibrating dissolved oxygen consisted of matching model profile predictions to dissolved oxygen profile data that were collected by the WDFW. Figure 54 shows a flow chart of dissolved oxygen sources and sinks which include:

Source

1.) Reaeration from the atmosphere through diffusion and turbulent mixing.

Reaeration can be controlled in the CE-QUAL-W2 model by either selecting predetermined reaeration equations that are suited for different water systems, or there is the option of creating a user defined equation.

2.) Algal photosynthesis

Sinks

1.) Algal and zooplankton respiration

2.) Biological/sediment oxygen demand (BOD/SOD)

3.) Nitrification

4.) Diffusion into the atmosphere

Dissolved oxygen calibration proved to be challenging in that when in error, the model would most commonly produce too little dissolved oxygen and thus result in an overall negative mean error. More specifically, the model had a difficult time reproducing dissolved oxygen levels when the field data were shown to have been supersaturated. This under production of dissolved oxygen is most likely due to occurring algal blooms
that were not reproduced by the model or perhaps changes in wind’s effect on mixing that was not reproduced by the model. To help facilitate model oxygen production the model default reaeration equation for lakes was changed to a more conservative equation which would lose oxygen to the atmosphere less quickly. Also the oxygen production capacity of all algal groups was increased. Despite the need to increase overall dissolved oxygen concentrations, sediment oxygen demand (SOD) (g O₂/m² • day) was increased for some segments. An increase in SOD would result in a slight decrease in hypolimnetic dissolved oxygen and also help shape the model’s dissolved oxygen profile to more resemble the field data. SOD and algal photosynthesis rates are shown in the model control file in Appendix A under sub heading “STOICH 2” and “S DEMAND” respectively. Figure 55 shows a comparison of the effects two different sediment oxygen demand coefficients have on predictions of dissolved oxygen.

Table 28 shows model-data error statistics and the number of model-data comparisons for dissolved oxygen. Figure 56 shows a regression plot of model predicted dissolved oxygen profile data regressed against corresponding field data. Dissolved oxygen model-data vertical profile plots are shown in Appendix C.
Figure 54. A flow chart of dissolved oxygen sources and sinks (Cole and Wells, 2010)

Figure 55. Effects of SOD on dissolved oxygen profile predictions for Lim site 6 on 7/30/2008 with a SOD=0.3 and SOD=0.50

<table>
<thead>
<tr>
<th>Station</th>
<th>Model Segment</th>
<th>Number of Days with Data</th>
<th>Number of Comparisons</th>
<th>Mean Error, mg/l</th>
<th>Absolute Mean Error, mg/l</th>
<th>Root Mean Square Error, mg/l</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>173</td>
<td>34</td>
<td>109</td>
<td>-0.71</td>
<td>1.24</td>
<td>1.24</td>
<td>2003, 2008 & 2009</td>
</tr>
<tr>
<td>4</td>
<td>158</td>
<td>39</td>
<td>201</td>
<td>-0.40</td>
<td>1.13</td>
<td>1.13</td>
<td>2003, 2008 & 2009</td>
</tr>
<tr>
<td>5</td>
<td>82</td>
<td>53</td>
<td>622</td>
<td>-0.58</td>
<td>1.06</td>
<td>1.06</td>
<td>2002, 2003, 2008 & 2009</td>
</tr>
<tr>
<td>6</td>
<td>99</td>
<td>38</td>
<td>413</td>
<td>-0.39</td>
<td>1.02</td>
<td>1.02</td>
<td>2003, 2008 & 2009</td>
</tr>
<tr>
<td>7</td>
<td>147</td>
<td>29</td>
<td>669</td>
<td>-0.17</td>
<td>1.37</td>
<td>1.37</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>8</td>
<td>181</td>
<td>32</td>
<td>120</td>
<td>-1.51</td>
<td>1.65</td>
<td>1.65</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>32</td>
<td>357</td>
<td>-0.71</td>
<td>1.24</td>
<td>1.24</td>
<td>2008 & 2009</td>
</tr>
</tbody>
</table>
Figure 56. A regression plot of model predicted dissolved oxygen profile data and dissolved oxygen profile data collected by WDFW.

Y = 0.611 * X + 3.33
R^2 = 0.62
of points used: 3861
pH Calibration

Calibrating for pH consisted of matching model profile predictions to pH profile data that were collected by the WDFW. While pH levels are primarily controlled by carbonate chemistry, pH calibration consisted of little more than providing good boundary condition data. Alkalinity, pH and back calculated total inorganic carbon data were gathered as boundary condition data from the Lake Roosevelt Fisheries Evaluation Program (LRFEP). In addition to correct boundary condition data, side effects of other calibration process such as increasing the respiration rate of algae and zooplankton or changing the reaeration equation would allow for more diffusion of CO$_2$ into the water thus resulting in a lower pH.

Table 29 shows model-data error statistics and the number of model-data comparisons for pH. Figure 57 shows a regression plot of model predicted pH profile data regressed against corresponding field data. pH model-data vertical profile plots are shown in Appendix D.

<table>
<thead>
<tr>
<th>Station</th>
<th>Model Segment</th>
<th>Number of Days with Data</th>
<th>Number of Comparisons</th>
<th>Mean Error</th>
<th>Absolute Mean Error</th>
<th>Root Mean Square Error</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>55</td>
<td>578</td>
<td>-0.3</td>
<td>0.55</td>
<td>0.56</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>2</td>
<td>173</td>
<td>30</td>
<td>82</td>
<td>-0.08</td>
<td>0.46</td>
<td>0.47</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>54</td>
<td>539</td>
<td>-0.27</td>
<td>0.44</td>
<td>0.46</td>
<td>2002, 2003, 2008 & 2009</td>
</tr>
<tr>
<td>4</td>
<td>158</td>
<td>34</td>
<td>173</td>
<td>-0.08</td>
<td>0.31</td>
<td>0.34</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>5</td>
<td>82</td>
<td>53</td>
<td>654</td>
<td>-0.09</td>
<td>0.34</td>
<td>0.37</td>
<td>2002, 2003, 2008 & 2009</td>
</tr>
<tr>
<td>6</td>
<td>99</td>
<td>34</td>
<td>386</td>
<td>0.06</td>
<td>0.26</td>
<td>0.27</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>7</td>
<td>147</td>
<td>29</td>
<td>670</td>
<td>0.01</td>
<td>0.24</td>
<td>0.3</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>8</td>
<td>181</td>
<td>33</td>
<td>124</td>
<td>-0.09</td>
<td>0.43</td>
<td>0.44</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>32</td>
<td>357</td>
<td>-0.08</td>
<td>0.32</td>
<td>0.36</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>10</td>
<td>109</td>
<td>32</td>
<td>118</td>
<td>0.16</td>
<td>0.24</td>
<td>0.24</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>31</td>
<td>180</td>
<td>0.14</td>
<td>0.23</td>
<td>0.24</td>
<td>2008 & 2009</td>
</tr>
<tr>
<td>AVE</td>
<td></td>
<td></td>
<td></td>
<td>-0.05</td>
<td>0.35</td>
<td>0.37</td>
<td></td>
</tr>
</tbody>
</table>
Figure 57. A regression plot of model predicted pH profile data and pH profile data collected by WDFW.
Chlorophyll-a Calibration

Chlorophyll-a calibration consisted of matching chlorophyll-a model prediction time series to chlorophyll-a data that was collected by the WDFW and Eastern Washington University (EWU). Chlorophyll-a data was collected at Lim sites 1-8 by EWU from 9/02-9/04 and by WDFW from 9/04-11/05. Although some of the chlorophyll-a data was collected as profile data, all data collected in 2002 and part of 2003 were single grab samples from a depth of 5 meters. Therefore, calibration used model output from a depth of 5 meters to compare against either field grab samples or profile data measured at a depth of 5 meters.

CE-QUAL-W2 calculates chlorophyll-a as a fixed ratio of predicted algal mass (mg algae/µg Chla). Calibration for chlorophyll-a consisted of fine tuning the algal mass to chlorophyll-a ratios for each algal group so that field data concentrations could be met. Algal group 1 had a ratio of 0.22 (mg algae/µg Chla), algal group 2 had a ratio of 0.11 (mg algae/µg Chla) and algal group 3 had a ratio of 0.14 (mg algae/µg Chla). The model did well to match seasonal fluxes in chlorophyll-a concentration across all Lim sites. Winter 2002-03 field data from Lim sites 1, 3 and 5 showed a summer-like algal bloom that was not captured by the model. This miss by the model is a result of it not capturing the correct algal production for winter 2002-03.

Figure 58 shows a regression plot of model predicted chlorophyll-a data regressed against corresponding field data. Figure 59 and Figure 60 show a comparison of model predicted
time series of chlorophyll-a data and field data collected by WDFW and EWU at a depth of 5 meters at Lim site 1-8 during 2002-2005.

Figure 58. A regression plot of model predicted chlorophyll-a data and chlorophyll-a data collected by WDFW and EWU at a depth of 5 meters
Figure 59. Chlorophyll-a model predictions compared against data collected by EWU and WDFW at a depth of 5 meters for Lim sites 1, 2, 3, and 4.
Figure 60. Chlorophyll-a model predictions compared against data collected by EWU and WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8.
Algae Calibration

The Banks Lake CE-QUAL-W2 model used three algal groups:

- Algae 1: Diatoms
- Algae 2: Cryptophyta
- Algae 3: Other (Green/Blue Green Algae)

The first two algal groups represent the most dominant algal groups taken from the data and the third algal group includes all other algal groups of interest. Calibrating for algae used 5 main parameters which allowed to custom fit different algal groups within the model to match the life characteristics of their natural algal taxonomy group. Each group was assigned a specific maximum daily growth rate, a temperature range within which each group would grow at their maximum growth rate, a daily sinking rate, a daily mortality rate, and specific algal nutrient stoichiometry. These calibration parameters are shown in the control file located in Appendix A under subheading ”ALGAL RATE” “ALGAL TEMP” and “ALGAL STOI”. Proper use of these parameters allows for each algal group to bloom during the appropriate time of year, compete with each other for available nutrients, remain in the water column long enough to provide additional oxygen production or die and contribute to the nutrient cycle or add to the biological oxygen demand. Default values were used first for the algal parameters, and then as calibration progressed each parameter value was altered to achieve the best results.
Algae 1-Diatoms

Figure 61 shows a regression plot of model predicted algae 1 mass concentrations against field data collected at a depth of 5 meters by the WDFW. Model-data comparisons of algae 1 mass concentrations measured at a depth of 5 meters are shown in Figure 62 and Figure 63 for Lim sites 1-8.

Figure 61. A regression plot of model predicted Algae 1 (diatoms) (mg/l) and Algae 1 data (mg/l) collected by the WDFW at a depth of 5 meters.
Figure 62. Algal group 1 (Diatoms) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 1, 2, 3 and 4.
Figure 63. Algal group 1 (Diatoms) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8.
Algae 2-Cryptophyta

Figure 64 shows a regression plot of model predicted algae 2 mass concentrations against field data collected at a depth of 5 meters by the WDFW. Model-data comparisons of algae 2 mass concentrations measured at a depth of 5 meters are shown in Figure 65 and Figure 66 for Lim sites 1-8.

![Regression plot](image)

Figure 64. A regression plot of model predicted Algae 2 (Cryptophyta) (mg/l) and Algae 2 data (mg/l) collected by the WDFW at a depth of 5 meters.
Figure 65. Algal group 2 (Cryptophyta) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 1, 2, 3 and 4.
Figure 66. Algal group 2 (Cryptophyta) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8.
Algae 3-Green & Blue Green Algae

Figure 67 shows a regression plot of model predicted algae 3 mass concentrations against field data collected at a depth of 5 meters by the WDFW. Model-data comparisons of algae 3 mass concentrations measured at a depth of 5 meters are shown in Figure 68 and Figure 69 for Lim sites 1-8.

Figure 67. A regression plot of model predicted Algae 3(Green & Bluegreen) (mg/l) and Algae 3 data (mg/l) collected by the WDFW at a depth of 5 meters
Figure 68. Algal group 3 (Green and Bluegreen) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 1, 2, 3 and 4.
Figure 69. Algal group 3 (Green and Bluegreen) model predictions compared against data that was collected by the WDFW at a depth of 5 meters for Lim sites 5, 6, 7 and 8.
Zooplankton Calibration

The Banks Lake CE-QUAL-W2 model used two zooplankton groups:

Zooplankton 1: Copepod
Zooplankton 2: Daphnia

Zooplankton samples collection took place at all 11 Lim sites over 2008-2009. Samples were collected with a mesh tow net and the depth of tows among each Lim site would often vary throughout the year. For each tow the total number of individual zooplankton organisms were counted and then averaged over the total volume of water sampled by the tow net, resulting in a volume weighted density. Evaluating zooplankton abundance this way has the potential to dilute a sample’s density if the tow was taken from a depth beyond the epilimnion where fewer zooplankton reside.

Zooplankton calibration, like algae calibration, involved multiple parameters that are used to fine tune zooplankton groups within the model to mimic the behavior and propagation of real zooplankton. The main calibration tools used included, a maximum daily growth rate, a temperature range within which each group would grow at their maximum growth rate, specific zooplankton nutrient stoichiometry, a daily mortality rate, algal prey feeding preference, zooplankton prey feeding preference, and a feeding assimilation efficiency coefficient. The algal and zooplankton feeding preference parameter allows the user to control each zooplankton group’s like and dislike for certain
prey items (i.e., diatoms vs blue green algae). The feeding assimilation efficiency parameter allows the user to determine the proportion of food assimilated to food consumed for each zooplankton group. These zooplankton calibration coefficients are listed within the control file in Appendix A under subheadings “ZOOP RATE”, “ZOOP ALGP”, “ZOOP ZOOP”, “ZOOP TEMP” and “ZOOP STOI”.

Zooplankton densities are often spotty in distribution within natural systems and concentrations can vary multiple orders of magnitude within a 24 hour period. When modeling zooplankton, it is often the goal of the modeler to produce model predictions within an order of magnitude of the field data. The following zooplankton plots intend to show the model’s ability to reproduce measured zooplankton concentrations and show how zooplankton concentrations vary with depth.

Figure 70, Figure 71, Figure 72 and Figure 73 show a range of model predicted zooplankton time series beginning at a depth of 5 meters and extending to a depth comparable to the tow depths used to collect zooplankton data at that particular Lim site, with the volume weighted mass concentrations field data of zooplankton group 1.

Figure 74, Figure 75, Figure 76 and Figure 77 show a range of model predicted zooplankton time series beginning at a depth of 5 meters and extending to a depth comparable to the tow depths used to collect zooplankton data at that particular Lim site, with the volume weighted mass concentrations field data of zooplankton group 2.
Figure 70. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 1, 2 and 3.
Figure 71. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 4, 5 and 6.
Figure 72. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 7, 8 and 9.
Figure 73. Zooplankton group 1 (copepods) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 10 and 11.
Figure 74. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 1, 2 and 3.
Figure 75. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 4, 5 and 6
Figure 76. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 7, 8 and 9.
Figure 77. Zooplankton group 1 (daphnia) model predictions at multiple depths compared against zooplankton tow data collected by the WDFW for Lim sites 10 and 11.
Alternative Action Management Scenarios

Alternative Action Management Scenario Background & Data

The Odessa Subarea Special Study draft EIS outlines eight action alternative management scenarios and one no-action alternative that involve altering the monthly drawdown schedule of Banks Lake. To anticipate the effects of various flow years on the proposed action alternative management scenarios, four previous flow years were selected to represent a range of conditions:

- Wet: 1982
- Average: 1995
- Dry: 1998
- Drought: 1931

To determine the effect of each alternative scenario on Banks Lake, the Banks Lake CEQUAL-W2 model was run for one year (January 1 through December 31) under the drawdown guidelines of each action alternative outlined in the Banks Lake Draft EIS. This approach involved using the appropriate daily averaged Feeder Canal inflow for each wet, average, dry and drought run (see Table 31). All action alternatives were run using meteorological data from 2007 since meteorological data for all 1931, 1982, 1995 and 1998 were not available. Comparing annual meteorological data within the 2002-2009 model simulation showed that 2007 meteorological data were neither high nor low.
in any category, rather all max, min and average annual meteorological values from 2007 were near the overall average value for the entire eight year model simulation (Table 30). Since the dry flow reference year (1931) preceded the inundation of Banks Lake, flow records were not available from the Feeder Canal and flow from the drought flow reference year (1998) was used instead.

Feeder canal flow records show a gradual increase in total annual flow entering Banks Lake from 1982 to 2009, but there is little correlation between feeder canal flow rates and the type of flow reference year (see Figure 78). Therefore, the no-action alternative model run was based on 2008 flow records, since the 2008 water elevation records follow an August drawdown similar to the no-action alternative guidelines (see Figure 79).

Each model run began with its prescribed initial water surface elevation (mostly 1570 ft, 478.536 m) and followed the feeder canal flow regime as outlined in Table 31. Water level draw-downs were controlled primarily through the use of the dynamic weir application. The dynamic weir application accesses a user defined time series of desired water surface elevations, which raises or lowers a weir at the lake’s outlet over time. This method allows for altering the water surface elevation of the lake through controlling the outflow at Dry Falls Dam while maintaining the specific Feeder Canal flow rates for the given hydraulic year. CE-QUAL-W2 calculates the discharge spilling over the weir with a weir flow rating curve, where Q is flow leaving via the weir, ΔH is the head difference between the water level of the segment upstream of the weir and the weir crest elevation, α is a user defined variable and β is a user defined variable.
Using the weir equation allows for control of how quickly the water surface elevation responds to changes in the weir crest height as well as provide that the water discharge at the weir never exceeds the maximum flow rate of the Main Canal (546 m3/s). Rather than simulate water spilling over the dynamic weir whenever there is a positive head difference at the weir crest, the creation of unwanted currents was avoided by instead pulling water from the system at a fixed elevation of 471 m (NAVD88). In addition to the dynamic weir outlet, the original outlet structure at Dry Falls dam was used to constantly discharge a flow rate 90% that of the daily average inflow at the Feeder Canal. By releasing 90% of the Feeder Canal inflow through the Main Canal in combination with the dynamic weir, outflow leaving the Dry Falls Dam was less subject to occasional spikes which happen when large volumes of water are released during periods of high inflow or during periods of substantial draining from the lake.
Figure 78. Banks Lake Feeder Canal flow annual totals

Figure 79. Banks Lake water surface elevation: 2008
Table 30. Banks Lake 2007 and 2008 meteorological summary statistics and comparison

<table>
<thead>
<tr>
<th>Air Temp</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-09 Max</td>
<td>41</td>
</tr>
<tr>
<td>2002-09 Min</td>
<td>-5.2</td>
</tr>
<tr>
<td>2002-09 Ave</td>
<td>12.2</td>
</tr>
<tr>
<td>2007</td>
<td>39.8</td>
</tr>
<tr>
<td>2008</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dew Point</th>
<th>Short Wave Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-09 Max</td>
<td>30</td>
</tr>
<tr>
<td>2002-09 Min</td>
<td>-4.6</td>
</tr>
<tr>
<td>2002-09 Ave</td>
<td>5.9</td>
</tr>
<tr>
<td>2007</td>
<td>17.6</td>
</tr>
<tr>
<td>2008</td>
<td>16.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wind Speed</th>
<th>Rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-09 Max</td>
<td>38.4</td>
</tr>
<tr>
<td>2002-09 Ave</td>
<td>2.2</td>
</tr>
<tr>
<td>2007</td>
<td>10.6</td>
</tr>
<tr>
<td>2008</td>
<td>8.9</td>
</tr>
</tbody>
</table>

* cumulative annual values only
Table 31. Odessa Subarea Special Study EIS reservoir draw downs for Banks Lake

<table>
<thead>
<tr>
<th>Run Number</th>
<th>Mgmt. Alternati</th>
<th>Flow Year</th>
<th>Flow Year</th>
<th>Management Scenario Drawdown Schedule (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Action</td>
<td>2008</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2A</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2B</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2C</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2D</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3A</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3B</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3C</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3D</td>
<td>1995</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2A</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2B</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2C</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2D</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3A</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3B</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3C</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3D</td>
<td>1998</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2A</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2B</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2C</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2D</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3A</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3B</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3C</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3D</td>
<td>1998</td>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2A</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2B</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2C</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2D</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3A</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3B</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3C</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3D</td>
<td>1998</td>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Management Scenario Drawdown Schedule (meters)
Alternative Action Management Scenario Preparation

In preparation of evaluating the effects of the alternative management scenarios on the water quality and fisheries population of Banks Lake, all management scenarios were first prepared to produced the water level elevation changes outlined in the Odessa Subarea Special Study draft EIS. Preparing the model for each scenario was an iterative process, running the model then making changes to either the weir equation or weir crest elevation, then running the model again. Special care was taken to avoid exceeding the 546 m3/s maximum discharge rate allowed by the Main Canal and to achieve the desired water surface elevation on the appropriate date. Avoiding discharge rates in excess of 546 m3/s was sometimes difficult at the beginning of the summer drawdown when large volumes of water were being released by the dynamic weir, also in situations when a constant surface elevation needed to be maintained while inflow rates from the Feeder Canal exceeded 546 m3/s. Figure 80, Figure 81, Figure 82, Figure 83, Figure 84, Figure 85, Figure 86, Figure 87 and Figure 88 show the prepared water surface elevation and flows of the no-action alternative and management scenarios Average-2A, Average-3B, Dry-2A, Dry-3A, Drought-2A, Drought-3A, Wet-2A and Wet-3B alternative action management scenarios.
Figure 80. Prepared water surface elevations and flows rates for the no-action alternative
Figure 81. Prepared water surface elevations and flows rates for management scenario Average 2A

Figure 82. Prepared water surface elevations and flows rates for management scenario Average 3A
Figure 83. Prepared water surface elevations and flows rates for management scenario Dry 2A

Figure 84. Prepared water surface elevations and flows rates for management scenario Dry 3A
Figure 85. Prepared water surface elevations and flows rates for management scenario Drought 2A

Figure 86. Prepared water surface elevations and flows rates for management scenario Drought 3A
Figure 87. Prepared water surface elevations and flows rates for management scenario Wet 2A

Figure 88. Prepared water surface elevations and flows rates for management scenario Wet 3A
Alternative Action Management Scenario Results and Discussion

The next section will discuss the results and implications of the alternative action management scenarios as outlined in the Odessa Subarea Draft EIS. The management scenarios were evaluated by measuring the following:

1.) Effects of alternative action management scenarios on temperature stratification

2.) Change in the percent of total reservoir volume over time that meets both dissolved oxygen and temperature criteria which promote optimal growth habitat conditions for selected sport fish species

3.) Effects of management scenarios on dissolved oxygen concentrations in the reservoir

4.) Mass flow rate of zooplankton entrainment from Dry Falls Dam

5.) Use of a fish bioenergetics model to evaluate output from CE-QUAL-W2 to predict fish growth in kokanee
Effect of Alternative Action Management on Temperature Stratification

The effects of alternative management scenarios on reservoir temperature characteristics were examined by plotting model predicted vertical temperature profiles from the Banks Lake CE-QUAL-W2 model. Lim site 3, located west of Steamboat Rock in the middle pool, was selected to represent a pelagic environment and Lim site 4, located within Devil’s Punch Bowl due east of Steamboat Rock, was selected to represent the littoral zone. Model predicted water temperature data was recorded on April 15th, August 31st, and November 15th at both sites under all management scenarios. The temperature profiles were then compared with the no-action alternative and the mean difference between temperature profiles of the action alternative and the no-action alternative were calculated with equation 7.

\[
\frac{\text{Action Alternative temperature} - \text{No Action Alternative Temperature}}{\text{# of comparisons}} = \text{Mean Temp. Difference} \quad \text{Eq. 7}
\]

Table 32 and Table 33 show the mean temperature difference for all action alternative temperatures compared with the no-action alternative for Lim site 3 and 4 respectively. Figure 89 through Figure 96 show water temperature profiles for Lim site 3 and Figure 97 through Figure 104 shows water temperature profiles for Lim site 4.

Results of the temperature profile comparisons showed that water temperature changed relatively little under the management scenarios vs. the no-action alternative. The average change in profile temperatures measured from the action alternatives compared to the no-action alternative exceeded 1°C. Trends in the profile comparisons showed that
the action alternatives were consistently warmer than the no-action alternative at Lim sites 3 and 4 during April, colder during the November and mixed during the August water temperature measurements. Stand out scenarios include all average flow year scenarios run during April which were consistently 0.48-0.49 °C and 0.74-0.76 °C warmer than the no-action alternative at Lim site 3 and 4 respectively. Also, alternatives 3A and 3C consistently showed a negative mean difference when comparing August temperature profiles to the no-action alternative. Although unusual, the drop in temperature during the summer months was not a significant drop from the no-action alternative. Additionally, alternatives 3A and 3C contain the largest single month drops in water surface elevation among all management scenarios. A typical July to August decrease in water surface elevation for scenarios 3A and 3C range from 1.86 – 2.5 meters. Such a drop in water surface elevation would create turbulence in the reservoir system and thus mix the warmer epilimnetic waters with the colder waters of the hypolimnion. Figure 105 shows the predicted outflow discharge rates at Dry Falls Dam for the no-action alternative and the Drought-3A alternative from August 1st to August 31st.
Table 32. The mean difference for all action alternative temperatures compared with the no action alternative at Lim 3 (Action Alternative temp. – No Action Alternative temp.)

<table>
<thead>
<tr>
<th>Lim Site 3</th>
<th>April 15th-JDAY 105</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>0.49</td>
<td>0.49</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Drought</td>
<td>0.30</td>
<td>0.30</td>
<td>0.29</td>
<td>0.36</td>
<td>0.25</td>
<td>0.27</td>
<td>0.55</td>
<td>0.41</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>0.30</td>
<td>0.30</td>
<td>0.29</td>
<td>0.29</td>
<td>0.34</td>
<td>0.30</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>0.41</td>
<td>0.42</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.38</td>
<td>0.38</td>
<td>0.37</td>
<td>0.39</td>
<td>0.37</td>
<td>0.37</td>
<td>0.43</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>August 31-JDAY 243</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>0.18</td>
<td>0.24</td>
<td>0.40</td>
<td>0.01</td>
<td>-0.43</td>
<td>-0.15</td>
<td>0.20</td>
<td>0.21</td>
<td>0.08</td>
</tr>
<tr>
<td>Drought</td>
<td>-0.32</td>
<td>0.19</td>
<td>0.40</td>
<td>0.03</td>
<td>-0.93</td>
<td>0.29</td>
<td>-0.58</td>
<td>0.46</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>0.23</td>
<td>0.19</td>
<td>0.39</td>
<td>-0.07</td>
<td>-0.66</td>
<td>-0.14</td>
<td>-0.52</td>
<td>0.10</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>-0.05</td>
<td>0.13</td>
<td>0.40</td>
<td>0.03</td>
<td>-0.43</td>
<td>0.17</td>
<td>-0.03</td>
<td>0.15</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.01</td>
<td>0.19</td>
<td>0.40</td>
<td>0.00</td>
<td>-0.61</td>
<td>0.04</td>
<td>-0.23</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>November 15th-JDAY 319</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.06</td>
<td>-0.15</td>
<td>-0.21</td>
<td>-0.15</td>
<td>-0.22</td>
<td>-0.16</td>
<td>-0.14</td>
</tr>
<tr>
<td>Drought</td>
<td>-0.05</td>
<td>0.11</td>
<td>-0.06</td>
<td>-0.15</td>
<td>-0.29</td>
<td>-0.17</td>
<td>-0.39</td>
<td>-0.14</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>-0.08</td>
<td>-0.07</td>
<td>-0.06</td>
<td>-0.09</td>
<td>-0.15</td>
<td>-0.09</td>
<td>-0.21</td>
<td>-0.14</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-0.09</td>
<td>-0.14</td>
<td>-0.10</td>
<td>-0.13</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.07</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.12</td>
<td>-0.18</td>
<td>-0.14</td>
<td>-0.23</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

133
Table 33. The mean difference for all action alternative temperatures compared with the no-action alternative at Lim 4 (Action Alternative temp. – No Action Alternative temp.)

<table>
<thead>
<tr>
<th>Lim Site 4</th>
<th>April 15th-JDAY 105</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2A</td>
<td>2B</td>
<td>2C</td>
<td>2D</td>
<td>3A</td>
<td>3B</td>
<td>3C</td>
<td>3D</td>
<td>Mean</td>
</tr>
<tr>
<td>Average</td>
<td>0.76</td>
<td>0.76</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Drought</td>
<td>0.46</td>
<td>0.47</td>
<td>0.45</td>
<td>0.54</td>
<td>0.38</td>
<td>0.39</td>
<td>0.71</td>
<td>0.52</td>
<td>0.49</td>
</tr>
<tr>
<td>Dry</td>
<td>0.47</td>
<td>0.47</td>
<td>0.46</td>
<td>0.45</td>
<td>0.51</td>
<td>0.46</td>
<td>0.47</td>
<td>0.45</td>
<td>0.47</td>
</tr>
<tr>
<td>Wet</td>
<td>0.41</td>
<td>0.42</td>
<td>0.41</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.50</td>
</tr>
<tr>
<td>Mean</td>
<td>0.52</td>
<td>0.53</td>
<td>0.51</td>
<td>0.54</td>
<td>0.55</td>
<td>0.54</td>
<td>0.63</td>
<td>0.57</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>August 31-JDAY 243</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2A</td>
<td>2B</td>
<td>2C</td>
<td>2D</td>
<td>3A</td>
<td>3B</td>
<td>3C</td>
<td>3D</td>
<td>Mean</td>
</tr>
<tr>
<td>Average</td>
<td>0.11</td>
<td>0.40</td>
<td>0.23</td>
<td>-0.12</td>
<td>-0.36</td>
<td>0.15</td>
<td>0.48</td>
<td>0.36</td>
<td>0.16</td>
</tr>
<tr>
<td>Drought</td>
<td>0.10</td>
<td>0.03</td>
<td>0.23</td>
<td>-0.12</td>
<td>-0.50</td>
<td>0.34</td>
<td>-0.39</td>
<td>0.16</td>
<td>-0.02</td>
</tr>
<tr>
<td>Dry</td>
<td>0.43</td>
<td>0.03</td>
<td>0.23</td>
<td>-0.19</td>
<td>-0.47</td>
<td>-0.15</td>
<td>-0.44</td>
<td>-0.05</td>
<td>-0.08</td>
</tr>
<tr>
<td>Wet</td>
<td>-0.05</td>
<td>0.13</td>
<td>0.40</td>
<td>0.03</td>
<td>-0.42</td>
<td>0.37</td>
<td>-0.14</td>
<td>-0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Mean</td>
<td>0.15</td>
<td>0.15</td>
<td>0.27</td>
<td>-0.10</td>
<td>-0.44</td>
<td>0.18</td>
<td>-0.13</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>November 15th-JDAY 319</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2A</td>
<td>2B</td>
<td>2C</td>
<td>2D</td>
<td>3A</td>
<td>3B</td>
<td>3C</td>
<td>3D</td>
<td>Mean</td>
</tr>
<tr>
<td>Average</td>
<td>-0.06</td>
<td>-0.09</td>
<td>-0.05</td>
<td>-0.11</td>
<td>-0.19</td>
<td>-0.11</td>
<td>-0.18</td>
<td>-0.15</td>
<td>-0.12</td>
</tr>
<tr>
<td>Drought</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.11</td>
<td>-0.36</td>
<td>-0.26</td>
<td>-0.78</td>
<td>-0.19</td>
<td>-0.24</td>
</tr>
<tr>
<td>Dry</td>
<td>-0.07</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.07</td>
<td>-0.45</td>
<td>-0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>Wet</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-0.07</td>
<td>-0.10</td>
<td>-0.09</td>
<td>-0.12</td>
<td>-0.09</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.06</td>
<td>-0.09</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-0.18</td>
<td>-0.13</td>
<td>-0.38</td>
<td>-0.14</td>
<td></td>
</tr>
</tbody>
</table>
Figure 89. Water temperature profiles at Lim 3 under action alternative Average 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th

Figure 90. Water temperature profiles at Lim 3 under action alternative Drought 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th
Figure 91. Water temperature profiles at Lim 3 under action alternative Wet 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th

Figure 92. Water temperature profiles at Lim 3 under action alternative Dry 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31th and November 15th
Figure 93. Water temperature profiles at Lim 3 under action alternative Average 3A, 3B, 3C, 3D and the no-action alternative on April 15th, August 31st and November 15th.

Figure 94. Water temperature profiles at Lim 3 under action alternative Drought 3A, 3B, 3C, 3D and the no-action alternative on April 15th, August 31st and November 15th.
Figure 95. Water temperature profiles at Lim 3 under action alternative Dry 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th.

Figure 96. Water temperature profiles at Lim 3 under action alternative Wet 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th.
Figure 97. Water temperature profiles at Lim 4 under action alternative Wet 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31st and November 15th.

Figure 98. Water temperature profiles at Lim 4 under action alternative Drought 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31st and November 15th.
Figure 99. Water temperature profiles at Lim 4 under action alternative Dry 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31st and November 15th.

Figure 100. Water temperature profiles at Lim 4 under action alternative Average 2A, 2B, 2C 2D and the no-action alternative on April 15th, August 31st and November 15th.
Figure 101. Water temperature profiles at Lim 4 under action alternative Average 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th.

Figure 102. Water temperature profiles at Lim 4 under action alternative Drought 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31th and November 15th.
Figure 103. Water temperature profiles at Lim 4 under action alternative Dry 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31st and November 15th.

Figure 104. Water temperature profiles at Lim 4 under action alternative Wet 3A, 3B, 3C 3D and the no-action alternative on April 15th, August 31st and November 15th.
Figure 105. Discharge from the Dry Falls dam under the no-action alternative and alternative action scenario 3A
Environmental Criteria: Annual Summary

Within the environmental performance criteria tool, CE-QUAL-W2 can calculate the temporal and volume weighted average of water quality constituents over the entire model domain and simulation time period (Cole and Wells, 2010). This tool allows for a macro comparison of water quality constituents among management scenario model runs for the whole lake system over the entire model run. Figure 106 shows the temporal and volume weighted water temperature for all management scenarios and the no-action alternative. Figure 106 shows that there is little overall variability in total average water temperature between management scenarios. Scenario 3A showed the lowest overall water temperature for all flow years, while scenario 2C showed all flow years to be the warmest at 10 °C. Nonetheless, the difference in average water temperature between model scenarios and flow years is minimal and furthermore all management scenarios produced an average temperature comparable to the no-action alternative. Figure 107 shows the temporal and volume weighted dissolved oxygen for all management scenarios and the no-action alternative. Average dissolved oxygen concentrations showed slightly more variability between scenarios, but still relatively little overall change. Almost consistently the wet flow year had the highest overall dissolved oxygen concentration whereas the average flow year always produced the lowest average dissolved oxygen concentrations for all management scenarios.
Figure 106. Temporal and volume weighted average water temperature for each one year management scenario run.

Figure 107. Temporal and volume weighted average dissolved oxygen concentration for each one year management scenario run.
Environmental Criteria: Dissolved Oxygen Management Scenarios

Implementing new action alternative management plans and increasing summer water surface elevation draw downs in Banks Lake can have substantial effects on the limnology and available fish habitat within the lake. To evaluate the potential effects of these management scenarios on dissolved oxygen concentrations within the lake the CE-QUAL-W2 environmental performance criteria tool was used. The environmental performance criteria tool can output the time averaged volume fraction of any state variable used by CE-QUAL-W2 for the time period covered by the specific model run. Figure 108, Figure 109, Figure 110 and Figure 111 show histograms of the one year time averaged volume fraction of dissolved oxygen concentrations for Banks Lake average flow years, drought flow years, dry flow years and wet flow years.

The difference in the time averaged volume fraction of dissolved oxygen between management scenarios was found to be small. All management scenarios for all flow years showed the majority of dissolved oxygen concentrations to be either 9 mg/l or 13 mg/l. Among the lower dissolved oxygen concentrations (< 8 mg/l) all management scenarios for all flow years showed very little difference. The management scenario runs for the average flow year showed less overall dissolved oxygen within the 13 mg/l range but a higher distribution within the 12 mg/l range when compared to other flow years. The management scenarios run during the wet flow year had a higher distribution of dissolved oxygen concentrations within the 13 mg/l range then all other flow years.

Management scenarios 3A through 3D for the dry and drought flow years showed less
dissolved oxygen within the 9 mg/l range than other management scenarios within the same flow years.

Figure 108. Average flow year time averaged volume fraction of dissolved oxygen for all scenarios

Figure 109. Drought flow year time averaged volume fraction of dissolved oxygen for all scenarios
Figure 110. Dry flow year time averaged volume fraction of dissolved oxygen for all scenarios

Figure 111. Wet flow year time averaged volume fraction of dissolved oxygen for all scenarios
Fish Habitat Analysis

The effects of the proposed action alternative management scenarios on fish habitat availability were explored by using the fish habitat algorithm in CE-QUAL-W2. By specifying the preferred water temperature range and a desired dissolved oxygen concentration for any fish species or group of species, CE-QUAL-W2 calculates a time series of the percent of the total reservoir volume that meets the criteria. The Banks Lake model calculated optimal growth habitat for four popular sport fish found in Banks Lake: rainbow trout, kokanee, walleye and smallmouth bass. Table 34 shows the optimal growth temperatures and dissolved oxygen concentrations taken from literature.

Table 34. Optimal growth habitat criteria for Banks Lake sport fish

<table>
<thead>
<tr>
<th></th>
<th>Temperature, oC</th>
<th>Dissolved Oxygen, mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp-Low</td>
<td>Temp-High</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Kokanee</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Walleye</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Smallmouth Bass</td>
<td>21</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Initial results did not show a definitive change in fish habitat among the different action alternative management scenarios. Figure 112, Figure 113, Figure 114, Figure 115 and Figure 116 show line plots of the initial results from the alternatives average-2A, drought-2A, dry-2A, wet-2A and the no-action alternative, respectively. Although finer details of how fish habitat volumes changed are not completely visible from the line plots, they do show the seasonal peaks and drop offs in available fish habitat. The cold water rainbow trout and kokanee have ample habitat though winter, spring and early summer while the warm water walleye and smallmouth have only a short window of optimal growth during midsummer. It should be noted that as a result of the narrowed optimal growth desired temperature ranges, the model did not calculate any available fish habitat prior to April 8th or after November 18th.

To better quantify available fish habitat in Banks Lake, the time series of the percent of the total reservoir volume that met fish habitat criteria were calculated into annual average percents. Figure 117, Figure 118, Figure 119 and Figure 120 show histograms of the annual average percent of the reservoir volume that were found to be optimal for kokanee, rainbow trout, walleye and smallmouth bass, respectively.

Kokanee were found to have the most optimal habitat with 21.5% to 24% of the reservoir found to be favorable. Kokanee habitat was consistently more available during wet flow years and was the least plentiful during drought years. Rainbow trout habitat was also most available during wet flow years with annual average percent volume values ranging from 8.5%-9.5% and at its lowest during drought years or any other management
scenario that involved a large summer drawdown of the water surface elevation. The walleye and smallmouth bass habitat were generally more present during average flow years but also responded well to wet flow years.

It seems that management scenarios 2A, 2B and 2C produce consistent habitat percent results for each species, while management scenarios 2D, 3A, 3B, 3C and 3D have more variable effects within each species. The model results would suggest that kokanee habitat is affected the least by the changes in dissolved oxygen and water temperature that are attributed to the management scenarios, while their habitat percentages were never greatly impacted by the management scenarios that include a large summer drawdown. However, the rainbow trout, walleye and smallmouth bass habitat all responded relatively poorly to at least one management scenario, which would suggest that extra care be taken in the future during the implementation of any action alternative so that fisheries population are not affected.
Figure 112. Percent of reservoir volume that is optimal fish habitat for scenario Average-2A

Figure 113. Percent of reservoir volume that is optimal fish habitat for scenario Drought-2A
Figure 114. Percent of reservoir volume that is optimal fish habitat for scenario Dry-2A

Figure 115. Percent of reservoir volume that is optimal fish habitat for scenario Wet-2A
Figure 116. Percent of reservoir volume that is optimal fish habitat for the no-action alternative
Figure 117. Annual average percent of reservoir volume that is optimal fish habitat for kokanee

Figure 118. Annual average percent of reservoir volume that is optimal fish habitat for rainbow trout
Figure 119. Annual average percent of reservoir volume that is optimal fish habitat for walleye

Figure 120. Annual average percent of reservoir volume that is optimal fish habitat for smallmouth bass
Zooplankton Entrainment

The Banks Lake Fisheries Evaluation project currently collects zooplankton entrainment data from the tail waters of the Dry Falls Dam inside the Main Canal. During parts of the year when the Feeder Canal pumps are operational it is not uncommon for hydraulic residence time in the reservoir to drop below 50 days, thus posing a great risk of losing large zooplankton populations in a relatively short period of time. CE-QUAL-W2 has the capability to calculate the outflow discharge of water leaving the system at the Dry Falls dam as well as calculate multiple water quality constituents for the segment where the discharge structure is located. With this data a time series of zooplankton mass flow rates leaving Banks Lake can be calculated. Figure 121 shows a time series of model predicted mass concentrations of zooplankton group 1 and group 2 at Dry Falls Dam, and the calculated mass flow rate of zooplankton group 1 and group 2 leaving the Banks Lake system via the Main Canal. Figure 122 and Figure 123 show annual average mass discharge rates leaving via the Main Canal for zooplankton group 1 and group 2 respectively. Table 35 and Table 36 show monthly and annual averages zooplankton mass flow rates under all management scenarios for zooplankton group 1 and group 2.

Zooplankton group 1 had significant losses during the Dry-3A, Dry-3B, Dry-3C, Drought-3A and Drought-3C management scenarios. Conversely, zooplankton 1 was not lost at high levels during average and wet flow years. All management scenarios caused for zooplankton group 2 to lose less mass than the no-action alternative. Entrainment was at its lowest for zooplankton group 2 during average flow years and scenarios Dry-
2C, Dry-2D, Dry-3A and Dry-3B. Zooplankton group 2 had its highest mass flow rate during Drought-3A, Wet-3B and Wet-3D.

![Graph showing Zooplankton concentrations (mg/l) and mass flow rates (g/s) into the Main Canal for the no-action alternative](image)

Figure 121. Zooplankton concentrations (mg/l) and mass flow rates (g/s) into the Main Canal for the no-action alternative
Figure 122. Annual average mass flow rate of zooplankton group 1 through the Main Canal (g/s)

Figure 123. Annual average mass flow rate of zooplankton group 2 through the Main Canal (g/s)
Table 35. Zooplankton group 1 monthly average mass flow rates through the Main Canal (g/s)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Action Alt.</td>
<td>0.01</td>
<td>0.06</td>
<td>1.08</td>
<td>5.62</td>
<td>22.7</td>
<td>29.1</td>
<td>12.9</td>
<td>9.8</td>
<td>8.7</td>
<td>14.7</td>
<td>2.7</td>
<td>1.84</td>
<td>8.27</td>
</tr>
<tr>
<td>Average-2A</td>
<td>0.27</td>
<td>0.77</td>
<td>0.94</td>
<td>5.61</td>
<td>14.8</td>
<td>19.2</td>
<td>13.4</td>
<td>2.77</td>
<td>7.78</td>
<td>0.12</td>
<td>2.03</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>Average-2B</td>
<td>0.27</td>
<td>0.07</td>
<td>0.91</td>
<td>5.81</td>
<td>15.4</td>
<td>20.1</td>
<td>13.5</td>
<td>4.21</td>
<td>4.49</td>
<td>0.38</td>
<td>1.7</td>
<td>5.59</td>
<td></td>
</tr>
<tr>
<td>Average-2C</td>
<td>0.27</td>
<td>0.08</td>
<td>0.88</td>
<td>5.61</td>
<td>13.9</td>
<td>17.3</td>
<td>9.99</td>
<td>3.2</td>
<td>8.55</td>
<td>0.32</td>
<td>1.79</td>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td>Average-2D</td>
<td>0.26</td>
<td>0.07</td>
<td>0.88</td>
<td>5.74</td>
<td>14.1</td>
<td>17.5</td>
<td>11.9</td>
<td>5.89</td>
<td>1.41</td>
<td>0.91</td>
<td>4.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average-3A</td>
<td>0.27</td>
<td>0.77</td>
<td>0.89</td>
<td>5.4</td>
<td>16.5</td>
<td>25.4</td>
<td>20.7</td>
<td>3.74</td>
<td>2.1</td>
<td>0.36</td>
<td>2.25</td>
<td>6.53</td>
<td></td>
</tr>
<tr>
<td>Average-3B</td>
<td>0.26</td>
<td>0.07</td>
<td>0.89</td>
<td>5.9</td>
<td>16.4</td>
<td>22.4</td>
<td>21.6</td>
<td>4.58</td>
<td>6.7</td>
<td>0.57</td>
<td>2.23</td>
<td>6.79</td>
<td></td>
</tr>
<tr>
<td>Average-3C</td>
<td>0.24</td>
<td>0.07</td>
<td>0.88</td>
<td>5.58</td>
<td>14.9</td>
<td>19.4</td>
<td>14.7</td>
<td>3.77</td>
<td>6.13</td>
<td>0.36</td>
<td>1.99</td>
<td>5.67</td>
<td></td>
</tr>
<tr>
<td>Average-3D</td>
<td>0.26</td>
<td>0.07</td>
<td>0.88</td>
<td>5.79</td>
<td>15.3</td>
<td>20.2</td>
<td>13.5</td>
<td>6.3</td>
<td>6.3</td>
<td>0.74</td>
<td>2.05</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>Dry-2A</td>
<td>0.02</td>
<td>0.05</td>
<td>1.01</td>
<td>4.99</td>
<td>23.8</td>
<td>24.2</td>
<td>20.2</td>
<td>4.42</td>
<td>5.52</td>
<td>5.58</td>
<td>0.16</td>
<td>7.96</td>
<td></td>
</tr>
<tr>
<td>Dry-2B</td>
<td>0.02</td>
<td>0.05</td>
<td>1.01</td>
<td>4.98</td>
<td>23.8</td>
<td>29.2</td>
<td>12.8</td>
<td>6.52</td>
<td>5.48</td>
<td>5.68</td>
<td>0.17</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>Dry-2C</td>
<td>0.02</td>
<td>0.47</td>
<td>0.97</td>
<td>4.64</td>
<td>21.7</td>
<td>25</td>
<td>15.6</td>
<td>5.32</td>
<td>8.51</td>
<td>5.4</td>
<td>0.17</td>
<td>7.31</td>
<td></td>
</tr>
<tr>
<td>Dry-2D</td>
<td>0.02</td>
<td>0.47</td>
<td>0.97</td>
<td>4.66</td>
<td>21.7</td>
<td>25.2</td>
<td>17.5</td>
<td>7.87</td>
<td>1.3</td>
<td>5.95</td>
<td>0.16</td>
<td>7.15</td>
<td></td>
</tr>
<tr>
<td>Dry-3A</td>
<td>0.01</td>
<td>0.01</td>
<td>1.03</td>
<td>5.05</td>
<td>26.8</td>
<td>37.1</td>
<td>19.3</td>
<td>6.11</td>
<td>0.69</td>
<td>6.56</td>
<td>0.2</td>
<td>8.58</td>
<td></td>
</tr>
<tr>
<td>Dry-3B</td>
<td>0.02</td>
<td>0.04</td>
<td>5.12</td>
<td>25.1</td>
<td>34.6</td>
<td>24.5</td>
<td>6.99</td>
<td>6.06</td>
<td>6.07</td>
<td>0.24</td>
<td>9.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry-3C</td>
<td>0.01</td>
<td>0.01</td>
<td>1.02</td>
<td>4.77</td>
<td>22.5</td>
<td>30.6</td>
<td>21.1</td>
<td>7.85</td>
<td>7.6</td>
<td>7.2</td>
<td>0.23</td>
<td>8.58</td>
<td></td>
</tr>
<tr>
<td>Dry-3D</td>
<td>0.01</td>
<td>0.04</td>
<td>0.97</td>
<td>4.67</td>
<td>23.5</td>
<td>29.5</td>
<td>17.1</td>
<td>8.4</td>
<td>6.79</td>
<td>1.41</td>
<td>0.31</td>
<td>7.72</td>
<td></td>
</tr>
<tr>
<td>Drought-2A</td>
<td>0.02</td>
<td>0.05</td>
<td>1.01</td>
<td>4.98</td>
<td>23.8</td>
<td>29.8</td>
<td>19.1</td>
<td>5.12</td>
<td>6.57</td>
<td>5.48</td>
<td>0.18</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Drought-2B</td>
<td>0.02</td>
<td>0.05</td>
<td>1.01</td>
<td>4.98</td>
<td>23.8</td>
<td>29.2</td>
<td>18.1</td>
<td>6.26</td>
<td>5.18</td>
<td>5.59</td>
<td>0.17</td>
<td>7.86</td>
<td></td>
</tr>
<tr>
<td>Drought-2C</td>
<td>0.02</td>
<td>0.04</td>
<td>0.97</td>
<td>4.66</td>
<td>21.7</td>
<td>25.2</td>
<td>15.6</td>
<td>5.29</td>
<td>8.51</td>
<td>5.42</td>
<td>0.17</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Drought-2D</td>
<td>0.02</td>
<td>0.47</td>
<td>0.99</td>
<td>4.69</td>
<td>21.8</td>
<td>25.7</td>
<td>17.4</td>
<td>7.51</td>
<td>0.79</td>
<td>6.03</td>
<td>0.16</td>
<td>7.13</td>
<td></td>
</tr>
<tr>
<td>Drought-3A</td>
<td>0.02</td>
<td>0.48</td>
<td>1.02</td>
<td>5.46</td>
<td>27</td>
<td>37.1</td>
<td>20.2</td>
<td>7.77</td>
<td>1.72</td>
<td>7.06</td>
<td>0.23</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Drought-3B</td>
<td>0.01</td>
<td>0.48</td>
<td>1.03</td>
<td>4.99</td>
<td>21.9</td>
<td>25.5</td>
<td>15.5</td>
<td>6.25</td>
<td>10.5</td>
<td>5.52</td>
<td>0.19</td>
<td>7.66</td>
<td></td>
</tr>
<tr>
<td>Drought-3C</td>
<td>0.01</td>
<td>0.04</td>
<td>0.96</td>
<td>4.88</td>
<td>23.7</td>
<td>38</td>
<td>21.7</td>
<td>13.3</td>
<td>10.6</td>
<td>8.68</td>
<td>0.27</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>Drought-3D</td>
<td>0.01</td>
<td>0.04</td>
<td>1.03</td>
<td>5.1</td>
<td>22.1</td>
<td>26.7</td>
<td>15.4</td>
<td>7.76</td>
<td>7.14</td>
<td>0.41</td>
<td>0.33</td>
<td>7.17</td>
<td></td>
</tr>
<tr>
<td>Wet-2A</td>
<td>0</td>
<td>0.03</td>
<td>0.58</td>
<td>4.48</td>
<td>28</td>
<td>25.4</td>
<td>14.6</td>
<td>1.59</td>
<td>10.5</td>
<td>5.44</td>
<td>2.69</td>
<td>7.78</td>
<td></td>
</tr>
<tr>
<td>Wet-2B</td>
<td>0</td>
<td>0.26</td>
<td>0.59</td>
<td>4.73</td>
<td>30.8</td>
<td>27.2</td>
<td>15.3</td>
<td>3.65</td>
<td>6.34</td>
<td>0.31</td>
<td>0.09</td>
<td>7.44</td>
<td></td>
</tr>
<tr>
<td>Wet-2C</td>
<td>0</td>
<td>0.03</td>
<td>0.56</td>
<td>4.49</td>
<td>28.2</td>
<td>23.6</td>
<td>13.1</td>
<td>2.65</td>
<td>10.7</td>
<td>0.11</td>
<td>0.08</td>
<td>6.96</td>
<td></td>
</tr>
<tr>
<td>Wet-2D</td>
<td>0</td>
<td>0.02</td>
<td>0.56</td>
<td>4.64</td>
<td>29.5</td>
<td>24.6</td>
<td>15.4</td>
<td>5.23</td>
<td>1.94</td>
<td>0.34</td>
<td>0.08</td>
<td>6.86</td>
<td></td>
</tr>
<tr>
<td>Wet-3A</td>
<td>0</td>
<td>0.03</td>
<td>0.57</td>
<td>4.51</td>
<td>28.1</td>
<td>28.3</td>
<td>17.2</td>
<td>1.56</td>
<td>5.75</td>
<td>0.32</td>
<td>0.09</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Wet-3B</td>
<td>0</td>
<td>0.03</td>
<td>0.57</td>
<td>4.8</td>
<td>32.5</td>
<td>26.1</td>
<td>15.1</td>
<td>3.66</td>
<td>7.12</td>
<td>1.27</td>
<td>0.29</td>
<td>7.61</td>
<td></td>
</tr>
<tr>
<td>Wet-3C</td>
<td>0</td>
<td>0.26</td>
<td>0.56</td>
<td>4.5</td>
<td>28.2</td>
<td>25.6</td>
<td>14.7</td>
<td>3.6</td>
<td>7.14</td>
<td>0</td>
<td>0.2</td>
<td>7.06</td>
<td></td>
</tr>
<tr>
<td>Wet-3D</td>
<td>0</td>
<td>0.02</td>
<td>0.56</td>
<td>4.68</td>
<td>32.9</td>
<td>25.9</td>
<td>15</td>
<td>5.74</td>
<td>8.06</td>
<td>0.52</td>
<td>0.3</td>
<td>7.8</td>
<td></td>
</tr>
</tbody>
</table>
Table 36. Zooplankton group 2 monthly average mass flow rates through the Main Canal (g/s)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Action Alt.</td>
<td>0.02</td>
<td>0</td>
<td>0.14</td>
<td>2.6</td>
<td>15.4</td>
<td>62.1</td>
<td>60.8</td>
<td>29.8</td>
<td>20.6</td>
<td>14.4</td>
<td>0.94</td>
<td>0.39</td>
<td>17.27</td>
</tr>
<tr>
<td>Average-2A</td>
<td>0</td>
<td>0.58</td>
<td>0.17</td>
<td>2.4</td>
<td>20.9</td>
<td>53.6</td>
<td>52.4</td>
<td>34.9</td>
<td>6.5</td>
<td>9.51</td>
<td>0.07</td>
<td>0.61</td>
<td>15.13</td>
</tr>
<tr>
<td>Average-2B</td>
<td>0</td>
<td>0.58</td>
<td>0.17</td>
<td>2.4</td>
<td>21.7</td>
<td>54.7</td>
<td>53.5</td>
<td>34.6</td>
<td>10.6</td>
<td>5.66</td>
<td>0.19</td>
<td>0.57</td>
<td>15.39</td>
</tr>
<tr>
<td>Average-2C</td>
<td>0</td>
<td>0.58</td>
<td>0.18</td>
<td>2.34</td>
<td>20.7</td>
<td>50.1</td>
<td>47.1</td>
<td>27.2</td>
<td>10</td>
<td>13.4</td>
<td>0.16</td>
<td>0.63</td>
<td>14.36</td>
</tr>
<tr>
<td>Average-2D</td>
<td>0</td>
<td>0.58</td>
<td>0.17</td>
<td>2.34</td>
<td>21.3</td>
<td>50.6</td>
<td>48</td>
<td>31.6</td>
<td>14.8</td>
<td>0.93</td>
<td>0.19</td>
<td>0.49</td>
<td>14.25</td>
</tr>
<tr>
<td>Average-3A</td>
<td>0</td>
<td>0.58</td>
<td>0.17</td>
<td>2.36</td>
<td>20.2</td>
<td>58.8</td>
<td>62.6</td>
<td>31.3</td>
<td>4.7</td>
<td>1.27</td>
<td>0.04</td>
<td>0.28</td>
<td>15.2</td>
</tr>
<tr>
<td>Average-3B</td>
<td>0</td>
<td>0.58</td>
<td>0.17</td>
<td>2.36</td>
<td>22</td>
<td>57.8</td>
<td>55.5</td>
<td>27.4</td>
<td>5.6</td>
<td>5.03</td>
<td>0.13</td>
<td>0.42</td>
<td>14.75</td>
</tr>
<tr>
<td>Average-3C</td>
<td>0</td>
<td>0.52</td>
<td>0.18</td>
<td>2.33</td>
<td>20.6</td>
<td>53.4</td>
<td>52.4</td>
<td>36.1</td>
<td>8.26</td>
<td>7.12</td>
<td>0.11</td>
<td>0.58</td>
<td>15.13</td>
</tr>
<tr>
<td>Average-3D</td>
<td>0</td>
<td>0.58</td>
<td>0.17</td>
<td>2.34</td>
<td>21.5</td>
<td>54.4</td>
<td>53.8</td>
<td>34.4</td>
<td>14.3</td>
<td>7.28</td>
<td>0.25</td>
<td>0.61</td>
<td>15.8</td>
</tr>
<tr>
<td>Dry-2A</td>
<td>0.4</td>
<td>0</td>
<td>0.13</td>
<td>2.42</td>
<td>13.6</td>
<td>59.6</td>
<td>54.1</td>
<td>38</td>
<td>8.58</td>
<td>5.13</td>
<td>2</td>
<td>0.04</td>
<td>15.33</td>
</tr>
<tr>
<td>Dry-2B</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.42</td>
<td>13.6</td>
<td>59.6</td>
<td>53.2</td>
<td>35</td>
<td>14.3</td>
<td>4.98</td>
<td>1.98</td>
<td>0.04</td>
<td>15.43</td>
</tr>
<tr>
<td>Dry-2C</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.36</td>
<td>12.4</td>
<td>55.2</td>
<td>47.8</td>
<td>31.5</td>
<td>13</td>
<td>10.2</td>
<td>2.24</td>
<td>0.04</td>
<td>14.57</td>
</tr>
<tr>
<td>Dry-2D</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.36</td>
<td>12.5</td>
<td>55.3</td>
<td>47.8</td>
<td>35</td>
<td>16</td>
<td>0.84</td>
<td>1.86</td>
<td>0.03</td>
<td>14.31</td>
</tr>
<tr>
<td>Dry-3A</td>
<td>0.31</td>
<td>0</td>
<td>0.02</td>
<td>2.5</td>
<td>13.8</td>
<td>66.3</td>
<td>61.3</td>
<td>31.9</td>
<td>8.6</td>
<td>0.27</td>
<td>1.27</td>
<td>0.03</td>
<td>15.52</td>
</tr>
<tr>
<td>Dry-3B</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.4</td>
<td>14</td>
<td>62.3</td>
<td>56.5</td>
<td>26.1</td>
<td>7.45</td>
<td>3.84</td>
<td>1.39</td>
<td>0.03</td>
<td>14.51</td>
</tr>
<tr>
<td>Dry-3C</td>
<td>0.03</td>
<td>0</td>
<td>0.02</td>
<td>2.52</td>
<td>13</td>
<td>58</td>
<td>57.8</td>
<td>30.7</td>
<td>9.37</td>
<td>4.34</td>
<td>1.47</td>
<td>0.02</td>
<td>14.77</td>
</tr>
<tr>
<td>Dry-3D</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.36</td>
<td>12.5</td>
<td>59.3</td>
<td>54.5</td>
<td>33.6</td>
<td>18.2</td>
<td>6.2</td>
<td>0.41</td>
<td>0.06</td>
<td>15.61</td>
</tr>
<tr>
<td>Drought-2A</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.4</td>
<td>13.6</td>
<td>59.6</td>
<td>54.1</td>
<td>36.5</td>
<td>10.8</td>
<td>5.12</td>
<td>1.81</td>
<td>0.03</td>
<td>15.34</td>
</tr>
<tr>
<td>Drought-2B</td>
<td>0.03</td>
<td>0</td>
<td>0.13</td>
<td>2.4</td>
<td>13.6</td>
<td>59.7</td>
<td>53.1</td>
<td>35.1</td>
<td>13.9</td>
<td>4.85</td>
<td>2</td>
<td>0.03</td>
<td>15.39</td>
</tr>
<tr>
<td>Drought-2C</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.36</td>
<td>12.5</td>
<td>55.3</td>
<td>47.9</td>
<td>31.4</td>
<td>12.9</td>
<td>10.2</td>
<td>2.24</td>
<td>0.04</td>
<td>14.58</td>
</tr>
<tr>
<td>Drought-2D</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.38</td>
<td>12.8</td>
<td>55.5</td>
<td>48.7</td>
<td>34.8</td>
<td>15.8</td>
<td>0.72</td>
<td>2.26</td>
<td>0.03</td>
<td>14.42</td>
</tr>
<tr>
<td>Drought-3A</td>
<td>0.03</td>
<td>0</td>
<td>0.13</td>
<td>2.4</td>
<td>15.7</td>
<td>67.8</td>
<td>63.7</td>
<td>31.2</td>
<td>10</td>
<td>0.56</td>
<td>0.96</td>
<td>0.03</td>
<td>16.04</td>
</tr>
<tr>
<td>Drought-3B</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.41</td>
<td>14.2</td>
<td>56.6</td>
<td>50</td>
<td>31.9</td>
<td>14.7</td>
<td>12.2</td>
<td>2.17</td>
<td>0.04</td>
<td>15.37</td>
</tr>
<tr>
<td>Drought-3C</td>
<td>0.04</td>
<td>0</td>
<td>0.13</td>
<td>2.24</td>
<td>14.5</td>
<td>61</td>
<td>66.7</td>
<td>24.3</td>
<td>12.9</td>
<td>3.85</td>
<td>0.91</td>
<td>0.03</td>
<td>15.54</td>
</tr>
<tr>
<td>Drought-3D</td>
<td>0.04</td>
<td>0</td>
<td>0.14</td>
<td>2.39</td>
<td>15</td>
<td>56.6</td>
<td>51.7</td>
<td>31.8</td>
<td>18.3</td>
<td>7.49</td>
<td>0.1</td>
<td>0.07</td>
<td>15.29</td>
</tr>
<tr>
<td>Wet-2A</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.55</td>
<td>11.6</td>
<td>72</td>
<td>47.1</td>
<td>30.3</td>
<td>4.38</td>
<td>12.8</td>
<td>2.46</td>
<td>0.69</td>
<td>15.24</td>
</tr>
<tr>
<td>Wet-2B</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.59</td>
<td>12.3</td>
<td>77.7</td>
<td>48.8</td>
<td>31.1</td>
<td>9.29</td>
<td>7.5</td>
<td>0.16</td>
<td>0.02</td>
<td>15.72</td>
</tr>
<tr>
<td>Wet-2C</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.51</td>
<td>11.6</td>
<td>71.4</td>
<td>43.8</td>
<td>27.2</td>
<td>7.4</td>
<td>14.5</td>
<td>0.06</td>
<td>0.02</td>
<td>14.8</td>
</tr>
<tr>
<td>Wet-2D</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.51</td>
<td>12.1</td>
<td>75</td>
<td>44.7</td>
<td>31.6</td>
<td>12.4</td>
<td>1.87</td>
<td>0.16</td>
<td>0.02</td>
<td>14.95</td>
</tr>
<tr>
<td>Wet-3A</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.53</td>
<td>11.7</td>
<td>72.1</td>
<td>52</td>
<td>34.9</td>
<td>3.97</td>
<td>6.12</td>
<td>0.14</td>
<td>0.02</td>
<td>15.21</td>
</tr>
<tr>
<td>Wet-3B</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.53</td>
<td>12.6</td>
<td>81.5</td>
<td>46.4</td>
<td>29.9</td>
<td>9.15</td>
<td>8.36</td>
<td>0.48</td>
<td>0.07</td>
<td>15.84</td>
</tr>
<tr>
<td>Wet-3C</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.51</td>
<td>11.6</td>
<td>72.2</td>
<td>47.3</td>
<td>30.6</td>
<td>9.21</td>
<td>8.59</td>
<td>0</td>
<td>0.05</td>
<td>15.1</td>
</tr>
<tr>
<td>Wet-3D</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>1.51</td>
<td>12.2</td>
<td>82.7</td>
<td>46.2</td>
<td>29.9</td>
<td>13.4</td>
<td>8.64</td>
<td>0.13</td>
<td>0.07</td>
<td>16.23</td>
</tr>
</tbody>
</table>
Summary

The goal of this project was to produce a hydrodynamic and water quality model of Banks Lake that had the ability to predict the impacts of new management strategies on fish habitat and apply it to Banks Lake to determine whether certain proposed action alternatives would negatively impact the fish populations. This project has accomplished the following:

1.) Creation of a Banks Lake CE-QUAL-W2 model
2.) Calibration of the model for hydrodynamic, temperature, water quality, primary producers and secondary producers
3.) Documentation of model inputs and calibration
4.) Application of the model for the purpose of evaluating proposed management scenarios as outline in the Odessa Subarea Draft EIS.

During the development of this project, a substantial amount of water quality data, boundary condition data and meteorological data were gathered, processed, observed and ultimately used to develop/calibrate the Banks Lake CE-QUAL-W2 water quality model. Pertinent data that were missing or unavailable were obtained by either interpolating from existing data or through the development of regression analyses with multiple existing data sets. The data collection/modification processes are discussed in McCulloch, Berger and Wells (2010).
Calibration of the CE-QUAL-W2 model for all relevant water quality constituents was carried out in order to reduce error in model predictions and to produce as accurate a representation of the natural system as possible. While no model can predict the responses of a natural system 100% of the time, the Banks Lake CE-QUAL-W2 model has been calibrated to within a tolerable range of error that is consistent with current modeling calibration standards. Furthermore, adequate calibration of the hydrodynamics and other abiotic constituents allowed for additional model calibration of biological constituents such as algae and zooplankton. The Banks Lake CE-QUAL-W2 model calibration process may review in McCulloch, Berger and Wells (2011).

Model application to the action alternatives outlined by the draft EIS for the Odessa Subarea did not show a substantial negative effect on water quality nor fish habitat. Water temperature profiles did reveal that under some scenarios, such as 3A, a slight cooling of the water column may take place during summer months. Conversely, water temperature profile analysis showed that most management scenarios exhibited slight warming during spring months and some cooling of the water column during fall months. Regardless, most heating and cooling of the water column was found to be minimal when compared to data collected from the no-action alternative.

Additional analysis of the distribution of dissolved oxygen concentrations throughout the reservoir over time did not show much change between management scenarios and the no-action alternative. Some selected cases, such as scenarios run during wet years, tended to have a higher ratio of dissolved oxygen at higher concentrations more
frequently throughout the year, but similar to the water temperature profile analysis, the differences that existed were not significant. Additionally, the temporal/spatial average temperature and dissolved oxygen concentrations from each management scenario did not yield definitive results.

Zooplankton entrainment analysis did offer some variability in results among management scenarios. Zooplankton group 1 was not affected by scenarios 2A, 2B, 2C or 2D, however scenarios 3A, 3B and 3C run during dry and drought flow years were found to discharge 0.5-1.0 g/s more of zooplankton group 1 than the no-action alternative. Zooplankton group 2 was affected the most by scenarios 3A and 3D for all flow years, but in general when compared to the no-action alternative; zooplankton group 2 was not negatively affected by any scenario.

Fish habitat analysis showed that kokanee habitat was relatively abundant for most management scenarios especially all scenarios run during the wet flow year. Moderate negative impacts to the kokanee habitat occurred only on scenarios 3A, 3B, 3C and 3D during drought, dry and average flow years. The rainbow trout habitat decreased the most during scenarios drought/average 2-D and average 3-C while benefiting the most during wet flow years. Walleye habitat was favored by average flow years for all scenarios except 3A. Conversely, walleye habitat plummeted with scenario 3A for all flow years except the wet flow year. The smallmouth bass habitat was also the most plentiful for management scenarios run with the average flow year and was significantly affected only by scenarios 3A and 3C run with a drought flow year. In summary it seems
that fish habitat is affected the least by management scenarios which require less
drawdown of the water surface elevation such as scenarios 2A, 2B, 2C, 2D, and are run
on either a wet or average flow year.

Future work could include evaluating the available fish habitat for more species, or
perhaps instead of using optimal growth conditions to evaluate fish habitat, use acute
and/or chronic temperature and dissolved oxygen criteria. Also, utilizing the Lake
Roosevelt fish bioenergetics model to predict fish growth would also be a realistic goal
for further understanding how the management scenarios affect fish behavior and growth.
The FORTRAN source code routine for the Lake Roosevelt fish bioenergetics model is
show in Appendix F (McKillip, 2008).
References

Banks Lake: Feeder Canal. Personal photograph by Dr. Chris Berger.

[http://users.owt.com/chubbard/gcdam/html/hydro.html]

Kumar, R., (2003) “Effects of Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) predation on the population growth patterns of different prey species.” Ecology Laboratory, Department of Zoology, University of Delhi, Delhi, India.

Appendix A: CE-QUAL-W2 Control File

W2 Model Version 3.7

TITLE C ..TITLE..
Banks Lake - January 1, 2002 through December 31, 2009

GRID NWB NBR IMX KMX NPROC CLOSEC
1 10 182 56 2 OFF

IN/OUTFL NTR NST NIW NWD NGT NSP NPI NFU
0 1 0 1 0 0 0 0

CONSTITU NGC NSS NAL NEP NBOD NMC NZP
3 1 3 0 0 0 2

MISCELL NDAY SELECTC HABTAC ENVIRPC AERATEC INITUWL
12500 OFF OFF OFF OFF OFF

TIME CON TMSTRT TMEND YEAR
1.00000 2923.00 2002

DLT CON NDT DLTMIN DLTINTR
11 1.00000 OFF

DLT DATE DLT MIN DLTMIN DLTINTR
1.00000 344.00 359.00 728.00 742.00 1503.00 1517.00 2087.00 2101.00
2163.00 2177.00

DLT MAX DLTMAX DLTMAX DLTMAX DLTMAX DLTMAX DLTMAX DLTMAX DLTMAX
115.00 30.0 115.0 30.0 115.0 30.0 115.0 30.0 115.0

DLT FRN DLTF DLTF DLTF DLTF DLTF DLTF DLTF DLTF DLTF
0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000

DLT LIMI VISC CELC
WB 1 ON ON

BRANCH G US DS UHS DHS UQB DQB NIMIN SLOPE SLOPEC
BR1 2 111 0 0 0 0 1 0.00000 0.000
BR2 114 121 0 60 0 0 1 0.00000 0.000
BR3 124 128 0 47 0 0 1 0.00000 0.000
BR4 131 135 0 40 0 0 1 0.00000 0.000
BR5 138 142 0 134 0 0 1 0.00000 0.000
BR6 145 148 0 37 0 0 1 0.00000 0.000
BR7 151 160 0 34 0 0 1 0.00000 0.000
BR8 163 166 0 29 0 0 1 0.00000 0.000
BR9 169 173 0 28 0 0 1 0.00000 0.000
BR10 176 181 0 14 0 0 1 0.00000 0.000

LOCATION LAT LONG EBOT BS BE JBDN
WB 1 47.8000 119.200 425.000 1 0 1

INIT CND TEMPI ICEI WTYP EC GRID C
WB 1 2.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CALCULAT VBC EBC MBC PQC EVC PRC
WB 1 ON ON ON OFF ON ON

DEAD SEA WINDC QINC QOUTC HEATC
WB 1 ON ON ON ON
<table>
<thead>
<tr>
<th>Component</th>
<th>BR1</th>
<th>BR2</th>
<th>BR3</th>
<th>BR4</th>
<th>BR5</th>
<th>BR6</th>
<th>BR7</th>
<th>BR8</th>
<th>BR9</th>
<th>BR10</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERPOL</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>QINIC</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>DTRIC</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>HDIC</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>BR1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>BR2</td>
<td>ON</td>
</tr>
<tr>
<td>BR3</td>
<td>ON</td>
</tr>
<tr>
<td>BR4</td>
<td>ON</td>
</tr>
<tr>
<td>BR5</td>
<td>ON</td>
</tr>
<tr>
<td>BR6</td>
<td>ON</td>
</tr>
<tr>
<td>BR7</td>
<td>ON</td>
</tr>
<tr>
<td>BR8</td>
<td>ON</td>
</tr>
<tr>
<td>BR9</td>
<td>ON</td>
</tr>
<tr>
<td>BR10</td>
<td>ON</td>
</tr>
</tbody>
</table>

- **Heat Exch:**
 - SLHTC
 - SROC
 - RHEVAP
 - METIC
 - FETCHC
 - AFW
 - BFW
 - CFW
 - WINDH
 - WB 1
 - TERM
 - ON
 - OFF
 - ON
 - 9.20000
 - 0.46000
 - 2.00000
 - 2.00000

- **ICE COVE:**
 - ICEC
 - SLICEC
 - ALBEDO
 - HWICE
 - BICE
 - GICE
 - ICEMIN
 - ICET2
 - WB 1
 - DETAIL
 - 0.25000
 - 10.0000
 - 0.60000
 - 0.07000
 - 0.05000
 - 3.00000

- **TRANSPOR:**
 - SLTRC
 - THETA
 - WB 1
 - ULTIMATE
 - 0.55000

- **HYD COEF:**
 - AX
 - DX
 - CBHE
 - TSED
 - FI
 - TSDF
 - FRIC
 - Z0
 - WB 1
 - 1.00000
 - 1.00000
 - 0.30000
 - 5.00000
 - 0.00000
 - 0.00000
 - MANN
 - 0.00100

- **EDDY VISC:**
 - AZC
 - AZSLC
 - AZMAX
 - FBC
 - E
 - ARODI
 - STRCKLR
 - BOUNDFR
 - TKECAL
 - WB 1
 - W2
 - IMP
 - 1.00000
 - 3
 - 9.53500
 - 0.43000
 - 24.0000
 - 10.0000
 - IMP

- **N STRUC:**
 - NSTR
 - BR1
 - 1
 - BR2
 - 0
 - BR3
 - 0
 - BR4
 - 0
 - BR5
 - 0
 - BR6
 - 0
 - BR7
 - 0
 - BR8
 - 0
 - BR9
 - 0
 - BR10
 - 0

- **STR INT:**
 - STRIC
 - WB 1
 - BR 1
 - OFF
 - BR 2
 - OFF
 - BR 3
 - OFF
 - BR 4
 - OFF
 - BR 5
 - OFF
 - BR 6
 - OFF
 - BR 7
 - OFF
 - BR 8
 - OFF
 - BR 9
 - OFF
 - BR10
 - OFF

- **STR TOP:**
 - KTSTR
 - WB 1
 - BR 1
 - 2
 - BR 2
 - 2
 - BR 3
 - 2
 - BR 4
 - 2
 - BR 5
 - 2
 - BR 6
 - 2
 - BR 7
 - 2
 - BR 8
 - 2
 - BR 9
 - 2
 - BR10
 - 2

- **STR BOT:**
 - KBSTR
 - WB 1
 - BR 1
 - 17
 - BR 2
 - 17
 - BR 3
 - 17
 - BR 4
 - 17
 - BR 5
 - 17

172
BR6
BR7
BR8
BR9
BR10

STR SINK SINKC SINKC SINKC SINKC SINKC SINKC SINKC SINKC SINKC
BR1 POINT
BR2
BR3
BR4
BR5
BR6
BR7
BR8
BR9
BR10

STR ELEV ESTR ESTR ESTR ESTR ESTR ESTR ESTR ESTR ESTR
BR1 471.000
BR2
BR3
BR4
BR5
BR6
BR7
BR8
BR9
BR10

STR WIDT WSTR WSTR WSTR WSTR WSTR WSTR WSTR WSTR WSTR
BR1 28.0000
BR2
BR3
BR4
BR5
BR6
BR7
BR8
BR9
BR10

PIVES IUPI IDPI EUPI EDPI WPI DLXPI FPI FMINPI WTHLC

PIPE UP PUPIC ETUPI EBUPI KTUPI KBUPI

PIPE DOWN PDFIC ETDPI EBDFI KTDFI KBDFI

SPILLWAY IUSP IDSP ESP A1SP B1SP A2SP B2SP WTHLC

SPILL UP PUSPC ETUSP EBUSP KTUSP KBUSP

SPILL DOWN PDSPC ETUSP EBUSP KTDSP KBDSP

SPILL GAS GASSPC EQSP AGASSP BGASSP CGASSP

GATES IU GT IDGT EGTA A1GT B1GT G1GT A2GT B2GT G2GT WTHLC

GATE WEIR GTA1 GTB1 GTA2 GTB2 DYNVAR GTIC
<table>
<thead>
<tr>
<th>GATE UP</th>
<th>PUGTC</th>
<th>ETUGT</th>
<th>EBUGT</th>
<th>KTUGT</th>
<th>KBUGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATE DOWN</td>
<td>PDGTC</td>
<td>ETGTC</td>
<td>EBGTC</td>
<td>KTDGT</td>
<td>KBDGT</td>
</tr>
<tr>
<td>GATE GAS</td>
<td>GASGTC</td>
<td>EQGT</td>
<td>AGASGT</td>
<td>BGASGT</td>
<td>CGASGT</td>
</tr>
<tr>
<td>PUMPS 1</td>
<td>IUPU</td>
<td>IDPU</td>
<td>EPU</td>
<td>STRPU</td>
<td>ENDPU</td>
</tr>
<tr>
<td>PUMPS 2</td>
<td>PPUC</td>
<td>ETPU</td>
<td>EBPU</td>
<td>KTPU</td>
<td>KBPU</td>
</tr>
<tr>
<td>WEIR SEG</td>
<td>IWR</td>
<td>IWR</td>
<td>IWR</td>
<td>IWR</td>
<td>IWR</td>
</tr>
<tr>
<td>WEIR TOP</td>
<td>KTWR</td>
<td>KTWR</td>
<td>KTWR</td>
<td>KTWR</td>
<td>KTWR</td>
</tr>
<tr>
<td>WEIR BOT</td>
<td>KBWR</td>
<td>KBWR</td>
<td>KBWR</td>
<td>KBWR</td>
<td>KBWR</td>
</tr>
<tr>
<td>WD INT</td>
<td>WDIC</td>
<td>WDIC</td>
<td>WDIC</td>
<td>WDIC</td>
<td>WDIC</td>
</tr>
<tr>
<td>WD SEG</td>
<td>IWD</td>
<td>IWD</td>
<td>IWD</td>
<td>IWD</td>
<td>IWD</td>
</tr>
<tr>
<td>WD ELEV</td>
<td>EW</td>
<td>EW</td>
<td>EW</td>
<td>EW</td>
<td>EW</td>
</tr>
<tr>
<td>WD TOP</td>
<td>KTWD</td>
<td>KTWD</td>
<td>KTWD</td>
<td>KTWD</td>
<td>KTWD</td>
</tr>
<tr>
<td>WD BOT</td>
<td>KBWD</td>
<td>KBWD</td>
<td>KBWD</td>
<td>KBWD</td>
<td>KBWD</td>
</tr>
<tr>
<td>TRIB PLA</td>
<td>PTRC</td>
<td>PTRC</td>
<td>PTRC</td>
<td>PTRC</td>
<td>PTRC</td>
</tr>
<tr>
<td>TRIB INT</td>
<td>TRIC</td>
<td>TRIC</td>
<td>TRIC</td>
<td>TRIC</td>
<td>TRIC</td>
</tr>
<tr>
<td>TRIB SEG</td>
<td>ITR</td>
<td>ITR</td>
<td>ITR</td>
<td>ITR</td>
<td>ITR</td>
</tr>
<tr>
<td>TRIB TOP</td>
<td>ELTRT</td>
<td>ELTRT</td>
<td>ELTRT</td>
<td>ELTRT</td>
<td>ELTRT</td>
</tr>
<tr>
<td>TRIB BOT</td>
<td>ELTRB</td>
<td>ELTRB</td>
<td>ELTRB</td>
<td>ELTRB</td>
<td>ELTRB</td>
</tr>
<tr>
<td>DST TRIB</td>
<td>DTRC</td>
<td>DTRC</td>
<td>DTRC</td>
<td>DTRC</td>
<td>DTRC</td>
</tr>
<tr>
<td>BR 1</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 2</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 3</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 4</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 5</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 6</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 7</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 8</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 9</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 10</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYD PRIN</td>
<td>HPRWBC</td>
<td>HPRWBC</td>
<td>HPRWBC</td>
<td>HPRWBC</td>
<td>HPRWBC</td>
</tr>
<tr>
<td>NViol</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>M</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHO</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEAR</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMX</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDG</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMZ</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPG</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAV</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP PRINT</td>
<td>SNPC</td>
<td>NSNP</td>
<td>NISNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB 1</td>
<td>OFF</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP DATE</td>
<td>SNPD</td>
<td>SNPD</td>
<td>SNPD</td>
<td>SNPD</td>
<td>SNPD</td>
</tr>
<tr>
<td>WB 1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP FREQ</td>
<td>SNPF</td>
<td>SNPF</td>
<td>SNPF</td>
<td>SNPF</td>
<td>SNPF</td>
</tr>
<tr>
<td>WB 1</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP SEG</td>
<td>ISNP</td>
<td>ISNP</td>
<td>ISNP</td>
<td>ISNP</td>
<td>ISNP</td>
</tr>
<tr>
<td>WB 1</td>
<td>2 12 23 27 32 37 42 52 60 70 80 90 100 110 115 120 125 134 140 153 158 164 171 177 181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCR PRINT</td>
<td>SCRC</td>
<td>NSCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB 1</td>
<td>ON</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCR DATE</td>
<td>SCRD</td>
<td>SCRD</td>
<td>SCRD</td>
<td>SCRD</td>
<td>SCRD</td>
</tr>
<tr>
<td>WB 1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCR FREQ</td>
<td>SCRF</td>
<td>SCRF</td>
<td>SCRF</td>
<td>SCRF</td>
<td>SCRF</td>
</tr>
<tr>
<td>WB 1</td>
<td>0.200000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF PLOT</td>
<td>PRFC</td>
<td>NPRF</td>
<td>NIPRF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB 1</td>
<td>ON</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF DATE</td>
<td>PRFD</td>
<td>PRFD</td>
<td>PRFD</td>
<td>PRFD</td>
<td>PRFD</td>
</tr>
<tr>
<td>WB 1</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF FREQ</td>
<td>PRFF</td>
<td>PRFF</td>
<td>PRFF</td>
<td>PRFF</td>
<td>PRFF</td>
</tr>
<tr>
<td>WB 1</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF SEG</td>
<td>IPRF</td>
<td>IPRF</td>
<td>IPRF</td>
<td>IPRF</td>
<td>IPRF</td>
</tr>
<tr>
<td>WB 1</td>
<td>15 173 158 82 99 147 181 54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPR PRINT</td>
<td>SPRC</td>
<td>NSPR</td>
<td>NISPR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB 1</td>
<td>OFF</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPR DATE</td>
<td>SPRD</td>
<td>SPRD</td>
<td>SPRD</td>
<td>SPRD</td>
<td>SPRD</td>
</tr>
<tr>
<td>WB 1</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPR FREQ</td>
<td>SPRF</td>
<td>SPRF</td>
<td>SPRF</td>
<td>SPRF</td>
<td>SPRF</td>
</tr>
<tr>
<td>WB 1</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPR SEG</td>
<td>ISPR</td>
<td>ISPR</td>
<td>ISPR</td>
<td>ISPR</td>
<td>ISPR</td>
</tr>
<tr>
<td>WB 1</td>
<td>15 173 158 82 99 147 181 54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPL PLOT</td>
<td>VPLC</td>
<td>NVPL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB 1</td>
<td>OFF</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPL DATE</td>
<td>VPLD</td>
<td>VPLD</td>
<td>VPLD</td>
<td>VPLD</td>
<td>VPLD</td>
</tr>
<tr>
<td>WB 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NH4 ON
NO3 ON
DSI OFF
PSI OFF
FE OFF
LDM ON
RDOM ON
LFPOM ON
RFPOM ON
ALG1 ON
ALG2 ON
ALG3 ON
DO ON
TIC ON
ALK ON
ZOO1 ON
ZOO2 ON
LDM-P ON
RDM-P ON
LFPOM-P ON
RFPOM-P ON
LDM-N ON
RDM-N ON
LFPOM-N ON
RFPOM-N ON

CST DERI CDWBC CDWBC CDWBC CDWBC CDWBC CDWBC CDWBC CDWBC CDWBC

DOC OFF
POC OFF
TOC OFF
DON OFF
PON OFF
TON OFF
TKN OFF
TN ON
DOP OFF
POP OFF
TOP OFF
TP ON
APR OFF
CHLA ON
ATOT OFF
%DO ON
TSS ON
TISS OFF
CBOD OFF
pH ON
CO2 OFF
HCO3 OFF
CO3 OFF

CST FLUX CFWBC CFWBC CFWBC CFWBC CFWBC CFWBC CFWBC CFWBC CFWBC

TISSIN OFF
TISSOUT OFF
PO4AR ON
PO4AG ON
PO4AP ON
PO4ER ON
PO4EG ON
PO4EP ON
PO4DOM ON
PO4OM ON
PO4SED ON
PO4SOD ON
PO4SET ON
NH4NITR ON
NH4AR ON
NH4AG ON
NH4AP ON
NH4ER ON
NH4EG ON
NH4EP ON
NH4POM ON
NH4DOM ON
NH4SED ON
NH4SOD ON
NO3DEN ON
NO3AG ON
NO3EG ON
NO3SED ON
DSIAG ON
DS1EG ON
DSIPIS OFF
DSISED OFF
DSISOD OFF
DSISET OFF
PSIAM OFF
PSINET OFF
PSIDK OFF
FESET OFF
FESED OFF
LDOMDK OFF
LRDOM OFF
RDOMDK OFF
LDOMAP OFF
LDOMEP OFF
LPOMDK OFF
LRPOM OFF
RPOMDK OFF
LPOMAP OFF
LPOMEP OFF
LPOMSET OFF
RPOMSET OFF
CBODDK OFF
DOAP ON
DOAR ON
DOEP ON
DOER ON
DOPOM ON
DODOM ON
DOOM ON
DONITR ON
DOCBOD ON
DOREAR ON
DOSED ON
DOSOD ON
TICAG OFF
TICEG OFF
SEDDK OFF
SEDAS OFF
SEDLPOM OFF
SEDSET OFF
SODDK OFF

CST ICON C2IWB C2IWB C2IWB C2IWB C2IWB C2IWB C2IWB C2IWB
TDS 87.7000
Gen1 100.000
Gen2 0.00000
Gen3 10.0000
ISS1 2.00000
PO4 0.00600
NH4 0.00500
NO3 0.14900
DSI 0.00000
PSI 0.00000
FE 0.10000

178
<table>
<thead>
<tr>
<th>CST PRIN</th>
<th>CPRWBC</th>
<th>CPRWBC</th>
<th>CPRWBC</th>
<th>CPRWBC</th>
<th>CPRWBC</th>
<th>CPRWBC</th>
<th>CPRWBC</th>
<th>CPRWBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen2</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen3</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ISS1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>PO4</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>NH4</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>NO3</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>DSI</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>PSI</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>FE</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG2</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG3</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>DO</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>TIC</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ALK</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO2</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-P</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM-P</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-P</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM-P</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-N</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM-N</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-N</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM-N</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>CIN CON</td>
<td>CINBRC</td>
<td>CINBRC</td>
<td>CINBRC</td>
<td>CINBRC</td>
<td>CINBRC</td>
<td>CINBRC</td>
<td>CINBRC</td>
<td>CINBRC</td>
</tr>
<tr>
<td>TDS</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen2</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen3</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ISS1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>PO4</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>NH4</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>DSI</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>PSI</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>FE</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

179
<table>
<thead>
<tr>
<th>Variable</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO3</td>
<td>ON</td>
</tr>
<tr>
<td>DS1</td>
<td>OFF</td>
</tr>
<tr>
<td>PSI</td>
<td>OFF</td>
</tr>
<tr>
<td>FE</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM</td>
<td>ON</td>
</tr>
<tr>
<td>LPOM</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG1</td>
<td>ON</td>
</tr>
<tr>
<td>ALG2</td>
<td>ON</td>
</tr>
<tr>
<td>ALG3</td>
<td>ON</td>
</tr>
<tr>
<td>DO</td>
<td>ON</td>
</tr>
<tr>
<td>TIC</td>
<td>ON</td>
</tr>
<tr>
<td>ALK</td>
<td>ON</td>
</tr>
<tr>
<td>ZOO1</td>
<td>ON</td>
</tr>
<tr>
<td>ZOO2</td>
<td>ON</td>
</tr>
<tr>
<td>LDOM-P</td>
<td>ON</td>
</tr>
<tr>
<td>RDOM-P</td>
<td>ON</td>
</tr>
<tr>
<td>LPOM-P</td>
<td>ON</td>
</tr>
<tr>
<td>RPOM-P</td>
<td>ON</td>
</tr>
<tr>
<td>LDOM-N</td>
<td>ON</td>
</tr>
<tr>
<td>RDOM-N</td>
<td>ON</td>
</tr>
<tr>
<td>LPOM-N</td>
<td>ON</td>
</tr>
<tr>
<td>RPOM-N</td>
<td>ON</td>
</tr>
<tr>
<td>CTR CON</td>
<td>CTRTRC</td>
</tr>
<tr>
<td>CTRTRC</td>
<td>CTRTRC</td>
</tr>
<tr>
<td>TDS</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen1</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen2</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen3</td>
<td>OFF</td>
</tr>
<tr>
<td>ISS1</td>
<td>OFF</td>
</tr>
<tr>
<td>PO4</td>
<td>OFF</td>
</tr>
<tr>
<td>NH4</td>
<td>OFF</td>
</tr>
<tr>
<td>NO3</td>
<td>OFF</td>
</tr>
<tr>
<td>DS1</td>
<td>OFF</td>
</tr>
<tr>
<td>PSI</td>
<td>OFF</td>
</tr>
<tr>
<td>FE</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG1</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG2</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG3</td>
<td>OFF</td>
</tr>
<tr>
<td>DO</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>CDTC</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>TIC</td>
<td>OFF</td>
</tr>
<tr>
<td>ALK</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO1</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO2</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>CDTC</td>
<td>OFF</td>
</tr>
<tr>
<td>TDS</td>
<td>ON</td>
</tr>
<tr>
<td>Gen1</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen2</td>
<td>ON</td>
</tr>
<tr>
<td>Gen3</td>
<td>OFF</td>
</tr>
<tr>
<td>ISS1</td>
<td>OFF</td>
</tr>
<tr>
<td>P04</td>
<td>OFF</td>
</tr>
<tr>
<td>NH4</td>
<td>ON</td>
</tr>
<tr>
<td>NO3</td>
<td>OFF</td>
</tr>
<tr>
<td>DSI</td>
<td>OFF</td>
</tr>
<tr>
<td>PS1</td>
<td>OFF</td>
</tr>
<tr>
<td>FE</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM</td>
<td>ON</td>
</tr>
<tr>
<td>RDOM</td>
<td>ON</td>
</tr>
<tr>
<td>LPOM</td>
<td>ON</td>
</tr>
<tr>
<td>RPOM</td>
<td>ON</td>
</tr>
<tr>
<td>ALG1</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG2</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG3</td>
<td>OFF</td>
</tr>
<tr>
<td>DO</td>
<td>OFF</td>
</tr>
<tr>
<td>TIC</td>
<td>OFF</td>
</tr>
<tr>
<td>ALK</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO1</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO2</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>CPR CON</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>RDOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen1</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen2</td>
<td>OFF</td>
</tr>
<tr>
<td>Gen3</td>
<td>OFF</td>
</tr>
<tr>
<td>ISS1</td>
<td>OFF</td>
</tr>
<tr>
<td>PO4</td>
<td>OFF</td>
</tr>
<tr>
<td>NH4</td>
<td>OFF</td>
</tr>
<tr>
<td>NO3</td>
<td>OFF</td>
</tr>
<tr>
<td>DSI</td>
<td>OFF</td>
</tr>
<tr>
<td>PSI</td>
<td>OFF</td>
</tr>
<tr>
<td>FE</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG1</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG2</td>
<td>OFF</td>
</tr>
<tr>
<td>ALG3</td>
<td>OFF</td>
</tr>
<tr>
<td>DO</td>
<td>OFF</td>
</tr>
<tr>
<td>TIC</td>
<td>OFF</td>
</tr>
<tr>
<td>ALK</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO1</td>
<td>OFF</td>
</tr>
<tr>
<td>ZOO2</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>RPOM-P</td>
<td>OFF</td>
</tr>
<tr>
<td>LDOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>RDOM-N</td>
<td>OFF</td>
</tr>
<tr>
<td>LPOM-N</td>
<td>OFF</td>
</tr>
</tbody>
</table>
RPOM-N OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
EX COEF EXH2O EXSS EXOM BETA EXC EXIC
WB 1 0.30000 0.01000 0.20000 0.45000 OFF OFF
ALG EX EXA EXA EXA EXA EXA OFF OFF 0.15000 0.15000 0.15000
ZOO EX EXZ EXZ EXZ EXZ EXZ EXZ EXZ 0.20000 0.20000
MACRO EX EXM EXM EXM EXM EXM EXM
0.01000
GENERIC CCG10 CG0DK CG1DK CGS
CG 1 0.00000 0.00000 0.00000 0.00000
CG 2 0.00000 -1.0000 0.00000 0.00000
CG 3 1.04000 0.00000 1.40000 0.00000
S SOLIDS SSS SEDRC TAUCR
SS# 1 1.00000 OFF 0.00000
ALGAL RATE AG AR AE AM AS AHSP AHSN AHSSI ASAT
ALG1 2.50000 0.04000 0.04000 0.10000 0.12000 0.00240 0.01400 0.00000 90.000 90.000
ALG2 2.70000 0.04000 0.04000 0.10000 0.12000 0.00220 0.01400 0.00000 90.000 90.000
ALG3 2.50000 0.04000 0.04000 0.10000 0.09900 0.00320 0.01400 0.00000 90.000 90.000
ALGAL TEMP AT1 AT2 AT3 AT4 AK1 AK2 AK3 AK4
ALG1 1.50000 7.00000 24.00000 30.00000 0.10000 0.99000 0.99000 0.10000
ALG2 3.00000 15.00000 26.00000 30.00000 0.10000 0.99000 0.99000 0.10000
ALG3 3.00000 20.00000 28.00000 30.00000 0.10000 0.99000 0.99000 0.10000
ALG STOI ALGP ALGN ALGC ALGSI ACHLA ALPOM ANEQN ANFR
ALG1 0.00500 0.08000 0.55000 0.00000 0.22000 0.80000 2 0.00100
ALG2 0.00500 0.08000 0.55000 0.00000 0.11000 0.80000 2 0.00100
ALG3 0.00500 0.08000 0.55000 0.00000 0.14000 0.80000 2 0.00100
EPHYTE EPIC IC EPIC IC EPIC IC EPIC IC EPIC IC EPIC IC
EP11 OFF
EPI PRIN EPIC IC EPIC IC EPIC IC EPIC IC EPIC IC EPIC IC EPIC IC
EP11 10.0000
EPI RATE EG ER EE EM EB EHSN EHSSI
EP11 2.00000 0.04000 0.04000 0.10000 0.00100 0.00300 0.01400 0.00000
EPI HALF ESAT EHS ENEQN ENPR
EP11 150.000 15.0000 2 0.00100
EPI TEMP ET1 ET2 ET3 ET4 EK1 EK2 EK3 EK4
EP11 1.00000 3.00000 20.00000 30.00000 0.10000 0.99000 0.99000 0.10000
EPI STOI EP EC ES ECHL ECHL ECHL ECHL ECHL ECHL ECHL
EP11 0.00500 0.08000 0.45000 0.00000 0.05000 0.80000
ZOOP RATE ZG ZR ZM ZEFF ZEFF ZEFF ZEFF ZEFF
Zoo1 0.76950 0.10000 0.04000 0.48000 0.50000 0.01000 0.30000
Zoo2 0.75000 0.10000 0.01000 0.50000 0.50000 0.01000 0.30000
ZOOP ALGP PREFA PREFA
Zoo1 0.60000 0.60000 0.20000
Zoo2 0.75000 0.75000 0.20000
ZOOP ZOOP
Zoo1 0.00000 0.10000
<table>
<thead>
<tr>
<th></th>
<th>Zoo1</th>
<th>Zoo2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOPT</td>
<td>5.00000</td>
<td>5.00000</td>
</tr>
<tr>
<td>ZT1</td>
<td>10.0000</td>
<td>8.00000</td>
</tr>
<tr>
<td>ZT2</td>
<td>17.0000</td>
<td>20.0000</td>
</tr>
<tr>
<td>ZT3</td>
<td>23.0000</td>
<td>22.0000</td>
</tr>
<tr>
<td>ZT4</td>
<td>0.10000</td>
<td>0.10000</td>
</tr>
<tr>
<td>ZK1</td>
<td>0.90000</td>
<td>0.90000</td>
</tr>
<tr>
<td>ZK2</td>
<td>0.98000</td>
<td>0.98000</td>
</tr>
<tr>
<td>ZK3</td>
<td>0.10000</td>
<td>0.10000</td>
</tr>
<tr>
<td>ZK4</td>
<td>0.10000</td>
<td>0.10000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Zoo1</th>
<th>Zoo2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOPT</td>
<td>0.01500</td>
<td>0.01500</td>
</tr>
<tr>
<td>ZF</td>
<td>0.08000</td>
<td>0.08000</td>
</tr>
<tr>
<td>ZN</td>
<td>0.45000</td>
<td>0.45000</td>
</tr>
<tr>
<td>ZC</td>
<td>0.01500</td>
<td>0.01500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACWBC</td>
<td>ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPRWBC</td>
<td>ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACWBCI</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACWBCI</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACWBC</td>
<td>7.00000</td>
</tr>
<tr>
<td>MT1</td>
<td>15.0000</td>
</tr>
<tr>
<td>MT2</td>
<td>24.0000</td>
</tr>
<tr>
<td>MT3</td>
<td>34.0000</td>
</tr>
<tr>
<td>MT4</td>
<td>0.10000</td>
</tr>
<tr>
<td>MK1</td>
<td>0.99000</td>
</tr>
<tr>
<td>MK2</td>
<td>0.99000</td>
</tr>
<tr>
<td>MK3</td>
<td>0.01000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACWBC</td>
<td>0.00500</td>
</tr>
<tr>
<td>MP</td>
<td>0.08000</td>
</tr>
<tr>
<td>MN</td>
<td>0.08000</td>
</tr>
<tr>
<td>MC</td>
<td>0.08000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOM</td>
<td>0.08000</td>
</tr>
<tr>
<td>RDOMDK</td>
<td>0.00100</td>
</tr>
<tr>
<td>LRDDK</td>
<td>0.00100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>POM</td>
<td>0.08000</td>
</tr>
<tr>
<td>LPOMDK</td>
<td>0.00100</td>
</tr>
<tr>
<td>LRPDK</td>
<td>0.00100</td>
</tr>
<tr>
<td>POMS</td>
<td>0.00100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM</td>
<td>0.05000</td>
</tr>
<tr>
<td>ORGP</td>
<td>0.08000</td>
</tr>
<tr>
<td>ORGN</td>
<td>0.08000</td>
</tr>
<tr>
<td>ORGC</td>
<td>0.08000</td>
</tr>
<tr>
<td>ORGSI</td>
<td>0.08000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBOD</td>
<td>0.25000</td>
</tr>
<tr>
<td>KBOD</td>
<td>1.01500</td>
</tr>
<tr>
<td>TBOD</td>
<td>1.85000</td>
</tr>
<tr>
<td>RBOD</td>
<td>0.00000</td>
</tr>
<tr>
<td>CBODS</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>0.05000</td>
</tr>
<tr>
<td>BODP</td>
<td>0.08000</td>
</tr>
<tr>
<td>BODN</td>
<td>0.08000</td>
</tr>
<tr>
<td>BODC</td>
<td>0.08000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOSPHOR</td>
<td>0.01500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH4R</td>
<td>0.15000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH4TD</td>
<td>0.01000</td>
</tr>
<tr>
<td>NH4T2</td>
<td>0.10000</td>
</tr>
<tr>
<td>NH4K1</td>
<td>0.99000</td>
</tr>
<tr>
<td>NH4K2</td>
<td>0.99000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO3DK</td>
<td>0.05000</td>
</tr>
<tr>
<td>NO3S</td>
<td>0.37000</td>
</tr>
<tr>
<td>FNO3SED</td>
<td>0.37000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO3R</td>
<td>0.05000</td>
</tr>
<tr>
<td>NO3S</td>
<td>0.00000</td>
</tr>
<tr>
<td>N3S</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO3R</td>
<td>0.05000</td>
</tr>
<tr>
<td>NO3S</td>
<td>0.00000</td>
</tr>
<tr>
<td>N3S</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3S</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

184
QGT FILE .. QGTFN ..
qgt.npt = not used

WSC FILE WSCFN
wsc.npt

SHD FILE SHDFN
shade.npt

BTH FILE BTHFN
WB 1 bth.npt

MET FILE METFN
WB 1 met.npt

EXT FILE EXTFN
WB 1 ext_1.npt = not used

VPR FILE VPRFN
WB 1 vpr.npt = not used

LPR FILE LPRFN
WB 1 lpr.npt = not used

QIN FILE QINFN
BR1 qin_br1.npt
BR2 qin_br2.npt
BR3 qin_br3.npt
BR4 qin_br4.npt
BR5 qin_br5.npt
BR6 qin_br6.npt
BR7 qin_br7.npt
BR8 qin_br8.npt
BR9 qin_br9.npt
BR10 qin_br10.npt

TIN FILE TINFN
BR1 tin_br1.npt
BR2 tin_br2.npt
BR3 tin_br3.npt
BR4 tin_br4.npt
BR5 tin_br5.npt
BR6 tin_br6.npt
BR7 tin_br7.npt
BR8 tin_br8.npt
BR9 tin_br9.npt
BR10 tin_br10.npt

CIN FILE CINFN
BR1 cin_br1.npt
BR2 cin_br2.npt
BR3 cin_br3.npt
BR4 cin_br4.npt
BR5 cin_br5.npt
BR6 cin_br6.npt
BR7 cin_br7.npt
BR8 cin_br8.npt
BR9 cin_br9.npt
BR10 cin_br10.npt

QOT FILE QOTFN
BR1 qot_br1.npt

QTR FILE QTRFN
TR1 qtr_tr1.npt = not used

TTR FILE TTRFN
TR1 ttr_tr1.npt = not used
CTR FILE..................................CTRFN.................................
TR1 ctr_tr1.npt - not used

QDT FILE..................................QDTFN.................................
BR1 qdt_br1.npt

TDT FILE..................................TDTFN.................................
BR1 tdt_br1.npt

CDT FILE..................................CDTFN.................................
BR1 cdt_br1.npt

PRE FILE..................................PREFN.................................
BR1 pre_br1.npt
BR2 pre_br2.npt
BR3 pre_br3.npt
BR4 pre_br4.npt
BR5 pre_br5.npt
BR6 pre_br6.npt
BR7 pre_br7.npt
BR8 pre_br8.npt
BR9 pre_br9.npt
BR10 pre_br10.npt

TPR FILE..................................TPRFN.................................
BR1 tpr_br1.npt
BR2 tpr_br2.npt
BR3 tpr_br3.npt
BR4 tpr_br4.npt
BR5 tpr_br5.npt
BR6 tpr_br6.npt
BR7 tpr_br7.npt
BR8 tpr_br8.npt
BR9 tpr_br9.npt
BR10 tpr_br10.npt

CPR FILE..................................CPRFN.................................
BR1 cpr_br1.npt
BR2 cpr_br2.npt
BR3 cpr_br3.npt
BR4 cpr_br4.npt
BR5 cpr_br5.npt
BR6 cpr_br6.npt
BR7 cpr_br7.npt
BR8 cpr_br8.npt
BR9 cpr_br9.npt
BR10 cpr_br10.npt

EUH FILE..................................EUHFN.................................
BR1 euh_br1.npt - not used

TUH FILE..................................TUHFN.................................
BR1 tuh_br1.npt - not used

CUH FILE..................................CUHFN.................................
BR1 cuh_br1.npt - not used

EDH FILE..................................EDHFN.................................
BR1 edh_br1.npt - not used

TDH FILE..................................TDHFN.................................
BR1 tdh_br1.npt - not used

CDH FILE..................................CDHFN.................................
BR1 cdh_br1.npt - not used

SNP FILE..................................SNPFN.................................
WB 1 snp.opt
PRF FILE..................................PRFFN.................................
WB 1 prf.opt

VPL FILE..................................VPLFN.................................
WB 1 vpl.opt

CPL FILE..................................CPLFN.................................
WB 1 cpl.opt

SPR FILE..................................SPRFN.................................
WB 1 spr.opt

FLX FILE..................................FLXFN.................................
WB 1 flx.opt

TSR FILE..................................TSRFN.................................
 tsr.opt

WDO FILE..................................WDOFN.................................
 wdo.opt
Appendix C: Dissolved Oxygen Calibration Profiles
Appendix D: pH Calibration Profiles
Appendix E: Alternative Action Management Scenario Fish Habitat Percentages

<table>
<thead>
<tr>
<th>Percent Total Volume Optimal Fish Habitat-No-Action Alternative</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>12.9</td>
<td>18.9</td>
<td>16.3</td>
<td>5.7</td>
<td>20.1</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14.5</td>
<td>41.4</td>
<td>40.4</td>
<td>29.7</td>
<td>9</td>
<td>0.4</td>
<td>88</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
<td>20.3</td>
<td>36.5</td>
<td>4.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>15.1</td>
<td>23.4</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Total Volume Optimal Fish Habitat-Average-2A</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.3</td>
<td>18.2</td>
<td>16.1</td>
<td>4.7</td>
<td>16.8</td>
<td>35.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>42.8</td>
<td>39.6</td>
<td>27.8</td>
<td>4.6</td>
<td>0.2</td>
<td>87.6</td>
<td>45.9</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.8</td>
<td>21.4</td>
<td>37.1</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>16</td>
<td>23.5</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Total Volume Optimal Fish Habitat-Average-2B</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.1</td>
<td>18.9</td>
<td>16.6</td>
<td>4.5</td>
<td>17.4</td>
<td>31.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.3</td>
<td>43.3</td>
<td>40.3</td>
<td>27.8</td>
<td>4.3</td>
<td>0.4</td>
<td>88.4</td>
<td>44.6</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>21</td>
<td>38</td>
<td>7.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>15.3</td>
<td>23.5</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Total Volume Optimal Fish Habitat-Average-2C</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>15.3</td>
<td>17.9</td>
<td>15.5</td>
<td>5</td>
<td>17.1</td>
<td>37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.5</td>
<td>43</td>
<td>39.5</td>
<td>27.6</td>
<td>5.1</td>
<td>0.2</td>
<td>87.2</td>
<td>46.3</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>22.2</td>
<td>39.1</td>
<td>5.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>17</td>
<td>25.7</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Total Volume Optimal Fish Habitat-Average-2D</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>15.2</td>
<td>18.3</td>
<td>15.8</td>
<td>4.9</td>
<td>19</td>
<td>26.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.5</td>
<td>43.1</td>
<td>39.7</td>
<td>27.6</td>
<td>4.9</td>
<td>1.6</td>
<td>92.5</td>
<td>43.3</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
<td>22</td>
<td>37.8</td>
<td>5.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>16.8</td>
<td>24.5</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
<td>May</td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>15.3</td>
<td>18.5</td>
<td>17.7</td>
<td>6.8</td>
<td>18.4</td>
<td>27.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>42.9</td>
<td>39.7</td>
<td>28.8</td>
<td>5.9</td>
<td>1.5</td>
<td>88.4</td>
<td>42.6</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.4</td>
<td>19.3</td>
<td>32.5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>15.4</td>
<td>23.1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>15</td>
<td>19.1</td>
<td>17.2</td>
<td>8.3</td>
<td>18.1</td>
<td>26.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>43.4</td>
<td>40.6</td>
<td>28.1</td>
<td>7.1</td>
<td>0.7</td>
<td>89.5</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>19.8</td>
<td>34.8</td>
<td>6.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>15.6</td>
<td>25.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>15.4</td>
<td>18.2</td>
<td>16.2</td>
<td>4.5</td>
<td>17.9</td>
<td>25.7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.5</td>
<td>43</td>
<td>39.6</td>
<td>27.9</td>
<td>4.8</td>
<td>1.1</td>
<td>87.6</td>
<td>41.6</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.8</td>
<td>21.3</td>
<td>38.2</td>
<td>7.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>16</td>
<td>23.8</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>15.2</td>
<td>18.7</td>
<td>16.5</td>
<td>4.5</td>
<td>18</td>
<td>30.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.5</td>
<td>43.2</td>
<td>39.9</td>
<td>27.9</td>
<td>4.5</td>
<td>0.4</td>
<td>88.9</td>
<td>44.7</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>21.1</td>
<td>37.9</td>
<td>7.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>15.5</td>
<td>23.4</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Percent Total Volume Optimal Fish Habitat - Dry-2A

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.4</td>
<td>18</td>
<td>16.6</td>
<td>5.1</td>
<td>19.4</td>
<td>32.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.5</td>
<td>42.9</td>
<td>39</td>
<td>27.5</td>
<td>5.1</td>
<td>0.5</td>
<td>89.3</td>
<td>46.4</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.7</td>
<td>20.5</td>
<td>36.1</td>
<td>6.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>15</td>
<td>21.6</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Dry-2B

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.6</td>
<td>17.4</td>
<td>15.6</td>
<td>5.6</td>
<td>18.5</td>
<td>34.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.6</td>
<td>42.5</td>
<td>38.3</td>
<td>27.6</td>
<td>6.5</td>
<td>0.3</td>
<td>88.5</td>
<td>46.9</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>22</td>
<td>36.3</td>
<td>5.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.6</td>
<td>22.2</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Dry-2C

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.6</td>
<td>17.4</td>
<td>15.6</td>
<td>5.6</td>
<td>18.5</td>
<td>34.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.6</td>
<td>42.5</td>
<td>38.3</td>
<td>27.6</td>
<td>6.4</td>
<td>0.6</td>
<td>89.2</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>21.9</td>
<td>35.1</td>
<td>4.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.6</td>
<td>21.3</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

283
Percent Total Volume Optimal Fish Habitat - Dry-3A

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.5</td>
<td>18.5</td>
<td>16</td>
<td>5</td>
<td>18.8</td>
<td>31.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.7</td>
<td>43.2</td>
<td>39.7</td>
<td>27.6</td>
<td>5.4</td>
<td>0.5</td>
<td>88.8</td>
<td>44.8</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.3</td>
<td>20.9</td>
<td>33.9</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>16.4</td>
<td>20.6</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Dry-3B

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.4</td>
<td>18.3</td>
<td>16.9</td>
<td>7.5</td>
<td>18.1</td>
<td>31.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.5</td>
<td>43</td>
<td>39.5</td>
<td>27.9</td>
<td>7.4</td>
<td>0.5</td>
<td>88.1</td>
<td>46.1</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.4</td>
<td>18.3</td>
<td>34.5</td>
<td>4.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>14.8</td>
<td>25.4</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Dry-3C

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.7</td>
<td>17.3</td>
<td>16.5</td>
<td>6.8</td>
<td>21.1</td>
<td>31</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.7</td>
<td>42.6</td>
<td>38.6</td>
<td>27.7</td>
<td>6.8</td>
<td>0.5</td>
<td>89.3</td>
<td>42.5</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>20.4</td>
<td>34.6</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>15</td>
<td>25.2</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Dry-3D

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.6</td>
<td>17.4</td>
<td>16.3</td>
<td>5</td>
<td>16.9</td>
<td>30.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.6</td>
<td>42.5</td>
<td>38.4</td>
<td>27.8</td>
<td>5.6</td>
<td>0.2</td>
<td>88.3</td>
<td>44.8</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>20.8</td>
<td>35.3</td>
<td>5.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>15.4</td>
<td>20.9</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Percent Total Volume Optimal Fish Habitat - Drought-2A

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.4</td>
<td>18</td>
<td>16.6</td>
<td>5</td>
<td>16.3</td>
<td>35.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.5</td>
<td>42.9</td>
<td>39.1</td>
<td>27.5</td>
<td>5</td>
<td>0.2</td>
<td>87</td>
<td>47.3</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>20.5</td>
<td>34.8</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>15</td>
<td>20.4</td>
<td>6.6</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Drought-2B

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.4</td>
<td>18</td>
<td>16.6</td>
<td>5</td>
<td>16.8</td>
<td>35.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.5</td>
<td>42.9</td>
<td>39.1</td>
<td>27.4</td>
<td>5</td>
<td>0.2</td>
<td>87.3</td>
<td>47.1</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.7</td>
<td>20.6</td>
<td>35.8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>15.1</td>
<td>21.4</td>
<td>7.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Drought-2C

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.6</td>
<td>17.4</td>
<td>15.5</td>
<td>5.6</td>
<td>18.5</td>
<td>34.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.6</td>
<td>42.5</td>
<td>38.3</td>
<td>27.5</td>
<td>6.4</td>
<td>0.3</td>
<td>88.4</td>
<td>46.9</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>21.9</td>
<td>36.3</td>
<td>5.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.6</td>
<td>22.3</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Drought-2D

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>14.6</td>
<td>17.7</td>
<td>15.9</td>
<td>5.2</td>
<td>15.1</td>
<td>24.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.4</td>
<td>43</td>
<td>38.8</td>
<td>27.4</td>
<td>5.6</td>
<td>1.1</td>
<td>89</td>
<td>44.2</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>21.4</td>
<td>35.2</td>
<td>5.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.3</td>
<td>21.1</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

285
<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15</td>
<td>18</td>
<td>16.4</td>
<td>4.4</td>
<td>18.2</td>
<td>29.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.2</td>
<td>43.6</td>
<td>40.9</td>
<td>27.5</td>
<td>3.8</td>
<td>0.7</td>
<td>89.3</td>
<td>41.5</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.3</td>
<td>20.8</td>
<td>31.7</td>
<td>3.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>16.3</td>
<td>17.2</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.3</td>
<td>17</td>
<td>16.2</td>
<td>4.8</td>
<td>17.9</td>
<td>33.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.3</td>
<td>43.3</td>
<td>39.5</td>
<td>26.8</td>
<td>3.8</td>
<td>0.3</td>
<td>88.4</td>
<td>44.5</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.4</td>
<td>22.3</td>
<td>37.4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.8</td>
<td>22.5</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.6</td>
<td>17.7</td>
<td>17.8</td>
<td>5.9</td>
<td>19.4</td>
<td>28</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.6</td>
<td>44.7</td>
<td>40.9</td>
<td>27.1</td>
<td>4.1</td>
<td>0.9</td>
<td>89.5</td>
<td>37.8</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.7</td>
<td>18.7</td>
<td>31.6</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>14.9</td>
<td>21.5</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.3</td>
<td>17.7</td>
<td>17.8</td>
<td>4.4</td>
<td>14.2</td>
<td>35.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.8</td>
<td>44.5</td>
<td>40.7</td>
<td>26.1</td>
<td>2.8</td>
<td>0.1</td>
<td>86.6</td>
<td>45.1</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
<td>21.3</td>
<td>36.7</td>
<td>5.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.2</td>
<td>21.4</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Percent Total Volume Optimal Fish Habitat - Wet-2A

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.3</td>
<td>18.1</td>
<td>15.8</td>
<td>5.6</td>
<td>17.6</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.3</td>
<td>44.5</td>
<td>41.5</td>
<td>29.3</td>
<td>7.1</td>
<td>0.2</td>
<td>87.9</td>
<td>48.5</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
<td>21.5</td>
<td>37.6</td>
<td>5.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.5</td>
<td>23.8</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Wet-2B

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.1</td>
<td>19.1</td>
<td>16.7</td>
<td>5.3</td>
<td>14.5</td>
<td>31.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.3</td>
<td>44.6</td>
<td>42.7</td>
<td>29.5</td>
<td>6.3</td>
<td>0.4</td>
<td>86.4</td>
<td>44.7</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>15.2</td>
<td>23</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.7</td>
<td>25.3</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Wet-2C

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.4</td>
<td>18.1</td>
<td>15.5</td>
<td>5.7</td>
<td>17</td>
<td>37.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>44.4</td>
<td>41.4</td>
<td>29</td>
<td>7.2</td>
<td>0.2</td>
<td>87.1</td>
<td>46.6</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
<td>21.9</td>
<td>38.9</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.7</td>
<td>25.3</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Wet-2D

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.3</td>
<td>18.6</td>
<td>16</td>
<td>5.5</td>
<td>16.8</td>
<td>30.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>44.6</td>
<td>42</td>
<td>29</td>
<td>6.7</td>
<td>0.5</td>
<td>88.3</td>
<td>44.7</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.8</td>
<td>21.4</td>
<td>37.8</td>
<td>4.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>16.3</td>
<td>23.8</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Percent Total Volume Optimal Fish Habitat - Wet-3A

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.3</td>
<td>18.1</td>
<td>16.2</td>
<td>5.4</td>
<td>19.3</td>
<td>32.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>44.6</td>
<td>41.7</td>
<td>29.5</td>
<td>6.8</td>
<td>0.5</td>
<td>89.2</td>
<td>45.2</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
<td>20.9</td>
<td>35.6</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>15.8</td>
<td>21.5</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Wet-3B

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.2</td>
<td>19.3</td>
<td>17.1</td>
<td>5.4</td>
<td>15.5</td>
<td>29.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>44.7</td>
<td>42.9</td>
<td>29.9</td>
<td>6.3</td>
<td>0.5</td>
<td>86.7</td>
<td>44.5</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>21.1</td>
<td>38.7</td>
<td>7.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>15.8</td>
<td>24.3</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Wet-3C

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.4</td>
<td>18</td>
<td>15.8</td>
<td>5.5</td>
<td>17.5</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>44.4</td>
<td>41.4</td>
<td>29.3</td>
<td>7</td>
<td>0.4</td>
<td>88.2</td>
<td>45.4</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>21.5</td>
<td>37.7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>16.4</td>
<td>23.7</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percent Total Volume Optimal Fish Habitat - Wet-3D

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>15.3</td>
<td>19</td>
<td>17</td>
<td>5.3</td>
<td>16.4</td>
<td>33.3</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Kokanee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
<td>44.7</td>
<td>42.6</td>
<td>29.9</td>
<td>6.4</td>
<td>0.4</td>
<td>87.2</td>
<td>45.5</td>
<td>0</td>
</tr>
<tr>
<td>Walleye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.3</td>
<td>21.1</td>
<td>38.2</td>
<td>5.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Mouth Bass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>15.8</td>
<td>24.3</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix F: Lake Roosevelt Fish Bioenergetics FORTRAN Source Code Routine

! PROGRAM BIOENERGETICS
! MIKE MCKILLIP (2006)
! STOCKWELL AND JOHNSON APPROACH, AS SUGGESTED BY MAZUR AND BEAUCHAMP
! STAND ALONE PROGRAM FOR TESTING MODULES TO BE INCORPORATED WITH THE W2 CODE

* TASK B.1. MODULE DECLARATION

MODULE MAINW2 ! REPEITION OF W2-CODE VARIABLES
REAL*8, ALLOCATABLE, DIMENSION (:,:) :: DEPTHM,T1,GAMMA,BN,EL
REAL*8, ALLOCATABLE, DIMENSION (:,:,:) :: C2
REAL JDAY, JEND, IBIOF = FREQUENCY OF BIOEXP OUTPUT
REAL PRIOMNT ! NEXT DAY TO GET CALCULATION INPUTS
INTEGER, ALLOCATABLE, DIMENSION(:) :: BIOINFN
INTEGER, ALLOCATABLE, DIMENSION(:) :: KTI,KBI
INTEGER KMX, IMX,NUNIT,NZP,K,I,DLT,JI,NWB
INTEGER NCT,JZ,NZOOS,NZOOE,NOD
CHARACTER*72, ALLOCATABLE, DIMENSION(:) :: BIOINNAME
CHARACTER*72 FRED,SEGNUM
END MODULE MAINW2

MODULE ROOSEVELT ! THIS MODULE TAKEN FROM W2-ROOSEVELT; ALLOWs THE W2_ANC_CON.NPT TO BE READ
INTEGER, ALLOCATABLE, DIMENSION(:) :: IBIO,BIODP,BI,OEXPFN
REAL*8, ALLOCATABLE, DIMENSION(:) :: BIOD, BIOF
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: NVIOL_LOC
CHARACTER*8 NVIOLC, BIOC
LOGICAL BIOEXP
INTEGER NBIO,NIBIO
REAL*8 NXBIO,NXTBIO,GAMMAB
CHARACTER*72 BIOFN,W,EIGHTFN
END MODULE ROOSEVELT

MODULE FISH ! FOR FISH BIOENERGETICS ROUTINE (DIRECT INCLUSION)
REAL*8, ALLOCATABLE, DIMENSION(:) :: EZOO,LZOO,MZOO,FTL,F1I
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: FCON,FVEL,FACT,GAMMAFDC,FVELAVE,FACTAVE
REAL*8, ALLOCATABLE, DIMENSION(:,:,:) :: F1
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: F2,AVEC,MINC,MAXC
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: F_G2
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: FCONMAXGG,FCONGG,FCONMAXJ,FCONJ,DAYCM,FCONP
REAL*8, ALLOCATABLE, DIMENSION(:) :: T1BZ
REAL*8, ALLOCATABLE, DIMENSION(:) :: ZDEPTH,DATA_FILENUM,BIOOUTFN,CELL_POS,
INTEGER, ALLOCATABLE, DIMENSION (:) :: ZDEPTH,DATA_FILENUM,BIOOUTFN,CELL_POS,
CHARACTER*72 ZAVFNAME
INTEGER, ALLOCATABLE, DIMENSION (:,:) :: FULLSTO,KBIP
INTEGER CUR_FJDAY, FJDAYINT,ZHOLDNUM,DIAGLOGFN, JJZ,FOPTNUM,THRESHZ,ZAVFN,BIOCON,NUMSTEPS,FUF
CHARACTER*72 BIOOUTNAME,FGPFNAME
INTEGER FXNFN(3)
CHARACTER*8 ZAVFNNAME
CHARACTER*8 FHEAD(30),FUNIT(20),FCALC,FGPC,CMAXC
CHARACTER*8 GENMTP,BESTMTP,DIEMTP
CHARACTER*72 FNPNAME(3)
LOGICAL, ALLOCATABLE, DIMENSION (:), :: FIRST_BIO,THRESHFEED
LOGICAL SAMEDAY,FIRSTLIGHT,FIRST_OUTPUT,DAILY_FISH_OPT,BIOSUB_CALC, BIODAY_CALC
LOGICAL HAPPY, NEWDAY,FBIOCALC,FGPLOT,FISHCALC,THRESHOLD,CMAXCALC
LOGICAL GMTCELL,GMTFPXN,GMTUSER,GMTFIXED,BMTFSEG,BMTFPXN,BMTUSER,BMTFIXED,DMTFSEG,DMTFPXN,DMTFUSER,DMTFPFI XED
LOGICAL GMTOK,BMTOK,DMTOK
END MODULE FISH

MODULE FISH2 ! FOR USE WITH THIS PROGRAM; WILL NEED TO BE ALTERED FOR INCORPORATION WITH W2-CODE
REAL LUX, LUX1, LUX2 ! TEMPORARY LIGHT DATA TERMS
REAL LJDAY1,LJDAY2

289
INTEGER LIGHTNUM

MODULE FISH2

MODULE BIOEXPDATATRANSFORM ! FOR CONVERTING THE BIOEXP DATA OUTPUT INTO W2 ARRAYS AND VARIABLES
REAL ZDAY1,ZDAY2
INTEGER FIRSTK,LASTK,SEGK,GRCT
CHARACTER*20 GREGORY(1000)
LOGICAL, ALLOCATABLE, DIMENSION(:) :: FIRSTREAD

END MODULE BIOEXPDATATRANSFORM

MODULE GROWTH_ANIMATION
INTEGER ANIMFN,ANIMFN2,ZONECNT,ZONEFIR ST,NNODE,NELEM
CHARACTER*52 HEADER1,HEADER2
REAL LEFT(999), RIGHT(999)
REAL*8, ALLOCATABLE, DIMENSION(:) :: DISTL,DISTR,BOTTOME
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: GELEV,X1,X2,X3,X4,Y1,Y2,Y3,Y4
REAL VLL,VLR
INTEGER, ALLOCATABLE, DIMENSION(:) :: BOTSEG
LOGICAL, ALLOCATABLE, DIMENSION(:) :: ANIMEXP

END MODULE GROWTH_ANIMATION

MODULE DIAGNOSTIC
REAL*8, ALLOCATABLE, DIMENSION(:,:,:,:) :: DIET
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: VISIBLE
REAL*8, ALLOCATABLE, DIMENSION(:) :: MAXG,MAXM
INTEGER BYSEGMFN,BYSEGGFN,BYSEGMFN2,BYSEGGFN2,BYSEGMFN3,BYSEGGFN3,SURFSEGMFN,SURFSEGGFN
CHARACTER*8 FDIAGC,THRESHC,SURFC,TLC
LOGICAL FDIAG,BYSEG,SURFDIAG
REAL*8, ALLOCATABLE, DIMENSION(:) :: MF_GI,MF_RI,MF_DI,MF_CI,MF_WI,MF_SI
CHARACTER*8 FISHC, BIOPARC, CONSC, DIGC, RESPC,SINGLEC
LOGICAL FISHDIAG, BIOPARDIAG, CONSDIAG, DIGDIAG, RESPDIAG,SINGLEDIAG,TLCALC
INTEGER SINGFN, SINIBIO

END MODULE DIAGNOSTIC

MODULE MOVEMENT
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: BFCON,BFVEL,BFACT
REAL*8, ALLOCATABLE, DIMENSION(:) :: BFVELAVE,BFACTAVE
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: DFCON,DFVEL,DFACT
REAL*8, ALLOCATABLE, DIMENSION(:) :: DFVELAVE,DFACTAVE
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: BF1,DF1,BDIET, DDIET
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: BF_F,BF_U,BF_D,BF_R,BF_S,BF_C,BF_W
REAL*8, ALLOCATABLE, DIMENSION(:,:) :: DF_F,DF_U,DF_D,DF_R,DF_S,DF_C,DF_W
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG,BF_CONMGI,BF_CONMGI,BF_CONM1,BF_CONM1I,BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: B_DAYCI, B_DAYCMI
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: B_DAYCI, B_DAYCMI
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: B_DAYCI, B_DAYCMI
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: B_DAYCI, B_DAYCMI
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: B_DAYCI, B_DAYCMI
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: B_DAYCI, B_DAYCMI
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONMG, BF_CONMGI, BF_CONM1I
REAL*8, ALLOCATABLE, DIMENSION(:) :: BF_CONM, BF_CONM1, BF_CONM1I
REAL GMAXG, DIELLUX, DIELG, DIELS, RMIN, CMAX
INTEGER, ALLOCATABLE, DIMENSION(:) :: BCELL_Pos, BCELL_Neg, BFullSTO
INTEGER, ALLOCATABLE, DIMENSION(:) :: DCELL_Pos, DCELL_Neg, DFullSTO
INTEGER, ALLOCATABLE, DIMENSION(:) :: BESTX, DIELx, BFULLSTO, BFULLSTO
INTEGER GMAXK, BESTSTEP, KDIEL, RMINK, CMAXK, KBEST
CHARACTER*8 BESTC, DIELC, DEPTHC
LOGICAL BESTCALC, DIELCALC, DIELDEEP, DAYLIGHT, DEPTHCALC
REAL*8, ALLOCATABLE, DIMENSION(:) :: BVISIBLE, DVISIBLE
REAL*8, ALLOCATABLE, DIMENSION(:) :: BDIELI, BDIELTI
LOGICAL BESTDIAGFN
REAL, ALLOCATABLE, DIMENSION(:) :: FORAY

END MODULE MOVEMENT

!**************************************
! TASK B.2.0 MAIN PROGRAM DECLARATIONS
!**************************************
PROGRAM BIOENERGETICS
USE MAINW2; USE FISH; USE FISH2; USE BIOEXPDATATRANSFORM; USE GROWTH_ANIMATION; USE DIAGNOSTIC; USE ROOSEVELT; USE MOVEMENT
!****TEMPORARY FILES
OPEN(999,FILE='TEMP.DAT',STATUS='UNKNOWN')
OPEN(998,FILE='TEMP2.DAT',STATUS='UNKNOWN')
!****VARIABLE/ARRAY ALLOCATION & INITIAL VALUES
NOD = 100
! ROOSEVELT
OPEN(12,FILE='W2_CON_ANC.NPT',STATUS='OLD')
DO II = 1,16
READ(12,'(A8)') BIOC
END DO
ALLOCATE(BIOD(NOD), BIOF(NOD), BIODP(NOD))
! BIOENERGETICS OUTPUT CARDS
READ(12,'//(8X,A8,2I8))') BIOC,NBIO,NIBIO
ALLOCATE(BIOEXPFN(NIBIO), IBIO(NIBIO))
ROO2 = 0.0; C2W = 0.0
READ(12,'//(8X,9F8.0))') (BIOD(II),II=1,NBIO)
READ(12,'//(8X,9F8.0))') (BIOF(II),II=1,NBIO)
READ(12,'//(8X,9I8))') (IBIO(II),II=1,NIBIO)
READ(12,'//(8X,A72))') BIOFN
CLOSE(12)
! END ROOSEVELT
! MAINW2
IMX = 583; KMX = 76; NUNIT = 100; NWB = 1; FBIONXT = 366.5
JDAY = 366.0; JEND = 400.5; DLT = 1; NCT = 22; NZOOS = 20; NZOOE = 22; NZP = 3
ALLOCATE(DEPTHM(KMX,IMX), T1(KMX,IMX), GAMMA(KMX,IMX), BH(KMX,IMX), EL(KMX,IMX))
ALLOCATE(C2(KMX,IMX), KTI(IMX), KBI(IMX))
ALLOCATE(BIOINNAME(NIBIO), BIOINFN(NIBIO)) ! ULTIMATELY, IMX (& NEW VARIABLE)
! FISH
ALLOCATE(BIOOUTFN(NIBIO), EZOO(NZP), LZOO(NZP), MZOO(NZP))
ALLOCATE(BIOOUTNAME(NIBIO), FCON(KMX,IMX), FVEL(KMX,IMX), FACT(KMX,IMX), F1I(3))
ALLOCATE(F1(KMX,IMX,5)) ! 1 = MASS; 2 = LENGTH; 3 = STOMACH CONTENT; 4 = ENERGY DENSITY OF FISH; 5 = STOMACH CAPACITY
ALLOCATE(FTL(KMX), SRCHVOL(KMX,IMX), RDZ(KMX,IMX), F2(KMX,IMX))
ALLOCATE(CELL_POS(IMX), CELL_NEG(IMX), CELL_PER(IMX), FULLSTO(KMX,IMX))
ALLOCATE(F_F(KMX,IMX), F_U(KMX,IMX), F_D(KMX,IMX), F_R(KMX,IMX), F_S(KMX,IMX), F_C(KMX,IMX))
ALLOCATE(F_P(KMX,IMX), F_UC(KMX,IMX), F_DC(KMX,IMX), F_RC(KMX,IMX), F_SC(KMX,IMX))
ALLOCATE(T1Z(KMX,IMX), C1Z(KMX,IMX), NZOOS, Z1Z(KMX), L1Z(KMX), ZDEPTH(KMX))
ALLOCATE(FIRST_BIO(NIBIO), GAMMAFDC(KMX,IMX))
ALLOCATE(ZAVAIL(NZP), ZAVAILNX(NZP), CEFF(KMX))
ALLOCATE(FGPFN(NWB), FGPFNAME(NWB), GELEV(KMX,IMX), DISTL(IMX), DISTR(IMX))
ALLOCATE(X1(KMX,IMX), X2(KMX,IMX), X3(KMX,IMX), X4(KMX,IMX))
ALLOCATE(Y1(KMX,IMX), Y2(KMX,IMX), Y3(KMX,IMX), Y4(KMX,IMX))
ALLOCATE(DIET(KMX,IMX,NZP), THRESHFEED(KMX), VISIBLE(KMX,IMX))
ALLOCATE(ANIMEXP(NIBIO), BOTSEG(IMX), BOTTOME(IMX))
ALLOCATE(MAXI(KMX, IM), MAXIM(KMX, IM), KBIP(IMX))
ALLOCATE(FCONMAX(KMX, IM), FCONFMAX(KMX, IM), FCONMAXJ(KMX, IM), FCONFJ(KMX, IM))
ALLOCATE(FDINI(KMX, IM), FDCON(KMX, IM), FDUNDIG(KMX, IM), DAYCM(KMX, IM))
ALLOCATE(FAVLFEE(KMX, IM), FACTAVE(KMX, IM))
ALLOCATE(FGZ(KMX, IM), MINC(KMX, IM), MAXC(KMX, IM))
ALLOCATE(FGZI(KMX, IM))
IF(SINGLEDIAG) THEN
ALLOCATE(MF_GI(KMX), MF_RI(KMX), MF_DI(KMX), MF_CI(KMX), MF_SI(KMX))
MF_GI = 0.0; MF_RI = 0.0; MF_DI = 0.0; MF_CI = 0.0; MF_SI = 0.0
END IF
TLCALC = .FALSE.
F1(,1,4) = 5821.9*4.1868 / F1(,1,5) = 3.64 ; FCON = 0.0
F_R = 0.0; F_D = 0.0; F_C = 0.0; F_F = 0.0; F_U = 0.0; F_S = 0.0; F_G = 0.0; F_W = 0.0
F_DC = 0.0; F_UC = 0.0; F_DC = 0.0; F_UC = 0.0; F_DC = 0.0; F_UC = 0.0
F_DINI = 0.0; F_DCON = 0.0; FDUNDIG = 0.0; DAYCM = 0.0
AVEC = 0.0; MINC = 0.0; MAXC = 0.0
FVELAVE = 0.0; FACCAVE = 0.0
KBIP = 1
FBIOSUBNX = 366.0; FBIOADY = 367.0; FBIOADY = 366.0
CELL_POS = 0; CELL_NEG = 0; CELL_PER = 0; FULLSTO = 0
DAP_IN = 0; RDZ = 0.08; GAMMAFDC = 0.0
FCONMAX = 0.0; FCONMAX = 0.0; FCONMAXJ = 0.0; FCONFJ = 0.0
BIOSUB_CALC = .FALSE.; BIOADY_CALC = .FALSE.; HAPPY = .TRUE.; DAILY_FISH_OPT = .FALSE.; FBIOCALC = .FALSE.; FIRST_BIO = .TRUE.
DMP_TCELL = .FALSE.; DMP_FXN = .FALSE.; DMP_PUSER = .FALSE.; DMPFIXED = .FALSE.; DMPSEG = .FALSE.; DMPFXN = .FALSE.
DMP_PUSER = .FALSE.; DMPFIXED = .FALSE.; DMPSEG = .FALSE.; DMPFXN = .FALSE.; DMPSEG = .FALSE.
GMTOK = .FALSE.; GMTOK = .FALSE.; GMTOK = .FALSE.
291
SINGLEDIAG = .FALSE.; SURFDIAG = .FALSE.
FISHDIAG = .FALSE.; BIOPARDIAG = .FALSE.; CONSDIAG = .FALSE.; DIGDIAG = .FALSE.; RESPDIAG = .FALSE.; SINGLEDIAG = .FALSE.
F_G2 = 0.0
! FISH2
LJDAY1 = 360.0; LJDAY2 = 361.0; LUX = 0.0 ! TEMPORARY SET UP VALUES
MAXG = -999.0; MAXM = -999.0; DIELDEEP = .TRUE.; CMAXCALC = .FALSE.
! BIOEXP
ALLOCATE (FIRSTREAD(NIBIO))
FIRSTREAD = .TRUE.
! GROWTH ANIMATION
HEADER1 = 'TITLE ="Lake Roosevelt"'
HEADER2 = 'VARIABLES = "Distance, km", "Elevation, m", "FGP"
GELEV = 0.0; DISTL = 0.0; DI = 0.0
ZONECNT = 0; ZONEFIRST = INT(JDAY)
DIET = 0.0; THRESHFEED = .FALSE.; VISIBLE = 0.0
OPEN(13,FILE='CHANNEL_BOT.OPT',STATUS='OLD')
READ(13,*) BESTC
DO I = 1, IMX
READ(13,'(I10,50X,F10.0)',END=1199) BOTSEG(I), BOTTOME(I)
END DO
1199 CONTINUE
CALL GETFISHDATA
FDLTM = FUF*1.0 ! IN MINUTES
FDLTH = FDLTM/60.0; ZHOLDNUM = 4+NZP; NUMSTEPS = 1440/FUF
GRCT = 1
ANIEXP = .TRUE.; ANIEXP(12) = .FALSE.; ANIEXP(21) = .FALSE.; ANIEXP(24) = .FALSE.
! BYSEG
BYSEG = .TRUE.
! MOVEMENT
IF(BESTCALC) THEN
ALLOCATE (BFCON(KMX, IMX), BFVEL(KMX, IMX), BFFACT(KMX, IMX), BF1(KMX, IMX, 5))
ALLOCATE (BF_F(KMX, IMX), BF_U(KMX, IMX), BF_D(KMX, IMX), BF_R(KMX, IMX), BF_S(KMX, IMX), BF_C(KMX, IMX))
ALLOCATE (BF_G(KMX, IMX), BF_W(KMX, IMX), BDAYC(KMX, IMX), BDAYCM(KMX, IMX))
ALLOCATE (BF_FK(KMX, IMX), BF_UC(KMX, IMX), BF_DC(KMX, IMX), BF_RC(KMX, IMX), BF_SC(KMX, IMX), BF_CC(KMX, IMX))
ALLOCATE (BCELL_POS(IMX), BCELLNEG(IMX), BCELLPER(IMX))
ALLOCATE (BESTK(IMX, NUMSTEPS+1), BDFRAY(IMX))
ALLOCATE (BDIET(IMX, NZP), BDIETK(IMX, IMX, NZP))
ALLOCATE (BFCONMAXGK(IMX, IMX), BFCONGG(IMX, IMX), BFCONMAXK(IMX, IMX), BFCONGK(IMX, IMX))
ALLOCF (BFCONMAXI(IMX, IMX), BFCONMAXGI(IMX, IMX), BFCONC(IMX, IMX), BFCONPI(IMX, IMX), BFCONCI(IMX, IMX), BFCONJ(IMX, IMX))
ALLOCATE (BDAYC(I, IMX), BDAYCI(IMX, IMX, IMX))
ALLOCATE (BF_CONEXT(KMX, IMX), BF_GEXT(KMX, IMX))
ALLOCATE (TIB(EQ, IMX))
BFCON = 0.0; BF1 = F1; BDAYC = 0.0; BFULLSTO = 0; BFULLSTOI = 0
BCELL_POS = 0; BCELL_POS = 0; BESTSTEP = 0
BVISIBLE = 0.0; BDICT = 0.0; BESTK = 0
BF_F = 0.0; BF_U = 0.0; BF_D = 0.0; BF_R = 0.0; BF_S = 0.0; BF_C = 0.0; BF_G = 0.0; BF_W = 0.0
BF_FK = 0.0; BF_UC = 0.0; BF_DC = 0.0; BF_RC = 0.0; BF_SC = 0.0; BF_CC = 0.0
BF_CONEXT = 0.0; BF_GEXT = 0.0; BFULLSTO = 0; BFULLSTOI = 0
BFVELAVE = 0.0; BFACTAVE = 0.0
BAVEC = 0.0; BMINC = 0.0; BMAXC = 0.0
BFCONMAXGK = 0.0; BFCONGG = 0.0; BFCONC = 0.0; BDFRAYCI = 0.0; BFDFRAYCI = 0.0; BDFRAYCI = 0.0
END IF
IF(DIELCALC) THEN
ALLOCATE (DFCON(KMX, IMX), DFVEL(KMX, IMX), DFACT(KMX, IMX), DF1(KMX, IMX, 5))
ALLOCATE (DF_F(KMX, IMX), DF_U(KMX, IMX), DF_D(KMX, IMX), DF_R(KMX, IMX), DF_S(KMX, IMX), DF_C(KMX, IMX))
ALLOCATE (DF_G(KMX, IMX), DF_W(KMX, IMX), DDAYC(KMX, IMX), DDAYCM(KMX, IMX))
ALLOCATE (DF_FK(KMX, IMX), DF_UC(KMX, IMX), DF_DC(KMX, IMX), DF_RC(KMX, IMX), DF_SC(KMX, IMX), DF_CC(KMX, IMX))
ALLOCATE (DCCELL_POS(IMX), DCCELLNEG(IMX), DCCELLPER(IMX))
ALLOCATE (DCELL_P(1, IMX), DCELLNEG(IMX), DCELLPER(IMX))
ALLOCATE (DFCONMAXGK(IMX, IMX), DFCONGG(IMX, IMX), DFCONMAXK(IMX, IMX), DFCONGK(IMX, IMX))
ALLOCATE (DFCONMAXI(IMX, IMX), DFCONMAXGI(IMX, IMX), DFCONC(IMX, IMX), DFCONPI(IMX, IMX), DFCONCI(IMX, IMX))
ALLOCATE (DFCONEXT(KMX, IMX), DF_GEXT(KMX, IMX))
ALLOCATE (TDAYCI(IMX), TDAYCIMX, IMX))
ALLOCATE (DFDFRAYCI = 0.0; DFDFRAYCI = 0.0; DFDFRAYCI = 0.0
END IF
ALLOCATE (DFCONMAXGG(KMX,IMX),DFCONGG(KMX,IMX),DFCONMAXJ(KMX,IMX),DFCONJ(KMX,IMX),DFCONF(KMX,IMX))
ALLOCATE (DDIETI(IMX,NZP),DDIET(KMX,IMX,NZP),DFULLSTO(KMX,IMX),DFULLSTOI(IMX))
ALLOCATE (FORAY(IMX))

DFCON = 0.0 ; DF1 = F1; DDAYC = 0.0 ; DFULLSTO = 0 ; DFULLSTOI = 0
DCELL_POS = 0; DCELL_POS = 0; DIELK = 0
DFDC = 0.0 ; DFUC = 0.0 ; DFDC = 0.0 ; DFSC = 0.0 ; DFNC = 0.0
DFGI = 0.0 ; DFRI = 0.0 ; DFDI = 0.0 ; DFWI = 0.0 ; DFSI = 0.0;
DF_U = 0.0 ; DF_D = 0.0 ; DF_R = 0.0 ; DF_S = 0.0 ; DF_C = 0.0 ; DF_G = 0.0 ; DF_W = 0.0
DF_F = 0.0 ; DF_R = 0.0 ; DF_D = 0.0 ; DF_S = 0.0 ; DF_C = 0.0 ; DF_G = 0.0 ; DF_W = 0.0
DFDC = 0.0 ; DFUC = 0.0 ; DFDC = 0.0 ; DFSC = 0.0 ; DFNC = 0.0 ; DFGI = 0.0 ; DFRI = 0.0 ; DFDI = 0.0

END IF

*** TASK B.2.1 FILE SET UP

CALL INITIALFILESETUP

! ***
! * TASK B.2.1 PSEUDO W2 TIME ADVANCEMENT
! ***
GO TO 2110 CONTINUE
2110 continue
JDAY = JDAY + DLT/3600.0/24.0
IF(JDAY.GT.JEND) THEN
GOTO 997
END IF
IF(JDAY.GE.ZAVNX) THEN ! THIS UPDATE MUST OCCUR AFTER THE COMPUTATIONS IN W2 OR RISK AN END OF FILE
READ(E:='(F8.0,9F8.0)') ZAVNX, (ZAVAILNX(II),II=1,NZP)
END IF
2200 CONTINUE
IF(JDAY.EQ.LJDAY2) THEN
LUX = LUX1
IF(JDAY.EQ.LJDAY3) THEN
LUX = LUX2
END IF
2300 CONTINUE
CALL LIGHTOUT
IF(JDAY.GE.LJDAY1.AND.JDAY.LE.LJDAY2) THEN
 LUX = LUX1 + (LJDAY2 - JDAY)/(LJDAY2 - LJDAY1)*(LUX2 - LUX1)
ELSE
 GOTO 2200
END IF
END IF

LUX = MAX(LUX,0.0) ! REDUNDANT CHECK
IF(LUX.GE.1.0) THEN ! ARBITRARY; USED FOR VERTICAL MIGRATION
 DAYLIGHT = .TRUE.
ELSE
 DAYLIGHT = .FALSE.
END IF

! NOON CHECK (FOR DEBUGGING)
IF(JDAY.GT.557.5) THEN
 IF(JDAY.LT.557.51) THEN
 CONTINUE
 END IF
END IF

! BESTCALC TIMESTEP COUNT
IF(BESTCALC) BESTSTEP = BESTSTEP + 1
!**
! TASK B.2.2.2 SUB-DAILY BIOENERGETICS
!**
write (999,'(a12,f8.3)') 'JDAY ', jday
! NEED TO MATCH DEPTHS TO K-LAYERS FOR W2 APPLICATION; ! ITERATE BY SEGMENT, SO ONLY K DIMENSION IS NEEDED
DO JI = 1,NIBIO ! THIS IS THE MAIN W2 LOOP SIMULATION
 I = IBIO(JI)
 KBIP = KTI
! GET BIOEXP DATA AND DETERMINE KTI,KBI
 IF(FIRST_BIO(JI)) THEN
 CALL BIOEXPTRANSFORM
 END IF
 write(999,'(a12,2i4,f8.2)') "Loop JI, I ",JI,I,t1z(2,I)
! MAIN VERTICAL LOOP
 DO K = KTI(I),KBI(I)
 NELEM = NELEM+1
 GAMMAFDC(K,I) = LUX*EXP(-1*DEPTHM(K,I)*0.36) ! ARBITRARY LIGHT EXTINCTION VALUE OF 0.36 /M
 ! DIAGNOSTIC
 IF(GAMMAFDC(K,I).GT.1) THEN
 VISIBLE(K,I) = VISIBLE(K,I) + FDLTM
 END IF
 ! UPDATE REACTION DISTANCE AND SEARCH VOLUME
 FVEL(K,I) = 0.01*9.9*EXP(0.0405*T1Z(K,I)) * F1(K,I,1)**0.13 ! PULLED FROM METABOLISM, NEEDED FOR SEARCH VOLUME
 FVELAVE(K,I) = FVELAVE(K,I) + FVEL(K,I)*FDLTM/1440
 RDZ(K,I) = 0.01*4.9424*GAMMAFDC(K,I)**0.086 ! METERS
 SRCHVOL(K,I) = 3.141596*RDZ(K,I)*RDZ(K,I)*FVEL(K,I)
 IF(BESTCALC) THEN
 BFVEL(K,I) = 0.01*9.9*EXP(0.0405*T1Z(K,I)) * BF1(K,I,1)**0.13
 BRDZ(K,I) = 0.01*4.9424*GAMMAFDC(K,I)**0.086
 BSRCHVOL(K,I) = 3.141596*BRDZ(K,I)*BRDZ(K,I)*BFVEL(K,I)
 END IF
 IF(DIELCALC) THEN
 DFVEL(K,I) = 0.01*9.9*EXP(0.0405*T1Z(K,I)) * DF1(K,I,1)**0.13
 DRDZ(K,I) = 0.01*4.9424*GAMMAFDC(K,I)**0.086
 DSRCHVOL(K,I) = 3.141596*DRDZ(K,I)*DRDZ(K,I)*DFVEL(K,I)
 END IF
 END DO
!***
! PUT THE TL TERM INTO THE CONSUMPTION TERM; DEVIATES FROM COMMON FORMULATIONS ************
! ** THORNTON-LEESSEN FUNCTION
FL1 = EXP(FG1*(T1Z(K,I)-FISHF1)); FL2 = EXP(FG2*(FISHF4-T1Z(K,I)))
FKA = (FISHK1*FL1)/(1+FISHK1*FL1)); FKB = (FISHK4*FL2)/(1+FISHK4*FL2-I)); FTL(K) = FKA*FKB
! CHECKING FUNCTION
IF(SINGLEDIAG) THEN
 RJINT=JDAY-INT(JDAY)
 IF(RJINT.LT.0.1) THEN
 WRITE(TLCALCFN,'(F8.2,F8.4)') T1Z(K,I),FTL(K)
 END IF
END IF
DETERMINE MAXIMUM PRACTICAL FEEDING RATES FROM BEAUCHAMP, ET AL. 1989, CMAX

FCONMAXJ(K,I) = (0.303*F1(K,I,1)**-0.275)*EZOO(3)*F1(K,I,1)*FTL(K) ! UNITS OF J/DAY
FCONMAXG(K,I) = (0.303*F1(K,I,1)**-0.275)*FTL(K) ! UNITS OF G/G/ DAY

CHECK STOMACH CONTENT COMPARED TO CAPACITY

IF(F1(K,I,3).GT.F1(K,I,5)) THEN ! FORAGING
 FCON(K,I) = 0.0 ! STOMACH FULL
 FULLSTO(K,I) = FULLSTO(K,I) + 1
ELSE ! FORAGING
 IF(CMAXCALC) THEN ! PRACTICAL FEEDING LIMIT?
 IF(FDIAG) THEN ! DIET REPORTING
 IF(THRESHFEED(K)) THEN
 DIET(K,I,THRESHZ) = DIET(K,I,THRESHZ) + FCON(K,I)*C1Z(K,I,THRESHZ)*ZAVAIL(THRESHZ)/CEFF(K)*FDLTM
 ELSE
 DO JZ = 1,NZP
 DIET(K,I,JZ) = DIET(K,I,JZ) + FCON(K,I)*C1Z(K,I,JZ)*ZAVAIL(JZ)/CEFF(K)*FDLTM
 END DO
 END IF
 ELSE
 DAYC(K,I) = DAYC(K,I) + FCON(K,I)*FDLTM
 DAYCM(K,I) = DAYC(K,I)*MZOO(3)
 AVEC(K,I) = AVEC(K,I) + FCON(K,I)*FDLTM/1440
 MINC(K,I) = MIN(MINC(K,I),FCON(K,I))
 MAXC(K,I) = MAX(MAXC(K,I),FCON(K,I))
 END IF
 ELSE
 DAYC(K,I) = FCON(K,I)*FDLTM
 DAYCM(K,I) = DAYC(K,I)*MZOO(3)
 AVEC(K,I) = AVEC(K,I) + FCON(K,I)*FDLTM/1440
 MINC(K,I) = MIN(MINC(K,I),FCON(K,I))
 MAXC(K,I) = MAX(MAXC(K,I),FCON(K,I))
 END IF
END IF ! FORAGING

ACTUAL CONSUMPTION DIAGNOSTIC

FCONJ(K,I) = DAYC(K,I)*MZOO(3)*EZOO(3)
FCONGG(K,I) = DAYCM(K,I)*MZOO(3)/F1(K,I,1)
FCONP(K,I) = FCONGG(K,I)/FCONMAXGG(K,I)

BESTCALC ***********

IF(BESTCALC) THEN
 BFCONMAXJ(K,I) = (0.303*BF1(K,I,1)**-0.275)*EZOO(3)*BF1(K,I,1)*FTL(K) ! UNITS OF J/DAY
 BFCONMAXG(K,I) = (0.303*BF1(K,I,1)**-0.275)*FTL(K) ! UNITS OF G/G/ DAY
 BFULLSTO(K,I) = 1
 BFULLSTO(K,I) = 1
 BFULLSTO(K,I) = 1
END IF ! FORAGING

END IF ! FORAGING
BFCONP(K,I) = BFCONGG(K,I)/BFCONMAXGG(K,I)

END IF

! BESTCALC

! *********** DIELCALC *************

IF(DIELCALC) THEN

DFCONMAXJ(K,I) = (0.303*DF1(K,I,1)**-0.275)*EZOO(3)*DF1(K,I,1)*FTL(K) ! UNITS OF J/DAY

DFCONMAXGG(K,I) = (0.303*DF1(K,I,1)**-0.275)*FTL(K) ! UNITS OF G/G/DAY

IF(DF1(K,I,3).GT.DF1(K,I,5)) THEN ! FORAGING

DFCON(K,I) = 0.0 ! STOMACH FULL

DFULLSTO(K,I) = 1

ELSE ! FORAGING

DFULLSTO(K,I) = 0

IF(CMAXCALC) THEN

WILMA1 = DFCONMAXGG(K,I)*DF1(K,I,1)/MZOO(3)/1440

WILMA2 = (SRCHVOL(K,I)*CEFF(K)/(1+SRCHVOL(K,I)*CEFF(K)*HANDLE))*60*FTL(K)

IF (WILMA2.GT.WILMA1) THEN

DFCON(K,I) = WILMA1

ELSE

DFCON(K,I) = WILMA2

END IF

ELSE

DFCON(K,I) = (DSRCHVOL(K,I)*CEFF(K)/(1+DSRCHVOL(K,I)*CEFF(K)*HANDLE))*60*FTL(K)

END IF

END IF ! FORAGING

DFCONJ(K,I) = DDAYC(K,I)*MZOO(3)*EZOO(3)

DFCONGG(K,I) = DDAYC(K,I)*MZOO(3)/DF1(K,I,1)

DFCONP(K,I) = DFCONGG(K,I)/DFCONMAXGG(K,I)

ENDIF ! DIELCALC

! **

! * TASK NON-CONSUMPTION PARAMETERS *

! **

! **** DIGESTION (SDA)

DIGK = 0.014*T1Z(K,I)+0.1135

! ** MAZUR'S B&A

F_DC(K,I) = (F1(K,I,3) + FCON(K,I)*MZOO(3)*FDLTM - (F1(K,I,3)*EXP(-1*DIGK*FDLTH) &

+ FCON(K,I)*MZOO(3)*60/DIGK*(1-EXP(-1*DIGK*FDLTH))))*EZOO(3)

! DIAGNOSTIC: DIGESTION BY PARTS

F_DINI(K,I) = F1(K,I,3)*EZOO(3)

F_DCON(K,I) = FCON(K,I)*MZOO(3)*FDLTM*EZOO(3)

F_DUNDIG(K,I) = ((F1(K,I,3)*EXP(-1*DIGK*FDLTH)+FCON(K,I)*MZLW(3)*60/DIGK*(1-EXP(-1*DIGK*FDLTH))))*EZOO(3)

F_DUNDIG(K,I) = ((F1(K,I,3)*EXP(-1*DIGK*FDLTH)+FCON(K,I)*MZOO(3)*60/DIGK*(1-EXP(-1*DIGK*FDLTH))))*EZOO(3)

! **** EGESTION

F_FC(K,I) = 0.212*(T1Z(K,I)**-0.222)*F_DC(K,I)

! **** EXCRETION

F_UC(K,I) = 0.0233*(T1Z(K,I)**-0.580)*(F_DC(K,I)-F_FC(K,I))

FACT(K,I) = EXP(0.02334*100.0*FVEL(K,I))

FACTAVE(K,I) = FACTAVE(K,I) + FACT(K,I)*FDLTM/1440

F_RC(K,I) = 0.00143*(F1(K,I,1)**-0.209)*EXP(0.086*T1Z(K,I)) * FACT(K,I) * FOXYCAL*FDLTM/1440*F1(K,I,1)

! **** SPECIFIC DYNAMIC ACTION

F_SC(K,I) = 0.172*(F_DC(K,I)-F_FC(K,I))

! **** FISH ENERGY DENSITY (IN J/G)

IF(F1(K,I,1).LE.196.0) THEN

F1(K,I,4) = (1.851*F1(K,I,1)+1250.0)*4.1868

ELSE

F1(K,I,4) = (0.1254*F1(K,I,1) + 1588.0)*4.1868

END IF

! I*** UPDATE STOMACH CONTENT ! THIS CAN PROBABLY BE MOVED INTO THE DIGESTION SECTION, BUT WILL KEEP

F_CC(K,I) = FCON(K,I)*MZOO(3)*FDLTM*EZOO(3)

F1(K,I,3) = F1(K,I,3)*EXP(-1*DIGK*FDLTH)+FCON(K,I)*MZOO(3)*60/DIGK*(1-EXP(-1*DIGK*FDLTH))

! *********** BESTCALC *************

IF(BESTCALC) THEN

BF_DC(K,I) = (BF1(K,I,1) + BFCON(K,I)*MZOO(3)*FDLTM - (BF1(K,I,1)*EXP(-1*DIGK*FDLTH) &
\[
\begin{align*}
BF_{DC_EXT}(K,I) &= BF_{DC}(K,I) + 0.2*BF_{CONJ}(K,I) \\
BF_{FC}(K,I) &= 0.212*(T1Z(K,I)**-0.222)*BF_{DC}(K,I) \\
BF_{UC}(K,I) &= 0.0233*(T1Z(K,I)**-0.580)*(BF_{DC}(K,I)-BF_{FC}(K,I)) \\
BF_{RC}(K,I) &= 0.00143*(BF1(K,I,1)**-0.209)*\exp(0.086*T1Z(K,I))*F_{VEL}(K,I)/1440*BF1(K,I,1) \\
BF_{SC}(K,I) &= 0.172*(BF_{DC}(K,I)-BF_{FC}(K,I)) \\
BF_{CC}(K,I) &= BF_{CON}(K,I)*MZOO(3)*FDLTM*EZOO(3) \\
BF_{1}(K,I,3) &= BF_{1}(K,I,3)*\exp(-1*DIGK*FDLTH)+BF_{CON}(K,I)*MZOO(3)*60/DIGK*(1-\exp(-1*DIGK*FDLTH)) \\
BF_{1}(K,I,4) &= (1.851*BF1(K,I,1)+1250.0)*4.1868 \\
END~IF~\text{!BESTCALC} \\
\end{align*}
\]

\[
\begin{align*}
DF_{DC_EXT}(K,I) &= DF_{DC}(K,I) + 0.2*DF_{CONJ}(K,I) \\
DF_{FC}(K,I) &= 0.212*(T1Z(K,I)**-0.222)*DF_{DC}(K,I) \\
DF_{UC}(K,I) &= 0.0233*(T1Z(K,I)**-0.580)*(DF_{DC}(K,I)-DF_{FC}(K,I)) \\
DF_{RC}(K,I) &= 0.00143*(DF1(K,I,1)+1250.0)*4.1868 \\
DF_{SC}(K,I) &= 0.172*(DF_{DC}(K,I)-DF_{FC}(K,I)) \\
DF_{CC}(K,I) &= DF_{CON}(K,I)*MZOO(3)*FDLTM*EZOO(3) \\
DF_{1}(K,I,3) &= DF_{1}(K,I,3)*\exp(-1*DIGK*FDLTH)+DF_{CON}(K,I)*MZOO(3)*60/DIGK*(1-\exp(-1*DIGK*FDLTH)) \\
END~IF~\text{!DIELCALC} \\
END~DO~!~MAIN~K~LOOP \\
\end{align*}
\]
BF_SI(I) = BF_SI(I) + BF_SC(GMAXK, I)
T1BZ(I) = T1BZ(I) + T1Z(GMAXK, I)/48.0 ! average over a day

! UPDATE DIAGNOSTIC ACCOUNTING TERMS
BFVELAVE(I) = BFVELAVE(I) + BFVEL(GMAXK, I)*FDLTM/1440
BFFACTAVE(I) = BFFACTAVE(I) + BFFACT(GMAXK, I)*FDLTM/1440
BAVEC(I) = BAVEC(I) + BFCON(GMAXK, I)*FDLTM/1440
BMINC(I) = MIN(BMINC(I), BFCON(GMAXK, I))
BMAXC(I) = MAX(BMAXC(I), BFCON(GMAXK, I))
BFULLSTOI(I) = BFULLSTOI(I) + BFULLSTO(GMAXK, I)

BFCON1(I) = BFCON1(I) + BFCON(GMAXK, I)
BDAYCI(I) = BDAYCI(I) + BDAYC(GMAXK, I)
BDAIYCM(I) = BDAYCM1(I) + BDAYCM(GMAXK, I)
BFCONMAXJI(I) = BFCONMAXJI(I) + BFCONMAXJ(GMAXK, I)/48.0 ! average over a day
BFCONMAXGGI(I) = BFCONMAXGGI(I) + BFCONMAXGG(GMAXK, I)/48.0 ! average over a day
BFCONGI(I) = BFCONGI(I) + BFCONG(GMAXK, I)

IF(SINGLEDIAG.AND.DEPTHCALC) THEN
 IF(I.EQ.SINIBIO) THEN
 WRITE(BIOOUTFN(21),'(F8.3,3I8)') JDAY, I, BESTK(I,BESTSTEP),DIELK(I,BESTSTEP)
 END IF
END IF

! TRANSFER STOMACH CONTENTS
BF1(:,I,3) = BF1(GMAXK,I,3)

BCELL_PER(I) = (BCELL_POS(I)*1.0)/(BCELL_POS(I)*1.0+BCELL_NEG(I)*1.0)*100.0
IF(GAMMAFDC(GMAXK,I).GT.1) THEN
 BVISIBLE(I) = BVISIBLE(I) + FDLTM
END IF

DO JJZ = 1,NZP
 BDIETI(I,JJZ) = BDIETI(I,JJZ) + BDIET(GMAXK,I,JJZ)
END DO

IF(DIELCALC) THEN
 DCELL_POS(I) = 0; DCELL_NEG(I) = 0
 GMAX = -99999.0; GMAXK = 2
 RMIN = -99999.0; RMINK = 2; CMAX = -99999.0; CMAXK = 2
 DO K = KTI(I),KBI(I)
 DF_G(K,I) = (DF_DC(K,I) - (DF_SC(K,I) + DF_FC(K,I) + DF_UC(K,I) - DF_RC(K,I)))/DF1(K,I,4)
 DF_G_EXT(K,I) = (DF_DC_EXT(K,I) - (DF_SC(K,I) + DF_FC(K,I) + DF_UC(K,I) - DF_RC(K,I)))/DF1(K,I,4)
 IF(DF_G_EXT(K,I).GT.GMAXG) THEN ! FIND BEST LAYER
 GMAXG = DF_G_EXT(K,I); GMAXK = K
 END IF
 IF(DIELCALC) THEN
 DCELL_POS = DCELL_POS + 1
 DCELL_NEG = DCELL_NEG - 1
 CMAX = DCELL_NEG
 CMAXK = K
 END IF
 END DO
END IF

! APPLY BEST LAYER TO CUMMALATIVE TERMS
IF(GMAXG.GT.0.0) THEN
 KBEST = GMAXK
ELSE
 IF(DAYLIGHT) THEN
 IF(DG(GMAXK,I).GT.0.0) THEN
 KBEST = GMAXK
 ELSE
 IF(DG(KBI(I),I).LT.RMIN) THEN
 KBEST = KBI(I)
 ELSE
 KBEST = CMAXK
 END IF
 END IF
 ELSE
 IF(FORAY(I)) THEN
 IF(T1Z(KBI(I),I).GT.20.0) THEN
 KBEST = KBI(I)
 ELSE
 IF(T1Z(KBI(I),I).GT.20.0) THEN
 KBEST = KBI(I)
 ELSE
 KBEST = RMINK
 END IF
 END IF
 ELSE
 KBEST = RMINK
 END IF
 END IF
END IF
FORAY(I) = .TRUE.
END IF
END IF
ELSE
KBEST = RMINK
END IF
END IF
DF_GI(I) = DF_GI(I) + DF_G(KBEST,I)
DF_RI(I) = DF_RI(I) + DF_RC(KBEST,I)
DF_DI(I) = DF_DI(I) + DF_DC(KBEST,I)
DF_CI(I) = DF_CI(I) + DF_CC(KBEST,I)
DF_WI(I) = DF_WI(I) + DF_UC(KBEST,I) + DF_FC(KBEST,I)
DF_UI(I) = DF_UI(I) + DF_UC(KBEST,I)
DF_FI(I) = DF_FI(I) + DF_FC(KBEST,I)
DF_SI(I) = DF_SI(I) + DF_SC(KBEST,I)
! UPDATE DIAGNOSTIC ACCOUNTING TERMS
DFVELAVE(I) = DFVELAVE(I) + DFVEL(KBEST,I)*FDLTM/1440
DFACTAVE(I) = DFACTAVE(I) + DFACT(KBEST,I)*FDLTM/1440
DAVEC(I) = DAVEC(I) + DFCON(KBEST,I)*FDLTM/1440
DMINC(I) = MIN(DMINC(I),DFCON(KBEST,I))
DMAXC(I) = MAX(DMAXC(I),DFCON(KBEST,I))
DFULLSTOI(I) = DFULLSTOI(I) + DFULLSTO(KBEST,I)
DFCONI(I) = DFCONI(I) + DFCON(KBEST,I)
DDAYCI(I) = DDAYCI(I) + DDAYC(KBEST,I)
DDAYCMI(I) = DDAYCMI(I) + DDAYCM(KBEST,I)
DFCONMAXJI(I) = DFCONMAXJI(I) + DFCONMAXG(KBEST,I)/48.0 ! average over a day
DFCONMAXGGI(I) = DFCONMAXGGI(I) + DFCONMAXGG(KBEST,I)/48.0 ! average over a day
DFCONJI(I) = DFCONJI(I) + DFCONJ(KBEST,I)
DFCONGGI(I) = DFCONGGI(I) + DFCONGG(KBEST,I)
DFCONPI(I) = DFCONGGI(I)/DFCONMAXGGI(I)
DF1(:,I,3) = DF1(KBEST,I,3)
DCELL_PER(I) = (DCELL_POS(I)*1.0)/(DCELL_POS(I)*1.0+DCELL_NEG(I)*1.0)*100.0
IF(GAMMAFDC(KBEST,I).GT.1) THEN
 DVISIBLE(I) = DVISIBLE(I) + FDLTM
END IF
DO JJZ = 1,NZP
 DDIETI(I,JJZ) = DDIETI(I,JJZ) + DDIET(KBEST,I,JJZ)
END DO
DDAYC(:,I) = DDAYC(KBEST,I)
END IF !DIELCALC
! **
! TASK DAILY CALCULATIONS AND UPDATES
! **
IF(BIODAY_CALC) THEN !BIODAY
 IF(KBI(I).GT.KTI(I)+1) F_G(KBI(I)-1,I) = F_G(KBI(I)-2,I)
 IF(KBI(I).GT.KTI(I)) F_G(KBI(I),I) = F_G(KBI(I)-1,I)
 IF(JI.EQ.NIBIO) then
 print *, 'ji = ', ji
 CALL ANIMATION_DATA
 continue
 end if
 CALL DAILY_GROWTH
 IF(JI.EQ.NIBIO) CALL BY_SEG_OUTPUT
 IF(JI.EQ.NIBIO) PRINT *, JDAY, BF1(2,312,1), T1Z(2,I)
 KBIP(I) = KBI(I)
 CALL BIOEXPTRANSFORM
 ! CHECK FOR CHANGES IN KTI (LAYER ADDITION/SUBTRACTION REQUIRES INITIALIZING): SHOWS UP IN ANIMATIONS
 IF(KBI(I).GT.KBI(I)) THEN
 WRITE(999,'(I8,1X,A27)') 'INITIALIZING, JDAY, I ', INT(JDAY),I
 DO K = KBI(I),3,-1
 F1(KBI(I),I,:) = F1(KBI(I)-1,I,:)
 F_R(KBI(I),I) = F_R(KBI(I)-1,I)
 F_D(KBI(I),I) = F_D(KBI(I)-1,I)
 F_C(KBI(I),I) = F_C(KBI(I)-1,I)
 F_W(KBI(I),I) = F_W(KBI(I)-1,I)
 F_S(KBI(I),I) = F_S(KBI(I)-1,I)
 F_G(KBI(I),I) = F_G(KBI(I)-1,I)
 END DO
 F1(2,I,:) = F1(3,I,:)
 F_R(2,I) = F_R(3,I)
 F_D(2,I) = F_D(3,I)
 F_C(2,I) = F_C(3,I)
 F_W(2,I) = F_W(3,I)
 F_S(2,I) = F_S(3,I)
 F_G(2,I) = F_G(3,I)
 CALL DIELCALC
END IF
IF(KBI(I).LT.KBIP(I)) THEN
 WRITE(999,*)'INITIALIZING, JDAY, I ',INT(JDAY),I
 DO K = KBI(I),2,-1
 F1(KBI(I),1,:) = F1(KBI(I)+1,1,:)
 F_R(KBI(I),I) = F_R(KBI(I)+1,I)
 F_D(KBI(I),I) = F_D(KBI(I)+1,I)
 F_C(KBI(I),I) = F_C(KBI(I)+1,I)
 F_W(KBI(I),I) = F_W(KBI(I)+1,I)
 F_S(KBI(I),I) = F_S(KBI(I)+1,I)
 F_G(KBI(I),I) = F_G(KBI(I)+1,I)
 END DO
END IF
! *********** ANIMATION *************
! ANIMATION ELEVATION DETERMINATION (TEMPORARY APPROACH)
! FIND BOTTOM ELEVATION
DO II = 1,IMX
 IF(I.EQ.BOTSEG(II)) THEN
 GELEV(KBI(I),I) = BOTTOME(II)
 EXIT
 END IF
END DO
! ASSIGN ELEVATIONS
DO K=KBI(I)
 GELEV(K,I)=GELEV(K+1,I)+2.0
END DO
END IF !BIODAY
FIRST_BIO(JI) = .FALSE.
998 CONTINUE
END DO ! MAIN LOOP (SEGMENT ADVANCEMENT)
! **
! * TASK REZERO CUMMULATIVE DAILY TERMS *
! ******* **
! REZERO CUMMULATIVE DAILY TERMS
NELEM = 0; NNODE = 0
IF(BIODAY_CALC) THEN
 F_R = 0.0 ;F_D = 0.0 ;F_C = 0.0 ;F_F = 0.0 ;F_U = 0.0 ; VISIBLE = 0.0
 F_S = 0.0 ;F_G = 0.0 ;F_W = 0.0 ;DAYC = 0.0 ;FULLSTO = 0 ; DIET = 0.0
 FVELAVE = 0.0; FACTAVE = 0.0;AVEC = 0.0; MINC = 0.0; MAXC = 0.0
 MAXG = -999.0; MAXM = -999.0; F_G2 = 0.0
 ! *********** BESTCALC *************
 IF(BESTCALC) THEN
 BF_R = 0.0 ;BF_D = 0.0 ;BF_C = 0.0 ;BF_F = 0.0 ;BF_U = 0.0
 BF_S = 0.0 ;BF_G = 0.0 ;BF_W = 0.0 ;BDAYC = 0.0 ;BDIET = 0.0; BDIETI = 0.0
 BF_GI = 0.0 ;BF_RI = 0.0 ;BF_DI = 0.0 ;BF_CI = 0.0 ;BF_WI = 0.0 ; BF_SI = 0.0; BF_UI = 0.0
 BF_FI = 0.0
 BFVELAVE = 0.0; BFACTAVE = 0.0; BAVEC = 0.0; BMINC = 0.0; BMAXC = 0.0; BVISIBLE = 0.0
 BFULLSTO = 0; BFULLSTOI = 0
 BFCONMAXJI = 0.0; BFCONMAXGGI = 0.0; BFCONI = 0.0; BDAYCI = 0.0; BDAYCMI = 0.0; BFCONFI = 0.0;
 BFCONJ = 0.0; BFCONGGI = 0.0
 TB1 = 0.0
 END IF
 ! *********** DIELCALC *************
 IF(DIELCALC) THEN
 DF_R = 0.0 ;DF_D = 0.0 ;DF_C = 0.0 ;DF_F = 0.0 ;DF_U = 0.0
 DF_S = 0.0 ;DF_G = 0.0 ;DF_W = 0.0 ;DDAYC = 0.0 ;DDIET = 0.0; DDIETI = 0.0
 DF_GI = 0.0 ;DF_RI = 0.0 ;DF_DI = 0.0 ;DF_CI = 0.0 ;DF_WI = 0.0 ; DF_SI = 0.0; DF_UI = 0.0
 DF_FI = 0.0
 DFVELAVE = 0.0; DFACTAVE = 0.0; DAVEC = 0.0; DMINC = 0.0; DMAXC = 0.0; DVISIBLE = 0.0
 DFULLSTO = 0; DFULLSTOI = 0
 DFCONMAXJI = 0.0; DFCONMAXGGI = 0.0; DFCONI = 0.0; DDAYCI = 0.0; DDAYCMI = 0.0; DFCONFI = 0.0;
 DFCONJ = 0.0; DFCONGGI = 0.0
 END IF
END IF
! *********** BESTCALC *************
IF(BESTCALC) THEN
 BF_R = 0.0 ;BF_D = 0.0 ;BF_C = 0.0 ;BF_F = 0.0 ;BF_U = 0.0
 BF_S = 0.0 ;BF_G = 0.0 ;BF_W = 0.0 ;BDAYC = 0.0 ;BDIET = 0.0; BDIETI = 0.0
 BF_GI = 0.0 ;BF_RI = 0.0 ;BF_DI = 0.0 ;BF_CI = 0.0 ;BF_WI = 0.0 ; BF_SI = 0.0; BF_UI = 0.0
 BF_FI = 0.0
 BFVELAVE = 0.0; BFACTAVE = 0.0; BAVEC = 0.0; BMINC = 0.0; BMAXC = 0.0; BVISIBLE = 0.0
 BFULLSTO = 0; BFULLSTOI = 0
 BFCONMAXJI = 0.0; BFCONMAXGGI = 0.0; BFCONI = 0.0; BDAYCI = 0.0; BDAYCMI = 0.0; BFCONFI = 0.0;
 BFCONJ = 0.0; BFCONGGI = 0.0
 TB1 = 0.0
END IF
! *********** DIELCALC *************
IF(DIELCALC) THEN
 DF_R = 0.0 ;DF_D = 0.0 ;DF_C = 0.0 ;DF_F = 0.0 ;DF_U = 0.0
 DF_S = 0.0 ;DF_G = 0.0 ;DF_W = 0.0 ;DDAYC = 0.0 ;DDIET = 0.0; DDIETI = 0.0
 DF_GI = 0.0 ;DF_RI = 0.0 ;DF_DI = 0.0 ;DF_CI = 0.0 ;DF_WI = 0.0 ; DF_SI = 0.0; DF_UI = 0.0
 DF_FI = 0.0
 DFVELAVE = 0.0; DFACTAVE = 0.0; DAVEC = 0.0; DMINC = 0.0; DMAXC = 0.0; DVISIBLE = 0.0
 DFULLSTO = 0; DFULLSTOI = 0
 DFCONMAXJI = 0.0; DFCONMAXGGI = 0.0; DFCONI = 0.0; DDAYCI = 0.0; DDAYCMI = 0.0; DFCONFI = 0.0;
 DFCONJ = 0.0; DFCONGGI = 0.0
END IF
END IF
BIOSUB_CALC = .FALSE.; BIODAY_CALC = .FALSE.
! **
! * TASK END TIME-STEP *
! **
GOTO 2110 ! RETURN TO JDAY ADVANCEMENT
997 CONTINUE
! GROWTH ANIMATION DATE/TEXT

ELSE
 BF1(K,1,5) = 0.022*BF1(K,1,1)
END IF
END DO
END IF
IF(BMTPFXN) THEN
 DO K = KTI(I),KBI(I)
 BF1(K,1,1) = BIM*EXP(BALP*(JDAY-BTI))
 END DO
IF(BF1(K,1,1).LE.0.253.5) THEN ! UPDATE STOMACH CAPACITY (BRETT, 1971)
 IF(BF1(K,1,1).LE.0.253.5) THEN ! UPDATE STOMACH CAPACITY (BRETT, 1971)
 BF1(K,1,5) = (14.1-4.95*LOG10(BF1(K,1,1)))/100.0*BF1(K,1,1)
 ELSE
 BF1(K,1,5) = 0.022*BF1(K,1,1)
 END IF
 END IF
 END DO
END IF
IF(BMTPFIXED) THEN
 CONTINUE
END IF
IF(BMTPUSER) THEN
 READ(FXNFN(2),'(2F8.0)') F1J,F1M
 BF1(:,1,1) = F1M
 IF(INT(JDAY).NE.INT(F1J)) THEN
 PRINT *, 'POSSIBLE PRESCRIBED MASS ERROR :',F1J,JDAY
 END IF
END IF
END IF
IF(DIELCALC) THEN
IF(DMTPSEG) THEN
 DO K = KTI(I),KBI(I)
 DF1(K,1,1) = DF1(K,1,1) + DF_GI(I)
 END DO
 IF(DF1(K,1,1).LE.0.253.5) THEN ! UPDATE STOMACH CAPACITY (BRETT, 1971)
 DF1(K,1,5) = (14.1-4.95*LOG10(DF1(K,1,1)))/100.0*DF1(K,1,1)
 ELSE
 DF1(K,1,5) = 0.022*DF1(K,1,1)
 END IF
 END IF
 END DO
END IF
IF(DMTPFXN) THEN
 DO K = KTI(I),KBI(I)
 DF1(K,1,1) = DIM*EXP(DALP*(JDAY-DTI))
 END DO
 IF(DF1(K,1,1).LE.0.253.5) THEN ! UPDATE STOMACH CAPACITY (BRETT, 1971)
 IF(DF1(K,1,1).LE.0.253.5) THEN ! UPDATE STOMACH CAPACITY (BRETT, 1971)
 DF1(K,1,5) = (14.1-4.95*LOG10(DF1(K,1,1)))/100.0*DF1(K,1,1)
 ELSE
 DF1(K,1,5) = 0.022*DF1(K,1,1)
 END IF
 END IF
 END DO
END IF
IF(DMTPFIXED) THEN
 CONTINUE
END IF
IF(DMTPUSER) THEN
 READ(FXNFN(3),'(2F8.0)') F1J,F1M
 DF1(:,1,1) = F1M
 IF(INT(JDAY).NE.INT(F1J)) THEN
 PRINT *, 'POSSIBLE PRESCRIBED MASS ERROR :',F1J,JDAY
 END IF
END IF
END IF
END SUBROUTINE DAILY_GROWTH

** SUBROUTINE FISHOUTPUT_DAILY**

SUBROUTINE FOUTPUT_DAILY
USE MAINW2; USE FISH; USE FISH2; USE BIOEXPDATATRANSFORM; USE GROWTH_ANIMATION; USE DIAGNOSTIC; USE ROOSEVELT; USE MOVEMENT
IF(FISHDIAG) THEN
 DO K = KTI(I),KBI(I)
 WRITE(BIOOUTFN(1),77771)
 JDAY,I,F_G(K,I),F1(K,I,1),CELL_PER(I),FULLSTO(K,I),VISIBLE(K,I),T1Z(K,I)
 END DO
77771 FORMAT(F8.3,X,I8,X,F8.4,X,2(F8.2,X),I8,X,2(F8.2,X),15F8.5)
IF(SURFDIAG) THEN
**

** SUBROUTINE FISHOUTPUT_DAILY**

K = KTI(I)
WRITE(BIOOUTFN(16),77771)
JDAY,I,F_G(K,I),F1(K,I,1),CELL_PER(I),FULLSTO(K,I),VISIBLE(K,I),T1Z(K,I)
END IF
IF(BESTCALC) THEN
 K = KTI(I)
WRITE(BIOOUTFN(2),77871)
JDAY,I,BF_GI(I),BF1(K,I,1),BCELL_PER(I),BFULLSTOI(I),BVISIBLE(I),T1BZ(I),GAMMAFDC(K,I)
END IF
IF(DIELCALC) THEN
 K = KTI(I)
WRITE(BIOOUTFN(3),77771)
JDAY,I,DF_GI(I),DF1(K,I,1),DCELL_PER(I),DFULLSTOI(I),DVISIBLE(I),T1Z(K,I)
END IF
END IF ! FISHDIAG
IF(BIOPARDIAG) THEN
 DO K = KTI(I),KBI(I)
 WRITE(BIOOUTFN(4),77772)
 JDAY,I,F_G(K,I),F_D(K,I),F_R(K,I),F_S(K,I),F_W(K,I),F_U(K,I),F_F(K,I)
 END DO
 77772 FORMAT(F8.3,X,I8,X,7(F8.1,X))
IF(SURFDIAG) THEN
 K = KTI(I)
WRITE(BIOOUTFN(17),77772)
JDAY,I,F_G(K,I),F_D(K,I),F_R(K,I),F_S(K,I),F_W(K,I),F_F(K,I)
END IF
IF(BESTCALC) THEN
 K = KTI(I)
WRITE(BIOOUTFN(5),77772)
JDAY,I,BF_GI(I),BF_DI(I),BF_RI(I),BF_SI(I),BF_WI(I),BF_UI(I),BF_FI(I)
END IF
IF(DIELCALC) THEN
 K = KTI(I)
WRITE(BIOOUTFN(6),77772)
JDAY,I,DF_GI(I),DF_DI(I),DF_RI(I),DF_SI(I),DF_WI(I),DF_UI(I),DF_FI(I)
END IF
END IF ! BIOPARDIAG
IF(CONSDIAG) THEN
 DO K = KTI(I),KBI(I)
 WRITE(BIOOUTFN(7),77773)
 JDAY,I,CEFF(K),AVEC(K,I),MINC(K,I),MAXC(K,I),DAYC(K,I),DIET(K,I,1),DIET(K,I,2),&
 DIET(K,I,3),FCONMAXJ(K,I),FCONMAXGG(K,I),FCONJ(K,I),FCONGG(K,I),FCONP(K,I)
 END DO
 77773 FORMAT(F8.3,X,I8,X,5(F8.1,X),F8.2,X,3(F8.2,X),2(F8.1,X,F8.4,X),F8.3,X)
 77873 FORMAT(F8.3,X,I8,X,5(F8.1,X),F8.2,X,3(F8.2,X),2(F8.1,X,F8.4,X),2(F8.3,X))
IF(SURFDIAG) THEN
 K = KTI(I)
WRITE(BIOOUTFN(8),77773)
JDAY,I,CEFF(K),AVEC(K,I),MINC(K,I),MAXC(K,I),DAYC(K,I),DIET(K,I,1),DIET(K,I,2),&
 DIET(K,I,3),FCONMAXJ(K,I),FCONMAXGG(K,I),FCONJ(K,I),FCONGG(K,I),FCONP(K,I)
END IF
IF(BESTCALC) THEN
 K = KTI(I)
WRITE(BIOOUTFN(9),77773)
JDAY,I,BF_DIGI(K,I),BF_DINI(K,I),BF_JI(K,I),BF_SI(K,I),BF_WI(K,I),BF_UI(K,I),BF_FI(K,I)
END IF
END IF ! CONSDIAG
IF(DIGDIAG) THEN
 DO K = KTI(I),KBI(I)
 WRITE(BIOOUTFN(10),77774)
 JDAY,I,F_D(K,I),F_DINI(K,I),F_DCON(K,I),F_DUNDIG(K,I),F1(K,I,3),F1(K,I,5),F1(K,I,4)
 END DO
 77774 FORMAT(F8.3,X,I8,X,4(F8.1X),3(F8.2,X))
IF(SURFDIAG) THEN
 K = KTI(I)
WRITE(BIOOUTFN(19),77774)
JDAY,I,F_D(K,I),F_DINI(K,I),F_DCON(K,I),F_DUNDIG(K,I),F1(K,I,3),F1(K,I,5),F1(K,I,4)
END IF
IF(BESTCALC) THEN
 K = KTI(I)
WRITE(BIOOUTFN(11),77774)
JDAY,I,BF_DI(K,I),BF_DINI(K,I),BF_DCON(K,I),BF_DUNDIG(K,I),BF1(K,I,3),BF1(K,I,5),BF1(K,I,4)
END IF
303
IF(DIELCALC) THEN ! NEED TO ADD TERMS
 K = KTI(I)
 WRITE(BIOOUTFN(12),77774) JDAY, I, DF_DI(I), F_DINI(K,I), F_DCON(K,I), F_DUNDIG(K,I), DF1(K,I,3), DF1(K,I,5), DF1(K,I,4)
END IF
END IF ! DIGDIAG
IF(RESPDIAG) THEN
 DO K = KTI(I),KBI(I)
 WRITE(BIOOUTFN(13),77775) JDAY, I, F_R(K,I), FACTAVE(K,I), FVELAVE(K,I)
 END DO
 77775 FORMAT(F8.3,X,I8,X,F8.1,X,2(F8.3,X))
END IF ! SURFDIAG
IF(SURFDIAG) THEN
 K = KTI(I)
 WRITE(BIOOUTFN(20),77775) JDAY, I, F_R(K,I), FACTAVE(K,I), FVELAVE(K,I)
END IF
END IF ! RESPDIAG
GOTO 2121
IF(SINGLEDIAG.AND.DEPTHCALC) THEN
 IF(I.EQ.SINIBIO) THEN
 DO II = 1, BESTSTEP
 WRITE(BIOOUTFN(21),'(4I8)') INT(JDAY-.5), I, BESTK(I,II), DIELK(I,II)
 END DO
 END IF
END IF
2121 CONTINUE
RETURN
END SUBROUTINE FOUTPUT_DAILY

**

** SUBROUTINE BIOEXPTRANSFORM **

!* KTI,KBI ARE NOT W2 VALUES; NEED TO UPDATE TO INCORPORATE INTO W2
SUBROUTINE BIOEXPTRANSFORM
USE MAINW2; USE FISH; USE FISH2; USE BIOEXPDATATRANSFORM; USE GROWTH_ANIMATION; USE DIAGNOSTIC; USE ROOSEVELT; USE MOVEMENT
GOTO 5001
REWIND(BIOINFN(JI))
READ(BIOINFN(JI),'(A72)') FRED
FIRSTK = -1; LASTK = -1
DO K = 1,10000000
 READ(BIOINFN(JI),'(F8.0)') ZDAY1
 IF(ZDAY1.LT.FBIODAYLST) FIRSTK = K
 IF(ZDAY1.LT.FBIODAYNXT) LASTK = K
 IF(ZDAY1.GE.FBIODAYNXT) EXIT
END DO
! POSITION CURSOR TO READ THE INTENDED DAY
REWIND(BIOINFN(JI))
READ(BIOINFN(JI),'(A72)') FRED
DO K = 1, FIRSTK
 READ(BIOINFN(JI),'(F8.0)') ZDAY1
END DO
KTI(I) = 2; KBI(I) = LASTK-FIRSTK
IF(KBI(I).LT.KTI(I)) KBI(I) = KTI(I)
5001 CONTINUE
IF(FIRSTREAD(JI)) THEN
 REWIND(BIOINFN(JI))
 READ(BIOINFN(JI),'(A72)') FRED
 FIRSTREAD(JI) = .FALSE.
END IF
DO K = 2,10000000
 READ(BIOINFN(JI),'(F8.0)') ZDAY1
 IF(ZDAY1.LT.FBIODAYLST) FIRSTK = K
 IF(ZDAY1.GE.FBIODAYNXT) EXIT
END DO
DO K = 2,LASTK+1
 BACKSPACE(BIOINFN(JI))
END DO
DO K = KTI(I),KBI(I) ! WILL NEED TO CONVERT C2 (:,:,JZ) FROM NZP TO NZOOS,NZOOE FOR MAIN W2 PROGRAM
READ(BIOINFN(JI),'(F8.0,8X,3F8.2,3F8.3,I8,2F8.0,A20)') ZDAYM,DEPTHM(K,I),T1(K,I),GAMMA(K,I),&
(C2(K,I,JZ),JZ=1,NZP),SEGK,BH(K,I),EL(K,I),GREGORY(GRCT)
TIZ(K,I) = MAX(T1(K,I)-1.0,0.0) ! TEMPERATURES BELOW FREEZING
DO JJZ = 1,NZP
C1Z(K,I,JJZ)=C2(K,I,JZ)/MZOO(JJZ)/1000.0 !C1Z HAS UNITS OF ORGANISMS PER M3 ! CONVERT FROM MG TO G
END DO ! AVAILABILITY COMPUTATION (MAZUR)
IF(THRESHOLD) THEN
DAP_IN = C2(K,I,3)*1000.0
IF(DAP_IN.GE.THRESHV) THEN
THRESHFEED(K) = .TRUE.
CEFF(K) = C1Z(K,I,3)*ZAVAIL(3)
ELSE
THRESHFEED(K) = .FALSE.
CEFF(K) = (C1Z(K,I,1)*ZAVAIL(1)+C1Z(K,I,2)*ZAVAIL(2)+C1Z(K,I,3)*ZAVAIL(3))
END IF ELSE
CEFF(K) = (C1Z(K,I,1)*ZAVAIL(1)+C1Z(K,I,2)*ZAVAIL(2)+C1Z(K,I,3)*ZAVAIL(3))
END IF !THRESHOLD
END DO END SUBROUTINE BIOEXPTRANSFORM

SUBROUTINE GETFISHDATA
USE MAINW2; USE FISH; USE FISH2; USE BIOEXPDATATRANSFORM; USE DIAGNOSTIC; USE ROOSEVELT; USE MOVEMENT
NUNIT = NUNIT+1; BIOCON = NUNIT
OPEN(BIOCON,FILE='W2_BIO_CON.NPT',STATUS='OLD')
DO II = 1,8
READ(BIOCON,*)
END DO
READ(BIOCON,'(/(8X,A8,I8,4A8))') FCALC,FUF,FDIAGC,BESTC,DIELC,CMAXC
FISHCALC = FCALC == ' ON' ; FDIAG = FDIAGC == ' ON';BESTCALC = BESTC == ' ON' ;
DIELCALC = DIELC == ' ON'
CMAXCALC = CMAXC == ' ON'
READ(BIOCON,'(//(8X,2F8.0))') JDAY, JEND
READ(BIOCON,'(//(8X,9F8.0))') FISHT1,FISHT2,FISHT3,FISHT4,FISHK1,FISHK2,FISHK3,FISHK4
FG1=(1/(FISHT2-FISHT1))*LOG((FISHK2*(1-FISHK1))/(FISHK1*(1-FISHK2)))
FG2=(1/(FISHT4-FISHT3))*LOG((FISHK3*(1-FISHK4))/(FISHK4*(1-FISHK3)))
READ(BIOCON,'//(8X,9F8.0)') FOXYCAL
READ(BIOCON,'(//(8X,9F8.0))') (F1I(II),II=1,3)
F1(:,:,1) = F1I(1); F1(:,:,2) = F1I(2); F1(:,:,3) = F1I(3)
READ(BIOCON,'(/)')
READ(BIOCON,'(//(8X,9F8.0))') (LZOO(II),II = 1,3)
READ(BIOCON,'(/)')
READ(BIOCON,'(//(8X,9F8.0))') (MZOO(II),II = 1,3)
READ(BIOCON,'(/)')
READ(BIOCON,'(//(8X,9F8.0))') (EZOO(II),II = 1,3)
READ(BIOCON,'(/)')
HANDLE,FVELA,FVELB,FVELE,THRESHC,THRESHV,THRESHZ,DIELLUX
THRESHOLD = THRESHC == ' ON'
READ(BIOCON,'(//(8X,8,A8))') FPPC
FPPLOT = FPPC == ' ON'
READ(BIOCON,'(//(8X,8,A8))') FPPD
READ(BIOCON,'(//(8X,8,A8))') FPPF
READ(BIOCON,'(//(8X,8,A8))') GENMTF,BESTMTF,DIELMTF
GNTFCCELL = GENMTF == ' CELL';GNTFPRXN = GENMTF == ' FXN';GNTFSUSER = GENMTF == ' USER'
GNTFFIXED = GENMTF == ' FIXED'
BMTNSEG = BESTMTF == ' SEG';BMTNFPRXN = BESTMTF == ' FXN';BMTNFSUSER = BESTMTF == ' USER'
BMTNFFIXED = BESTMTF == ' FIXED'
DMTNSEG = DIELMTF == ' SEG';DMTNFPRXN = DIELMTF == ' FXN';DMTNFSUSER = DIELMTF == ' USER'
DMTNFFIXED = DIELMTF == ' FIXED'
IF(GNTFCCELL.OR.GNTFPRXN.OR.GNTFSUSER.OR.GNTFFIXED) GNTMTP = .TRUE.
IF(BMTNSEG.OR.BMTNFPRXN.OR.BMTNFSUSER.OR.BMTNFFIXED) BMTOK = .TRUE.
IF(DMTNSEG.OR.DMTNFPRXN.OR.DMTNFSUSER.OR.DMTNFFIXED) DMTOK = .TRUE.
IF(.NOT.BMTOK) THEN
PRINT *, 'GENERAL FISH MASS TYPE NOT RECOGNIZED: ',GENMTF
STOP
END IF
IF(.NOT.DMTOK) THEN
PRINT *, 'GENERAL FISH MASS TYPE NOT RECOGNIZED: ',DIELMTF
STOP
END IF
ENDIF
ENDIF
ENDIF
PRINT *, 'BEST FISH MASS TYPE NOT RECOGNIZED: ', BESTMTP
END IF
IF(.NOT.DMTOK) THEN
 PRINT *, 'FORAGING FISH MASS TYPE NOT RECOGNIZED: ', DIELMTP
END IF
READ(BIOCON, '(/(8X,9F8.0)/)') GIM, BIM, DIM, GAlP, gAlp, dAFL, gALP, gTI, gTI
READ(BIOCON, '(/(8X,7A8)/)') FISHC, BIOPARC, CONSC, DgIC, gSPC, SURPC, DEPTHC
FISHDIAG = FISHC == ' ON'; BIOPARDIAG = BIOPARC == ' ON'; CONSDIAG = CONSC == ' ON'
DIGDIAG = DIGC == ' ON'; RESFDIAG = RESPC == ' ON'; SURFDIAG = SURPC == ' ON'
READ(BIOCON, '(/(8X,A8,2I8,A8/)') SINGLEC, SINGFN, SINIBIO, TLC
SINGLEDIAG = SINGLEC == ' ON'
IF(SINGLEDIAG) TCLCALCF = TLC == ' ON'
IF(TLCALCF) THEN
 NUNIT = NUNIT + 1; TCLCALCFN = NUNIT
 OPEN(TCLCALCFN, FILE='TLDIAG.DAT', STATUS='UNKNOWN')
 WRITE(TCLCALCFN, '(2A8)') ' TEMP', ' T L'
END IF
READ(BIOCON, '(/(8X,A72/)') ZAVFNAME
FRED = ADJUSTL(ZAVFNAME)
L = LEN_TRIM(FRED)
ZAVFNAME = FRED(1:L)
NUNIT = NUNIT+1; ZAVFN = NUNIT
READ(BIOCON, '(/)')
DO II = 1, NWH
 NUNIT = NUNIT+1; FGPFN = NUNIT
 READ(BIOCON, '(/(8X,A72/)') FGPFNAME(II)
 FRED = ADJUSTL(FGPFNAME(II))
 L = LEN_TRIM(FRED)
 FGPFNAME(II) = FRED(1:L)
END DO
READ(BIOCON, '(/(8X,A72/)') FXNFNAME(1)
READ(BIOCON, '(/(8X,A72/)') FXNFNAME(2)
READ(BIOCON, '(/(8X,A72/)') FXNFNAME(3)
DO II = 1, 3
 FRED = ADJUSTL(FXNFNAME(II))
 L = LEN_TRIM(FRED)
 FXNFNAME(II) = FRED(1:L)
 NUNIT = NUNIT+1; FXNFN(II) = NUNIT
END DO
IF(GMTPUSER) THEN
 OPEN(FXNFN(1), FILE=FXNFNAME(1), STATUS='OLD')
 READ(FXNFN(1), '(/)')
END IF
IF(BMTPUSER) THEN
 OPEN(FXNFN(2), FILE=FXNFNAME(2), STATUS='OLD')
 READ(FXNFN(2), '(/)')
END IF
IF(DMTPUSER) THEN
 OPEN(FXNFN(3), FILE=FXNFNAME(3), STATUS='OLD')
 READ(FXNFN(3), '(/)')
END IF
CLOSE(BIOCON)
RETURN
END SUBROUTINE GETFISHDATA

!***
!****************************
!** S U B R O U T I N E A N I M A T I O N D A T A **
!***
SUBROUTINE ANIMATION_DATA
USE MAINW2; USE FISH; USE FISH2; USE BIOEXPDATATRANSFORM; USE GROWTH_ANIMATION; USE ROOSEVELT; USE MOVEMENT
NELEM = 0
DO JJI = 1, NIBIO
 IF(ANIMEXP(JJI)) THEN
 II = IBIO(JJI)
 DO K = KTI(II), KBI(II)
 NELEM = NELEM+1
 END DO
 END IF
END DO
!** SUBROUTINE ANIMATION DATA
*!***
END DO
NNODE = NELEM*4
WRITE(ANIMFN,906) NNODE,NELEM
906 FOMAT('ZONE N=',i5,' E=',i6,', F=FEPOINT, ET=QUADRILATERAL')
LEFT = 0.0
DO JJI = 1,NIBIO
 IF(ANIMEXP(JJI)) THEN
 II = IBIO(JJI)
 DO K = KTI(II),KBI(II)
 IF(JJI.EQ.1) THEN
 X1(K,II) = 0.0; X4(K,II) = 0.0
 ELSE
 X1(K,II) = LEFT(1); X4(K,II) = LEFT(1)
 END IF
 X2(K,II) = DISTR(II) ; X3(K,II) = DISTR(II)
 IF(K.EQ.KTI(I)) THEN
 Y1(K,II) = EL(K+1,II)+3 ; Y2(K,II) = EL(K+1,II)+3
 Y3(K,II) = EL(K+1,II)+1 ; Y4(K,II) = EL(K+1,II)+1
 ELSE
 Y1(K,II) = EL(K,II)+1 ; Y2(K,II) = EL(K,II)+1
 Y3(K,II) = EL(K,II)-1 ; Y4(K,II) = EL(K,II)-1
 END IF
 WRITE(ANIMFN,'(f8.1,X,f7.2,X,f7.3)') X1(K,II),Y1(K,II), F_G(K,II)
 WRITE(ANIMFN,'(f8.1,X,f7.2,X,f7.3)') X2(K,II),Y2(K,II), F_G(K,II)
 WRITE(ANIMFN,'(f8.1,X,f7.2,X,f7.3)') X3(K,II),Y3(K,II), F_G(K,II)
 WRITE(ANIMFN,'(f8.1,X,f7.2,X,f7.3)') X4(K,II),Y4(K,II), F_G(K,II)
 END DO
 LEFT(1) = DISTR(II)
 ELSE
 END IF
END DO
DO IM=1,NELEM
 MPOS=IM*4
 WRITE(ANIMFN,'(4I6)')MPOS-3,MPOS-2,MPOS-1,MPOS
END DO
ZONECNT=ZONECNT+1
END SUBROUTINE ANIMATION_DATA

!***

!** SUBROUTINE BY SEGMENT OUTPUT
!***

SUBROUTINE BY_SEG_OUTPUT
USE MAINW2; USE FISH; USE FISH2; USE BIOEXPDATATRANSFORM; USE GROWTH_ANIMATION; USE ROOSEVELT; USE
MOVEMENT; USE DIAGNOSTIC
WRITE(BYSEGMFN,'(F7.1,500(X,F6.2))') JDAY,(MAXM(IBIO(II)),II=1,NIBIO)
WRITE(BYSEGGFN,'(F7.1,500(X,F6.2))') JDAY,(MAXG(IBIO(II)),II=1,NIBIO)
IF(BESTCALC) THEN
 WRITE(BYSEGMFN2,'(F7.1,500(X,F6.2))') JDAY,(BF1(2,IBIO(II),1),II=1,NIBIO)
 WRITE(BYSEGGFN2,'(F7.1,500(X,F6.2))') JDAY,(BF_GI(IBIO(II)),II=1,NIBIO)
END IF
IF(DIELCALC) THEN
 WRITE(BYSEGMFN3,'(F7.1,500(X,F6.2))') JDAY,(DF1(2,IBIO(II),1),II=1,NIBIO)
 WRITE(BYSEGGFN3,'(F7.1,500(X,F6.2))') JDAY,(DF_GI(IBIO(II)),II=1,NIBIO)
WRITE(SURFSEGMFN,'(F7.1,500(X,F6.2))') JDAY,(F1(2,IBIO(II),1),II=1,NIBIO)
WRITE(SURFSEGGFN,'(F7.1,500(X,F6.2))') JDAY,(F_G(2,IBIO(II)),II=1,NIBIO)
END SUBROUTINE BY_SEG_OUTPUT

!***

!** SUBROUTINE FILE SETUP
!***

SUBROUTINE INITIALFILESETUP
USE MAINW2; USE FISH; USE FISH2; USE BIOEXPDATATRANSFORM; USE GROWTH_ANIMATION; USE ROOSEVELT; USE
MOVEMENT; USE DIAGNOSTIC
! *** ZOOPLANKTON AVAILABLITY (REPLACE WITH INPUT FILE FORMAT (WILL NEED TIME CONTROL VARIABLES))
OPEN(ZAVFN,FILE=ZAVFNAME,STATUS='OLD')
READ(ZAVFN,'(//)')
ZAVJD = 9999.99
DO WHILE (ZAVJD.LT.JDAY)
 READ(ZAVFN,'(F8.0,F8.0)') ZAVJD, (ZAVAIL(II),II=1,NZP)
END DO
END SUBROUTINE INITIALFILESETUP
READ(ZAVFN, '(F8.0,9F8.0)') ZAVNX, (ZAVAILNX(II),II=1,NZP)
! *** ASSIGN BIOEXP DATA FILE NUMBERS AND FILENAMES
DO JI = 1,NIBIO
 IF(FIRST_BIO(JI)) THEN
 NUNIT = NUNIT +1; BIOINFN(JI) = NUNIT
 WRITE (SEGNUM,'(I0)') JI
 SEGNUM = ADJUSTL(SEGNUM)
 L = LEN_TRIM(SEGNUM)
 OPEN (BIOINFN(JI),FILE='BIOEXP_'//SEGNUM(1:L)//'.opt',STATUS='OLD')
 END IF
END DO
IF(SINGLEDIAG) THEN
 NIBIO = 1.0
 BIOINFN(1) = BIOINFN(SINGFN)
 IBIO(1) = SINIBIO
END IF
! ***** RESULTS AND DIAGNOSTIC OUTPUT FILES *******
IF(FDIAG) THEN
 IF(FISHDIAG) THEN
 NUNIT = NUNIT+1; BIOOUTFN(1) = NUNIT; OPEN(BIOOUTFN(1),FILE='BIO_FISH.DAT',STATUS='UNKNOWN')
 FHEAD(1) = 'JDAY' ;FHEAD(2) = 'SEG' ;FHEAD(3) = 'GROWTH' ;FHEAD(4) = 'FMASS' ;FHEAD(5) = 'FPOS'
 & FHEAD(6) = 'FULLSTO';FHEAD(7) = 'LIGHTMIN';FHEAD(8) = 'TEMP'
 WRITE(BIOOUTFN(1),'(8(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,8)
 IF(SURFDIAG) THEN
 NUNIT = NUNIT+1; BIOOUTFN(16) = NUNIT;
 OPEN(BIOOUTFN(16),FILE='BIO_FISH_SURF.DAT',STATUS='UNKNOWN')
 WRITE(BIOOUTFN(16),'(8(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,8)
 END IF
 IF(BESTCALC) THEN
 NUNIT = NUNIT+1; BIOOUTFN(2) = NUNIT;
 OPEN(BIOOUTFN(2),FILE='BIO_FISH_BEST.DAT',STATUS='UNKNOWN')
 WRITE(BIOOUTFN(2),'(8(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,8)
 END IF
 IF(DIELCALC) THEN
 NUNIT = NUNIT+1; BIOOUTFN(3) = NUNIT;
 OPEN(BIOOUTFN(3),FILE='BIO_FISH_DIEL.DAT',STATUS='UNKNOWN')
 WRITE(BIOOUTFN(3),'(8(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,8)
 END IF
 END IF ! FISHDIAG
 IF(BIOPARDIAG) THEN
 NUNIT = NUNIT+1; BIOOUTFN(4) = NUNIT; OPEN(BIOOUTFN(4),FILE='BIO_PARA.DAT',STATUS='UNKNOWN')
 FHEAD(1) = 'JDAY' ;FHEAD(2) = 'SEG' ;FHEAD(3) = 'GROWTH' ;FHEAD(4) = 'DIGEST' ;FHEAD(5) = 'RESP'
 & FHEAD(6) = 'SDA' ;FHEAD(7) = 'WASTE' ;FHEAD(8) = 'EXCRETE';FHEAD(9) = 'EGEST'
 WRITE(BIOOUTFN(4),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
 IF(SURFDIAG) THEN
 NUNIT = NUNIT+1; BIOOUTFN(17) = NUNIT;
 OPEN(BIOOUTFN(17),FILE='BIO_PARA_SURF.DAT',STATUS='UNKNOWN')
 WRITE(BIOOUTFN(17),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
 END IF
 IF(BESTCALC) THEN
 NUNIT = NUNIT+1; BIOOUTFN(5) = NUNIT;
 OPEN(BIOOUTFN(5),FILE='BIO_PARA_BEST.DAT',STATUS='UNKNOWN')
 WRITE(BIOOUTFN(5),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
 END IF
 IF(DIELCALC) THEN
 NUNIT = NUNIT+1; BIOOUTFN(6) = NUNIT;
 OPEN(BIOOUTFN(6),FILE='BIO_PARA_DIEL.DAT',STATUS='UNKNOWN')
 WRITE(BIOOUTFN(6),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
 END IF
 END IF ! BIOPARDIAG
 IF(CONSDIAG) THEN
 NUNIT = NUNIT+1; BIOOUTFN(7) = NUNIT; OPEN(BIOOUTFN(7),FILE='BIO_CONS.DAT',STATUS='UNKNOWN')
 FHEAD(1) = 'JDAY' ;FHEAD(2) = 'SEG' ;FHEAD(3) = 'PREYDEN' ;FHEAD(4) = 'AVEC' ;FHEAD(5) = 'MINC'
 & FHEAD(6) = 'MAXC' ;FHEAD(7) = '#CON' ;FHEAD(8) = 'MSSCON' ;FHEAD(9) = 'DIET1'
 & FHEAD(10) = 'DIET2' ;& FHEAD(11) = 'DIET3' ;FHEAD(12) = 'MSSCON';FHEAD(13) = 'MAXC_J/G';FHEAD(14) = 'ACTC_J'
 & FHEAD(15) = 'ACTC_G/G';FHEAD(16) = 'P_VALUE'
 WRITE(BIOOUTFN(7),'(16(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,16)
 END IF ! BIOPARDIAG
 IF(SURFDIAG) THEN
 NUNIT = NUNIT+1; BIOOUTFN(18) = NUNIT;
 OPEN(BIOOUTFN(18),FILE='BIO_CONS_SURF.DAT',STATUS='UNKNOWN')
 WRITE(BIOOUTFN(18),'(16(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,16)
 END IF
IF(BESTCALC) THEN
NUNIT = NUNIT+1; BIOOUTFN(8) = NUNIT;
OPEN(BIOOUTFN(8),FILE='BIOCONS_BEST.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(8),'(16(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,16)
END IF
IF(DIELCALC) THEN
NUNIT = NUNIT+1; BIOOUTFN(9) = NUNIT;
OPEN(BIOOUTFN(9),FILE='BIOCONS_DIEL.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(9),'(16(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,16)
END IF
END IF ! CONSDIAG
IF(DIGDIAG) THEN
NUNIT = NUNIT+1; BIOOUTFN(10) = NUNIT;
OPEN(BIOOUTFN(10),FILE='BIODIG.BAT',STATUS='UNKNOWN')
FHEAD(1) = 'JDAY' ;FHEAD(2) = 'SEG' ;FHEAD(3) = 'DIG_J' ;FHEAD(4) = 'INITIAL' ;FHEAD(5) = 'CONSUMED';
&
FHEAD(6) = 'UNDIGEST';FHEAD(7) = 'STOMCON' ;FHEAD(8) = 'STOMCAP' ;FHEAD(9) = 'EDENSITY'
WRITE(BIOOUTFN(10),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
END IF
IF(SURFDIAG) THEN
NUNIT = NUNIT+1; BIOOUTFN(19) = NUNIT;
OPEN(BIOOUTFN(19),FILE='BIODIG_SURF.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(19),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
END IF
IF(BESTCALC) THEN
NUNIT = NUNIT+1; BIOOUTFN(11) = NUNIT;
OPEN(BIOOUTFN(11),FILE='BIODIG_BEST.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(11),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
END IF
IF(DIELCALC) THEN
NUNIT = NUNIT+1; BIOOUTFN(12) = NUNIT;
OPEN(BIOOUTFN(12),FILE='BIODIG_DIEL.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(12),'(9(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,9)
END IF
END IF ! DIGDIAG
IF(RESPDIAG) THEN
NUNIT = NUNIT+1; BIOOUTFN(13) = NUNIT;
OPEN(BIOOUTFN(13),FILE='BIORESP.DAT',STATUS='UNKNOWN')
FHEAD(1) = 'JDAY' ;FHEAD(2) = 'SEG' ;FHEAD(3) = 'RESP_J' ;FHEAD(4) = 'FACTAVE' ;FHEAD(5) = 'FACTAVE'
WRITE(BIOOUTFN(13),'(5(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,5)
END IF
IF(SURFDIAG) THEN
NUNIT = NUNIT+1; BIOOUTFN(20) = NUNIT;
OPEN(BIOOUTFN(20),FILE='BIORESP_SURF.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(20),'(5(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,5)
END IF
IF(BESTCALC) THEN
NUNIT = NUNIT+1; BIOOUTFN(14) = NUNIT;
OPEN(BIOOUTFN(14),FILE='BIORESP_BEST.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(14),'(5(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,5)
END IF
IF(DIELCALC) THEN
NUNIT = NUNIT+1; BIOOUTFN(15) = NUNIT;
OPEN(BIOOUTFN(15),FILE='BIORESP_DIEL.DAT',STATUS='UNKNOWN')
WRITE(BIOOUTFN(15),'(5(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,5)
END IF
END IF ! RESPDIAG
IF(SINGLEDIAG) THEN
IF(DEPTHCALC) THEN
NUNIT = NUNIT+1; BIOOUTFN(21) = NUNIT;
OPEN(BIOOUTFN(21),FILE='FORAGING_DEPTHS.DAT',STATUS='UNKNOWN')
FHEAD(1) = 'JDAY' ;FHEAD(2) = 'SEG' ;FHEAD(3) = 'BESTDTH' ;FHEAD(4) = 'DIELDTH'
WRITE(BIOOUTFN(21),'(4(A8,1X))') (ADJUSTR(FHEAD(TT)), TT = 1,4)
END IF
END IF ! FDIAG
! *********** GROWTH ANIMATION OUTPUT FILE ***********************
NUNIT = NUNIT+1; ANIMFN = NUNIT
OPEN(ANIMFN,FILE='FGP_ANIM.DAT',STATUS='UNKNOWN') ! BASIC OUTPUT
WRITE(ANIMFN,'(A52)') HEADER1
WRITE(ANIMFN,'(A52)') HEADER2
IF(BESTCALC) THEN
NUNIT = NUNIT+1; ANIMFN2 = NUNIT
OPEN(ANIMFN2,FILE='FGP_ANIM_BEST.DAT',STATUS='UNKNOWN') ! BEST LOCATION OUTPUT
WRITE(ANIMFN2,'(A52)') HEADER1
WRITE(ANIMFN2,'(A52)') HEADER2
END IF
! PREP DISTANCE VALUES (TEMPORARY APPROACH)
NUNIT = NUNIT+1
OPEN(NUNIT,FILE='DLX.PRN',STATUS='OLD')
READ(NUNIT,*)
DO J = 1,1000
READ(NUNIT,'(I8,8X,2F8.0)',END=107) I,VLL,VLR
DISTL(I) = VLL; DISTR(I) = VLR
END DO
107 CONTINUE
!
REMOVE ZEROS
DO J = 2,IMX
IF(DISTR(J).EQ.0.0) THEN
 DISTR(J) = DISTR(J-1)
END IF
END DO
!
FIX ERRORS
DO II = 2,NIBIO
IF(DISTR(IBIO(II-1)).EQ.0.0) THEN
 PRINT *, 'ZERO ', II-1, IBIO(II-1)
END IF
DISTL(IBIO(II)) = DISTR(IBIO(II-1))
END IF
END DO
!
CLOSE(NUNIT)

! *********** BYSEG FILE PREP **************
IF(BYSEG) THEN
 NUNIT = NUNIT+1; BYSEGMFN = NUNIT
 OPEN(BYSEGMFN,FILE='MASS.DAT',STATUS='UNKNOWN')
 NUNIT = NUNIT+1; BYSEGGN = NUNIT
 OPEN(BYSEGGN,FILE='GROWTH.DAT',STATUS='UNKNOWN')
 WRITE(BYSEGMFN,'(A7,500(I6,A))') ' JDAY',((IBIO(II),'S'),II = 1,NIBIO)
 WRITE(BYSEGGN,'(A7,500(I6,A))') ' JDAY',((IBIO(II),'S'),II = 1,NIBIO)
 NUNIT = NUNIT+1; BESTDIAGFN = NUNIT
 OPEN(BESTDIAGFN,FILE='BESTDIAG.DAT',STATUS='UNKNOWN')
END IF
!
IF(DIELCALC) THEN
 NUNIT = NUNIT+1; SURFSEGMFN = NUNIT
 OPEN(SURFSEGMFN,FILE='MASS_SURF.DAT',STATUS='UNKNOWN')
 NUNIT = NUNIT+1; SURFSEGGN = NUNIT
 OPEN(SURFSEGGN,FILE='GROWTH_SURF.DAT',STATUS='UNKNOWN')
 WRITE(SURFSEGMFN,'(A7,500(I6,A))') ' JDAY',((IBIO(II),'S'),II = 1,NIBIO)
 WRITE(SURFSEGGN,'(A7,500(I6,A))') ' JDAY',((IBIO(II),'S'),II = 1,NIBIO)
 END IF
!
! *** LIGHTOUT
 NUNIT = NUNIT+1; LIGHTNUM=NUNIT
 OPEN(LIGHTNUM,FILE='LIGHTOUT.PRN',STATUS='OLD')
 FIRSTLIGHT = .FALSE.
 READ(LIGHTNUM,'(10X,F10.0,20X,E10.2)') LJDAY1,LUX1
 READ(LIGHTNUM,'(10X,F10.0,20X,E10.2)') LJDAY2,LUX2
END SUBROUTINE INITIALFILESETUP