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Abstract 
Performance measures allow planners and engineers to monitor and evaluate transportation 
facilities or projects and to justify the allocation of funds among alternative transportation 
improvement options. To capture the impact of corridor congestion on freight vehicles, new tools 
and methodologies are developed to analyze data from commercial vehicles and produce 
performance measures like travel time, speed and travel time reliability. Since long freight 
corridors are comprised of segments with potentially different reliability characteristics, the 
objective of this paper is to develop a programming logic that will use available truck GPS 
(Geographical Positioning System) data to: (a) identify natural segments or regions in a corridor 
between urban centers, interstate junctions, or rural areas and (b) estimate corridor wide impacts 
of travel time unreliability. The case study presented here investigates the Interstate 5 (I-5) 
corridor in Oregon. After identifying corridor segments, this research applies statistical 
techniques to compute vehicle travel time and reliability for freight movements within each 
segment. The proposed methodology has been used successfully to indentify distinct segments 
and characteristics of travel time reliability in freight corridors. Travel time information was used 
to compute cost impacts of delays within rural and urban areas along the I-5 corridor. This 
research presents an advance in the processing and aggregation of GPS truck data to produce 
succinct yet informative performance measures and segments.  

 
Keywords: commercial vehicles, congestion, GPS, segments, performance 
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INTRODUCTION 
Since the adoption of performance measures (PM) by departments of transportation, the 
traditional focus has been on the movement of passenger vehicles (1). As a result, PM currently 
employed by many agencies may not appropriately capture the needs of all roadway users, 
including freight vehicles. Currently, there are neither specific freight performance measures 
(FPMs) in use by public agencies nor rough estimations of travel time reliability to/from major 
economic centers. For the freight industry, delay and congestion not only negatively impact the 
businesses that rely on efficient and timely deliveries, but also increase vehicle emissions and the 
cost of transporting goods. In order to improve the functionality of transportation networks and 
make efficient use of funds, it is crucial that public agencies develop tools to assess existing 
system performance for all modes. 
 Just-in-time production systems reduce the amount of inventory available at distribution 
centers or retailers and increase the need for products/parts to arrive at the scheduled time. For 
example, a late delivery may delay production and/or product delivery as scheduled, causing 
manufacturers to incur steep financial losses. As a result, carriers may also face steep penalties 
and additional costs when a breakdown in the supply chain takes place. Without a reliable 
transportation network, it is difficult for carriers to schedule a departure time that will ensure an 
on-time arrival at the destination.  
 Although this research is specific to one freight mode (trucking), the research and tools 
developed here can be expanded and adapted to develop PM for other modes. This paper uses 
reliability of travel time as the PM for freight movement, defined as the time taken by a driver to 
travel between an origin and destination. NCHRP 618 recommends the use of 90th and 95th 
percentile travel times for a given route or trip as the simplest indicator of travel time reliability. 
The 90th and 95th percentile travel times are intended to reflect the travel time delays that can 
occur during heavy congestion (2). Additionally, travel time information is easy to interpret, and 
is desired by the general traveling public, as well as freight carriers. After identifying segments 
for analysis on the I-5 corridor, this research uses 50th, 80th and 95th percentile travel time to 
represent variability in rural and urban areas. 
  
BACKGROUND AND LITERATURE REVIEW 
Mobility affects the freight industry because it limits the ability of vehicles to move between 
origins and destinations (3). Measures used to quantify mobility include travel time, reliability, 
and delay. These PM are highly dependent on the location of a corridor segment (e.g., rural vs. 
urban). Urban centers tend to have greater traffic volumes throughout the day, especially in 
morning and evening peak periods, which contribute to recurring congestion. Rural traffic 
volumes and mobility tend to be more consistent throughout the day. Therefore, it is important to 
develop tools that can properly identify roadway segments with similar land use characteristics. 
  Loop sensor data has been successfully used to identify truck volume and acquire travel 
time and speed information on interstates. In addition, truck transponder data (weigh-in-motion 
data) have also been used to gather travel time information as well as characteristics of the 
freight vehicle and load. Recently, Geographical Positioning System (GPS) technologies have 
emerged as a method for collecting freight specific data. McCormack et al. (4) and Quiroga et al. 
(5) have described the challenges associated with the utilization of GPS data to develop PM for 
freight and passenger vehicles.  
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Loop Sensor Data 
Loop sensor data has been used to estimate freeway performance (e.g., travel time, speed, and 
vehicle count) for general-purpose vehicles and to identify and study bottlenecks at a regional 
and link level (6, 7). However, loop sensors are limited in their ability to differentiate between 
vehicle types traveling along a freeway and to provide disaggregate data by mode. Researchers at 
the University of Washington have studied the reliability of dual loop detectors in providing 
accurate vehicle count and speed results by vehicle type (8, 9). These researchers have also use 
single loop detectors to differentiate between vehicles by incorporating video footage. Although 
this method may be time consuming and requires calibrations, their findings show that there is 
promise in integrating single loop detectors with video footage to differentiate between general 
purpose vehicles and freight vehicles with reasonable accuracy in count and speed estimates. 
However, dual loop detectors were found to be less reliable and could not reasonably estimate 
between vehicle types during congested periods (8). 

Truck Transponder Data 
Since the early 2000’s, researchers have investigated the use of truck transponder data as a 
source for truck travel time information.  If a transponder-equipped vehicle can be tracked at two 
sequential Weigh-in-Motion (WIM) stations, their timestamps can be used to generate 
information regarding the trip travel time and later aggregated to produce freeway link 
performance measures such as travel time distributions and reliability. This approach is similar to 
methods used along toll roads, and more recently, methods that incorporate Media Access 
Control (MAC) addresses from portable devices to study arterial performance measures. 
 However, truck transponder data presents several challenges (10). First, there are 
generally long distances between WIM stations. A freight vehicle has the opportunity to stop, 
rest, refuel or make deliveries before it is tracked at the next station. Algorithms must be 
incorporated to filter out trucks that stop while traveling through the corridor because their 
slower travel time information would severely bias the results Secondly, the number of trucks 
equipped with transponders is relatively low and a large sample size must be required to 
accurately estimate link travel time based on the truck data. 

Truck GPS Data 
Commercial GPS technologies are now emerging as an effective form of data collection and are 
showing potential in contributing to the study of freight movements. However, there are 
challenges in utilizing GPS data provided by the freight industry.  
 The first challenge is related to the availability of GPS data. Although many carriers are 
now using GPS to monitor fleets, a carrier’s scheduling and logistics practices are proprietary 
and not commonly shared. Early work by Greaves and Figliozzi (11) in Australia discussed the 
use of passive GPS devices to identify truck trips and presented future applications and 
limitations of the data source. Recent research efforts by McCormack et al. (4) have presented 
the challenges involved in acquiring data; this work highlighted the process of purchasing GPS 
data from private vendors to establish a GPS freight database with success. 
 The second challenge is truck drivers’ behavior. Trucks behave much differently than 
passenger vehicles since truck drivers have mandatory rest periods, must follow lane restrictions, 
must adhere to strict schedules, and must make stops for deliveries and pickups throughout the 
day. This type of travel behavior can be captured by GPS data more readily than other types of 
data. However, as previously discussed in the utilization of truck transponder data, algorithms 
must be developed to identify and recognize these different behaviors to study local and freeway 



Figliozzi, Wheeler, Albright, Walker, Sarkar, and Rice       5 

performance, as well as travel between key origin-destination pairs. 
 The Federal Highway Administration (FHWA) is currently sponsoring research at several 
universities nationwide, and in a partnership with the American Transportation Research Institute 
(ATRI), GPS data from freight vehicles have been made accessible for universities to investigate 
new methods for developing FPM in urban and rural areas. This research utilizes such data 
generously provided by ATRI.  

METHODOLOGY FOR CORRIDOR SEGMENTATION 
A review of existing literature investigating freight performance measures using freight specific 
data (e.g., WIM, commercial GPS) informed the methodologies developed in this research to 
study travel time reliability on multi-segment corridors.  
 Commercial GPS data from ATRI, covering the I-5 corridor in Oregon, was used in this 
research. Our approach utilized relies on increases and decreases in truck volume along the 
corridor to identify changes in segments (i.e., urban segments, rural segments). Truck volume is 
utilized because volume or traffic flow per lane is the key factor associated with congestion and 
reduced travel speed as indicated in the Highway Capacity Manual (HCM). Additionally, along a 
freeway corridor, changes in traffic volumes take place at interchanges. We assume that 
segments along corridors (as well as the total number of lanes) are defined between interchanges. 
If a finer spatial resolution is needed after an initial segmentation using volumes, a second 
segmentation using speeds can be applied. The same methodology would apply using speeds 
instead of volumes.   
 As discussed in the literature review, a challenge of working with commercial GPS data 
is that data from trucks experiencing congestion (exhibiting lower speeds), may be confused with 
trucks experiencing longer travel times for reasons unrelated to congestion. If proper filtering 
methods are not used, trucks that have left the interstate to refuel, make deliveries, or rest may be 
analyzed and create bias in the data set. Additionally, it is understood that different segments 
along a corridor will have different speed distributions, which also vary by time of day. For this 
reason, truck volume is used initially to identify segments of analysis, then, travel speeds are 
utilized to remove these outliers (e.g., observations which have been identified to have slower 
speeds for reasons unrelated to congestion). In this way, trucks traveling through different 
segments can be filtered based on travel time characteristics of each segment.  
 The following section describes the methods utilized for data handling and the 
algorithmic description of the process used to determine potential segments based on geographic 
location (rural or urban) along the Oregon I-5 corridor.  
 
Data description 
The analysis is performed using GPS data from commercial trucks along I-5; the data was 
provided by ATRI. Each record or observation provides a unique truck ID, timestamp, latitude 
and longitude of the trucks. Using ArcGIS linear referencing tool, every GPS latitude-longitude 
reading is mapped to a milepost measure. Using the milepost measures, the direction of travel is 
also determined for every truck and designated as, northbound (NB) or southbound (SB). The 
GPS data is then arranged in database tables using the postgreSQL database tools and finally 
simulated to generate travel time distributions using scripts written in PHP and Shell.  

 
Segment Distribution 
In order to identify segments along the corridor the following sequence is followed:  
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1. Truck counts are determined for every mile and travel direction (NB or SB) by applying 
queries and scripts on the previously arranged database tables. 

2. A cumulative truck count function (CTCF) is drawn for the cumulated truck counts. This 
CTCF allows the identification of any sudden rise and fall in truck counts occurring in a 
particular area of the corridor. 

3. Smoothing is performed on the CTCF using a moving average of length 20 miles.  
4. The above three processes are repeated for different months that fall on different seasons 

around the year to capture any truck counts seasonal effects. 
 
Segment Analysis 
The truck density patterns are analyzed by considering two factors: 
 

1. Location of significant changes in truck density, and  
2. Time of the year and seasonal variations.  

 
Using the truck density patterns, the corridor is broken into a number of segments falling within 
rural and urban areas.   

SEGMENTATION RESULTS 
The results presented and described herein correspond to I-5 in the northbound (NB) direction 
only. Commercial GPS data for four months (April, July, October and December) in 2007 were 
analyzed. These months were chosen to represent seasonal variations in truck travel and traffic 
volumes.  Truck counts were first determined for one-mile segments. The counts are similar for 
April, July, and December. Counts in the October are consistently the lowest. This paper presents 
results for the month of July as the counts are highest or second highest along the corridor. 
Figure 1 presents the truck counts per segment for the four months analyzed.  

 Figure 2 presents the cumulative truck count function (CTCF) for NB I-5 during the 
month of July 2007 given as a percentage of the total count per mile (left). It was verified that the 
same sudden rise and fall in truck counts throughout the corridor take place at the same locations 
across the four chosen months (i.e., the cumulative distribution plots for the chosen months are 
similar to the plot shown for July). To present a clearer trend regarding the rise and fall in truck 
count rates, the data was smoothed by averaging over a 20-mile length (i.e., a moving average of 
20 miles in length) (right).  
 The start and end of each segment, and nearby points of interest (urban areas, major 
highway junctions, etc.) are identified in Table 1. Table 1 presents each segment ID, the segment 
mileposts, truck counts, and nearby locations or points or interest. Truck count results reflect the 
month of July 2007 only.  
 As expected, higher truck counts tend to occur in segments near urban areas (e.g., 
Eugene-Corvallis-Salem). In the Portland area, counts are lower due to an alternative truck route 
(Interstate 205) and the truck traffic splits.  Figure 3 presents the identified segment locations for 
NB I-5. As depicted in the maps and supported in the results presented in Table 1, segments in 
northern Oregon (segments 6-7) correspond to urban areas with higher truck count density 
(counts/mile), while segments in southern Oregon (segments 1-5) correspond to rural areas with 
lower truck count density. 
 Segmentation also should include other considerations such as land use and posted speed 
limits. For example, in Oregon, speed limits in urban areas are lower than in rural areas. 
Additionally, to remove outliers, time of day level can affect the posted speed limit (night vs. 
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day). Similarly, recurrent congestion levels affect the lower speed thresholds. The impact of 
speed thresholds on travel time distributions is described in the subsequent sections.   
 Finally, identified segments can be mapped against GIS data (e.g., against Highway 
Performance Monitoring System or HPMS data) in order to validate the results of the proposed 
corridor segmentation. With corridor segments identified, each corresponding to rural or urban 
areas, it is possible to analyze segments independently.  

METHODOLOGY FOR THE ESTIMATION OF RELIABLE TRAVEL TIMES  
This section presents the algorithm used to estimate truck travel time distributions for each 
segment. The parameters, variables, assumptions, and output of the algorithm employed to 
estimate the travel time distribution is presented below. 

Parameters:  
m0i :  Initial milepost for segment i, (i.e., the start point of a segment in miles). 
m1i :  Final milepost for segment i, (i.e., the end point of a segment in miles). 
m1i – m0i :  Length of segment in miles. 
bri :  fi (|m1i – m0i|) - Buffer radius or the radius of influence in miles around the start and  end 

points of a segment where |m1i– m0i| is the length of the segment that we choose. 
fi : factor to determine the size of the radius of influence 
meancur :  Total time/number of trucks - mean of the timestamp readings for current  segment 

being analyzed. 
meanprev :  Mean of timestamp readings for a previous segment.  
nmin,i :   minimum number of trucks trips that is acceptable. 
smin,i :    minimum acceptable truck speed. 
smax,i :   maximum acceptable truck speed. 
 

Variables: 
mstart :  Actual start point for a truck in miles. 
mend :  Actual end point for a truck in miles. 
nactual : Actual number of truck trips in a segment as obtained from the data. 

Assumptions: 
The vehicle travel time within a segment is normally distributed. 

Outputs: 
t95 :  Travel time 95% percentile. 
t80 :  Travel time 80% percentile. 
t50 :  Travel time 50% percentile. 

Algorithmic description: 
 

0. Preprocessing  
Determine the minimum number of trucks or observations (nmin,i) required for each 
segment i. The value of nmin,i will depend on the required accuracy for the travel time 
estimations.  Clearly, the number of valid observation will depend on the following 
factors:   (a) segment length, (b) time period, and (c) density of counts the given segment 
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and time period.  
  

1. Initiate the iterations 
Pick the first segment, i=1 
 

2. Identify trips start and end points 
 A truck may have several readings in a given segment. In order to find the most representative 

travel time for the segment, for each truck in the segment do: 
(a) Find mstart that is closest to m0i and lies within the buffer radius bri.  
(b) Find the end point of the truck trip mend for the same day that is closest to m1i and lies 

within the buffer radius bri.  
(c) If steps (a) and (b) are successful then a travel time is obtained and added to the list of 

travel times for the segment. 
 
3. Number of travel time observations 
 Count the number of truck trips obtained for the segment or the list size: nactual 

 
4. Verify that  nactual ≥ nmin,i  

If the number of minimum observations is not reached, output a warning message. It would be 
necessary to add more observations: (a) increasing the time period length or (b) finding a 
segment that better represent truck trips or GPS observation intervals. Go back to step 1 and 
continue with the next segment i= i+1 

  
5. Calculate travel times  

Calculate travel time distribution for all the trucks by finding the difference in the timestamp 
between their consecutive mstart and mend readings. This time difference is the actual time 
required by a truck to cross the segment.  
 

6. Remove outliers 
Calculate the minimum and maximum travel time ranges based on the length of the segment 
and the value of the parameters smin,i  and smax, i . Parameters smin,i  and smax, i should be segment 
dependent because typical travel speeds are affected by land use (e.g., rural vs. urban), posted 
speed limits, and congestion.    
-  Remove from the list of travel times that are outside the range of acceptable travel times. For 

example, trucks whose travel time exceeds the upper threshold may have stopped to rest, 
refuel, or make deliveries. 

 
-  Recalculate the size of the list of observations nactual 

 
7. Verify that  nactual ≥ nmin,i  

If the number of minimum observations is not reached, output a warning message. It is 
necessary to examine what is causing a high number of outliers. In some cases it would be 
possible to reincorporate trucks/observations if it is detected that an actual stop was made and 
this bias is properly removed from the data.  
If after examining the outliers still holds that nactual ≥ nmin, then, segment length or speed 
threshold parameters may have to be reexamined.  Go back to step 1 and continue with the 
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next segment i= i+1.  
 
8. Estimate descriptive statistics for segment i 

Estimate desired percentiles, mean, standard deviation, skewness, etc.  
 

9. Repeat the analysis for next segments, i= i+1 until completing all segments.  
 
For the NB I-5 July 2007 data, the algorithm described in this section was applied to each of the 
milepost segments indentified earlier. Results are presented in Table 2. The free-flow travel time 
is computed by dividing the segment length with the trucks free-flow speed assumed to be 60 
miles/hr. The buffer (bri ) is assumed to be 10% of the segment length and the threshold travel 
speeds are assumed to be smin,i  = 10mph and smax,i = 80 mph.  

The actual number of truck trips identified were sufficient to perform the travel time 
calculations on each segment, (i.e., with the assumed parameters nactual ≥ nmin,i was always 
satisfied). This may not be the case if the period of analysis is smaller. The results for a shorter 
period of time, typical afternoon rush hour 16:30-18:30, are presented in Table 3.    

ANALYSIS OF THE RESULTS   
The comparison of the results contained in Table 2 and 3 indicate that in almost all cases the 
travel time percentiles are higher for the 24 hour period. This is an indication that the low speed 
threshold smin,i  = 10 mph is not adequate since travel times during peak times should be longer 
than travel times that include low traffic periods (e.g., night time). 

The impact of a low speed threshold can be easily appreciated when observing a graph of 
the travel time distribution. Figure 4 presents the Gaussian kernel probability distribution graphs 
for the computed truck travel times over a period of 24 hours (Table 2 values). Figure 5 presents 
the Gaussian kernel probability distribution graphs for the computed truck travel times over a 
period between 15:30-18:30 (Table 3 values). The 95% percentile travel time is noted on each 
figure. To facilitate comparisons and the calculation of travel speeds, segment 1 of length m1,1 – 
m0,1 = 30 miles and segment 8 of length m1,8 – m0,8 = 20 miles are chosen.  

From the study of the graphs presented in Figure 4 and Figure 5, it is clear that there is a 
long tail of observations after a 1.25 hour travel time for segment 1 and a 0.8 hour travel time for 
segment 8.  The corresponding speeds are 24 and 25 mph respectively. Hence, the smin,i  = 10 
mph threshold is not adequate and is capturing travel times that include intermediate stops rest, 
refuel, or deliveries. In some cases, when there are four or more observations for the same truck 
within the segment, an additional analysis of outliers indicates that trucks were indeed stopped. 
When there are only two observations for the same truck in the segment, it is impossible to 
determine the cause of the excessive travel time from the truck data alone.  

It is possible to see the impact of smin,I looking at the distributions of the coefficients of 
variations for all segments as depicted in Figure 6.  A change in the slope is observed around 25 
mph and the distributions tend to have less variability when smin,I  > 35 mph. However, 
increasing smin,i  also increases the risk of wrongfully removing observations that reflect 
congested conditions if bottleneck travel times are less than smin,i  and the length of the bottleneck 
is considerable in relation to the segment length (12). The value of the parameter smax,i   is less 
significant since the left tail is naturally bounded by zero.  

The most efficient method to calibrate smin,i  is to use an alternative travel time estimation 
system such as loop-detectors. This method was successfully applied in the Portland region (13).  
Future research should include application of these methods to estimate travel time distributions 



Figliozzi, Wheeler, Albright, Walker, Sarkar, and Rice       10 

such as log-normal or beta. These should be investigated because these distributions may prove 
to be a better fit. Additionally, smaller case studies could be conducted on segments over 
different times of day (or weekend versus weekday) in order to capture variation in travel time 
distributions, and compare among segments of differing type (urban versus rural). The analysis 
presented in this research serves as a launching point for further studies and investigations, and 
offers an example of how the methods in this research may be applied. 

 
ESTIMATED COST OF TRAVEL TIME RELIABILITY 
The impact of travel time reliability on operating and travel time costs can be estimated using the 
predicted travel times with 50%, 80% and 95% percentile across each segment of the corridor. 
The average operating cost figure was derived during recent research by ATRI, and used to 
estimate operating cost per mile—this figure was $83.68 per hour (14).  The average value of 
time figure for freight vehicles in Oregon was adjusted to reflect 2010 prices, and used to 
estimate travel time cost per mile—this figure was $27.85 per hour (15). 

 For each segment along the corridor, Figure 7 presents the daily operating cost per mile 
per freight vehicle, and daily travel time cost per mile per freight vehicle for travel below free-
flow conditions; (i.e., the cost of delay for travel time at 50%, 80% and 90% confidence 
intervals). As shown, there are greater costs per mile per freight vehicle near urban areas, with 
the Portland-Vancouver and surrounding cities achieving the highest cost per mile per freight 
vehicle (segments 9 and 10). Additionally, the urban areas show greater differences in costs 
among the travel times at 50%, 80% and 90% percentiles. Smaller cities, such as Eugene and 
Salem (segments 6 and 8), also achieve moderate cost per mile per freight vehicle, as does the 
area surrounding the key junction of I-5 and Pacific Highway (segment 4). The remaining rural 
areas achieve lower cost per mile, with little difference between travel times with 50%, 80% and 
90% confidence. 

 Higher costs reflected near urban centers are a direct result of the increase in the 
variability (i.e., decrease in reliability) of travel time within these areas, caused by recurring and 
nonrecurring congestion.  Variability in travel time presents a challenge particularly for the 
freight industry, as carriers must meet scheduling demands of their customers. Figure 8 
illustrates a comparison between free-flow travel time and travel time at 50%, 80%, 90% 
percentiles by depicting the increase in cost above free-flow cost.   

CONCLUSIONS  
The estimation of travel time reliably plays a crucial role in timely delivery of goods. As 
discussed in this report, the estimation of travel time is dependent on several factors such as the 
time of operation, the location of the corridor and its characteristics (e.g.., urban or rural 
segments, time of day).  This paper discusses a methodology that can estimate the travel time 
distributions across a particular segment of a corridor. More accurate travel time distributions are 
useful since they can help meet a carrier’s departure and arrival time constraints. 
 Long freight corridors are comprised of segments with potentially different reliability 
characteristics. This research developed algorithms that use available truck GPS data to: (a) 
identify corridor natural segments or regions (urban centers, interstate junctions, rural areas) and 
(b) estimate corridor wide impacts of travel time unreliability. The method was applied 
successfully to segments of the Oregon I-5 corridor. The impact of travel time reliability on 
operating and travel time costs were estimated using the predicted travel times with 50%, 80% 
and 95% percentiles. Higher costs reflected near urban centers are a direct result of the increase 
in the variability (decrease in reliability) of travel time within these areas, caused by recurring 
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and nonrecurring congestion.   
 Among the parameters that are needed to filter outliers, the low speed threshold is the 
most critical. Lower low speed thresholds lead to unrealistic travel time distributions, higher low 
speed thresholds increases the risk of filtering out observations that represent real-world 
congested travel times.  
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FIGURE 1  Truck counts across segments for the following months: April(spring), July 
(summer), October (fall) and December (winter).  
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FIGURE 2 From left to right:  A) Cumulative truck count ratio, B) Cumulative truck count 
ratio smoothed utilizing a 20 mile moving average. 
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TABLE 1 Segment Summary Information Northbound Interstate 5 – July 2007 GPS Data 
Segment 

ID 
Segment  
mileposts   

Truck 
counts 

Nearby locations on I-5 NB 

1 0-33 
18,861 

Pacific Hwy 99, Crater Lake Hwy, and International Medford-
Airport   

2 33-80 9,998 Pacific Hwy 99    

3 80-129 14,392 Pacific Hwy, NE Stephens St, Roseburg Airport   

4 129-149 9,454 Pacific Hwy, Eagle Valley Rd, Umpqua Hwy 99   

5 149-180 5,284 Near Eugene   

6 180-200 8,427 Near Eugene   

7 200-244 14,929 Eugene–Corvallis   

8 244-264 18,002 Salem, Woodburn   

9 264-288 12,898 Wilsonville, Tualatin, Junction I-205   

10 288-300 6,892 Portland  Junction I-84 (Figure 3A) 
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FIGURE 3  Identified segments along Interstate 5 utilizing Highway Performance 
Monitoring System (HPMS) volume data. 
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TABLE 2 Segment Travel Time Distributions for July 2007 – Interstate 5 NB Data During 
0:00-24:00 Hour Time Period 

Segment 
ID 

m0 

(miles) 
m1 

(miles) 
br 

(miles) 
nactual 

(count) 
Free-flow 

(hrs) 
Median,t50 

(hrs) 
t80 

(hrs) 

t95 

(hrs) 

1 3 33 3 371 0.5 1.23 1.48 1.77 

2 33 80 4.7 591 0.78 1.48 1.77 2.09 

3 80 129 4.9 331 0.82 1.48 1.82 2.19 

4 129 149 2 155 0.33 0.74 0.918 1.11 

5 149 180 3.1 216 0.52 1.22 1.49 1.8 

6 180 200 2 54 0.33 0.686 0.831 0.991 

7 200 244 4.4 309 0.73 1.86 2.39 2.98 

8 244 264 2 151 0.33 0.799 0.988 1.2 

9 264 279 1.5 268 0.25 0.828 1.01 1.22 

10 279 300 2.1 99 0.35 1.11 1.36 1.64 

 
TABLE 3 Segment Travel Time Distributions for July 2007 – Interstate 5 NB Data During 
15:30– 18:30 Time Period 

 

 

Segment 
ID 

m0 

(miles) 
m1 

(miles) 
br 

(miles) 
nactual 

(count) 
Free-flow 

(hrs) 
Median,t50 

(hrs) 
t80 

(hrs) 

t95 

(hrs) 

1 3 33 3 40 0.5 1.07 1.24 1.43 

2 33 80 4.7 55 0.78 1.4 1.63 1.88 

3 80 129 4.9 26 0.82 1.09 1.2 1.32 

4 129 149 2 21 0.33 0.707 0.853 1.02 

5 149 180 3.1 13 0.52 0.775 0.912 1.06 

6 180 200 2 11 0.33 0.765 0.911 1.07 

7 200 244 4.4 21 0.73 1.13 1.34 1.57 

8 244 264 2 14 0.33 0.773 0.955 1.16 

9 264 279 1.5 32 0.25 0.781 0.952 1.14 

10 279 300 2.1 6 0.35 0.944 1.12 1.33 
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FIGURE 4  Segment 1 travel time distributions, 24 hour vs, 15:30  to 18:30 period (dashed 
lines show the corresponding 95th percentile) 
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FIGURE 5  Segment 8 travel time distributions, 24 hour vs, 15:30  to 18:30 period (dashed 
lines show the corresponding 95th percentile) 
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FIGURE 6 All segments travel time coefficients of variation of speed parameter smin,i    
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FIGURE 7  From left to right,  A) daily operating cost per mile per freight vehicle;  B) 
additional daily travel time cost per mile per freight vehicle due to unreliable travel time 
only. 
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FIGURE 8 Percent increase in cost per mile per freight vehicle relative to free-flow costs 
for travel times at 50%, 80%, and 95% percentiles. 
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