Development of a Steady-State River Hydrodynamic and Temperature Model Based on CE-QUAL-W2

Wenwei Xu
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Water Resource Management Commons

Recommended Citation

10.15760/etd.1618

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Development of a Steady-State River Hydrodynamic and Temperature Model

Based on CE-QUAL-W2

by

Wenwei Xu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in
Civil and Environmental Engineering

Thesis Committee:
Scott A. Wells, Chair
Chris J. Berger
Stefan A. Talke

Portland State University
2014
Abstract

CE-QUAL-W2 is a 2-D hydrodynamic and water quality model that has been applied to reservoirs, lakes, river systems, and estuaries throughout the world. However, when this model is applied for shallow systems, this model requires a long calculation time to maintain numerical stability, compared to applications of reservoirs or deeper river systems.

To solve this problem, a new hydrodynamic and temperature model was built based on the framework of CE-QUAL-W2 but that allows for steady-state hydrodynamic computations. By calculating the hydrodynamics at steady-state, the time step for stability is relaxed and simulations can proceed at much higher time steps. The rest of the model framework is still used for water quality state variables, in this case, temperature. The algorithm used for computing the water surface elevation is Manning’s equation.

This thesis study is one part of the Willamette Water 2100 project (Santelmann et al., 2012), which examines hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin. This study included three stages: (1) Convert six existing CE-QUAL-W2 V3.1 models into a newer version: CE-QUAL-W2 V3.7. (2) Develop the steady-state model code in FORTRAN. (3) Test the steady-state model on three river systems in the Willamette River Basin at Year 2001 and 2002.

The result proved that the steady-state model could reduce the computing time by 90% for river applications, while predicting dynamic river temperature with high accuracy at a two-minute time scale. This new model will be employed to simulate the future of the
Willamette River System at a decadal or centennial timescales, addressing river temperature concerns and fish habitat issues.
Table of Contents

Abstract... i

Table of Contents.. iii

List of Tables .. vi

List of Figures .. ix

Abbreviations .. xxxiii

Chapter 1 Literature Review of River Modeling...1

1.1 Hydrodynamic Models and Temperature Models ...1

1.1.1 The Importance of River Temperature Models ...1

1.1.2 River Temperature Models Classification ..2

1.1.3 Statistically-Based Models Review ..2

1.1.4 Physically-Based Models Review...3

1.1.5 Models Review Summary ...9

1.2 Willamette Model Using CE-QUAL-W2 V3.1 ...11

Chapter 2 Converting Willamette River Models from V3.1 to V3.7.................................13

2.1 Converting all Willamette Models from V3.1 to V3.7 ..13

2.2 Testing of CE-QUAL-W2 V3.7...14
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Lower Willamette River / Columbia River</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2 Middle Willamette River</td>
<td>44</td>
</tr>
<tr>
<td>2.2.3 Upper Willamette River</td>
<td>69</td>
</tr>
<tr>
<td>2.2.4 Clackamas River</td>
<td>96</td>
</tr>
<tr>
<td>2.2.5 McKenzie River</td>
<td>111</td>
</tr>
<tr>
<td>2.2.6 Long Tom River</td>
<td>135</td>
</tr>
<tr>
<td>2.2.7 Summary and Conclusions</td>
<td>147</td>
</tr>
<tr>
<td>Chapter 3 Development of Steady-State Model for Hydrodynamics</td>
<td>151</td>
</tr>
<tr>
<td>3.1 New Expectation from River Hydrodynamic and Temperature Model</td>
<td>151</td>
</tr>
<tr>
<td>3.2 Model Development Theory</td>
<td>152</td>
</tr>
<tr>
<td>3.2.1 CE-QUAL-W2 Version 3.7 as the base model</td>
<td>153</td>
</tr>
<tr>
<td>3.2.2 Coordinate System and Model Grid</td>
<td>153</td>
</tr>
<tr>
<td>3.2.3 Steady-State Hydrodynamic Calculation</td>
<td>157</td>
</tr>
<tr>
<td>3.2.4 Dynamic Temperature Calculation</td>
<td>161</td>
</tr>
<tr>
<td>3.3 Model Development Process</td>
<td>163</td>
</tr>
<tr>
<td>3.4 Converting V3.7 models to Steady-state models</td>
<td>165</td>
</tr>
<tr>
<td>3.5 Testing of New Steady State Model Codes</td>
<td>165</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.5.1 Clackamas River</td>
<td>166</td>
</tr>
<tr>
<td>3.5.2 McKenzie River</td>
<td>179</td>
</tr>
<tr>
<td>3.5.3 Long Tom River</td>
<td>202</td>
</tr>
<tr>
<td>Chapter 4 Summary and Conclusions</td>
<td>215</td>
</tr>
<tr>
<td>Reference</td>
<td>226</td>
</tr>
<tr>
<td>Appendix A: The steady-state model FORTRAN source code</td>
<td>230</td>
</tr>
</tbody>
</table>
List of Tables

Table 1 Comparison of select river temperature models ... 8
Table 2: Lower Willamette River / Columbia River hydrodynamic calibration statistics, 2001 ... 17
Table 3: Lower Willamette River hydrodynamic calibration statistics, 2002 21
Table 4: Willamette River continuous water temperature calibration model-data error statistics, 2001 ... 25
Table 5: Willamette River continuous water temperature calibration model-data error statistics, 2002 ... 33
Table 6: Middle Willamette River hydrodynamic calibration statistics, 2001 46
Table 7: Middle Willamette River hydrodynamic calibration statistics, 2002 48
Table 8: Willamette River continuous water temperature calibration model-data error statistics, 2001 ... 50
Table 9: Willamette River continuous water temperature calibration model-data error statistics, 2002 ... 65
Table 10: Upper Willamette River hydrodynamic calibration statistics, 2001 71
Table 11: Upper Willamette River hydrodynamic calibration statistics, 2002 76
Table 12: Upper Willamette River continuous water temperature calibration model-data error statistics, 2001 ... 82
Table 13: Upper Willamette River continuous water temperature calibration model-data error statistics, 2002 ... 89
Table 14: Clackamas River hydrodynamic calibration statistics, 2001 97
Table 15: Clackamas River hydrodynamic calibration statistics, 2002 100
Table 16: Clackamas River continuous water temperature calibration model-data error statistics, 2001

Table 17: Clackamas River continuous water temperature calibration model-data error statistics, 2002

Table 18: McKenzie River hydrodynamic calibration model-data error statistics, 2001

Table 19: McKenzie River hydrodynamic calibration model-data error statistics, 2002

Table 20: McKenzie River continuous water temperature calibration model-data error statistics, 2001

Table 21: McKenzie River continuous water temperature calibration model-data error statistics, 2002

Table 22 Long Tom River hydrodynamic calibration model-data error statistics, 2001

Table 23 Long Tom River hydrodynamic calibration model-data error statistics, 2002

Table 24 Long Tom River continuous water temperature calibration model-data error statistics, 2001

Table 25 Long Tom River continuous water temperature calibration model-data error statistics, 2002

Table 26: Comparison of CE-QUAL-W2 Version 3.1 and Version 3.7 temperature predictions accuracy on six river systems

Table 27: CPU runtime of CE-QUAL-W2 Version 3.7 model at six river systems applications in 2001 and 2002

Table 28: Clackamas River hydrodynamic calibration statistics, 2001

Table 29: Clackamas River hydrodynamic calibration statistics, 2002
Table 30: Clackamas River continuous water temperature calibration model-data error statistics, 2001 .. 173
Table 31: Clackamas River continuous water temperature calibration model-data error statistics, 2002 .. 176
Table 32: McKenzie River hydrodynamic calibration model-data error statistics, 2001 180
Table 33: McKenzie River hydrodynamic calibration model-data error statistics, 2002 185
Table 34: McKenzie River continuous water temperature calibration model-data error statistics, 2001 .. 190
Table 35: McKenzie River continuous water temperature calibration model-data error statistics, 2002 .. 196
Table 36 Long Tom River hydrodynamic calibration model-data error statistics, 2001 203
Table 37 Long Tom River hydrodynamic calibration model-data error statistics, 2002 206
Table 38 Long Tom River continuous water temperature calibration model-data error statistics, 2001 .. 209
Table 39 Long Tom River continuous water temperature calibration model-data error statistics, 2002 .. 212
Table 40: Comparison of CE-QUAL-W2 Steady-State Model, CE-QUAL-W2 Version 3.1 and Version 3.7 temperature predictions accuracy on six river systems 216
Table 41: Comparison of CPU runtime of Steady-State Model and CE-QUAL-W2 Version 3.7 model for three river systems applications in 2001 and 2002 217
Table 42: McKenzie River continuous water temperature calibration model-data error statistics, 2001. From left to right, the compared models are Version 3.7, steady-state model without re-calibration and steady-state model after calibration 221
List of Figures

Figure 1: River systems with delineated watersheds in the Willamette River Basin 12
Figure 2: Lower Willamette / Columbia River model grid.. 16
Figure 3: Willamette River below the Willamette Falls model-data water level comparison, 2001 .. 18
Figure 4: Willamette River at Portland model-data water level comparison, 2001 18
Figure 5: Columbia River below Bonneville Dam model-data water level comparison, 2001 ... 19
Figure 6: Columbia River at Vancouver, WA model-data water level comparison, 2001 ... 19
Figure 7: Columbia River at St. Helens, OR model-data water level comparison, 2001. 20
Figure 8: Columbia River at Beaver Army Terminal model-data flow comparison, 2001 ... 20
Figure 9: Willamette River below the Willamette Falls model-data water level comparison, 2002 ... 22
Figure 10: Willamette River at Portland model-data water level comparison, 2002 22
Figure 11: Columbia River below Bonneville Dam model-data water level comparison, 2002 .. 23
Figure 12: Columbia River at Vancouver, WA model-data water level comparison, 2002 .. 23
Figure 13: Columbia River at St. Helens, OR model-data water level comparison, 2002.24
Figure 14: Columbia River at Beaver Army Terminal model-data flow comparison, 2002 .. 24
Figure 15: Willamette River downstream of the Willamette Falls site A model-data continuous temperature comparison, 2001 ... 26
Figure 16: Willamette River downstream of the Willamette Falls site B continuous model-data temperature comparison, 2001 ... 27
Figure 17: Willamette River at Roehr Waterfront Park (shallow) model-data continuous temperature comparison, ... 27
Figure 18: Willamette River at Roehr Waterfront Park (deep) model-data continuous temperature comparison, 2001 .. 28
Figure 19: Multnomah Channel downstream of Gilbert River model-data continuous temperature comparison, 2001 .. 28
Figure 20: Columbia River Left Bank at Dodson continuous model-data temperature comparison, 2001 ... 29
Figure 21: Columbia River Right Bank near Skamania model-data continuous temperature comparison, 2001 ... 29
Figure 22: Columbia River at Washougal, WA model-data continuous temperature comparison, 2001 ... 30
Figure 23: Columbia River at RM 122.5 model-data continuous temperature comparison, 2001 ... 30
Figure 24: Columbia River d/s Multnomah Channel model-data continuous temperature comparison, 2001 ... 31
Figure 25: Columbia River at RM 66.8 model-data continuous temperature comparison, 2001 ... 31
Figure 26: Columbia River at Beaver Army Terminal model-data continuous temperature comparison, 2001.. 32

Figure 27: Willamette River at Roehr Waterfront Park (shallow) model-data continuous temperature comparison, 2002.. 34

Figure 28: Willamette River at Roehr Waterfront Park (deep) model-data continuous temperature comparison, 2002.. 34

Figure 29: Willamette River north of Deer Island (shallow) model-data continuous temperature comparison, 2002.. 35

Figure 30: Willamette River north of Deer Island (deep) model-data continuous temperature comparison, 2002.. 35

Figure 31: Willamette River upstream of Kellog Creek WWTP outfall (shallow) model-data continuous temperature comparison, 2002.. 36

Figure 32: Willamette River upstream of Kellog Creek WWTP outfall (deep) model-data continuous temperature comparison, 2002.. 36

Figure 33: Willamette River downstream of Kellog Creek WWTP outfall (shallow) model-data continuous temperature comparison, 2002.. 37

Figure 34: Willamette River downstream of Kellog Creek WWTP outfall (deep) model-data continuous temperature comparison, 2002.. 37

Figure 35: Willamette River at Waverly Country Club model-data continuous temperature comparison, 2002.. 38

Figure 36: Willamette River at Waverly Country Club (QA data set) model-data continuous temperature comparison, 2002.. 38
Figure 37: Willamette River at St. Johns Bridge (deep) model-data continuous temperature comparison, 2002 ... 39
Figure 38: Willamette River at St. Johns Bridge (shallow) model-data continuous temperature comparison, 2002 ... 39
Figure 39: Willamette River upstream of Oregon Steel Mills (shallow) model-data continuous temperature comparison, 2002 ... 40
Figure 40: Willamette River upstream of Oregon Steel Mills (deep) model-data continuous temperature comparison, ... 40
Figure 41: Columbia River left bank at Dodson, OR model-data continuous temperature comparison, 2002 ... 41
Figure 42: Columbia River at Washougal, WA model-data continuous temperature comparison, 2002 ... 41
Figure 43: Columbia River downstream of Multnomah Channel (deep) model-data continuous temperature comparison, 2002 ... 42
Figure 44: Columbia River downstream of Multnomah Channel (shallow) model-data continuous temperature comparison, 2002 ... 42
Figure 45: Columbia River at RM 66.8 (deep) model-data continuous temperature comparison, 2002 ... 43
Figure 46: Columbia River at RM 66.8 (shallow) model-data continuous temperature comparison, 2002 ... 43
Figure 47: Columbia River at Beaver Army Terminal model-data continuous temperature comparison, 2002 ... 44
Figure 48: Middle Willamette River Model Grid ... 45
Figure 49: Willamette River at Salem model-data flow comparison, 2001 46
Figure 50: Willamette River at Salem model-data water level comparison, 2001 47
Figure 51: Willamette River at the Willamette Falls model-data water level comparison, 2001... 47
Figure 52: Willamette River at Salem model-data flow comparison, 2001 48
Figure 53: Willamette River at Salem model-data water level comparison, 2002 49
Figure 54: Willamette River at Newberg model-data water level comparison, 2002 49
Figure 55: Willamette River at the Willamette Falls model-data water level comparison, 2002... 50
Figure 56: Willamette River at Salem model-data continuous temperature comparison, 2001... 52
Figure 57: Willamette River at Keizer model-data continuous temperature comparison, 2001... 52
Figure 58: Willamette River at Willow Lake Treatment Plant model-data continuous temperature comparison, 2001... 53
Figure 59: Willamette River at Wheatland Ferry model-data continuous temperature comparison, 2001... 53
Figure 60: Willamette River at Eagle Nest A model-data continuous temperature comparison, 2001... 54
Figure 61: Willamette River at Eagle Nest B model-data continuous temperature comparison, 2001... 54
Figure 62: Willamette River at Coffee Island A model-data continuous temperature comparison, 2001... 55
Figure 63: Willamette River at Coffee Island B model-data continuous temperature comparison, 2001 ... 55
Figure 64: Willamette River at San Salvador A model-data continuous temperature comparison, 2001 ... 56
Figure 65: Willamette River at San Salvador B model-data continuous temperature comparison, 2001 ... 56
Figure 66: Willamette River above Ash Island A model-data continuous temperature comparison, 2001 ... 57
Figure 67: Willamette River above Ash Island B model-data continuous temperature comparison, 2001 ... 57
Figure 68: Willamette River at Champoeg Park A model-data continuous temperature comparison, 2001 ... 58
Figure 69: Willamette River at Champoeg Park B model-data continuous temperature comparison, 2001 ... 58
Figure 70: Willamette River at I5 Bridge, Wilsonville model-data continuous temperature comparison, 2001 ... 59
Figure 71: Willamette River upstream of the Molalla River confluence, Power-line A model-data continuous temperature comparison, 2001 ... 59
Figure 72: Willamette River upstream of the Molalla River confluence, Power-line B model-data continuous temperature comparison, 2001 ... 60
Figure 73: Willamette River at Canby Ferry B model-data continuous temperature comparison, 2001 ... 60
Figure 74: Willamette River at Powerline A model-data continuous temperature comparison, 2001 .. 61
Figure 75: Willamette River at Powerline A model-data continuous temperature comparison, 2001 .. 61
Figure 76: Willamette River at Tug Dock A model-data continuous temperature comparison, 2001 .. 62
Figure 77: Willamette River at Boathouse A model-data continuous temperature comparison, 2001 .. 62
Figure 78: Willamette River at Forebay B model-data continuous temperature comparison, 2001 .. 63
Figure 79: Willamette River at Log Boom B model-data continuous temperature comparison, .. 63
Figure 80: Willamette River at Log Boom B model-data continuous temperature comparison, .. 64
Figure 81: Willamette River at the Willamette Falls model-data continuous temperature comparison, 2001 .. 64
Figure 82: Willamette River at Forebay A model-data continuous temperature comparison, 2001 .. 65
Figure 83: Willamette River at Willow Lake Treatment Plant model-data continuous temperature comparison, 2002 .. 66
Figure 84: Willamette River at Wheatland Ferry model-data continuous temperature comparison, 2002 .. 66
Figure 85: Willamette River at Coffee Island model-data continuous temperature comparison, 2002 .. 67
Figure 86: Willamette River upstream of the Yamhill River model-data continuous temperature comparison, 2002 .. 67
Figure 87: Willamette River at Newberg model-data continuous temperature comparison, 2002 .. 68
Figure 88: Willamette River at I5 Bridge, Wilsonville model-data continuous temperature comparison, 2002 .. 68
Figure 89: Willamette River at the Willamette Falls model-data continuous temperature comparison, 2002 .. 69
Figure 90: Upper Willamette River Model Grid .. 70
Figure 91: Willamette River at Eugene model-data flow comparison, 2001 72
Figure 92: Willamette River at Eugene model-data water level comparison, 2001 73
Figure 93: Willamette River at Harrisburg model-data flow comparison, 2001 73
Figure 94: Willamette River at Harrisburg model-data water level comparison, 2001 74
Figure 95: Willamette River at Corvallis model-data water level comparison, 2001 74
Figure 96: Willamette River at Albany model-data flow comparison, 2001 75
Figure 97: Willamette River at Albany model-data water level comparison, 2001 75
Figure 98: Willamette River at Salem model-data flow comparison, 2001 (gage is 900 m downstream) .. 76
Figure 99: Willamette River at Eugene model-data flow comparison, 2002 77
Figure 100: Willamette River at Eugene model-data water level comparison, 2002 78
Figure 101: Willamette River at Harrisburg model-data flow comparison, 2002 78
Figure 102: Willamette River at Harrisburg model-data water level comparison, 2002 .. 79
Figure 103: Willamette River at Corvallis model-data flow comparison, 2002 79
Figure 104: Willamette River at Corvallis model-data water level comparison, 2002 80
Figure 105: Willamette River at Albany model-data flow comparison, 2002 80
Figure 106: Willamette River at Albany model-data water level comparison, 2002 81
Figure 107: Willamette River at Salem model-data flow comparison, 2002 (gage is 900 m
downstream) .. 81
Figure 108: Upper Willamette River near Springfield model-data continuous temperature
comparison, 2001 .. 83
Figure 109: Upper Willamette River above McKenzie River model-data continuous
temperature comparison, 2001 ... 83
Figure 110: Upper Willamette River at Harrisburg model-data continuous temperature
comparison, 2001 .. 84
Figure 111: Upper Willamette River above Long Tom River model-data continuous
temperature comparison, 2001 ... 84
Figure 112: Upper Willamette River at RM 147.4 model-data continuous temperature
comparison, 2001 .. 85
Figure 113: Upper Willamette River at RM 142.4 model-data continuous temperature
comparison, 2001 .. 85
Figure 114: Upper Willamette River at Corvallis model-data continuous temperature
comparison, 2001 .. 86
Figure 115: Upper Willamette River at Albany model-data continuous temperature
comparison, 2001 .. 86
Figure 116: Upper Willamette River at Conser Rd model-data continuous temperature comparison, 2001 .. 87
Figure 117: Upper Willamette River at South River Rd model-data continuous temperature comparison, 2001 .. 87
Figure 118: Upper Willamette River above Rickreall Creek model-data continuous temperature comparison, 2001 .. 88
Figure 119: Upper Willamette River at Salem model-data continuous temperature comparison, 2001 .. 88
Figure 120: Upper Willamette River near Springfield model-data continuous temperature comparison, 2002 .. 90
Figure 121: Upper Willamette River above McKenzie River model-data continuous temperature comparison, 2002 .. 90
Figure 122: Upper Willamette River at Harrisburg model-data continuous temperature comparison, 2002 .. 91
Figure 123: Upper Willamette River above Long Tom River model-data continuous temperature comparison, 2002 .. 91
Figure 124: Upper Willamette River at RM 147.4 model-data continuous temperature comparison, 2002 .. 92
Figure 125: Upper Willamette River at RM 142.4 model-data continuous temperature comparison, 2002 .. 92
Figure 126: Upper Willamette River at Corvallis model-data continuous temperature comparison, 2002 .. 93
Figure 127: Upper Willamette River at Albany model-data continuous temperature comparison, 2002 ... 93

Figure 128: Upper Willamette River at Conser Rd model-data continuous temperature comparison, 2002 ... 94

Figure 129: Upper Willamette River at South River Rd model-data continuous temperature comparison, 2002 ... 94

Figure 130: Upper Willamette River above Rickreall Creek model-data continuous temperature comparison, 2002 ... 95

Figure 131: Clackamas River model grid .. 96

Figure 132: Clackamas River at Estacada model-data flow comparison, 2001 98

Figure 133: Clackamas River at Estacada model-data water level comparison, 2001 98

Figure 134: Clackamas River near Oregon City model-data flow comparison, 2001 99

Figure 135: Clackamas River near Oregon City model-data water level comparison, 2001 ... 99

Figure 136: Clackamas River at Estacada model-data flow comparison, time step=10s, 2002 .. 101

Figure 137: Clackamas River at Estacada model-data flow comparison, time step=5s, 2002 .. 101

Figure 138: Clackamas River at Estacada model-data water level comparison, 2002 ... 102

Figure 139: Clackamas River near Oregon City model-data flow comparison, 2002 102

Figure 140: Clackamas River near Oregon City model-data water level comparison, 2002 ... 103
Figure 141: Clackamas River at Estacada model-data continuous temperature comparison, 2001 ... 104
Figure 142: Clackamas River at McIver Park model-data continuous temperature comparison, 2001 ... 105
Figure 143: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2001 ... 105
Figure 144: Clackamas River at Barton model-data continuous temperature comparison, 2001 ... 106
Figure 145: Clackamas River at Carver Bridge model-data continuous temperature comparison, 2001 ... 106
Figure 146: Clackamas River at Oregon City model-data continuous temperature comparison, 2001 ... 107
Figure 147: Clackamas River at Estacada model-data continuous temperature comparison, 2002 ... 108
Figure 148: Clackamas River at Rivermill Tailrace model-data continuous temperature comparison, 2002 ... 108
Figure 149: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2002 ... 109
Figure 150: Clackamas River upstream of Clear Creek model-data continuous temperature comparison, 2002 ... 109
Figure 151: Clackamas River at Oregon City model-data continuous temperature comparison, 2002 ... 110
Figure 152: Clackamas River at Oregon City model-data continuous temperature comparison, 2002 ... 110

Figure 153: McKenzie River model grid ... 111

Figure 154: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2001 ... 112

Figure 155: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2001 ... 113

Figure 156: McKenzie River near Vida model-data flow comparison, 2001 113

Figure 157: McKenzie River near Vida model-data water level comparison, 2001 114

Figure 158: McKenzie River below Leaburg Dam model-data flow comparison, 2001 114

Figure 159: McKenzie River below Leaburg Dam model-data water level comparison, 2001 ... 115

Figure 160: McKenzie River near Walterville model-data flow comparison, 2001 115

Figure 161: McKenzie River near Walterville model-data water level comparison, 2001 ... 116

Figure 162: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2002 ... 117

Figure 163: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2002 ... 118

Figure 164: McKenzie River near Vida model-data flow comparison, 2002 118

Figure 165: McKenzie River near Vida model-data water level comparison, 2002 119

Figure 166: McKenzie River below Leaburg Dam model-data flow comparison, 2002 119
Figure 167: McKenzie River below Leaburg Dam model-data water level comparison, 2002... 120

Figure 168: McKenzie River near Walterville model-data flow comparison, 2002... 120

Figure 169: McKenzie River near Walterville model-data water level comparison, 2002... 121

Figure 170: South Fork McKenzie River below Cougar Dam model-data continuous temperature comparison, 2001... 122

Figure 171: McKenzie River below Cougar River model-data continuous temperature comparison, 2001... 123

Figure 172: McKenzie River near Vida model-data continuous temperature comparison, 2001... 123

Figure 173: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2001... 124

Figure 174: McKenzie River above the Leaburg tailrace model-data continuous temperature comparison, 2001... 124

Figure 175: McKenzie River at Deerborn model-data continuous temperature comparison, 2001... 125

Figure 176: McKenzie River near Walterville model-data continuous temperature comparison, 2001... 125

Figure 177: McKenzie River above Walterville Tailrace model-data continuous temperature comparison, 2001... 126

Figure 178: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2001... 126
Figure 179: Leaburg Canal Intake, upstream end model-data continuous temperature comparison, 2001

Figure 180: Leaburg Canal Powerhouse Tailrace, downstream end model-data continuous temperature comparison

Figure 181: South Fork McKenzie below Cougar Dam model-data continuous temperature comparison, 2002

Figure 182: McKenzie River below Cougar River model-data continuous temperature comparison, 2002

Figure 183: McKenzie River near Vida model-data continuous temperature comparison, 2002

Figure 184: McKenzie River at Helfrich boat ramp model-data continuous temperature comparison, 2002

Figure 185: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2002

Figure 186: McKenzie River at Deerborn model-data continuous temperature comparison, 2002

Figure 187: McKenzie River near Walterville model-data continuous temperature comparison, 2002

Figure 188: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2002

Figure 189: McKenzie River above Mohawk River model-data continuous temperature comparison, 2002
Figure 190: McKenzie River at Coburg Rd model-data continuous temperature comparison, 2002 .. 133
Figure 191: Leaburg Canal Intake, upstream end model-data continuous temperature comparison, 2002 .. 134
Figure 192: Leaburg Canal Powerhouse Tailrace, downstream end model-data continuous temperature comparison, .. 134
Figure 193: Long Tom River Model Grid ... 135
Figure 194: Long Tom River near Alvadore model-data flow comparison, 2001 137
Figure 195: Long Tom River near Alvadore model-data water level comparison, 2001 ... 137
Figure 196: Long Tom River at Monroe model-data flow comparison, 2001 138
Figure 197: Long Tom River at Monroe model-data water level comparison, 2001 .. 138
Figure 198 Long Tom River near Alvadore model-data flow comparison, 2002 140
Figure 199 Long Tom River near Alvadore model-data water level comparison, 2002 140
Figure 200 Long Tom River at Monroe model-data flow comparison, 2002 141
Figure 201 Long Tom River at Monroe model-data water level comparison, 2002 141
Figure 202 Long Tom River near Alvadore model-data continuous temperature comparison, 2001 .. 142
Figure 203 Long Tom River at RM 19.8 model-data continuous temperature comparison, 2001 .. 143
Figure 204 Long Tom River at RM 12.3 model-data continuous temperature comparison, 2001 .. 143
Figure 205 Long Tom River at Monroe model-data continuous temperature comparison, 2001 ... 144
Figure 206 Long Tom River near Alvadore model-data continuous temperature comparison, 2002 ... 145
Figure 207 Long Tom River at RM 19.8 model-data continuous temperature comparison, 2002 ... 145
Figure 208 Long Tom River at RM 12.3 model-data continuous temperature comparison, 2002 ... 146
Figure 209 Long Tom River at Monroe model-data continuous temperature comparison, 2002 ... 146
Figure 210 Long Tom River near mouth model-data continuous temperature comparison, 2002 ... 147
Figure 211: Estimated runtime for one year simulation using CE-QUAL-W2 Version 3.7 .. 150
Figure 212: Comparison of river top view in the real world (left) and in the steady-steady model (right) ... 153
Figure 213: Comparison of river cross-section view in the real world (left) and in the steady-steady model (right) ... 154
Figure 214: Comparison of river side view in the real world (left) and in the steady-steady model (right) ... 154
Figure 215: Example of a loop branch in the real world and in model 156
Figure 216: Flow distribution at the beginning of loop branch 156
Figure 217: An example of transporting flow between branches 157
Figure 218: Flow rate calculation in the Steady-state model .. 158
Figure 219: Water surface elevation smoothing .. 160
Figure 220: Longitudinal velocity calculation .. 161
Figure 221: Vertical velocity calculation .. 161
Figure 222: Sketch of heat conservation of a cell ... 163
Figure 223: Steady-State Model testing and refining process flow chart 164
Figure 224: Clackamas River at Estacada model-data flow comparison, 2001 167
Figure 225: Clackamas River at Estacada model-data water level comparison, 2001 ... 168
Figure 226: Clackamas River near Oregon City model-data flow comparison, 2001 168
Figure 227: Clackamas River near Oregon City model-data water level comparison, 2001 .. 169
Figure 228: Clackamas River at Estacada model-data flow comparison, 2002 170
Figure 229: Clackamas River at Estacada model-data water level comparison, 2002 ... 171
Figure 230: Clackamas River near Oregon City model-data flow comparison, 2002 171
Figure 231: Clackamas River near Oregon City model-data water level comparison, 2002 .. 172
Figure 232: Clackamas River at Estacada model-data continuous temperature comparison, 2001 ... 173
Figure 233: Clackamas River at McIver Park model-data continuous temperature comparison, 2001 ... 174
Figure 234: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2001 ... 174
Figure 235: Clackamas River at Barton model-data continuous temperature comparison, 2002.. 175

Figure 236: Clackamas River at Carver Bridge model-data continuous temperature comparison, 2001.. 175

Figure 237: Clackamas River at Oregon City model-data continuous temperature comparison, 2001.. 176

Figure 238: Clackamas River at Estacada model-data continuous temperature comparison, 2002.. 177

Figure 239: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2002.. 177

Figure 240: Clackamas River upstream of Clear Creek model-data continuous temperature comparison, 2002.. 178

Figure 241: Clackamas River at Oregon City model-data continuous temperature comparison, 2002.. 178

Figure 242: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2001.. 180

Figure 243: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2001.. 181

Figure 244: McKenzie River near Vida model-data flow comparison, 2001.. 181

Figure 245: McKenzie River near Vida model-data water level comparison, 2001.. 182

Figure 246: McKenzie River below Leaburg Dam model-data flow comparison, 2001.. 182

Figure 247: McKenzie River below Leaburg Dam model-data water level comparison, 2001.. 183
Figure 248: McKenzie River near Walterville model-data flow comparison, 2001...... 183
Figure 249: McKenzie River near Walterville model-data water level comparison, 2001 ... 184
Figure 250: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2002... 185
Figure 251: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2002 ... 186
Figure 252: McKenzie River near Vida model-data flow comparison, 2002.................. 186
Figure 253: McKenzie River near Vida model-data water level comparison, 2002 187
Figure 254: McKenzie River below Leaburg Dam model-data flow comparison, 2002 188
Figure 255: McKenzie River below Leaburg Dam model-data water level comparison, 2002 ... 188
Figure 256: McKenzie River near Walterville model-data flow comparison, 2002...... 188
Figure 257: McKenzie River near Walterville model-data water level comparison, 2002 ... 189
Figure 258: South Fork McKenzie River below Cougar Dam model-data continuous temperature comparison, 2001.. 190
Figure 259: McKenzie River below Cougar River model-data continuous temperature comparison, 2001.. 191
Figure 260: McKenzie River near Vida model-data continuous temperature comparison, 2001.. 191
Figure 261: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2001.. 192
Figure 262: McKenzie River above the Leaburg tailrace model-data continuous temperature comparison, 2001

Figure 263: McKenzie River at Deerborn model-data continuous temperature comparison, 2001

Figure 264: McKenzie River near Walterville model-data continuous temperature comparison, 2001

Figure 265: McKenzie River above Walterville Tailrace model-data continuous temperature comparison, 2001

Figure 266: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2001

Figure 267: Leaburg Canal Intake, upstream end model-data continuous temperature comparison, 2001

Figure 268: South Fork McKenzie below Cougar Dam model-data continuous temperature comparison, 2002

Figure 269: McKenzie River below Cougar River model-data continuous temperature comparison, 2002

Figure 270: McKenzie River near Vida model-data continuous temperature comparison, 2002

Figure 271: McKenzie River at Helfrich boat ramp model-data continuous temperature comparison, 2002

Figure 272: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2002
Figure 273: McKenzie River at Deerborn model-data continuous temperature comparison, 2002

Figure 274: McKenzie River near Walterville model-data continuous temperature comparison, 2002

Figure 275: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2002

Figure 276: McKenzie River above Mohawk River model-data continuous temperature comparison, 2002

Figure 277: McKenzie River at Coburg Rd model-data continuous temperature comparison, 2002

Figure 278: Leaburg Canal Intake, upstream end model-data continuous temperature comparison, 2002

Figure 279: Leaburg Canal Powerhouse Tailrace, downstream end model-data continuous temperature comparison, 2002

Figure 280 Long Tom River near Alvadore model-data flow comparison, 2001

Figure 281: Long Tom River near Alvadore model-data water level comparison, 2001

Figure 282: Long Tom River at Monroe model-data flow comparison, 2001

Figure 283: Long Tom River at Monroe model-data water level comparison, 2001

Figure 284: Long Tom River near Alvadore model-data flow comparison, 2002

Figure 285: Long Tom River near Alvadore model-data water level comparison, 2002

Figure 286: Long Tom River at Monroe model-data flow comparison, 2002

Figure 287: Long Tom River at Monroe model-data water level comparison, 2002
Figure 288: Long Tom River near Alvadore model-data continuous temperature comparison, 2001 ... 209
Figure 289: Long Tom River at RM 19.8 model-data continuous temperature comparison, 2001 ... 210
Figure 290: Long Tom River at RM 12.3 model-data continuous temperature comparison, 2001 ... 210
Figure 291: Long Tom River at Monroe model-data continuous temperature comparison, 2001 ... 211
Figure 292: Long Tom River near Alvadore model-data continuous temperature comparison, 2002 ... 212
Figure 293: Long Tom River at RM 19.8 model-data continuous temperature comparison, 2002 ... 213
Figure 294: Long Tom River at RM 12.3 model-data continuous temperature comparison, 2002 ... 213
Figure 295: Long Tom River at Monroe model-data continuous temperature comparison, 2002 ... 214
Figure 296: Long Tom River near mouth model-data continuous temperature comparison, 2002 ... 214
Figure 297: Comparison of estimated runtime for one year simulation using Steady-State Model and CE-QUAL-W2 Version 3.7 ... 218
Figure 298: Continuous temperature comparison between models (red) VS data (black) at Segment 285 in McKenzie River model, 2001. From top down, the compared models are
Version 3.7, steady-state model without re-calibration and steady-state model after calibration

Figure 299: Side view of the example branch with even grid

Figure 300: Side view of the example branch with higher river bed in the middle

Figure 301: Side view of the example branch with lower river bed in the middle
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfs</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean absolute error</td>
</tr>
<tr>
<td>ME</td>
<td>Mean error</td>
</tr>
<tr>
<td>SEE</td>
<td>Standard error of estimation</td>
</tr>
<tr>
<td>RM</td>
<td>River Mile</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root-mean-square error</td>
</tr>
</tbody>
</table>
Chapter 1 Literature Review of River Modeling

1.1 Hydrodynamic Models and Temperature Models

1.1.1 The Importance of River Temperature Models

River temperature is one of the most important physical properties that influence aquatic ecosystem health (Poole & Berman, 2001). Most fish species are cold-blooded, and their living is affected by the environmental temperature in a variety of ways. Temperature alters respiration, metabolism, food availability (Metcalfe, 1999), and the ease of mobility. Extreme temperature may result in some species experiencing population decline (Elliott, 1981). With climate change, it is more and more important to know the temperature in rivers, which regulation rules and management decisions depend upon.

Specifically for the Pacific Northwest, this area is a natural habitat for many salmon species, and many of them are listed as endangered species, according to the Endangered Species Act (1993). In the Willamette River Basin, endangered species, Chinook salmon, Coho salmon, and Steelhead, give reason for investigation into river temperature.

There are two ways to estimate river temperature: measurement or model predictions. However, temperature measurements only exist in a few locations, and they are usually located on the main-stem of a river and not on other habitat areas. Also, extensive field temperature measurement can take too much time and money. As a result, river temperature models are often built to predict river temperature, and model results are often used as a basis for river management agencies to make management decisions.
1.1.2 River Temperature Models Classification

Basing on the method of how temperature is predicted, river temperature models can be classified into two groups: statistically-based models and physically-based models.

1.1.3 Statistically-Based Models Review

Statistically-based river temperature models are generally built on regression analysis, which relates river temperature to one or more variables in the river systems, for example, air temperature.

Although statistically-based models are easy to build and are not data intensive, they have limitations due to the statistical theories they are based on. First, statistically-based models are generally not able to simulate temperature at a smaller time scale, meaning that they are not able to capture the temperature change dynamics in a day. Instead, generally they can only predict water temperature at a daily or monthly time scale.

Second, statistically-based models cannot be adjusted to reflect changes in the system such as new restoration projects or extreme climate changes.

Two statistically-based river temperature models were reviewed for this thesis study. One is in South Africa, where air temperatures data are generally available while river temperature data is not (River-Moore and Lorentz, 2004). River-Moore and Lorentz built a statistically-based model and attempted to simulate hourly water temperature based on hourly air temperature. The model was able to capture the general trend of temperature dynamics in a day, but with MAE up to ± 7 °C for a year-long simulation period. The
River-Moore and Lorentz study also found that the simulated temperature fit observed data better in the upstream of the rivers, and fit not as well in the downstream.

In the second reviewed study, Sahoo et al. (2009) compared three different methods - multiple regression analysis, artificial neutral network and chaos non-linear dynamic method – in simulating daily river temperature, and tested these three methods on four rivers. The Sahoo et al. study found that the chaos non-linear dynamic method produced the best result, with the RMSE ranging from 0.8 to 2.5 °C for the daily river temperature over a four year simulation.

1.1.4 Physically-Based Models Review

Physically-based models use governing equations to represent the mechanism of temperature change in a natural environment.

1.1.4.1 Physically-Based Models Classification

Dimensions

Water temperature varies with time as well as in the three dimensions of space. As a result, the governing equations in physically-based temperature modeling are second-order partial differential equations. For river systems, if the variation of temperature in lateral direction is negligible, the governing equations can be simplified to a two-dimensional form; if the variation of temperature in vertical direction is also negligible, the governing equations can be further simplified to a one-dimensional form. Depending on the degree of simplification, physically-based temperature models can be classified into 1, 2, and 3-D models.
For river systems 1-D or 2-D models are applied more frequently, while 3-D models are rarely used. The 3-D models require more detailed boundary conditions, and also require much more time to run. 1-D models are the easiest to build as they require the least input information. However, such models are not able to simulate temperature variation in vertical and lateral directions. On the other hand, 2-D models are somewhere in between 1-D and 3-D models. Decisions on which dimensional models to use should be made based on the hydrodynamic and temperature characteristics of the river system to be modeled.

Steady state vs unsteady state

Steady state is an equilibrium condition which in mathematical terms means that accumulation of the state variable is zero (Chapra, 1997).

In hydrodynamic modeling, steady state assumes that flow conditions reach equilibrium for every time step, so that momentum and turbulence need not to be calculated. By calculating the hydrodynamics at steady-state, the time step for stability is relaxed and simulations can proceed at much higher time steps. However, unsteady state requires the calculation of momentum and turbulence, and the time steps must be smaller.

1.1.4.2 Models Review

Eight existing river temperature models were reviewed in this study. Models were assessed basing on dimensions, hydrodynamic and water quality modeling theory, and example applications. Model characteristics are summarized in Table 1.

QUAL2K
QUAL2K (Chapra, et al. 2008) is a 1-D hydrodynamic and water quality model that simulates flow, temperature and water quality. Velocity and in-stream water depth are simulated at steady state. QUAL2K provides two calculation methods: (1) rating curve, and (2) the Manning formula. The rating curve method use the following empirical equations:

Velocity (m/s) = aQ^b

Depth (m) or width (m) = \(\alpha Q^\beta \)

Where Q = flow rate, m^3/s

In the Manning formula, trapezoidal channel shape is used.

Temperature and water quality variables are also simulated at steady state. Although meteorological data and shading data should be input as hourly base, stream temperature result is outputted as daily average temperature, daily maximum temperature and daily minimum temperature.

Von Stackelberg and Neilson (2012) developed a QUAL2K water quality model for Jordan River, Utah. The RMSE of daily average temperature ranges from 0.3 to 1.9 °C.

SNTEMP

SNTEMP (Theurer et al., 1985) is a 1-D stream temperature model. There is no hydrodynamic component in this model, so flow data should be inputted for every time step of simulation. Generally this model runs on a time step of 1 day, and the output is maximum temperature and mean temperature for each time step.

Norton and Bradford (2009) developed a SNTEMP model for Speed River in Ontario, Canada. The simulation period is from June 9 to October 31 in 2004, and the time step is selected as 1 day. HEC-RAS model was applied for the hydraulic simulation. The MAE
for daily mean temperature ranged from 0.2 to 1.0°C, and the MAE for daily maximum temperature ranged from 0.3 to 0.8°C.

CE-QUAL-RIV 1

CE-QUAL-RIV 1 (Environmental Laboratory, 1995) is a 1-D hydrodynamic and water quality model that simulates flow, temperature and water quality. Flow condition is simulated dynamically using St. Venant equations. Heat flux terms included are short-wave radiation, long-wave radiation, evaporation, back radiation of the water, and heat exchange with river bottom.

No example was found in the literature using this model for river temperature modeling.

An unnamed model

Younus et al. (2000) built a 1-D hydrodynamic and stream temperature model specifically for Little Pine Creek in Indiana. Both hydrodynamic and temperature are simulated dynamically. Heat flux terms included are air-water heat exchange, sediment-water heat exchange, lateral heat inflow/outflow, subsurface inflow/outflow, and the interaction between solar radiation and riparian vegetation. The result showed good agreement between modeled temperature and measured stream temperature for every 15 minutes, with the SEE equal to 0.7 °C over a 25-day simulation period.

HEC - RAS

HEC - RAS (Brunner, 2010) is a 1-D unsteady hydrodynamic and water quality model. Water temperature is calculated using the ultimate quickest numerical scheme. Drake et al. (2010) believed that Hydrologic Simulation Program-FORTRAN (HSPF), CE-QUAL-W2 and SNTEMP are more accurate and detailed in temperature simulations than HEC-
RAS, but HEC-RAS can be used in cases where hydraulic simulation is critical in temperature and water quality modeling.

Drake et al. (2010) built a HEC – RAS temperature model for Swan Creek in Ontario, Canada, to test the HEC -RAS temperature simulation capability as well as to investigate groundwater flow contribution. In the two-week long simulation, the ME was found to be 0.4°C and 1.0°C for two measurement sites.

Mike 11

Mike 11 (Danish Hydraulics Institute, 1993) is a 1-D hydrodynamic and water quality model. Both hydrodynamic and water quality are simulated dynamically. Temperature is calculated from the difference between solar energy gain and heat radiation (day and night) emission loss. Topographic shading is considered but vegetation shading is not. Parkinson (2002) developed a Mike 11 model for Snake River from Hells Canyon Dam to just upstream of the confluence with the Clearwater River. Water temperature, dissolved oxygen, nitrogen, and total dissolved gas were simulated in 1984 summer and 2000 fall. The result showed good agreement for temperature simulation, with the MAE for different sites ranging from 0.1 to 0.5°C, and the RMSE ranging from 0.2 to 0.6°C.

Heat Source

Heat Source Version 7.0 (Boyd and Kasper, 2003) is a 1-D hydrodynamic and river temperature model. This modeling methodology and program is maintained by Oregon Department of Environmental Quality. Temperature modeling is based on dynamic topographic and vegetation shading.

Mike 21
Mike 21 (Danish Hydraulics Institute, 1996) is a 2-D hydrodynamic and water quality model. It is a vertical averaged model, and is more suitable for shallow lake systems. The temperature calculation scheme in Mike 21 is similar to the one in Mike 11. Most applications of Mike 21 are found to be water quality models on lake or reservoir systems, or hydrodynamic models on river systems for purposes of flood control.

No example was found in the literature using this model for river temperature modeling.

CE-QUAL-W2 V3.7

CE-QUAL-W2 V3.7 (Cole and Wells, 2011) is a 2-D, laterally averaged hydrodynamic and water quality model. Both hydrodynamic and temperature are simulated dynamically. Heat flux terms that are included are short/long wave radiation, air-water heat exchange, sediment-water heat exchange, inflow/outflow, dynamic topographic shading and vegetation shading, and ice cover. As temperature influences water density, and accurate hydrodynamic modeling requires accurate water density, temperature calculation is hooked up with hydrodynamic modeling. CE-QUAL-W2 V3.7 provides various options for different hydraulic structures set up, including spillway, weir, gate, withdraw, dam, pipe, etc. Besides, it can be easily applied for fish habitat volume calculation.

Berger et al. (2004) developed a CE-QUAL-W2 V3.1 model for Clackamas River, Oregon for 2001 and 2002. In 2012, this model was converted into CE-QUAL-W2 V3.7, and the modeled river temperature showed good agreement with measured data at six sites along the Clackamas River, with the ME ranging from ±0.01 to ±0.15°C, MAE ranging from 0.02 to 0.69°C, and the RMSE ranging from 0.03 to 0.86°C.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Dimension</th>
<th>Hydrodynamic</th>
<th>Dynamic</th>
<th>Minimum Time</th>
<th>Minimum</th>
<th>Example River</th>
<th>Example Application</th>
<th>Reference</th>
</tr>
</thead>
</table>

Table 1 Comparison of select river temperature models
1.1.5 Models Review Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Shading State</th>
<th>Step Time</th>
<th>Output Time</th>
<th>Application</th>
<th>on Error (°C)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUAL2K</td>
<td>1-D</td>
<td>Steady</td>
<td>No</td>
<td>Daily</td>
<td>Jordan River, Utah</td>
<td>RMSE (0.3-1.9)</td>
</tr>
<tr>
<td>SNTEMP</td>
<td>1-D</td>
<td>Steady</td>
<td>No</td>
<td>Daily</td>
<td>Speed River, Ontario, Canada</td>
<td>MAE (0.2-1.0)</td>
</tr>
<tr>
<td>CE-QUAL-RIV1</td>
<td>1-D</td>
<td>Unsteady</td>
<td>No</td>
<td>Less than hourly</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>"Unnamed"</td>
<td>1-D</td>
<td>Unsteady</td>
<td>No</td>
<td>Less than hourly</td>
<td>Little Pine Creek, Indiana</td>
<td>SEE (0.7)</td>
</tr>
<tr>
<td>HEC-RAS</td>
<td>1-D</td>
<td>Unsteady</td>
<td>No</td>
<td>Less than 1 s</td>
<td>Swan Creek, Ontario, Canada</td>
<td>ME (0.4-0.7)</td>
</tr>
<tr>
<td>MIKE 11</td>
<td>1-D</td>
<td>Unsteady</td>
<td>No</td>
<td>Less than 1 s</td>
<td>Snake River, Idaho</td>
<td>MAE (0.1-0.5) RMSE (0.2-0.6)</td>
</tr>
<tr>
<td>Heat Source</td>
<td>1-D</td>
<td>Steady</td>
<td>Yes</td>
<td>Less than 1 s</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>MIKE 21</td>
<td>2-D</td>
<td>Unsteady</td>
<td>No</td>
<td>Less than 1 s</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>CE-QUAL-W2 V3.7</td>
<td>2-D</td>
<td>Unsteady</td>
<td>Yes</td>
<td>Less than 1 s</td>
<td>Clackamas River, Oregon</td>
<td>ME (±0.01-±0.15) MAE (0.02-0.69) RMSE (0.03-0.86)</td>
</tr>
</tbody>
</table>
Limited by time, this river temperature model review study could not be comprehensive: only a few existing models were reviewed, and only one example application were reviewed for each model. However, this review study still revealed some facts in the river temperature modeling field:

- Statistically-based models are easy to build, but the simulation results are generally not accurate, and models cannot be adjusted to reflect future changes.
- Some of the very popular physically-based models, like QUAL2K, only simulate temperature on daily basis, giving simulation results like daily average temperature, maximum daily temperature. However, continuous temperature is very important for assessing fish species living conditions and making regulation rules.
- 3-D river temperature modeling example could not be found, and 2-D river temperature modeling example could only be found using CE-QUAL-W2.
- According to example applications that were reviewed, both CE-QUAL-W2 model and MIKE 11 model produce accurate continuous temperature simulation.
1.2 Willamette Model Using CE-QUAL-W2 V3.1

In 2004, to assist the Oregon Department of Environmental Quality developing a TMDL for temperature in the Willamette River Basin, river temperature models were built for main stem of Willamette River and all the major tributaries (except Tualatin River where a TMDL already existed). CE-QUAL-W2 Version 3.1 (Cole and Wells, 2002) was chosen as the appropriate model for this system with the following reasons: the ability to model stratified water quality; the ability to model temperature basing on dynamic shading; the ability to various complex hydraulic structures included in the model (Berger et al., 2004); and also very importantly, the fact that many reservoirs within the systems were already modeled with CE-QUAL-W2, which made it easier to prepare input data for river models.

Berger et al. (2004) developed hydrodynamic and water temperature model for Lower Willamette River (including Columbia River from Beaver Army Terminal to Bonneville Dam, and Willamette River from river mouth to RM 26.5), Middle Willamette River (RM 26.5 to RM 85), Upper Willamette River (RM 85 to RM 187), Clackamas River (mouth to RM 26), Long Tom River (mouth to RM 26), McKenzie River (McKenzie River from mouth to RM 56, and South Fork McKenzie River to RM 4), Coast Fork/Middle Fork River (Middle Fork Willamette from mouth to RM 17, Coast Fork Willamette from mouth to RM 30). Figure 1 shows the location of these river systems in the Willamette River Basin. The simulation period varied between models. All models were at least built for the summer of 2001 and 2002, and some models’ simulation period also included the spring and fall of those years. These seven models were able to
represent the temperature and hydraulic regime of these river systems. The RMSE for temperature for these models were all less than 1 °C.

Figure 1: River systems with delineated watersheds in the Willamette River Basin

Sullivan and Rounds (2004) built a hydrodynamic and water temperature model for the North Santiam River and the Santiam River. The RMSE of hourly temperature comparison between simulation results and measured data ranged from 0.50 °C to 1.16 °C during the simulation period in 2001 and 2002.
Chapter 2 Converting Willamette River Models from V3.1 to V3.7

2.1 Converting all Willamette Models from V3.1 to V3.7

CE-QUAL-W2 is a public domain and open source code, and it has been updated over the years. By the year 2012, CE-QUAL-W2 was updated to Version 3.7 from Version 3.1 in year 2002 (Cole and Wells, 2011). There were several major differences between Version 3.1 and Version 3.7. Some of the new features included addition of the following new algorithms:

- Suspended solid velocity;
- Zooplankton, macrophyte, and state variables;
- Updated TKE algorithm;
- User-defined roughness height of the water for correction of the vertical velocity wind profile;
- New output format for TECPLOT;
- Updates to NO3, organic decay rate, and CBOD;
- The ability to specify the number of processors;
- The ability of using automatic selective withdrawal, fish habitat volumes, environmental performance criteria, artificial aeration, and initial water surface and velocity computations;
- The ability to control the interpolation of the maximum time step;
- Slope as the hydraulic equivalent slope for a river channel;
- The ability to interpolate gate or weir inflow data;
- The ability to specify whether the pipes or pumps are controlled by time series or partially open gate;
- The ability to specify whether the grid is interpreted as rectangular in depth or trapezoidal.

In 2012, six Willamette River System models were converted from CE-QUAL-W2 Version 3.1 to Version 3.7. There were two objectives to convert those models: (1) to test the accuracy and other performance of CE-QUAL-W2 Version 3.7 model; (2) to update and calibrate the Willamette River System models to the current newest version of CE-QUAL-W2.

Converting Willamette River System models from V 3.1 to V 3.7 included: (1) changing the control file, graph file and other files to make the models able to run with the new Version 3.7 executable; (2) adjusting model setting to make the models run through the simulation periods; and (3) re-examine the model calibration to make sure the models calibrated to an acceptable degree.

2.2 Testing of CE-QUAL-W2 V3.7

Six river models within the Willamette River Basin were tested with CE-QUAL-W2 Version 3.7, they were Lower Willamette River/ Columbia River, Middle Willamette River, Upper Willamette River, Clackamas River, McKenzie River, Long Tom River. Attempts have been made to test CE-QUAL-W2 Version 3.7 on Coast Fork/ Middle Fork
Willamette River, North Santiam River and South Santiam River, however due to stability issues and the difficulty to calibrate, together with the limited time available, this work was not attempted. Calibration results of applying CE-QUAL-W2 Version 3.7 on each of the six river systems were described in the following sections.

2.2.1 Lower Willamette River / Columbia River

Introduction

Lower Willamette River / Columbia River model domain includes part of Willamette River: from Willamette Falls (RM 26.8) to Willamette River Mouth (RM 0), and part of Columbia River: from Bonneville Dam (RM 145) to Beaver Army Terminal (RM 53.8). Although Willamette River is not directly connected to the ocean, flow characteristics in Lower Willamette River are strongly influenced by the tide. The model grid is shown in Figure 2.

In the CE-QUAL-W2 Version 3.1 model, a water level boundary condition was set up at Beaver Army Terminal to incorporate tidal fluctuations.

Following the setting up of Version 3.1 model, the CE-QUAL-W2 Version 3.7 model was set up as 2 water bodies, including 13 branches, 462 segments and 28 layers. There were 16 tributaries flowing into the system.
Hydrodynamics

Flow rate and water surface elevation was first tested using the original setting in V3.1 model. As the model showed good agreement with data, no further calibrations were conducted.

Year 2001

The hydrodynamic calibration period in 2001 was from July to September. Figure 3 through 8 show the water level and flow comparison between model predictions and measured data. Error statistics are summarized in Table 2. Both the flow and water level
predictions matched well with data at all the sites, and the water level fluctuation due to tidal effect was accurately captured. The root mean square error of flow at Segment 347 was 56.064 m3/s, which was actually very small compared to the flow rate in river which was about 10,000 m3/s.

Table 2: Lower Willamette River / Columbia River hydrodynamic calibration statistics, 2001

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m3/s</th>
<th>AME, m3/s</th>
<th>RMSE, m3/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14246900</td>
<td>53.00</td>
<td>347</td>
<td>4208</td>
<td>-43.34</td>
<td>43.439</td>
<td>56.064</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14207770</td>
<td>26.48</td>
<td>2</td>
<td>2976</td>
<td>0.051</td>
<td>0.128</td>
<td>0.192</td>
</tr>
<tr>
<td>USGS 14211720</td>
<td>12.70</td>
<td>66</td>
<td>2976</td>
<td>0.027</td>
<td>0.122</td>
<td>0.17</td>
</tr>
<tr>
<td>USGS 14128870</td>
<td>144.50</td>
<td>118</td>
<td>5952</td>
<td>0.042</td>
<td>0.091</td>
<td>0.116</td>
</tr>
<tr>
<td>USGS 14144700</td>
<td>106.50</td>
<td>223</td>
<td>5952</td>
<td>0.039</td>
<td>0.13</td>
<td>0.169</td>
</tr>
<tr>
<td>ACOE SHNO3</td>
<td>85.75</td>
<td>270</td>
<td>7996</td>
<td>0.089</td>
<td>0.116</td>
<td>0.162</td>
</tr>
</tbody>
</table>
Figure 3: Willamette River below the Willamette Falls model-data water level comparison, 2001

Figure 4: Willamette River at Portland model-data water level comparison, 2001
Figure 5: Columbia River below Bonneville Dam model-data water level comparison, 2001

Figure 6: Columbia River at Vancouver, WA model-data water level comparison, 2001
Figure 7: Columbia River at St. Helens, OR model-data water level comparison, 2001

Figure 8: Columbia River at Beaver Army Terminal model-data flow comparison, 2001
Year 2002

The hydrodynamic calibration period in 2002 was from April to September. Figure 9 through 14 show the water level and flow comparison between model predictions and measured data. Error statistics are summarized in Table 3. The water level was underestimated at high flow period (Julian Day 95-114) for several segments (Segment 2, 66, 223). The reason could be inaccurate segment width at high water levels, or special hydrodynamic phenomenon that was unknown at high flow period. However, during summer and fall when river temperature is more critical, the model was better able to predict the water level.

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14246900</td>
<td>53.00</td>
<td>347</td>
<td>17446</td>
<td>-14.525</td>
<td>14.874</td>
<td>28.392</td>
</tr>
<tr>
<td>USGS 14207770</td>
<td>26.48</td>
<td>2</td>
<td>8352</td>
<td>-0.198</td>
<td>0.224</td>
<td>0.396</td>
</tr>
<tr>
<td>USGS 14211720</td>
<td>12.70</td>
<td>66</td>
<td>8352</td>
<td>-0.12</td>
<td>0.141</td>
<td>0.201</td>
</tr>
<tr>
<td>USGS 14128870</td>
<td>144.5</td>
<td>118</td>
<td>4175</td>
<td>-0.006</td>
<td>0.114</td>
<td>0.15</td>
</tr>
<tr>
<td>USGS 14144700</td>
<td>106.50</td>
<td>223</td>
<td>16704</td>
<td>-0.061</td>
<td>0.115</td>
<td>0.172</td>
</tr>
<tr>
<td>ACOE SHNO3</td>
<td>85.75</td>
<td>270</td>
<td>22128</td>
<td>0.035</td>
<td>0.136</td>
<td>0.186</td>
</tr>
</tbody>
</table>

Table 3: Lower Willamette River hydrodynamic calibration statistics, 2002
Figure 9: Willamette River below the Willamette Falls model-data water level comparison, 2002

Figure 10: Willamette River at Portland model-data water level comparison, 2002
Figure 11: Columbia River below Bonneville Dam model-data water level comparison, 2002

Figure 12: Columbia River at Vancouver, WA model-data water level comparison, 2002
Figure 13: Columbia River at St. Helens, OR model-data water level comparison, 2002

Figure 14: Columbia River at Beaver Army Terminal model-data flow comparison, 2002

Temperature
Year 2001

Figure 15 through 26 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 4. Predicted temperature matched data very well for all the 12 sites with the RMSEs below 0.64 °C. The simulation results were similar with the V3.1 model results; however there were some small differences, with V3.7 better predicting on some sites, and V3.1 better predicting on other sites.

Table 4: Willamette River continuous water temperature calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
<th>Number of Comparison s</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGE_2590 A</td>
<td>26.24</td>
<td>2</td>
<td>1426</td>
<td>-0.051</td>
<td>0.256</td>
<td>0.322</td>
<td></td>
</tr>
<tr>
<td>PGE_2590 B</td>
<td>26.24</td>
<td>2</td>
<td>1488</td>
<td>-0.232</td>
<td>0.31</td>
<td>0.398</td>
<td></td>
</tr>
<tr>
<td>LASAR 26745 Shallow</td>
<td>20.75</td>
<td>33</td>
<td>1488</td>
<td>-0.064</td>
<td>0.371</td>
<td>0.447</td>
<td></td>
</tr>
<tr>
<td>LASAR 26745 Deep</td>
<td>20.75</td>
<td>33</td>
<td>1488</td>
<td>-0.011</td>
<td>0.386</td>
<td>0.466</td>
<td></td>
</tr>
<tr>
<td>LASAR 26760</td>
<td>11.10</td>
<td>107</td>
<td>160</td>
<td>-0.186</td>
<td>0.222</td>
<td>0.273</td>
<td></td>
</tr>
<tr>
<td>USGS4 53651122022200</td>
<td>140.40</td>
<td>134</td>
<td>1488</td>
<td>0.025</td>
<td>0.12</td>
<td>0.168</td>
<td></td>
</tr>
<tr>
<td>USGS 453630122021400</td>
<td>140.40</td>
<td>134</td>
<td>1279</td>
<td>0.029</td>
<td>0.061</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td>USGS 453439122223900</td>
<td>121.75</td>
<td>187</td>
<td>1284</td>
<td>-0.058</td>
<td>0.137</td>
<td>0.169</td>
<td></td>
</tr>
<tr>
<td>USGS 14129400 LASAR 26752</td>
<td>121.50</td>
<td>188</td>
<td>2975</td>
<td>-0.042</td>
<td>0.123</td>
<td>0.158</td>
<td></td>
</tr>
<tr>
<td>LASAR 26747</td>
<td>85.50</td>
<td>271</td>
<td>163</td>
<td>-0.42</td>
<td>0.423</td>
<td>0.492</td>
<td></td>
</tr>
<tr>
<td>LASAR 26754</td>
<td>67.00</td>
<td>314</td>
<td>989</td>
<td>0.463</td>
<td>0.499</td>
<td>0.608</td>
<td></td>
</tr>
<tr>
<td>USGS 14246900</td>
<td>53.00</td>
<td>347</td>
<td>5952</td>
<td>-0.074</td>
<td>0.264</td>
<td>0.636</td>
<td></td>
</tr>
</tbody>
</table>
Figure 15: Willamette River downstream of the Willamette Falls site A model-data continuous temperature comparison, 2001

Figure 15: Willamette River downstream of the Willamette Falls site B model-data continuous temperature comparison, 2001
Figure 16: Willamette River downstream of the Willamette Falls site B continuous model-data temperature comparison, 2001

Figure 17: Willamette River at Roehr Waterfront Park (shallow) model-data continuous temperature comparison,
Figure 18: Willamette River at Roehr Waterfront Park (deep) model-data continuous temperature comparison, 2001

Figure 19: Multnomah Channel downstream of Gilbert River model-data continuous temperature comparison, 2001
Figure 20: Columbia River Left Bank at Dodson continuous model-data temperature comparison, 2001

Figure 21: Columbia River Right Bank near Skamania model-data continuous temperature comparison, 2001
Figure 22: Columbia River at Washougal, WA model-data continuous temperature comparison, 2001

Figure 23: Columbia River at RM 122.5 model-data continuous temperature comparison, 2001
Figure 24: Columbia River d/s Multnomah Channel model-data continuous temperature comparison, 2001

Figure 25: Columbia River at RM 66.8 model-data continuous temperature comparison, 2001
Year 2002

Figure 27 through 47 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 5. Predicted temperature matched data very well for all the 12 sites with the RMSEs below 0.78 °C.

For some sites, there were two series of measured data. These series of data were marked as either “shallow” or “deep”, indicating the different depths where water temperature was measured. These measured temperature data were compared with predicted temperature at the according depth.
The simulation results were similar with the V3.1 model results; however there were some small differences, with V3.7 better predicting on some sites, and V3.1 better predicting on other sites.

Table 5: Willamette River continuous water temperature calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Segment</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASAR 26745 Shallow</td>
<td>20.75</td>
<td>33</td>
<td>3370</td>
<td>0.289</td>
<td>0.431</td>
<td>0.543</td>
</tr>
<tr>
<td>LASAR 26745 Deep</td>
<td>20.75</td>
<td>33</td>
<td>3370</td>
<td>0.23</td>
<td>0.378</td>
<td>0.474</td>
</tr>
<tr>
<td>LASAR 28506 Shallow</td>
<td>18.83</td>
<td>45</td>
<td>3351</td>
<td>0.319</td>
<td>0.43</td>
<td>0.525</td>
</tr>
<tr>
<td>LASAR 28506 Deep</td>
<td>18.83</td>
<td>45</td>
<td>3351</td>
<td>-0.178</td>
<td>0.444</td>
<td>0.51</td>
</tr>
<tr>
<td>LASAR 28507 Shallow</td>
<td>18.75</td>
<td>46</td>
<td>3351</td>
<td>0.321</td>
<td>0.429</td>
<td>0.523</td>
</tr>
<tr>
<td>LASAR 28507 Deep</td>
<td>18.75</td>
<td>46</td>
<td>3351</td>
<td>-0.163</td>
<td>0.4</td>
<td>0.463</td>
</tr>
<tr>
<td>LASAR 28508 Shallow</td>
<td>18.59</td>
<td>48</td>
<td>3351</td>
<td>0.373</td>
<td>0.462</td>
<td>0.562</td>
</tr>
<tr>
<td>LASAR 28508 Deep</td>
<td>18.59</td>
<td>48</td>
<td>3351</td>
<td>-0.073</td>
<td>0.377</td>
<td>0.431</td>
</tr>
<tr>
<td>LASAR 29747 QA set</td>
<td>17.38</td>
<td>52</td>
<td>2945</td>
<td>0.229</td>
<td>0.371</td>
<td>0.451</td>
</tr>
<tr>
<td>USGS 14211720</td>
<td>12.70</td>
<td>66</td>
<td>8352</td>
<td>0.152</td>
<td>0.361</td>
<td>0.463</td>
</tr>
<tr>
<td>LASAR 28765 Shallow</td>
<td>7.14</td>
<td>83</td>
<td>2402</td>
<td>-0.127</td>
<td>0.273</td>
<td>0.341</td>
</tr>
<tr>
<td>LASAR 28765 Deep</td>
<td>7.14</td>
<td>83</td>
<td>3351</td>
<td>0.011</td>
<td>0.238</td>
<td>0.293</td>
</tr>
<tr>
<td>LASAR 29746 Shallow</td>
<td>3.20</td>
<td>91</td>
<td>3351</td>
<td>-0.015</td>
<td>0.327</td>
<td>0.441</td>
</tr>
<tr>
<td>LASAR 29746 Deep</td>
<td>3.20</td>
<td>91</td>
<td>3351</td>
<td>0.183</td>
<td>0.35</td>
<td>0.459</td>
</tr>
<tr>
<td>USGS 453630122021400</td>
<td>140.40</td>
<td>134</td>
<td>4176</td>
<td>0.023</td>
<td>0.052</td>
<td>0.074</td>
</tr>
<tr>
<td>USGS 453439122223900</td>
<td>121.75</td>
<td>187</td>
<td>4176</td>
<td>-0.036</td>
<td>0.134</td>
<td>0.183</td>
</tr>
<tr>
<td>LASAR 26747 Shallow</td>
<td>85.50</td>
<td>271</td>
<td>5296</td>
<td>-0.656</td>
<td>0.667</td>
<td>0.774</td>
</tr>
<tr>
<td>LASAR 26747 Deep</td>
<td>85.50</td>
<td>271</td>
<td>5296</td>
<td>-0.172</td>
<td>0.277</td>
<td>0.348</td>
</tr>
<tr>
<td>LASAR 26754 Shallow</td>
<td>67.00</td>
<td>314</td>
<td>5299</td>
<td>0.45</td>
<td>0.491</td>
<td>0.578</td>
</tr>
<tr>
<td>LASAR 26754 Deep</td>
<td>67.00</td>
<td>314</td>
<td>5299</td>
<td>0.393</td>
<td>0.443</td>
<td>0.532</td>
</tr>
<tr>
<td>USGS 14246900</td>
<td>53.00</td>
<td>347</td>
<td>16702</td>
<td>0.01</td>
<td>0.15</td>
<td>0.193</td>
</tr>
</tbody>
</table>
Figure 27: Willamette River at Roehr Waterfront Park (shallow) model-data continuous temperature comparison, 2002

Figure 28: Willamette River at Roehr Waterfront Park (deep) model-data continuous temperature comparison, 2002
Figure 29: Willamette River north of Deer Island (shallow) model-data continuous temperature comparison, 2002

Figure 30: Willamette River north of Deer Island (deep) model-data continuous temperature comparison, 2002
Figure 31: Willamette River upstream of Kellog Creek WWTP outfall (shallow) model-data continuous temperature comparison, 2002

Figure 32: Willamette River upstream of Kellog Creek WWTP outfall (deep) model-data continuous temperature comparison, 2002
Figure 33: Willamette River downstream of Kellog Creek WWTP outfall (shallow) model-data continuous temperature comparison, 2002

Figure 34: Willamette River downstream of Kellog Creek WWTP outfall (deep) model-data continuous temperature comparison, 2002
Figure 35: Willamette River at Waverly Country Club model-data continuous temperature comparison, 2002

Figure 36: Willamette River at Waverly Country Club (QA data set) model-data continuous temperature comparison, 2002
Figure 37: Willamette River at St. Johns Bridge (deep) model-data continuous temperature comparison, 2002

Figure 38: Willamette River at St. Johns Bridge (shallow) model-data continuous temperature comparison, 2002
Figure 39: Willamette River upstream of Oregon Steel Mills (shallow) model-data continuous temperature comparison, 2002

Figure 40: Willamette River upstream of Oregon Steel Mills (deep) model-data continuous temperature comparison,
Figure 41: Columbia River left bank at Dodson, OR model-data continuous temperature comparison, 2002

Figure 42: Columbia River at Washougal, WA model-data continuous temperature comparison, 2002
Figure 43: Columbia River downstream of Multnomah Channel (deep) model-data continuous temperature comparison, 2002

Figure 44: Columbia River downstream of Multnomah Channel (shallow) model-data continuous temperature comparison, 2002
Figure 45: Columbia River at RM 66.8 (deep) model-data continuous temperature comparison, 2002

Figure 46: Columbia River at RM 66.8 (shallow) model-data continuous temperature comparison, 2002
2.2.2 Middle Willamette River

Introduction

The Middle Willamette River model domain starts from Salem (RM 85.4) and ends at Willamette Falls (RM 26.8). The model was set up as 3 water bodies, including 6 branches, 407 segments and 45 layers. There are 10 tributaries flows into the system. Among the 6 branches, there were loop branches, which represented flow around two islands. The model grid is shown in Figure 48.
Figure 48: Middle Willamette River Model Grid

Hydrodynamics

Flow rate and water surface elevation was first tested using the original setting in V3.1 model. As the model showed good agreement with data, no further calibrations were conducted.

Year 2001
The hydrodynamic calibration period in 2001 was from August to September. Error statistics are summarized in Table 6. Figure 49 through 51 show the water level and flow comparison between model predictions and measured data. Previous research suspected that the water level measurement at Segment 396 was not accurate (Berger, et al., 2004). Despite that, the flow rate and water level predicted by CE-QUAL-W2 Version 3.7 model showed good consistency with data measured.

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 141910000</td>
<td>84.69</td>
<td>5</td>
<td>3096</td>
<td>-0.014</td>
<td>0.149</td>
<td>0.231</td>
</tr>
</tbody>
</table>

Table 6: Middle Willamette River hydrodynamic calibration statistics, 2001

Flow

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 141910000</td>
<td>84.69</td>
<td>5</td>
<td>3096</td>
<td>0.163</td>
<td>0.163</td>
<td>0.163</td>
</tr>
<tr>
<td>USGS 14207740</td>
<td>26.81</td>
<td>396</td>
<td>3096</td>
<td>-0.036</td>
<td>0.073</td>
<td>0.099</td>
</tr>
</tbody>
</table>

Water Level

![Figure 49: Willamette River at Salem model-data flow comparison, 2001](image)
Figure 50: Willamette River at Salem model-data water level comparison, 2001

Figure 51: Willamette River at the Willamette Falls model-data water level comparison, 2001
Year 2002

The hydrodynamic calibration period in 2002 was from April to September. Figure 52 through 55 show the water level and flow comparison between model predictions and measured data. There were slightly overestimate in water level for several sites. Error statistics are summarized in Table 7.

Table 7: Middle Willamette River hydrodynamic calibration statistics, 2002

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14191000</td>
<td>84.69</td>
<td>5</td>
<td>8736</td>
<td>-363.979</td>
<td>363.979</td>
<td>467.394</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14191000</td>
<td>84.69</td>
<td>5</td>
<td>8736</td>
<td>0.219</td>
<td>0.219</td>
<td>0.249</td>
</tr>
<tr>
<td>USGS 14197900</td>
<td>50.11</td>
<td>246</td>
<td>8736</td>
<td>0.209</td>
<td>0.289</td>
<td>0.38</td>
</tr>
<tr>
<td>USGS 14207740</td>
<td>26.81</td>
<td>396</td>
<td>17470</td>
<td>0.141</td>
<td>0.235</td>
<td>0.235</td>
</tr>
</tbody>
</table>

Figure 52: Willamette River at Salem model-data flow comparison, 2001
Figure 53: Willamette River at Salem model-data water level comparison, 2002

Figure 54: Willamette River at Newberg model-data water level comparison, 2002
Temperature

Year 2001

Figure 56 through 81 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 8. Predicted temperature matched data very well for all the 22 sites with the RMSEs below 0.84 °C.

Table 8: Willamette River continuous water temperature calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Comparisons</td>
</tr>
<tr>
<td>USGS 14191000</td>
<td>85.66</td>
<td>5</td>
<td>253</td>
</tr>
<tr>
<td>USGS 14192015</td>
<td>82.60</td>
<td>18</td>
<td>2839</td>
</tr>
<tr>
<td>LASAR 28255</td>
<td>79.18</td>
<td>40</td>
<td>2951</td>
</tr>
<tr>
<td>LASAR 10344</td>
<td>72.63</td>
<td>82</td>
<td>1596</td>
</tr>
<tr>
<td>Location</td>
<td>X Coord</td>
<td>Y Coord</td>
<td>Water Level</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PGE Eagle Nest A</td>
<td>63.95</td>
<td>140</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Eagle Nest B</td>
<td>63.95</td>
<td>140</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Coffee Island A</td>
<td>61.51</td>
<td>156</td>
<td>1595</td>
</tr>
<tr>
<td>PGE Coffee Island B</td>
<td>61.51</td>
<td>156</td>
<td>1596</td>
</tr>
<tr>
<td>PGE San Salvador A</td>
<td>55.58</td>
<td>196</td>
<td>1596</td>
</tr>
<tr>
<td>PGE San Salvador B</td>
<td>55.58</td>
<td>196</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Ash Island A</td>
<td>52.76</td>
<td>228</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Ash Island B</td>
<td>52.76</td>
<td>228</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Champoeg Dock A</td>
<td>45.21</td>
<td>277</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Champoeg Dock B</td>
<td>45.21</td>
<td>277</td>
<td>1596</td>
</tr>
<tr>
<td>LASAR 10340</td>
<td>38.94</td>
<td>318</td>
<td>3192</td>
</tr>
<tr>
<td>PGE US Molalla R. A</td>
<td>36.17</td>
<td>336</td>
<td>1577</td>
</tr>
<tr>
<td>PGE US Molalla R. B</td>
<td>36.17</td>
<td>336</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Canby A</td>
<td>34.32</td>
<td>348</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Canby B</td>
<td>34.32</td>
<td>348</td>
<td>1596</td>
</tr>
<tr>
<td>PGE Powerline A</td>
<td>29.37</td>
<td>380</td>
<td>1548</td>
</tr>
<tr>
<td>PGE Powerline B</td>
<td>29.37</td>
<td>380</td>
<td>1548</td>
</tr>
<tr>
<td>PGE Tug Dock A</td>
<td>28.61</td>
<td>384</td>
<td>1548</td>
</tr>
<tr>
<td>PGE Tug Dock B</td>
<td>28.61</td>
<td>384</td>
<td>1548</td>
</tr>
<tr>
<td>PGE Boathouse A</td>
<td>27.27</td>
<td>393</td>
<td>1548</td>
</tr>
<tr>
<td>PGE Boathouse B</td>
<td>27.27</td>
<td>393</td>
<td>1548</td>
</tr>
<tr>
<td>PGE Forebay A</td>
<td>26.81</td>
<td>396</td>
<td>1516</td>
</tr>
<tr>
<td>PGE Forebay B</td>
<td>26.81</td>
<td>396</td>
<td>1517</td>
</tr>
<tr>
<td>PGE Log Boom A</td>
<td>26.81</td>
<td>396</td>
<td>1548</td>
</tr>
<tr>
<td>PGE Log Boom B</td>
<td>26.81</td>
<td>396</td>
<td>1192</td>
</tr>
<tr>
<td>USGS 14207740</td>
<td>28.81</td>
<td>396</td>
<td>2544</td>
</tr>
</tbody>
</table>
Figure 56: Willamette River at Salem model-data continuous temperature comparison, 2001

Figure 57: Willamette River at Keizer model-data continuous temperature comparison, 2001
Figure 58: Willamette River at Willow Lake Treatment Plant model-data continuous temperature comparison, 2001

Figure 59: Willamette River at Wheatland Ferry model-data continuous temperature comparison, 2001
Figure 60: Willamette River at Eagle Nest A model-data continuous temperature comparison, 2001

Figure 61: Willamette River at Eagle Nest B model-data continuous temperature comparison, 2001
Figure 62: Willamette River at Coffee Island A model-data continuous temperature comparison, 2001

Figure 63: Willamette River at Coffee Island B model-data continuous temperature comparison, 2001
Figure 64: Willamette River at San Salvador A model-data continuous temperature comparison, 2001

Figure 65: Willamette River at San Salvador B model-data continuous temperature comparison, 2001
Figure 66: Willamette River above Ash Island A model-data continuous temperature comparison, 2001

Figure 67: Willamette River above Ash Island B model-data continuous temperature comparison, 2001
Figure 68: Willamette River at Champoeg Park A model-data continuous temperature comparison, 2001

Figure 69: Willamette River at Champoeg Park B model-data continuous temperature comparison, 2001
Figure 70: Willamette River at I5 Bridge, Wilsonville model-data continuous temperature comparison, 2001.

Figure 71: Willamette River upstream of the Molalla River confluence, Power-line A model-data continuous temperature comparison, 2001.
Figure 72: Willamette River upstream of the Molalla River confluence, Power-line B model-data continuous temperature comparison, 2001.

Figure 73: Willamette River at Canby Ferry B model-data continuous temperature comparison, 2001.
Figure 74: Willamette River at Powerline A model-data continuous temperature comparison, 2001

Figure 75: Willamette River at Powerline A model-data continuous temperature comparison, 2001
Figure 76: Willamette River at Tug Dock A model-data continuous temperature comparison, 2001

Figure 77: Willamette River at Boathouse A model-data continuous temperature comparison, 2001
Figure 78: Willamette River at Forebay B model-data continuous temperature comparison, 2001

Figure 79: Willamette River at Log Boom B model-data continuous temperature comparison, 2001
Figure 80: Willamette River at Log Boom B model-data continuous temperature comparison, 2001

Figure 81: Willamette River at the Willamette Falls model-data continuous temperature comparison, 2001
Year 2002

Figure 82 through 89 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 9. Predicted temperature matched data very well for all the 8 sites with the RMSEs below 0.93 °C.

Table 9: Willamette River continuous water temperature calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14192015</td>
<td>82.60</td>
<td>18</td>
<td>8784</td>
<td>-0.355</td>
<td>0.454</td>
<td>0.553</td>
<td></td>
</tr>
<tr>
<td>LASAR 28255</td>
<td>79.18</td>
<td>40</td>
<td>3202</td>
<td>0.019</td>
<td>0.382</td>
<td>0.501</td>
<td></td>
</tr>
<tr>
<td>LASAR 10344</td>
<td>72.63</td>
<td>82</td>
<td>3207</td>
<td>0.04</td>
<td>0.425</td>
<td>0.542</td>
<td></td>
</tr>
<tr>
<td>DEQ Coffee Island</td>
<td>61.51</td>
<td>156</td>
<td>3110</td>
<td>0.279</td>
<td>0.716</td>
<td>0.928</td>
<td></td>
</tr>
<tr>
<td>LASAR 30525</td>
<td>55.30</td>
<td>197</td>
<td>3109</td>
<td>-0.255</td>
<td>0.491</td>
<td>0.612</td>
<td></td>
</tr>
<tr>
<td>USGS 14197900</td>
<td>50.11</td>
<td>246</td>
<td>8736</td>
<td>0.056</td>
<td>0.536</td>
<td>0.681</td>
<td></td>
</tr>
<tr>
<td>LASAR 10340</td>
<td>38.94</td>
<td>318</td>
<td>5393</td>
<td>-0.284</td>
<td>0.622</td>
<td>0.769</td>
<td></td>
</tr>
<tr>
<td>USGS 14207740</td>
<td>28.81</td>
<td>396</td>
<td>8734</td>
<td>-0.198</td>
<td>0.51</td>
<td>0.638</td>
<td></td>
</tr>
</tbody>
</table>

Figure 82: Willamette River at Forebay A model-data continuous temperature comparison, 2001
Figure 83: Willamette River at Willow Lake Treatment Plant model-data continuous temperature comparison, 2002

Figure 84: Willamette River at Wheatland Ferry model-data continuous temperature comparison, 2002
Figure 85: Willamette River at Coffee Island model-data continuous temperature comparison, 2002

Figure 86: Willamette River upstream of the Yamhill River model-data continuous temperature comparison, 2002
Figure 87: Willamette River at Newberg model-data continuous temperature comparison, 2002

Figure 88: Willamette River at I5 Bridge, Wilsonville model-data continuous temperature comparison, 2002
2.2.3 Upper Willamette River

Introduction

Upper Willamette River model domain includes the upstream part of Willamette River main stem, which starts from RM 185.2 and ends at RM 85.4. The model was set up as 9 water bodies including 13 branches, with 667 segments and 45 layers. There are 14 tributaries flows into the reach. The model grid is shown in Figure 90.
Hydrodynamics

In the original setup in V3.1 model, AX (longitudinal eddy viscosity, m2/s) and DX (longitudinal eddy diffusivity, m2/s) were at the magnitude of 50, which was derived from dye study. However, the Version 3.7 model suffered stability issues with these parameters being set to so big. These two parameters were assigned to 1.0. Further calibration was conducted by changing Manning friction coefficients. The calibrated model showed better hydrodynamic predictions result for year 2001 than year 2002. The reason was that calibration was first conducted for year 2001. Although there was a
potential for further model improvement, the calibration was conducted until hydrodynamic and temperature results were acceptable.

Year 2001

The hydrodynamic calibration period in 2001 was from June to September. Figure 91 through 98 show the water level and flow comparison between model predictions and measured data. The figures showed that flow predictions matched well with data. Error statistics are summarized in Table 10.

Overall, model predicted flow rate and water surface elevation showed good agreement with measured data, except for water level predictions at segment 352. However, the measured data indicated the same water level for over 100 days, which raised suspect about the accuracy of this data. As a result, water level calibration for segment 352 was conducted mainly basing on data in Year 2002.

![Table 10: Upper Willamette River hydrodynamic calibration statistics, 2001](image)

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOE EUGO3</td>
<td>182.45</td>
<td>19</td>
<td>4983</td>
<td>0.222</td>
<td>0.497</td>
<td>0.718</td>
</tr>
<tr>
<td>USGS 14166000</td>
<td>161.98</td>
<td>156</td>
<td>4992</td>
<td>-0.241</td>
<td>0.501</td>
<td>0.7</td>
</tr>
<tr>
<td>ACOE CORO3</td>
<td>132.32</td>
<td>352</td>
<td>1728</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USGS 14174000</td>
<td>120.11</td>
<td>434</td>
<td>4634</td>
<td>0.17</td>
<td>0.933</td>
<td>1.516</td>
</tr>
<tr>
<td>USGS 14191000</td>
<td>84.70</td>
<td>665</td>
<td>4678</td>
<td>0.011</td>
<td>0.450</td>
<td>0.562</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOE EUGO3</td>
<td>182.45</td>
<td>19</td>
<td>4983</td>
<td>0.008</td>
<td>0.022</td>
<td>0.028</td>
</tr>
<tr>
<td>USGS 14166000</td>
<td>161.98</td>
<td>156</td>
<td>4992</td>
<td>0.007</td>
<td>0.007</td>
<td>0.012</td>
</tr>
<tr>
<td>Station</td>
<td>Mean</td>
<td>Sr</td>
<td>Median</td>
<td>Standard Deviation</td>
<td>Mean</td>
<td>Sr</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----</td>
<td>--------</td>
<td>--------------------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>ACOE CORO3</td>
<td>132.32</td>
<td>352</td>
<td></td>
<td></td>
<td>-0.004</td>
<td>0.013</td>
</tr>
<tr>
<td>USGS 14174000</td>
<td>120.11</td>
<td>434</td>
<td>4634</td>
<td></td>
<td>-0.004</td>
<td>0.013</td>
</tr>
<tr>
<td>USGS 14191000</td>
<td>84.70</td>
<td>665</td>
<td>5040</td>
<td>Not appropriate comparison, 1 km downstream of model grid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 91: Willamette River at Eugene model-data flow comparison, 2001
Figure 92: Willamette River at Eugene model-data water level comparison, 2001

Figure 93: Willamette River at Harrisburg model-data flow comparison, 2001
Figure 94: Willamette River at Harrisburg model-data water level comparison, 2001

Figure 95: Willamette River at Corvallis model-data water level comparison, 2001
Figure 969: Willamette River at Albany model-data flow comparison, 2001

Figure 97: Willamette River at Albany model-data water level comparison, 2001
Year 2002

The hydrodynamic calibration period in 2002 was from May to October. Figure 99 through 107 show the water level and flow comparison between model predictions and measured data. The figures showed that flow predictions matched well with data. Error statistics are summarized in Table 11.

Table 11: Upper Willamette River hydrodynamic calibration statistics, 2002

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m3/s</th>
<th>AME, m3/s</th>
<th>RMSE, m3/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOE EUGO3</td>
<td>182.45</td>
<td>19</td>
<td>8289</td>
<td>0.266</td>
<td>0.586</td>
<td>2.649</td>
</tr>
<tr>
<td>USGS 14166000</td>
<td>161.98</td>
<td>156</td>
<td>8399</td>
<td>0.027</td>
<td>1.237</td>
<td>6.948</td>
</tr>
<tr>
<td>ACOE CORO3</td>
<td>132.32</td>
<td>352</td>
<td>15701</td>
<td>0.611</td>
<td>1.18</td>
<td>10.378</td>
</tr>
<tr>
<td>USGS 14174000</td>
<td>120.11</td>
<td>434</td>
<td>8399</td>
<td>0.993</td>
<td>1.694</td>
<td>15.265</td>
</tr>
<tr>
<td>USGS 14191000</td>
<td>84.70</td>
<td>665*</td>
<td>5758</td>
<td>0.081</td>
<td>0.987</td>
<td>1.650</td>
</tr>
<tr>
<td>Gage ID</td>
<td>RM</td>
<td>Model Segment</td>
<td>Number of Comparisons</td>
<td>ME, m</td>
<td>AME, m</td>
<td>RMSE, m</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>ACOE EUGO3</td>
<td>182.45</td>
<td>19</td>
<td>8289</td>
<td>0.073</td>
<td>0.073</td>
<td>0.076</td>
</tr>
<tr>
<td>USGS 14166000</td>
<td>161.98</td>
<td>156</td>
<td>8399</td>
<td>-0.131</td>
<td>0.14</td>
<td>0.156</td>
</tr>
<tr>
<td>ACOE CORO3</td>
<td>132.32</td>
<td>352</td>
<td>15701</td>
<td>0.106</td>
<td>0.106</td>
<td>0.118</td>
</tr>
<tr>
<td>USGS 14174000</td>
<td>120.11</td>
<td>434</td>
<td>8399</td>
<td>0.026</td>
<td>0.028</td>
<td>0.075</td>
</tr>
<tr>
<td>USGS 14191000</td>
<td>84.70</td>
<td>665*</td>
<td>5760</td>
<td>Not appropriate comparison, 1 km downstream of model grid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 99: Willamette River at Eugene model-data flow comparison, 2002
Figure 100: Willamette River at Eugene model-data water level comparison, 2002

Figure 101: Willamette River at Harrisburg model-data flow comparison, 2002
Figure 102: Willamette River at Harrisburg model-data water level comparison, 2002

Figure 103: Willamette River at Corvallis model-data flow comparison, 2002
Figure 104: Willamette River at Corvallis model-data water level comparison, 2002

Figure 105: Willamette River at Albany model-data flow comparison, 2002
Figure 106: Willamette River at Albany model-data water level comparison, 2002

Figure 107: Willamette River at Salem model-data flow comparison, 2002 (gage is 900 m downstream)

Temperature
Year 2001

Figure 108 through 119 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 12. Predicted temperature matched data very well for all the 12 sites with the RMSEs below 0.88 °C.

Table 12: Upper Willamette River continuous water temperature calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASAR 10359</td>
<td>185.3</td>
<td>2</td>
<td>5040</td>
<td>0.004</td>
<td>0.034</td>
<td>0.048</td>
</tr>
<tr>
<td>LASAR 28723</td>
<td>177.7</td>
<td>53</td>
<td>2362</td>
<td>-0.223</td>
<td>0.464</td>
<td>0.593</td>
</tr>
<tr>
<td>USGS 1416600</td>
<td>162.0</td>
<td>156</td>
<td>5040</td>
<td>0.135</td>
<td>0.659</td>
<td>0.782</td>
</tr>
<tr>
<td>LASAR 26755</td>
<td>151.6</td>
<td>227</td>
<td>5040</td>
<td>0.332</td>
<td>0.647</td>
<td>0.803</td>
</tr>
<tr>
<td>LASAR 26753</td>
<td>147.4</td>
<td>255</td>
<td>5040</td>
<td>0.444</td>
<td>0.698</td>
<td>0.877</td>
</tr>
<tr>
<td>LASAR 26772</td>
<td>142.4</td>
<td>287</td>
<td>5040</td>
<td>0.317</td>
<td>0.708</td>
<td>0.861</td>
</tr>
<tr>
<td>LASAR 10353</td>
<td>135.2</td>
<td>334</td>
<td>2520</td>
<td>0.169</td>
<td>0.514</td>
<td>0.654</td>
</tr>
<tr>
<td>USGS 1417400</td>
<td>120.2</td>
<td>434</td>
<td>2179</td>
<td>-0.129</td>
<td>0.408</td>
<td>0.519</td>
</tr>
<tr>
<td>LASAR 10349</td>
<td>113.9</td>
<td>476</td>
<td>4967</td>
<td>-0.005</td>
<td>0.498</td>
<td>0.638</td>
</tr>
<tr>
<td>LASAR 10347</td>
<td>96.9</td>
<td>589</td>
<td>4958</td>
<td>-0.213</td>
<td>0.476</td>
<td>0.59</td>
</tr>
<tr>
<td>LASAR 28254</td>
<td>88.9</td>
<td>643</td>
<td>2520</td>
<td>0.063</td>
<td>0.606</td>
<td>0.791</td>
</tr>
<tr>
<td>USGS 1419100</td>
<td>84.7</td>
<td>666</td>
<td>600</td>
<td>0.139</td>
<td>0.46</td>
<td>0.562</td>
</tr>
</tbody>
</table>
Figure 108: Upper Willamette River near Springfield model-data continuous temperature comparison, 2001

Figure 109: Upper Willamette River above McKenzie River model-data continuous temperature comparison, 2001
Figure 110: Upper Willamette River at Harrisburg model-data continuous temperature comparison, 2001

Figure 111: Upper Willamette River above Long Tom River model-data continuous temperature comparison, 2001
Figure 112: Upper Willamette River at RM 147.4 model-data continuous temperature comparison, 2001

Figure 113: Upper Willamette River at RM 142.4 model-data continuous temperature comparison, 2001
Figure 114: Upper Willamette River at Corvallis model-data continuous temperature comparison, 2001

Figure 115: Upper Willamette River at Albany model-data continuous temperature comparison, 2001
Figure 116: Upper Willamette River at Conser Rd model-data continuous temperature comparison, 2001

Figure 117: Upper Willamette River at South River Rd model-data continuous temperature comparison, 2001
Figure 118: Upper Willamette River above Rickreall Creek model-data continuous temperature comparison, 2001

Figure 119: Upper Willamette River at Salem model-data continuous temperature comparison, 2001
Year 2002

Figure 120 through 130 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 13. Predicted temperature matched data very well for all the 10 sites with the RMSEs below 0.73 °C.

Table 13: Upper Willamette River continuous water temperature calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number of Comparisons</td>
<td>ME, °C</td>
</tr>
<tr>
<td>LASAR 10359</td>
<td>185.3</td>
<td>2</td>
<td>5761</td>
</tr>
<tr>
<td>LASAR 28723</td>
<td>177.7</td>
<td>53</td>
<td>4152</td>
</tr>
<tr>
<td>USGS 14166000</td>
<td>162.0</td>
<td>156</td>
<td>8303</td>
</tr>
<tr>
<td>LASAR 26755</td>
<td>151.6</td>
<td>227</td>
<td>5959</td>
</tr>
<tr>
<td>LASAR 26753</td>
<td>147.4</td>
<td>255</td>
<td>5955</td>
</tr>
<tr>
<td>LASAR 26772</td>
<td>142.4</td>
<td>287</td>
<td>4077</td>
</tr>
<tr>
<td>LASAR 10353</td>
<td>135.2</td>
<td>334</td>
<td>4063</td>
</tr>
<tr>
<td>USGS 14174000</td>
<td>120.2</td>
<td>434</td>
<td>8303</td>
</tr>
<tr>
<td>LASAR 10349</td>
<td>113.9</td>
<td>476</td>
<td>5993</td>
</tr>
<tr>
<td>LASAR 10347</td>
<td>96.9</td>
<td>589</td>
<td>5665</td>
</tr>
<tr>
<td>LASAR 28254</td>
<td>88.9</td>
<td>643</td>
<td>2688</td>
</tr>
</tbody>
</table>
Figure 120: Upper Willamette River near Springfield model-data continuous temperature comparison, 2002

Figure 121: Upper Willamette River above McKenzie River model-data continuous temperature comparison, 2002
Figure 122: Upper Willamette River at Harrisburg model-data continuous temperature comparison, 2002

Figure 123: Upper Willamette River above Long Tom River model-data continuous temperature comparison, 2002
Figure 124: Upper Willamette River at RM 147.4 model-data continuous temperature comparison, 2002

Figure 125: Upper Willamette River at RM 142.4 model-data continuous temperature comparison, 2002
Figure 126: Upper Willamette River at Corvallis model-data continuous temperature comparison, 2002

Figure 127: Upper Willamette River at Albany model-data continuous temperature comparison, 2002
Figure 128: Upper Willamette River at Conser Rd model-data continuous temperature comparison, 2002

Figure 129: Upper Willamette River at South River Rd model-data continuous temperature comparison, 2002
Figure 130: Upper Willamette River above Rickreall Creek model-data continuous temperature comparison, 2002
2.2.4 Clackamas River

Introduction

Clackamas River is a right-bank tributary of Willamette River. Following the original set up in Clackamas River V3.1 model, Clackamas River V3.7 model was built from Rivermill Reservoir (RM 22.6) to the river’s confluence with the Willamette River (RM 0). The model consists of 2 branches, 149 segments, and 40 layers. The model grid is shown in Figure 131.

Clackamas River V3.7 model calibration period is from April 1 to September 30 in 2001 and from April 1 to October in 2002.

![Figure 131: Clackamas River model grid](image)

Hydrodynamics
Flow rate and water surface elevation was first tested using the original setting in V3.1 model. As the model showed good agreement with data, no further calibrations were conducted.

Year 2001

Figure 132 through 135 show the water level and flow comparison between model predictions and measured data. Error statistics are summarized in Table 14.

The flow predictions matched well with data for the both sites. For the water level at segment 2, however, the model over estimated at high flow conditions, and under estimated at low flow conditions. The 1-meter layer depth might result in coarse bathymetry and led this problem to occur. Similar problem existed in V3.1 model, but was not as severe as in V3.7 model.

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8664</td>
<td>0.021</td>
<td>0.564</td>
<td>1.169</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>5380</td>
<td>-0.004</td>
<td>1.213</td>
<td>2.192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8664</td>
<td>-0.314</td>
<td>0.539</td>
<td>0.619</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>5380</td>
<td>-0.078</td>
<td>0.098</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Figure 132: Clackamas River at Estacada model-data flow comparison, 2001

Clackamas River at Estacada, downstream of Rivermill Dam, RM 22.22

![Flow Comparison Graph]

Figure 133: Clackamas River at Estacada model-data water level comparison, 2001

Clackamas River at Estacada, downstream of Rivermill Dam, RM 22.22

![Water Level Comparison Graph]
Figure 134: Clackamas River near Oregon City model-data flow comparison, 2001

Figure 135: Clackamas River near Oregon City model-data water level comparison, 2001

Year 2002
The hydrodynamic calibration period in 2002 was from April to September. Figure 136 through 140 show the water level and flow comparison between model predictions and measured data. Error statistics are summarized in Table 15.

The model predicted rapidly changing flow rate in two periods in 2002 at Estacada (Segment 2), and resulted in oscillation of flow curve in Figure 136. This was caused by stability issues. The time step at these two unstable periods was 10s. Time step was then decreased to 5s, and the stability issues disappeared.

<table>
<thead>
<tr>
<th>Table 15: Clackamas River hydrodynamic calibration statistics, 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>Gage ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>USGS 14210000</td>
</tr>
<tr>
<td>USGS 14211010</td>
</tr>
<tr>
<td>Water Level</td>
</tr>
<tr>
<td>Gage ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>USGS 14210000</td>
</tr>
<tr>
<td>USGS 14211010</td>
</tr>
</tbody>
</table>
Figure 136: Clackamas River at Estacada model-data flow comparison, time step=10s, 2002

Figure 137: Clackamas River at Estacada model-data flow comparison, time step=5s, 2002
Figure 138: Clackamas River at Estacada model-data water level comparison, 2002

Figure 139: Clackamas River near Oregon City model-data flow comparison, 2002
Temperature

Year 2001

Figure 141 through 146 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 16. Predicted temperature matched data very well for all the 6 sites with the RMSEs below 1.04 °C.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Comparisons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>3831</td>
<td>0.005</td>
<td>0.015</td>
<td>0.024</td>
</tr>
<tr>
<td>PGE CRMCIV</td>
<td>20.64</td>
<td>12</td>
<td>3934</td>
<td>0.2</td>
<td>0.563</td>
<td>0.784</td>
</tr>
<tr>
<td>PGE CRUPEC</td>
<td>16.30</td>
<td>41</td>
<td>4379</td>
<td>0.282</td>
<td>0.735</td>
<td>0.923</td>
</tr>
<tr>
<td>PGE CRBART</td>
<td>13.25</td>
<td>60</td>
<td>3852</td>
<td>-0.001</td>
<td>0.734</td>
<td>0.888</td>
</tr>
<tr>
<td>PGE CRATCB</td>
<td>8.11</td>
<td>93</td>
<td>4306</td>
<td>0.07</td>
<td>0.778</td>
<td>0.955</td>
</tr>
<tr>
<td>PGE CRATOC</td>
<td>2.41</td>
<td>133</td>
<td>4379</td>
<td>-0.087</td>
<td>0.823</td>
<td>1.033</td>
</tr>
</tbody>
</table>
Figure 141: Clackamas River at Estacada model-data continuous temperature comparison, 2001
Figure 142: Clackamas River at McIver Park model-data continuous temperature comparison, 2001

Figure 143: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2001
Figure 144: Clackamas River at Barton model-data continuous temperature comparison, 2001

Figure 145: Clackamas River at Carver Bridge model-data continuous temperature comparison, 2001
Year 2002

Figure 147 through 152 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 17. Predicted temperature matched data very well for all the 3 sites with the RMSEs below 0.72 °C.

Table 17: Clackamas River continuous water temperature calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Comparisons</td>
</tr>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8687</td>
</tr>
<tr>
<td>LASAR 30439</td>
<td>16.30</td>
<td>41</td>
<td>1309</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>4922</td>
</tr>
</tbody>
</table>
Figure 147: Clackamas River at Estacada model-data continuous temperature comparison, 2002

Figure 148: Clackamas River at Rivermill Tailrace model-data continuous temperature comparison, 2002
Figure 149: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2002

Figure 150: Clackamas River upstream of Clear Creek model-data continuous temperature comparison, 2002
Figure 151: Clackamas River at Oregon City model-data continuous temperature comparison, 2002

Figure 152: Clackamas River at Oregon City model-data continuous temperature comparison, 2002
2.2.5 McKenzie River

Introduction

McKenzie River model domain includes South Fork McKenzie River from Cougar Reservoir and McKenzie River. Blue River was treated as a tributary into the system. Leaburg Canal and Walterville Canal were included in the system as loop branches. The model was set up as 7 water bodies including 7 branches, 474 segments and 23 layers. There are 13 tributaries flows into the systems. The model grid is shown in Figure 153.

![Figure 153: McKenzie River model grid](image)

Hydrodynamics

Flow rate and water surface elevation was first tested using the original setting in V3.1 model. As the model showed good agreement with data, no further calibrations were conducted.

Year 2001

The McKenzie River calibration period in 2001 was from April to September. Figure 154 through 161 show the water level and flow comparison between model predictions and
measured data. The figures showed that flow predictions matched well with data. Error statistics are summarized in Table 18.

Table 18: McKenzie River hydrodynamic calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>7008</td>
<td>0</td>
<td>0.025</td>
<td>0.076</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>7008</td>
<td>-0.019</td>
<td>0.264</td>
<td>0.424</td>
</tr>
<tr>
<td>USGS 14163150</td>
<td>34.11</td>
<td>177</td>
<td>7008</td>
<td>-0.033</td>
<td>0.208</td>
<td>0.487</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>6996</td>
<td>-0.051</td>
<td>0.313</td>
<td>0.619</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>7008</td>
<td>-0.006</td>
<td>0.026</td>
<td>0.036</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>7008</td>
<td>-0.088</td>
<td>0.088</td>
<td>0.092</td>
</tr>
<tr>
<td>USGS 14163150</td>
<td>34.11</td>
<td>177</td>
<td>7008</td>
<td>-0.026</td>
<td>0.026</td>
<td>0.033</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>6996</td>
<td>0.159</td>
<td>0.159</td>
<td>0.162</td>
</tr>
</tbody>
</table>

Figure 154: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2001
Figure 155: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2001

Figure 156: McKenzie River near Vida model-data flow comparison, 2001
Figure 157: McKenzie River near Vida model-data water level comparison, 2001

Figure 158: McKenzie River below Leaburg Dam model-data flow comparison, 2001
Figure 159: McKenzie River below Leaburg Dam model-data water level comparison, 2001

Figure 160: McKenzie River near Walterville model-data flow comparison, 2001
Year 2002

The McKenzie River calibration period in 2002 was from April to October. Figure 162 through 169 show the water level and flow comparison between model predictions and measured data. The figures showed that flow predictions matched well with data. Error statistics are summarized in Table 19.

<p>| Table 19: McKenzie River hydrodynamic calibration model-data error statistics, 2002 |
|---|----------|---------------|----------------|------------|----------|----------|
| Gage ID | RM | Model Segment | Number of Comparisons | ME, m³/s | AME, m³/s | RMSE, m³/s |
| USGS 14159500 | 60.39 | 4 | 10175 | 0.003 | 0.046 | 0.295 |
| USGS 14162500 | 44.56 | 108 | 10174 | -0.029 | 0.54 | 1.365 |
| USGS 14163150 | 34.11 | 177 | 10174 | -0.053 | 0.957 | 2.273 |
| USGS 14163900 | 24.97 | 240 | 10174 | -0.073 | 1.293 | 4.511 |</p>
<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>10175</td>
<td>0.057</td>
<td>0.097</td>
<td>0.162</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>10174</td>
<td>-0.001</td>
<td>0.128</td>
<td>0.164</td>
</tr>
<tr>
<td>USGS 14163150</td>
<td>34.11</td>
<td>177</td>
<td>10174</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.136</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>10174</td>
<td>0.117</td>
<td>0.118</td>
<td>0.156</td>
</tr>
</tbody>
</table>

Figure 162: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2002
Figure 163: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2002

Figure 164: McKenzie River near Vida model-data flow comparison, 2002
Figure 165: McKenzie River near Vida model-data water level comparison, 2002

Figure 166: McKenzie River below Leaburg Dam model-data flow comparison, 2002
Figure 167: McKenzie River below Leaburg Dam model-data water level comparison, 2002

Figure 168: McKenzie River near Walterville model-data flow comparison, 2002
Figure 169: McKenzie River near Walterville model-data water level comparison, 2002

Temperature

Year 2001

Figure 170 through 180 show the McKenzie River continuous temperature comparison between model predictions and measured data in 2001. Error statistics are summarized in Table 20. Predicted temperature matched data very well for all the 11 sites with the RMSEs below 1.0 °C.

Table 20: McKenzie River continuous water temperature calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Comparisons</td>
</tr>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>6982</td>
</tr>
<tr>
<td>LASAR 26770</td>
<td>50.99</td>
<td>65</td>
<td>6638</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>7104</td>
</tr>
<tr>
<td>LASAR 25610</td>
<td>35.72</td>
<td>167</td>
<td>5711</td>
</tr>
</tbody>
</table>
Figure 170: South Fork McKenzie River below Cougar Dam model-data continuous temperature comparison, 2001
Figure 171: McKenzie River below Cougar River model-data continuous temperature comparison, 2001

Figure 172: McKenzie River near Vida model-data continuous temperature comparison, 2001
Figure 173: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2001

Figure 174: McKenzie River above the Leaburg tailrace model-data continuous temperature comparison, 2001
Figure 175: McKenzie River at Deerborn model-data continuous temperature comparison, 2001

Figure 176: McKenzie River near Walterville model-data continuous temperature comparison, 2001
Figure 177: McKenzie River above Walterville Tailrace model-data continuous temperature comparison, 2001

Figure 178: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2001
Figure 179: Leaburg Canal Intake, upstream end model-data continuous temperature comparison, 2001

Figure 180: Leaburg Canal Powerhouse Tailrace, downstream end model-data continuous temperature comparison,
Year 2002

Figure 181 through 192 show the McKenzie River continuous temperature comparison between model predictions and measured data in 2002. Error statistics are summarized in Table 21. Predicted temperature matched data very well for all the 12 sites with the RMSEs below 0.96 °C.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>10271</td>
<td>10271</td>
<td>0.035</td>
<td>0.098</td>
<td>0.15</td>
</tr>
<tr>
<td>LASAR 26770</td>
<td>50.99</td>
<td>65</td>
<td>5856</td>
<td>65</td>
<td>-0.134</td>
<td>0.324</td>
<td>0.397</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>10270</td>
<td>108</td>
<td>0.333</td>
<td>0.403</td>
<td>0.507</td>
</tr>
<tr>
<td>LASAR 28504</td>
<td>40.74</td>
<td>132</td>
<td>3385</td>
<td>3385</td>
<td>0.345</td>
<td>0.406</td>
<td>0.509</td>
</tr>
<tr>
<td>LASAR 25610</td>
<td>35.72</td>
<td>167</td>
<td>5668</td>
<td>5668</td>
<td>0.284</td>
<td>0.644</td>
<td>0.803</td>
</tr>
<tr>
<td>LASAR 26758</td>
<td>28.45</td>
<td>215</td>
<td>5666</td>
<td>5666</td>
<td>0.164</td>
<td>0.666</td>
<td>0.81</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>10270</td>
<td>10270</td>
<td>0.167</td>
<td>0.521</td>
<td>0.662</td>
</tr>
<tr>
<td>LASAR 26757</td>
<td>15.61</td>
<td>299</td>
<td>4870</td>
<td>4870</td>
<td>0.011</td>
<td>0.437</td>
<td>0.551</td>
</tr>
<tr>
<td>LASAR 29645</td>
<td>10.40</td>
<td>333</td>
<td>5857</td>
<td>5857</td>
<td>-0.048</td>
<td>0.534</td>
<td>0.654</td>
</tr>
<tr>
<td>LASAR 10376</td>
<td>3.38</td>
<td>378</td>
<td>5715</td>
<td>5715</td>
<td>0.079</td>
<td>0.508</td>
<td>0.628</td>
</tr>
<tr>
<td>LASAR 25611</td>
<td>35.78</td>
<td>402</td>
<td>5669</td>
<td>5669</td>
<td>0.403</td>
<td>0.654</td>
<td>0.831</td>
</tr>
<tr>
<td>LASAR 25613</td>
<td>30.27</td>
<td>431</td>
<td>5667</td>
<td>5667</td>
<td>0.314</td>
<td>0.764</td>
<td>0.954</td>
</tr>
</tbody>
</table>
Figure 181: South Fork McKenzie below Cougar Dam model-data continuous temperature comparison, 2002

Figure 182: McKenzie River below Cougar River model-data continuous temperature comparison, 2002
Figure 183: McKenzie River near Vida model-data continuous temperature comparison, 2002

Figure 184: McKenzie River at Helfrich boat ramp model-data continuous temperature comparison, 2002
Figure 185: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2002

Figure 186: McKenzie River at Deerborn model-data continuous temperature comparison, 2002
Figure 187: McKenzie River near Walterville model-data continuous temperature comparison, 2002

Figure 188: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2002
Figure 189: McKenzie River above Mohawk River model-data continuous temperature comparison, 2002

Figure 190: McKenzie River at Coburg Rd model-data continuous temperature comparison, 2002
Figure 191: Leaburg Canal Intake, upstream end model-data continuous temperature comparison, 2002

Figure 192: Leaburg Canal Powerhouse Tailrace, downstream end model-data continuous temperature comparison,
2.2.6 Long Tom River

Introduction

The Long Tom River domain starts from Fern Ridge Dam at RM 23.7 and ends at its confluence with the Willamette River. The model was set up as 1 water body including 14 branches, with 187 segments and 22 layers. The model grid is shown in Figure 193. There were no tributaries flows into the system. Several spillways/weirs/dams were added in Version 3.1 model to represent the natural stone barriers along the upstream section of the river.

Figure 193: Long Tom River Model Grid
Hydrodynamics

The flow calibration was done in Version 3.1, in which distributed tributaries were added to compensate the lacking of tributary inflow data. While calibrating water level, Manning’s friction coefficient and hydraulic equivalent slope were chosen to be the calibration parameters. It was found out that by delicately adjusting Manning’s friction coefficient and hydraulic equivalent slope, calculation time can be greatly reduced.

Year 2001

The hydrodynamic calibration period in 2001 was from June to October. Figure 194 through 197 show the water level and flow comparison between model predictions and measured data. Error statistics are summarized in Table 22.

The flow predictions result matched well with data for the both sites. For water level, at segment 2, however, the model over estimated at high flow conditions, and under estimated at low flow conditions. The 1-meter layer depth might result in coarse bathymetry and led this problem to occur. Similar problem existed in V3.1 model, but was not as severe as in V3.7 model.

| Table 22 Long Tom River hydrodynamic calibration model-data error statistics, 2001 |
|---|------|---------------------------------|--------|---------|----------|
| Gage ID | RM | Model Segment | Sample size, N | ME, m | AME, m | RMSE, m |
| USGS 14169000 | 23.47 | 2 | 5760 | 0 | 0.003 | 0.012 |
| USGS 14170000 | 6.86 | 134 | 5559 | 0.026 | 0.109 | 0.138 |

Gage ID	RM	Model Segment	Sample size, N	ME, m	AME, m	RMSE, m
USGS 14169000	23.47	2	5760	-0.048	0.049	0.052
USGS 14170000	6.86	134	5559	-0.099	0.099	0.099
Figure 194: Long Tom River near Alvadore model-data flow comparison, 2001

Figure 195: Long Tom River near Alvadore model-data water level comparison, 2001
Figure 196: Long Tom River at Monroe model-data flow comparison, 2001

Figure 197: Long Tom River at Monroe model-data water level comparison, 2001
Year 2002

The hydrodynamic calibration period in 2002 was from April to October. Figure 198 through 201 show the water level and flow comparison between model predictions and measured data. Error statistics are summarized in Table 23. Both the simulated flow and water level matched well with data.

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Sample size, N</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>8688</td>
<td>0.002</td>
<td>0.007</td>
<td>0.077</td>
</tr>
<tr>
<td>USGS 14170000</td>
<td>6.86</td>
<td>134</td>
<td>8688</td>
<td>-0.246</td>
<td>0.325</td>
<td>0.595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Sample size, N</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>8688</td>
<td>-0.029</td>
<td>0.046</td>
<td>0.058</td>
</tr>
<tr>
<td>USGS 14170000</td>
<td>6.86</td>
<td>134</td>
<td>8688</td>
<td>-0.074</td>
<td>0.075</td>
<td>0.078</td>
</tr>
</tbody>
</table>
Figure 198 Long Tom River near Alvadore model-data flow comparison, 2002

Figure 199 Long Tom River near Alvadore model-data water level comparison, 2002
Temperature

Year 2001

Figure 202 through 205 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 24. The current calibration result had the RMSEs below 1.3 °C. Overall the model captured the temperature dynamics well.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Comparisons</td>
</tr>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>2622</td>
</tr>
<tr>
<td>LASAR 26749</td>
<td>17.75</td>
<td>55</td>
<td>5808</td>
</tr>
<tr>
<td>LASAR 26750</td>
<td>12.71</td>
<td>95</td>
<td>5808</td>
</tr>
<tr>
<td>USGS14170000</td>
<td>6.86</td>
<td>134</td>
<td>2616</td>
</tr>
</tbody>
</table>

Figure 202 Long Tom River near Alvadore model-data continuous temperature comparison, 2001
Figure 203 Long Tom River at RM 19.8 model-data continuous temperature comparison, 2001

Figure 204 Long Tom River at RM 12.3 model-data continuous temperature comparison, 2001
Year 2002

Figure 206 through 210 show the continuous temperature comparison between model predictions and measured data. Error statistics are summarized in Table 25. The current calibration result had the RMSEs below 1.3 °C.

Table 25 Long Tom River continuous water temperature calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Comparisons</td>
</tr>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>8688</td>
</tr>
<tr>
<td>LASAR 26749</td>
<td>17.75</td>
<td>55</td>
<td>5922</td>
</tr>
<tr>
<td>LASAR 26750</td>
<td>12.71</td>
<td>95</td>
<td>5884</td>
</tr>
<tr>
<td>USGS14170000</td>
<td>6.86</td>
<td>134</td>
<td>8688</td>
</tr>
<tr>
<td>LASAR 29644</td>
<td>0.91</td>
<td>176</td>
<td>5882</td>
</tr>
</tbody>
</table>
Figure 206 Long Tom River near Alvadore model-data continuous temperature comparison, 2002

Figure 207 Long Tom River at RM 19.8 model-data continuous temperature comparison, 2002
Figure 208 Long Tom River at RM 12.3 model-data continuous temperature comparison, 2002

Figure 209 Long Tom River at Monroe model-data continuous temperature comparison, 2002
2.2.7 Summary and Conclusions

Accuracy

The continuous model-data error statistics of the Version 3.1 models and Version 3.7 models are summarized in Table 26. The testing results showed improved accuracy when Lower Willamette River was converted to Version 3.7 and similar or slightly degraded accuracy on other river applications when they were converted. Because of the limited time that was spent on calibration, most of the six river models still had a potential for further calibration and improvement in accuracy. CE-QUAL-W2 Version 3.7 has the equivalent ability as Version 3.1 to achieve high-accuracy temperature predictions.
When setting the river models with the old calibration parameters in Version 3.1, most models produce the same or similar result, in which cases no further calibration was conducted. However, there were a few locations where Version 3.7 water level results did not show agreement with field measured data. Oftentimes, Version 3.1 water level results showed similar results at those locations. The water level prediction inaccuracy was resulted from insufficiency of river cross-section data.

Table 26: Comparison of CE-QUAL-W2 Version 3.1 and Version 3.7 temperature predictions accuracy on six river systems

<table>
<thead>
<tr>
<th>River System Name</th>
<th>Simulation Period</th>
<th>Continuous Temperature RMSE Range °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE-QUAL-W2 Version 3.1</td>
<td>CE-QUAL-W2 Version 3.7</td>
</tr>
<tr>
<td>Lower Willamette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>63 days</td>
<td>0.16-0.76</td>
</tr>
<tr>
<td>2002</td>
<td>182 days</td>
<td>0.09-0.81</td>
</tr>
<tr>
<td>Middle Willamette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>66 days</td>
<td>0.07-0.81</td>
</tr>
<tr>
<td>2002</td>
<td>66 days</td>
<td>0.48-0.85</td>
</tr>
<tr>
<td>Upper Willamette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>105 days</td>
<td>0.05-0.81</td>
</tr>
<tr>
<td>2002</td>
<td>175 days</td>
<td>0.16-0.74</td>
</tr>
<tr>
<td>Clackamas River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>183 days</td>
<td>0.03-0.86</td>
</tr>
<tr>
<td>2002</td>
<td>183 days</td>
<td>0.03-0.68</td>
</tr>
<tr>
<td>McKenzie River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>148 days</td>
<td>0.16-0.99</td>
</tr>
<tr>
<td>2002</td>
<td>214 days</td>
<td>0.16-0.76</td>
</tr>
<tr>
<td>Long Tom River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>123 days</td>
<td>0.04-1.07</td>
</tr>
<tr>
<td>2002</td>
<td>183 days</td>
<td>0.05-1.16</td>
</tr>
</tbody>
</table>

Stability

Stability issues occurred at all the six river models except Lower Willamette River. The models suffered stability issues were characterized with one or more of the following features: very low flow rate (as low as 1.0 m³/s in some cases), dramatically changing flow rate at flood events or reservoir operations, complex branch connections and hydraulic structures, steep slope where segments easily dry up, complex and uneven
underwater topography. To solve this problem, four techniques were applied to make the model run:

- Reducing the maximum time step and time step fraction.
- Smoothing the branch bathymetry by even the river bed and adjusting widths.
- Delicately adjusting Slopec (the hydraulic equivalent slope) for different branches to reach a best working Slopec combination.
- Adjusting Manning’s friction coefficients.

Although the presented six rivers were able to run through the simulation periods in 2001 and 2002, these models were not stable and might not run through another year. The reduced time step also resulted in the reduction of calculation speed, which was presented below.

Speed

The CPU runtime of CE-QUAL-W2 Version 3.7 model at six river systems applications are summarized in Table 27. The runtime the two simulation years were different because the flow conditions were different in different years so the time steps were different.

<table>
<thead>
<tr>
<th>River System Name</th>
<th>Simulation Period</th>
<th>CPU Runtime (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CE-QUAL-W2 version 3.7</td>
</tr>
<tr>
<td>Lower Willamette</td>
<td>2001 63 days</td>
<td>5.57</td>
</tr>
<tr>
<td></td>
<td>2002 182 days</td>
<td>17.31</td>
</tr>
<tr>
<td>Middle Willamette</td>
<td>2001 66 days</td>
<td>59.8</td>
</tr>
<tr>
<td></td>
<td>2002 66 days</td>
<td>28.4</td>
</tr>
<tr>
<td>Upper Willamette</td>
<td>2001 105 days</td>
<td>133.3</td>
</tr>
<tr>
<td></td>
<td>2002 175 days</td>
<td>137.0</td>
</tr>
<tr>
<td>Clackamas River</td>
<td>2001 183 days</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>2002</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>McKenzie River</td>
<td>148 days</td>
<td>214 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>123 days</td>
<td>183 days</td>
</tr>
<tr>
<td>Long Tom River</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>148 days</td>
<td>214 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>123 days</td>
<td>183 days</td>
</tr>
</tbody>
</table>

Based on the CPU runtime for the two simulation periods in year 2001 and 2002, runtime for one year simulation was estimated and summarized in Figure 211. Middle Willamette River, Upper Willamette River and McKenzie River were the three rivers that took the longest time to run for one year, with runtime over 200 minutes.

In summary, the CE-QUAL-W2 Version 3.7 has the ability to predict continuous river temperature accurately; however, it suffers some stability issues and runs slowly, especially for rivers with steep slope.
Chapter 3 Development of Steady-State Model for Hydrodynamics

3.1 New Expectation from River Hydrodynamic and Temperature Model

With the recent advances of research on climate change, it becomes possible to look into the future of watersheds and water bodies. Willamette Water 2100 is a five year project in which faculty from Oregon State University, the University of Oregon and Portland State University are cooperating with each other, and trying to evaluate how climate change, population growth and economic growth will change water in the Willamette River Basin. An integrated model framework incorporated Geographic Information System, hydrologic models, ecological models, socio-economic models, and a decision-making model.

One of the research tasks is to model the hydrodynamics and temperature in the Willamette River in the future, using input information from climate change models, hydrologic models and other models. The modeling results will assist protecting endangered species and also provide data for management decision making.

Since hydrodynamic and water temperature models for the whole Willamette River System are already developed, it is logical to use these existing models for the Willamette Water 2100 project. However, to simulate the river systems on a decadal or centennial timescale, it would take too long, for either CE-QUAL-W2 Version 3.7 or Version 3.1 to
run the models. Besides, the stability issues with CE-QUAL-W2 may cause difficulties during low-flow periods. As a result, the existing river models with CE-QUAL-W2 cannot be directly used for the Willamette Water 2100 Project.

To summarize, a hydrodynamic and water temperature model is needed to simulate the Willamette River Systems. The expectations from this model includes:

- Running fast,
- High accuracy of hydrodynamic and water temperature predictions,
- Ability to model temperature basing on dynamic shading,
- Including various hydraulic structures,
- Preferably having a smooth connection with many of the reservoir models within the basin that utilizes CE-QUAL-W2 Version 3.7,
- Ability to model stratified water quality.

3.2 Model Development Theory

To meet the current project requirement, and also to meet future challenge of expanding the capacity and scope of water quality models, a new river hydrodynamic and temperature model was built based on existing water quality models. The new model was built based on CE-QUAL-W2 Version 3.7. This new model uses steady-state methods to calculate water level and velocity, and uses existing CE-QUAL-W2 code to calculate dynamic temperature. By calculating the hydrodynamics at steady-state, the time step for stability is relaxed and simulations can proceed at much longer time steps. The rest of the model framework is still used for water quality state variables, such as temperature.
3.2.1 CE-QUAL-W2 Version 3.7 as the base model

The model theory and general description of CE-QUAL-W2 can be found in Section 1.1.4. The changes over different versions of CE-QUAL-W2 are described in Section 2.1.

3.2.2 Coordinate System and Model Grid

For most parts, the steady-state model uses the same coordinate system and model grid set up as CE-QUAL-W2 Version 3.7. The steady-state model is also a 2-D lateral averaged model. Figure 212 through Figure 214 show the comparison of a river top view, cross-section view, and side view in the real world (on the left) and in the model (on the right).

Figure 212: Comparison of river top view in the real world (left) and in the steady-state model (right)
The modeled system is described with:

- **Cell**: the smallest unit in the model. It is a rectangular cubic, within which temperature is assumed to be a single value. A common dimension of a cell in the steady-state model would be 250-meters long, 5-meter wide, and 1-meter tall. On the right side of Figure 213, each rectangular represent a cell.

- **Segment**: includes several cells laying over each other. In the steady-state model, longitudinal velocity is the same within one segment. The right side of Figure 213 represents a segment.

- **Branch**: includes several segments. Branch is usually a representation of a river or part of a river. All the segments under one branch share the same slope and
hydraulic equivalent slope. However, Manning’s friction coefficient is differentiated among segments.

- **Water body**: may include one or more branch(s). All the segments within one water body share the same top layer during calculation, as a result branches with very different bottom elevation should be separated into different water bodies.

Hydraulic Structures

The model is able to model a variety of hydraulic structures, including spillways, weirs, gates, pipes, pumps, withdraws, dam outflow.

Tributary and Distributed Tributary

CE-QUAL-W2 provides the flexibility to specify inflow from tributaries and distributed tributaries are distributed evenly from top layer to bottom layer. The steady state model does not support users to specify which layer tributaries enters, or distribute tributary flow according to density. Under Tributary Inflow Placement (TRIB PLACE), DISTR should be used for all tributaries.

Loop branch

Loop branches were used to represent flow around an island. In the code, loop branch was defined as a branch that is connected to a main branch by internal head boundary conditions at both ends. Figure 215 shows an example of a loop branch in the real world. Based on the way loop branches were defined in the code, loop branch and main branch should be in the same water body, and loop branch should be defined after its main
branch in the control file. Besides, additional tributaries should not be defined at the same segment of UHS(JB) or DHS(JB)+1.

Flow in loop branch and main branch is determined by applying Manning’s equation in both branches, as is shown in Figure 216. Bisection (Press et al., 1992) is employed to find a water level at which the flow rate at two branches sum up to the flow rate in the upstream adjacent segment.

Figure 216: Flow distribution at the beginning of loop branch
During calibration, the friction coefficient of the first segment in loop branch can be calibrated together with the connected main branch segment to ensure that the right amount of water flows into loop branch. At the end of loop branch, the friction coefficient can be deliberately raised to a high value to represent the resistance when loop branch flows back into main branch.

Branch and water body connections

At the connection between different branches, flow and heat should be conserved transporting from upstream to downstream. As the downstream bottom layer and upstream bottom layer are not necessarily at the same elevation, there are several different scenarios to transport flow and heat to downstream. Figure 217 shows an example of dividing flow in a cell to cells in the downstream branch.

![Figure 217: An example of transporting flow between branches](image)

3.2.3 Steady-State Hydrodynamic Calculation
The steady-state hydrodynamic calculation method already exists in CE-QUAL-W2 Version 3.7. CE-QUAL-W2 Version 3.7 uses this method to estimate the initial water level and velocity at the first time step, so that simulation can start with estimated initial water level and velocity, instead of inputted initial condition. The steady-state model uses the same method to calculate hydrodynamics, but for every time step of simulation.

In every time step of steady-state hydrodynamic calculation, flow in each model segment is first estimated. Inflow, outflow, flow from upstream, tributary, distributaries, withdraws are all considered. Precipitation and evaporation as sources/sinks for flow balance are considered in CE-QUAL-W2 V3.7, but not in CE-QUAL-W2 steady-state model. This will not influence hydrodynamic calculation, as distributed tributaries are often used to make up flow data deficiency.

Second, with estimated flow data, water level in each segment is solved from Manning’s normal depth equation:

\[Q_i + Q_j = Q_i + Q_j \]

Figure 218: Flow rate calculation in the Steady-state model
\[Q_i = \frac{1}{n_i} \sqrt[n_i]{A_i R_{hi}^{2/3}} S_i^{1/2} \]

Where

\(Q_i \) is the flow rate at segment i,

\(n_i \) is the Manning’s friction coefficient for segment i,

\(A_i \) is the wetted cross-section area of segment i,

\(R_{hi} \) is the hydraulic radius of segment i,

\(S_i \) is the slope of the branch (in calculation, SLOPEC is used).

Hydraulic radius \(R_{hi} \) is calculated from:

\[R_{hi} = \frac{A_i}{P_i} \]

Where

\(P_i \) is the wetted perimeter of segment i.

Because \(A_i \) and \(P_i \) are functions of water level, Manning’s normal depth equation cannot be directly solved. In CE-QUAL-W2 Version 3.7, the method of bisection (Press et al., 1992) is used to find normal depth.
Third, water level is first smoothed out within branches, then within the whole river system. Smoothing is basically replacing upstream water level with downstream water level when the former is smaller than the later one. Smoothing ensures downstream obstacles able to hold water in the upstream, and reduces inaccuracy resulted from uneven water surface.

![Figure 219: Water surface elevation smoothing](image)

Fourth, average velocity is calculated in every segment, using

\[
U_{avgi} = \frac{Q_i}{A_i}
\]

\(U_{avgi}\) is the average velocity of segment \(i\). This velocity is later assigned to every active layer of the segment.
3.2.4 Dynamic Temperature Calculation

Unlike hydrodynamics, temperature is estimated at unsteady-state; in other words, temperature at each time step is assumed to be related to temperature at earlier time steps. The governing equation for temperature predictions is conservation of heat:
\[
\frac{\partial B \Phi}{\partial t} + \frac{\partial U B \Phi}{\partial x} + \frac{\partial W B \Phi}{\partial z} - \frac{\partial (B D_x \frac{\partial \phi}{\partial x})}{\partial x} - \frac{\partial (B D_z \frac{\partial \phi}{\partial z})}{\partial z} = r_\phi B
\]

Where

B is channel width,

t is time,

x and z are the two dimensions,

U and W are velocity in x and z,

\(\Phi\) is temperature,

\(D_x\) and \(D_z\) are the dispersion coefficients in x and z,

\(r_\phi\) is sources and sinks of heat.

Dispersion coefficients \(D_x\) and \(D_z\) are input into the model. Figure 222 shows the theory of the temperature calculation governing equation in the steady-state model. To put things simple, the above equation is basically saying that the temperature change in a cell equals to the heat budget change due to flow, heat sources and sink. Heat sources and sinks include: short/long wave radiation with dynamic topographic shading and vegetation shading, air-water heat exchange, sediment-water heat exchange. Ice formation and ice cover exists in CE-QUAL-W2 Version 3.7, but it was not tested in the steady-state model yet, so for ice covered rivers the model should be used with caution.
The temperature calculation governing equation is solved using numerical method. There are 3 transport solution schemes available in CE-QUAL-W2: Upwind, Quickest, and Ultimate quickest. THETA is a parameter that allows user to specify how much percentage of implicit scheme is employed, with 0 indicating the numerical scheme is totally explicit, and 1 indicating totally implicit. Ultimate quickest numerical scheme together with THETA set to 0.55 is found to be most accurate in CE-QUAL-W2 model. The same setting is employed in the steady-state model for temperature predictions.

3.3 Model Development Process

The model development process can be separated into two stages: (1) building the steady-state model prototype, and (2) constantly refining the prototype.

The first stage focused on putting steady-state hydrodynamics and dynamic temperature calculation together. The hydrodynamic calculation module was replaced with Manning’s equation, which calculates water level and velocity at steady state. After that, effort was focused on making the manning’s equation properly connect with other parts within the code, and to make code run without errors.
The second stage focused on the correctness of the code. As was shown in Figure 223, the model development process involved a lot of testing and refining of the prototype. Clackamas River was relatively simple compared to other river systems, so it was chosen to be the first river system to be tested with the new code. For debugging purposes, an ideal state was created, where the temperature of all the inflow from upstream and tributaries were set to 20 °C, and all the heat exchange activities were neglected. As a result, temperature in every cell and every segment should be 20 °C if the code is correct. All the real world models were first tested at this ideal state before real world cases were tested and calibrated.

Model Testing and Refining Process

Figure 223: Steady-State Model testing and refining process flow chart
3.4 Converting V3.7 models to Steady-state models

Most parts of the model setting up for CE-QUAL-W2 steady-state model is identical to the setting up for CE-QUAL-W2 V3.7. The procedures to convert an existing Version 3.7 model to steady-state include:

- In the control file (“W2_con.npt”), initial water surface elevation calculation (INITUWL) must be turned to “ON” to make sure that the executable (w2_ivf32-11.11.exe) is able to run.
- In the control file (“W2_con.npt”), precipitation should be turned off, as the steady-state model is not developed incorporating precipitation data.
- In the control file (“W2_con.npt”), a new coefficient named “DMZ” should be added under the card “Hydraulic coefficients”. DMZ specifies the vertical diffusion coefficient for each water body.

After make these changes, paste the steady-state executable into the work dictionary folder. The executable should be able to run when it is double clicked. Now the maximum time step can be set to a bigger value, for example 120 seconds.

The remaining work would be re-calibrated to ensure accurate prediction. Manning’s friction coefficient, the equivalent slope are generally chosen as calibration parameters.

In Chapter 4, an example case shows what if an existing Version 3.7 model is converted to steady-state without re-calibration.

3.5 Testing of New Steady State Model Codes
Three river models within the Willamette River System were tested with the New Steady State Model Codes, they were: Clackamas River, McKenzie River, Long Tom River. Attempts have been made to convert and calibrate Middle Willamette River model and Upper Willamette River model to steady-state model, but the calibration work is still going on. For Lower Willamette/ Columbia River model, because flow characteristics in Lower Willamette River and Columbia River are strongly influenced by tides, and the steady-state model does not have the ability to simulate the tidal effects, the Lower Willamette River / Columbia River model is not converted to steady-state.

The calibration results of the three tested river models were presented with details in the following sections.

3.5.1 Clackamas River

Hydrodynamics

Manning’s friction coefficient and hydraulic equivalent slope were the only two parameters used to calibrate the model.

Year 2001

Clackamas River hydrodynamic model-data error statistics in 2001 are summarized in Table 28. Figure 224 through 227 show the flow rate and water level comparison at different sites. The model was overestimating water level at high flow period and underestimating water level at low flow period. Similar result appeared in Version 3.1 and Version 3.7 model. Finer bathymetry data would be needed to solve this problem.
Table 28: Clackamas River hydrodynamic calibration statistics, 2001

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8664</td>
<td>0.034</td>
<td>0.402</td>
<td>0.95</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>5380</td>
<td>-0.04</td>
<td>1.372</td>
<td>1.989</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8664</td>
<td>0.547</td>
<td>0.57</td>
<td>0.621</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>5380</td>
<td>0.224</td>
<td>0.242</td>
<td>0.265</td>
</tr>
</tbody>
</table>

Figure 224: Clackamas River at Estacada model-data flow comparison, 2001
Figure 225: Clackamas River at Estacada model-data water level comparison, 2001

Figure 226: Clackamas River near Oregon City model-data flow comparison, 2001
Year 2002

Clackamas River hydrodynamic model-data error statistics in 2002 are summarized in Table 29. Figure 228 through 231 show the flow rate and water level comparison at different sites. The model experienced the same problem for water level at segment 2 in 2002 as in 2001. Another problem was that the model was overestimating the water level at peak flow, which occurred at Julia Day 97. This would be the first problem to look at if there were more time for calibration.
Table 29: Clackamas River hydrodynamic calibration statistics, 2002

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8687</td>
<td>0.015</td>
<td>0.35</td>
<td>1.119</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>8687</td>
<td>6.977</td>
<td>8.057</td>
<td>12.454</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8687</td>
<td>-0.013</td>
<td>0.289</td>
<td>0.292</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>8687</td>
<td>0.112</td>
<td>0.117</td>
<td>0.257</td>
</tr>
</tbody>
</table>

Figure 228: Clackamas River at Estacada model-data flow comparison, 2002
Figure 229: Clackamas River at Estacada model-data water level comparison, 2002

Figure 230: Clackamas River near Oregon City model-data flow comparison, 2002
Figure 231: Clackamas River near Oregon City model-data water level comparison, 2002

Temperature

Year 2001

Clackamas River continuous water temperature calibration model-data error statistics in 2001 are summarized in Table 30. Figure 232 through 237 show the continuous temperature comparison at different sites. The current calibration result had the RMSEs below 1.1 °C.
Table 30: Clackamas River continuous water temperature calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>3831</td>
<td>0.002</td>
<td>0.017</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>PGE CRMIV</td>
<td>20.64</td>
<td>12</td>
<td>3934</td>
<td>0.191</td>
<td>0.564</td>
<td>0.784</td>
<td></td>
</tr>
<tr>
<td>PGE CRUPEC</td>
<td>16.30</td>
<td>41</td>
<td>4331</td>
<td>0.253</td>
<td>0.716</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>PGE CRBART</td>
<td>13.25</td>
<td>60</td>
<td>3852</td>
<td>-0.029</td>
<td>0.75</td>
<td>0.914</td>
<td></td>
</tr>
<tr>
<td>PGE CRATCB</td>
<td>8.11</td>
<td>93</td>
<td>4258</td>
<td>0.022</td>
<td>0.77</td>
<td>0.952</td>
<td></td>
</tr>
<tr>
<td>PGE CRATOC</td>
<td>2.41</td>
<td>133</td>
<td>4331</td>
<td>-0.152</td>
<td>0.807</td>
<td>1.01</td>
<td></td>
</tr>
</tbody>
</table>

Figure 232: Clackamas River at Estacada model-data continuous temperature comparison, 2001
Figure 233: Clackamas River at McIver Park model-data continuous temperature comparison, 2001

Figure 234: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2001
Figure 235: Clackamas River at Barton model-data continuous temperature comparison, 2002

Figure 236: Clackamas River at Carver Bridge model-data continuous temperature comparison, 2001
Year 2002

Clackamas River continuous water temperature calibration model-data error statistics in 2002 are summarized in Table 31. Figure 238 through 241 show the continuous temperature comparison at different sites. The current calibration result had the RMSEs below 1.1 °C.

Table 31: Clackamas River continuous water temperature calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>Continuous Temperature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14210000</td>
<td>22.22</td>
<td>2</td>
<td>8687</td>
<td>ME, °C</td>
<td>AME, °C</td>
</tr>
<tr>
<td>LASAR 30439</td>
<td>16.30</td>
<td>41</td>
<td>1309</td>
<td>-0.314</td>
<td>0.368</td>
</tr>
<tr>
<td>LASAR 30515</td>
<td>8.20</td>
<td>92</td>
<td>1307</td>
<td>-0.382</td>
<td>0.644</td>
</tr>
<tr>
<td>USGS 14211010</td>
<td>2.41</td>
<td>133</td>
<td>4922</td>
<td>-0.493</td>
<td>0.862</td>
</tr>
</tbody>
</table>
Figure 238: Clackamas River at Estacada model-data continuous temperature comparison, 2002

Figure 239: Clackamas River upstream of Eagle Creek model-data continuous temperature comparison, 2002
Figure 240: Clackamas River upstream of Clear Creek model-data continuous temperature comparison, 2002

Figure 241: Clackamas River at Oregon City model-data continuous temperature comparison, 2002
3.5.2 McKenzie River

Hydrodynamics

Manning’s friction coefficient and hydraulic equivalent slope were the only two parameters used to calibrate the model.

Year 2001

McKenzie River hydrodynamic model-data error statistics in 2001 are summarized in Table 32. Figure 242 through 249 show the flow rate and water level comparison at different sites. Overall, the Steady-State model was able to predict both flow rate and water level very well. For segment 240, the model was overestimating the water level. This was because water level during the simulation period fell into one single layer, and only by adjusting friction coefficient the water level could not be gotten for the whole simulation period. More accurate bathymetry data would needed to get the right water level. As the water temperature results were acceptable, further calibration was not conducted.
Table 32: McKenzie River hydrodynamic calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m^3/s</th>
<th>AME, m^3/s</th>
<th>RMSE, m^3/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>7008</td>
<td>0</td>
<td>0.01</td>
<td>0.028</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>7008</td>
<td>-0.054</td>
<td>0.358</td>
<td>0.872</td>
</tr>
<tr>
<td>USGS 14163150</td>
<td>34.11</td>
<td>177</td>
<td>7008</td>
<td>-0.115</td>
<td>0.709</td>
<td>1.457</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>6996</td>
<td>-0.187</td>
<td>1.210</td>
<td>2.253</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>7008</td>
<td>0.086</td>
<td>0.086</td>
<td>0.109</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>7008</td>
<td>-0.016</td>
<td>0.017</td>
<td>0.019</td>
</tr>
<tr>
<td>USGS 14163150</td>
<td>34.11</td>
<td>177</td>
<td>7008</td>
<td>0.011</td>
<td>0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>6996</td>
<td>0.216</td>
<td>0.217</td>
<td>0.219</td>
</tr>
</tbody>
</table>

Figure 242: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2001
Figure 243: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2001

Figure 244: McKenzie River near Vida model-data flow comparison, 2001
Figure 245: McKenzie River near Vida model-data water level comparison, 2001

Figure 246: McKenzie River below Leaburg Dam model-data flow comparison, 2001
Figure 247: McKenzie River below Leaburg Dam model-data water level comparison, 2001

Figure 248: McKenzie River near Walterville model-data flow comparison, 2001
Year 2002

McKenzie River hydrodynamic model-data error statistics in 2002 are summarized in Table 33. Figure 250 through 257 show the flow rate and water level comparison at different sites. Overall, the Steady-State model was able to predict both flow rate and water level well. As hydrodynamic calibration was conducted first for year 2001 and then tested on year 2002, simulation results in year 2002 was not as good as year 2001. Continuous water level at Segment 4, Segment 177, and Segment 240 were either overestimating or underestimating estimating. However, as the calibration as a whole was acceptable, calibration was not further conducted.
Table 33: McKenzie River hydrodynamic calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Flow</th>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>10271</td>
<td>0.009</td>
<td>0.147</td>
<td>0.596</td>
</tr>
<tr>
<td></td>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>10270</td>
<td>-0.149</td>
<td>1.289</td>
<td>3.884</td>
</tr>
<tr>
<td></td>
<td>USGS 14163150</td>
<td>34.11</td>
<td>177</td>
<td>10270</td>
<td>-0.244</td>
<td>2.406</td>
<td>6.402</td>
</tr>
<tr>
<td></td>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>10270</td>
<td>-0.367</td>
<td>3.802</td>
<td>10.039</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Level</th>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>10271</td>
<td>0.148</td>
<td>0.185</td>
<td>0.299</td>
</tr>
<tr>
<td></td>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>10270</td>
<td>-0.007</td>
<td>0.026</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>USGS 14163150</td>
<td>34.11</td>
<td>177</td>
<td>10270</td>
<td>-0.055</td>
<td>0.06</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>10270</td>
<td>0.204</td>
<td>0.205</td>
<td>0.228</td>
</tr>
</tbody>
</table>

Figure 250: South Fork McKenzie River below Cougar Dam model-data flow comparison, 2002
Figure 251: South Fork McKenzie River below Cougar Dam model-data water level comparison, 2002

Figure 252: McKenzie River near Vida model-data flow comparison, 2002
Figure 253: McKenzie River near Vida model-data water level comparison, 2002

Figure 253: McKenzie River near Vida model-data water level comparison, 2002
Temperature

Year 2001

McKenzie River continuous water temperature calibration model-data error statistics in 2001 are summarized in Table 34. Figure 258 through 267 show the continuous temperature comparison at different sites. The current calibration result had the RMSEs below 0.89 °C.
Table 34: McKenzie River continuous water temperature calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>6982</td>
<td>0.062</td>
<td>0.112</td>
<td>0.163</td>
<td></td>
</tr>
<tr>
<td>LASAR 26770</td>
<td>50.99</td>
<td>65</td>
<td>6638</td>
<td>-0.396</td>
<td>0.591</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>7104</td>
<td>-0.424</td>
<td>0.53</td>
<td>0.616</td>
<td></td>
</tr>
<tr>
<td>LASAR 25610</td>
<td>35.72</td>
<td>167</td>
<td>5711</td>
<td>-0.443</td>
<td>0.737</td>
<td>0.886</td>
<td></td>
</tr>
<tr>
<td>LASAR 25612</td>
<td>30.38</td>
<td>203</td>
<td>5715</td>
<td>-0.258</td>
<td>0.74</td>
<td>0.882</td>
<td></td>
</tr>
<tr>
<td>LASAR 26758</td>
<td>28.45</td>
<td>215</td>
<td>4678</td>
<td>-0.34</td>
<td>0.671</td>
<td>0.819</td>
<td></td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>3284</td>
<td>-0.365</td>
<td>0.606</td>
<td>0.761</td>
<td></td>
</tr>
<tr>
<td>LASAR 25614</td>
<td>17.90</td>
<td>285</td>
<td>5709</td>
<td>-0.265</td>
<td>0.629</td>
<td>0.757</td>
<td></td>
</tr>
<tr>
<td>LASAR 26757</td>
<td>15.61</td>
<td>299</td>
<td>4825</td>
<td>-0.443</td>
<td>0.635</td>
<td>0.789</td>
<td></td>
</tr>
<tr>
<td>LASAR 25611</td>
<td>35.78</td>
<td>402</td>
<td>5712</td>
<td>-0.387</td>
<td>0.682</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td>LASAR 25613</td>
<td>30.27</td>
<td>431</td>
<td>5714</td>
<td>-0.507</td>
<td>0.721</td>
<td>0.867</td>
<td></td>
</tr>
</tbody>
</table>

Figure 258: South Fork McKenzie River below Cougar Dam model-data continuous temperature comparison, 2001
Figure 259: McKenzie River below Cougar River model-data continuous temperature comparison, 2001

Figure 260: McKenzie River near Vida model-data continuous temperature comparison, 2001
Figure 261: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2001

Figure 262: McKenzie River above the Leaburg tailrace model-data continuous temperature comparison, 2001
Figure 263: McKenzie River at Deerborn model-data continuous temperature comparison, 2001

Figure 264: McKenzie River near Walterville model-data continuous temperature comparison, 2001
Figure 265: McKenzie River above Walterville Tailrace model-data continuous temperature comparison, 2001

Figure 266: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2001
Year 2002

McKenzie River continuous water temperature calibration model-data error statistics in 2001 are summarized in Table 35. Figure 268 through 279 show the continuous temperature comparison at different sites. The current calibration result had the RMSEs below 0.79°C.
Table 35: McKenzie River continuous water temperature calibration model-data error statistics, 2002

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Comparisons</td>
</tr>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td>10175</td>
</tr>
<tr>
<td>LASAR 26770</td>
<td>50.99</td>
<td>65</td>
<td>5856</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td>10174</td>
</tr>
<tr>
<td>LASAR 28504</td>
<td>40.74</td>
<td>132</td>
<td>3385</td>
</tr>
<tr>
<td>LASAR 25610</td>
<td>35.72</td>
<td>167</td>
<td>5668</td>
</tr>
<tr>
<td>LASAR 26758</td>
<td>28.45</td>
<td>215</td>
<td>5666</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td>10174</td>
</tr>
<tr>
<td>LASAR 26757</td>
<td>15.61</td>
<td>299</td>
<td>4870</td>
</tr>
<tr>
<td>LASAR 29645</td>
<td>10.40</td>
<td>333</td>
<td>5857</td>
</tr>
<tr>
<td>LASAR 10376</td>
<td>3.38</td>
<td>378</td>
<td>5715</td>
</tr>
<tr>
<td>LASAR 25611</td>
<td>35.78</td>
<td>402</td>
<td>5669</td>
</tr>
<tr>
<td>LASAR 25613</td>
<td>30.27</td>
<td>431</td>
<td>5667</td>
</tr>
</tbody>
</table>

Figure 268: South Fork McKenzie below Cougar Dam model-data continuous temperature comparison, 2002
Figure 269: McKenzie River below Cougar River model-data continuous temperature comparison, 2002

Figure 270: McKenzie River near Vida model-data continuous temperature comparison, 2002
Figure 271: McKenzie River at Helfrich boat ramp model-data continuous temperature comparison, 2002

Figure 272: McKenzie River below Leaburg Dam model-data continuous temperature comparison, 2002
Figure 273: McKenzie River at Deerborn model-data continuous temperature comparison, 2002

Figure 274: McKenzie River near Walterville model-data continuous temperature comparison, 2002
Figure 275: McKenzie River at Bellinger Landing model-data continuous temperature comparison, 2002

Figure 276: McKenzie River above Mohawk River model-data continuous temperature comparison, 2002
Figure 277: McKenzie River at Coburg Rd model-data continuous temperature comparison, 2002

Figure 278: Leaburg Canal Intake, upstream end model-data continuous temperature comparison, 2002
3.5.3 Long Tom River

In Long Tom River CE-QUAL-W2 version 3.1 model, there is a side branch that represent an irrigation channel. This side branch was connected to the system with a lateral gate in the upstream, and an internal head boundary in the downstream.

In the current calibrated steady-state model, this side branch was deleted. The code which enable a side branch is connected to a main branch with a dynamic pump is underdevelopment. In the future study, this side branch should be added back to the model grid.

Hydrodynamics
Adjustment of spillway bottom elevation was performed to all the spillways to calibrate water level. Manning’s friction coefficient and hydraulic equivalent slope were also adjusted.

Year 2001

Long Tom River hydrodynamic model-data error statistics in 2001 are summarized in Table 36. Figure 280 through 283 show the flow rate and water level comparison at different sites. The Steady-State model was able to predict both flow rate and water level very well.

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Sample size, N</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>5760</td>
<td>0</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>USGS 14170000</td>
<td>6.86</td>
<td>134</td>
<td>5559</td>
<td>0.053</td>
<td>0.126</td>
<td>0.178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Sample size, N</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>5760</td>
<td>-0.014</td>
<td>0.019</td>
<td>0.024</td>
</tr>
<tr>
<td>USGS 14170000</td>
<td>6.86</td>
<td>134</td>
<td>5559</td>
<td>-0.024</td>
<td>0.025</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Table 36 Long Tom River hydrodynamic calibration model-data error statistics, 2001
Figure 280: Long Tom River near Alvadore model-data flow comparison, 2001

Figure 281: Long Tom River near Alvadore model-data water level comparison, 2001
Figure 282: Long Tom River at Monroe model-data flow comparison, 2001

Figure 283: Long Tom River at Monroe model-data water level comparison, 2001
Year 2002

Long Tom River hydrodynamic model-data error statistics in 2002 are summarized in Table 37. Figure 284 through 287 show the flow rate and water level comparison at different sites. The Steady-State model was able to predict both flow rate and water level very well.

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Sample size, N</th>
<th>ME, m³/s</th>
<th>AME, m³/s</th>
<th>RMSE, m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>8688</td>
<td>0.003</td>
<td>0.008</td>
<td>0.076</td>
</tr>
<tr>
<td>USGS 14170000</td>
<td>6.86</td>
<td>134</td>
<td>8688</td>
<td>-0.209</td>
<td>0.389</td>
<td>0.679</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Sample size, N</th>
<th>ME, m</th>
<th>AME, m</th>
<th>RMSE, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>8688</td>
<td>0.005</td>
<td>0.019</td>
<td>0.046</td>
</tr>
<tr>
<td>USGS 14170000</td>
<td>6.86</td>
<td>134</td>
<td>8688</td>
<td>0</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Figure 284: Long Tom River near Alvadore model-data flow comparison, 2002

Figure 285: Long Tom River near Alvadore model-data water level comparison, 2002

Figure 286: Long Tom River at Monroe model-data flow comparison, 2002
Temperature

Year 2001

Long Tom River continuous water temperature calibration model-data error statistics in 2001 are summarized in Table 38. Figure 288 through 291 show the continuous temperature comparison at different sites. The current calibration result had the RMSEs below 0.95 °C, which was better than both the current Version 3.1 calibration results and the Version 3.7 calibration results.
Table 38 Long Tom River continuous water temperature calibration model-data error statistics, 2001

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMS, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>2622</td>
<td>0.002</td>
<td>0.029</td>
<td>0.036</td>
</tr>
<tr>
<td>LASAR 26749</td>
<td>17.75</td>
<td>55</td>
<td>5808</td>
<td>-0.006</td>
<td>0.782</td>
<td>0.95</td>
</tr>
<tr>
<td>LASAR 26750</td>
<td>12.71</td>
<td>95</td>
<td>5808</td>
<td>0.288</td>
<td>0.712</td>
<td>0.914</td>
</tr>
<tr>
<td>USGS14170000</td>
<td>6.86</td>
<td>134</td>
<td>2616</td>
<td>0.129</td>
<td>0.667</td>
<td>0.815</td>
</tr>
</tbody>
</table>

Figure 288: Long Tom River near Alvadore model-data continuous temperature comparison, 2001
Figure 289: Long Tom River at RM 19.8 model-data continuous temperature comparison, 2001

Figure 290: Long Tom River at RM 12.3 model-data continuous temperature comparison, 2001
Year 2002

Long Tom River continuous water temperature calibration model-data error statistics in 2001 are summarized in Table 39. Figure 292 through 296 show the continuous temperature comparison at different sites. The current calibration result had the maximum RMSE $1.295 \degree C$, which was similar to maximum RMSE in the current Version 3.1 calibration results ($1.16 \degree C$) and the maximum RMSE in the Version 3.7 calibration result ($1.23 \degree C$).
<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model Segment</th>
<th>Continuous Temperature</th>
<th>Number of Comparisons</th>
<th>ME, °C</th>
<th>AME, °C</th>
<th>RMS, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS 14169000</td>
<td>23.47</td>
<td>2</td>
<td>8688</td>
<td>0</td>
<td>0.041</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>LASAR 26749</td>
<td>17.75</td>
<td>55</td>
<td>5922</td>
<td>-0.457</td>
<td>0.786</td>
<td>0.951</td>
<td></td>
</tr>
<tr>
<td>LASAR 26750</td>
<td>12.71</td>
<td>95</td>
<td>5884</td>
<td>-0.445</td>
<td>0.562</td>
<td>0.724</td>
<td></td>
</tr>
<tr>
<td>USGS14170000</td>
<td>6.86</td>
<td>134</td>
<td>8688</td>
<td>-0.382</td>
<td>0.758</td>
<td>0.913</td>
<td></td>
</tr>
<tr>
<td>LASAR 29644</td>
<td>0.91</td>
<td>176</td>
<td>5882</td>
<td>-0.26</td>
<td>1.044</td>
<td>1.295</td>
<td></td>
</tr>
</tbody>
</table>

Figure 292: Long Tom River near Alvadore model-data continuous temperature comparison, 2002
Figure 295: Long Tom River at Monroe model-data continuous temperature comparison, 2002

Figure 296: Long Tom River near mouth model-data continuous temperature comparison, 2002
Chapter 4 Summary and Conclusions

This research presents (1) the conversion of Willamette River systems from CE-QUAL-W2 Version 3.1 to Version 3.7, (2) the development of a new hydrodynamic and temperature model which is based on CE-QUAL-W2 Version 3.7, and (3) testing of the new model.

In the first part of the research, six river models within the Willamette River Basin were converted from CE-QUAL-W2 Version 3.1 to Version 3.7. CE-QUAL-W2 Version 3.7 was proven to have the equivalent ability as Version 3.1 to achieve high-accuracy results of flow rate, water surface elevation and temperature on river applications, with the RMSE for continuous temperature model-data comparison below $1 \degree C$ for five out of the six river models. This research also found out that both CE-QUAL-W2 Version 3.1 and Version 3.7 ran relatively slow (up to several hours) for these six river models.

In the second part of the research, a new hydrodynamic and temperature model was developed based on CE-QUAL-W2 Version 3.7. The hydrodynamic calculation module was replaced with steady-state calculation methods. Water level was estimated using Manning’s normal depth equation. Temperature was calculated using the same methods applied in CE-QUAL-W2 Version 3.7.

In the third part of the research, the newly developed model was tested on five river models in the Willamette River Basin. The calibration work is still ongoing for Middle Willamette River model and Upper Willamette River model, so only results from three river models are presented. This new model is assessed from the following three aspects:
Accuracy

The continuous model-data error statistics of the Version 3.1 models, Version 3.7 models and steady-state models are summarized in Table 40. The steady-state models produced results similar to Version 3.1 models and Version 3.7 models. The increase in continuous model-data temperature RMSE did not exceed 0.2 °C. Sometimes the RMSE was smaller in the steady-state models than in Version 3.1 models and Version 3.7 models. The steady-state model has similar ability as the Version 3.1 and Version 3.7 models to achieve high-accuracy temperature predictions.

Table 40: Comparison of CE-QUAL-W2 Steady-State Model, CE-QUAL-W2 Version 3.1 and Version 3.7 temperature predictions accuracy on six river systems

<table>
<thead>
<tr>
<th>River System Name</th>
<th>Simulation Period</th>
<th>Continuous Temperature RMSE Range °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CE-QUAL-W2 Version 3.1</td>
</tr>
<tr>
<td>Clackamas River</td>
<td>2001</td>
<td>0.03-0.86</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>0.03-0.68</td>
</tr>
<tr>
<td>McKenzie River</td>
<td>2001</td>
<td>0.16-0.99</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>0.16-0.76</td>
</tr>
<tr>
<td>Long Tom River</td>
<td>2001</td>
<td>0.04-1.07</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>0.05-1.16</td>
</tr>
</tbody>
</table>

Stability

Compared to the Version 3.7 models that are described in Chapter 2, the steady-state models are much more stable. The length of time step is no longer limited by stability issues with the hydrodynamics calculation, but only limited by stability issues with the temperature calculation. The maximum time steps in the three tested steady-state models
ranged from 120 seconds to 180 seconds. The minimum time steps were generally set to 20 seconds which were used during flood events.

Speed

The CPU runtime of the steady-state model and Version 3.7 model for three river applications are summarized in Table 41. The estimated runtime for one year simulation using the steady-state model and Version 3.7 model is compared in Figure 297. The steady-state model is able to reduce computing time by up to 96%.

<table>
<thead>
<tr>
<th>River System Name</th>
<th>Simulation Period</th>
<th>CPU Runtime (minutes)</th>
<th>Time Reduced by Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CE-QUAL-W2 version 3.7</td>
<td>Steady-state model</td>
</tr>
<tr>
<td>Clackamas River</td>
<td>2001 183 days</td>
<td>17.6</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>2002 183 days</td>
<td>26.0</td>
<td>4.26</td>
</tr>
<tr>
<td>McKenzie River</td>
<td>2001 148 days</td>
<td>99.8</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td>2002 214 days</td>
<td>159.7</td>
<td>7.0</td>
</tr>
<tr>
<td>Long Tom River</td>
<td>2001 123 days</td>
<td>4.84</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>2002 183 days</td>
<td>7.21</td>
<td>4.33</td>
</tr>
</tbody>
</table>
Figure 297: Comparison of estimated runtime for one year simulation using Steady-State Model and CE-QUAL-W2 Version 3.7

In summary, this new steady-state model is accurate, stable and fast. It not only meets the Willamette Water 2100 project requirements, but also has a great potential to be applied on other rivers around the world and to address river temperature concerns and fish habitat issues.
List of recommendations for future study

(1) Convert an existing CE-QUAL-W2 Version 3.7 model to steady-state model

The detailed procedures to convert an existing CE-QUAL-W2 Version 3.7 model to steady-state model are described in Section 3.4.

It is easy to make changes in the control file to enable the steady-state executable to run, however re-calibration can be challenging for a new user. What if an existing Version 3.7 model is converted to steady-state without re-calibration? Figure 298 and Table 42 compared the results from Version 3.7, the steady-state model without re-calibration and the steady-state model after calibration. From Figure 298, the differences between results are not evident, because the temperature fluctuation during a day is bigger than difference between models. However, from Table 42, it is clear that without re-calibration the steady-state model results are not as accurate as the Version 3.7 model results, or the calibrated steady-state model results. The RMSE for continuous temperature model-data comparisons can reach 1.3 °C in the un-calibrated steady-state model, while the RMSE is below 0.9 °C in both calibrated Version 3.7 model and calibrated steady-state model.
Figure 298: Continuous temperature comparison between models (red) VS data (black) at Segment 285 in McKenzie River model, 2001. From top down, the compared models are Version 3.7, steady-state model without re-calibration and steady-state model after calibration.
Table 42: McKenzie River continuous water temperature calibration model-data error statistics, 2001. From left to right, the compared models are Version 3.7, steady-state model without re-calibration and steady-state model after calibration.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>RM</th>
<th>Model</th>
<th>Segment</th>
<th>Continuous Temperature RMSE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version 3.7</td>
</tr>
<tr>
<td>USGS 14159500</td>
<td>60.39</td>
<td>4</td>
<td></td>
<td>0.164</td>
</tr>
<tr>
<td>LASAR 26770</td>
<td>50.99</td>
<td>65</td>
<td></td>
<td>0.673</td>
</tr>
<tr>
<td>USGS 14162500</td>
<td>44.56</td>
<td>108</td>
<td></td>
<td>0.618</td>
</tr>
<tr>
<td>LASAR 25610</td>
<td>35.72</td>
<td>167</td>
<td></td>
<td>0.89</td>
</tr>
<tr>
<td>LASAR 25612</td>
<td>30.38</td>
<td>203</td>
<td></td>
<td>0.884</td>
</tr>
<tr>
<td>LASAR 26758</td>
<td>28.45</td>
<td>215</td>
<td></td>
<td>0.822</td>
</tr>
<tr>
<td>USGS 14163900</td>
<td>24.97</td>
<td>240</td>
<td></td>
<td>0.763</td>
</tr>
<tr>
<td>LASAR 25614</td>
<td>17.90</td>
<td>285</td>
<td></td>
<td>0.757</td>
</tr>
<tr>
<td>LASAR 26757</td>
<td>15.61</td>
<td>299</td>
<td></td>
<td>0.79</td>
</tr>
<tr>
<td>LASAR 25611</td>
<td>35.78</td>
<td>402</td>
<td></td>
<td>0.817</td>
</tr>
<tr>
<td>LASAR 25613</td>
<td>30.27</td>
<td>431</td>
<td></td>
<td>0.87</td>
</tr>
</tbody>
</table>

(2) Vertical diffusion coefficient

The current steady-state model has a problem with vertical diffusion. Giving this coefficient a value instead of zero resulted in inaccurate temperature prediction. However, setting this coefficient to zero means that there is no vertical diffusion between layers which is not true. The problem should be examined in future study.

(3) The effects of irregularity in the grid

In the steady-state model, as Manning’s equation assumes steady flow, the water level is higher at segments with narrower width or higher river bed than the surrounding segments. However in the real world, critical flow condition may occur at segments with smaller cross-sections, where longitudinal velocity is bigger than velocity at regular cross-section and water level is accordingly lower.
The following three scenarios show how the steady-state model deals with irregularity in the model grid. The slope of the three-segment branch is 0.00001. Segment length is 250 meters, and layer thickness is 1 meter.

In the first scenario, the three segments have the same cross-section shape. The side view of this branch is shown in Figure 299. Given a specific flow rate, the water surface elevations in the three segments are very close to each other.

![Figure 299: Side view of the example branch with even grid](image)

In the second scenario, all other conditions are the same as the first scenario except that second segment have a higher river bed, as is shown in Figure 300. This results in a higher water surface elevation in the second segment. Because of the smoothing algorithm, the water surface elevation in the first segment is equal to the second segment.
In the third scenario, all other conditions are the same as the first scenario except that second segment has a lower river bed, as is shown in Figure 301. The water surface elevation in the second segment is equal to the third segment.
(4) Explore new smoothing algorithm for branches with small slope or slope equals zero

First, the steady-state model has issues when the small slope (e.g., slope=0.00001) and uneven underwater topography coexist. As is shown in the example above, a segment with narrow width or high river bed may raise up the water level upstream.

Second, the steady-state model would not work with branches where slope equals zero because Manning’s equation calculates water level basing on slope.

To solve the two problems above, a new smoothing algorithm is needed. The smoothing algorithm used in the current steady-state model is described in Section 3.2.3. The new smoothing algorithm may fit a polynomial for a long section of segments.

(5) Codes to ensure stability

It was noticed in the steady-state model that even when the model encountered stability issues and the predicted temperature output was not a number (“NaN”), the model was still running. Some codes should be written to ensure a warning when the model encountered stability issues.

(6) Season and time step

All the three river systems have only been tested for part of the year. Most of the system simulation periods include summer and some include spring and fall, but none of them include winter.
In winter and spring, flow rate is generally higher than the rest of the year in the Pacific Northwest, and time steps should be considerably smaller so that the calculation can be stable. Special attention should be paid to search for potential stability problems in the future simulation.

(7) Water quality modules

As long as the steady-state model is able to model flow rate, water level and temperature, the next step would be adding the water quality modeling capacity to this model. CEQUAL-W2 Version 3.7 is able to model 34 water quality constituents. Information about water quality should be gathered, so that the water quality constituents that need to be included in the model can be determined.

(8) Use team based approach to new model development

New model development is a challenging endeavor. It takes much time and effort to construct a new model with several complicated and interrelated parts, and it takes even more time and effort to make the model sound and robust. Team based approach is used by industries for new product development. This approach integrates different individuals' intelligence and perspective toward problem solving. There is a potential to utilize team based approach to develop new models in universities.
Reference

Appendix A: The steady-state model FORTRAN source code

w2_37_win.f90

! CE-QUAL-W2 computations
INTEGER(4) FUNCTION CE_QUAL_W2 (DLG)

! IVF/CVF specific code

USE DFLOGM; USE MSCLIB; USE DFWIN, RENAMED => DLT;

!DEC$ATTRIBUTES STDCALL :: ce_qual_w2
!DEC$ATTRIBUTES REFERENCE :: Dlg
USE IFPORT ! to get current working directory
USE MAIN
USE GLOBAL; USE NAMESC; USE GEOMC; USE LOGICC; USE PREC; USE SURFHE; USE KINETIC;
USE SHADEC; USE EDDY
USE STRUCTURES; USE TRANS; USE TVDC; USE SELWC; USE GDAYC; USE SCREENC; USE TDGAS;
USE RSTART
USE MACROPHYTIC; USE POROSITYC; USE ZOOPLANKTONC
USE INITIALVELOCITY; USE ENVRPMOD
USE BIOENERGETICS
! include “omp_lib.h” ! OPENMP directive to adjust the # of processors TOGGLE FOR DEBUG

IMPLICIT NONE

EXTERNAL RESTART_OUTPUT
TYPE (DIALOG) :: DLG
INTEGER :: RESULT, KTMAX
REAL :: DEPTH, XAREA, WSURF !XAREA WX5/23/13

!** Task 1: Inputs **

INTEGER(4) length,istatus
character*255 dirc
! call omp_set_num_threads(4) ! set # of processors to NPROC Moved to INPUT subroutine

CALL GET_COMMAND_ARGUMENT(1,DIRC,LENGTH,ISTATUS)
DIRC=TRIM(DIRC)

!IF(ISTATUS.NE.0)WRITE(*,*)'GET_COMMAND_ARGUMENT FAILED: STATUS=',ISTATUS

IF(LENGTH /= 0)THEN
 ISTATUS=CHDIR(DIRC)
 SELECT CASE(ISTATUS)
 CASE(2) ! ENOENT
 WRITE(*,*)'The directory does not exist:',DIRC
 CASE(20) ! ENOTDIR
 WRITE(*,*)'This is not a directory:', DIRC
 CASE(0) ! NO ERROR
 END SELECT
ENDIF
MODDIR = FILE$CURDRIVE ! GET CURRENT DIRECTORY
LENGTH = GETDRIVEDIRQQ(MODDIR)

! open ancillary control file for fish bioenergetics !mlm bioexp
BIOEXP = .FALSE. ! INITIALIZE LOGICAL VARIABLE THIS IS READ IN THE CONTROL FILE
OPEN (1222,FILE='W2_con_anc.npt',status='old', IOSTAT=I)
IF (I /= 0) THEN
 FISHBIO = .FALSE.
ELSE
 FISHBIO = .TRUE.
END IF
IF(FISHBIO)THEN
 DO II = 1,16
 READ(1222,'(A8)') BIOC ! DUMMY VARIABLE AT THIS POINT FIX THIS
 END DO
ENDIF

! Open control file
IOPENFISH=0
OPEN (CON,FILE=CONFN,STATUS='OLD',IOSTAT=I)
IF (I /= 0) THEN
 TEXT = 'Could not open w2_con.npt'
 GO TO 240
END IF
CALL INPUT
RESTART_IN = RSIC == ' ON'.OR. RESTART_PUSHED
! Restart data
IF (RESTART_PUSHED) RSIFN = 'rso.opt'
JDAY = TMSTRT
IF (RESTART_IN) THEN
 VERT_PROFILE = .FALSE.
 LONG_PROFILE = .FALSE.
 OPEN (RSI,FILE=RSIFN,FORM='UNFORMATTED',STATUS='OLD')
 READ (RSI) NIT, NV, KMIN, IMIN, NSPRF, CMBRT, ZMIN, IZMIN, START, CURRENT
 READ (RSI) DLTDP, SNPDP, TSRDP, VPLDP, PFRDP, CPLDP, SPRDP, RSODP, SCRP, FLXDP, WDOP
 READ (RSI) JDAY, ELTM, ELTMF, DLT, DLTAV, DLTS, MINDLT, JDMIN, CURMAX
 READ (RSI) NXTMSN, NXTMTS, NXTMPR, NXTMCP, NXTMVP, NXTMRS, NXTMSC, NXTMSP, NXTMX, NXTMWD
 READ (RSI) VOLIN, VOLOUT, VOLUH, VOLDH, VOLPR, VOLTRB, VOLDT, VOLWD, VOLEV, VOLSBR, VOLTR, VOLSFR
 READ (RSI) TSSEV, TSSPR, TSSTR, TSSDT, TSSWD, TSSIN, TSSOUT, TSSS, TSSB, TSSICE
 READ (RSI) TSUH, TSDH, TSSUH2, TSSDH2, CSSUH2, CSSDH2, VOLUH2, VOLDH2, QUH1
 READ (RSI) ESBR, ETBR, EBRI
 READ (RSI) Z, SZ, ELWS, SAVH2, SAVHR, H2
 READ (RSI) KTWB, KTI, SKTI, SBKT
 READ (RSI) ICE, ICETH, CUF, QSUM
 READ (RSI) U, W, SU, SW, AZ, SAZ, DLTLIM
 READ (RSI) T1, T2, C1, C2, C1S, EPD, SED, KFS, CSSK
 READ (RSI) SEDC, SEDN, SEDP, ZOO, CD ! mlm 10/06
 READ (RSI) sdkv ! cb 11/30/06
 read (rsi)tke ! sw 10/4/07
 if(envirpc == ' ON')THEN
allocate(cc_e(NCT),c_int(NCT),c_top(NCT),cd_e(NDC),cd_int(NDC),cd_top(NDC),c_avg(NCT),cd_avg(NDC),cn_e(NCT),cdn_e(NDC))

cc_e=' ',
c_int=0.0
c_top=0.0
cd_e=' ',
cd_int=0.0
cd_top=0.0
c_avg=0.0
cd_avg=0.0
cn_e=0.0
cdn_e=0.0
NAC_E=0
NACD_E=0

open(CONE,file='w2_envirprf.npt',status='old')
READ (CONE,'(//8X,I8)') numclass
READ (CONE,'(//8x,2(5x,a3,f8.3,f8.3))') VEL_VPR, VEL_INT, VEL_TOP,TEMP_VPR,TEMP_INT,TEMP_TOP
READ (CONE,'(//(8X,(5X,A3,F8.0,F8.0)))') (CC_E(JC), C_INT(JC), C_TOP(JC), JC=1,NCT)
READ (CONE,'(//(8X,(5X,A3,F8.0,F8.0)))') (CD_E(JD),CD_INT(JD), CD_TOP(JD), JD=1,NDC)
close(CONE)

DO JC=1,NCT
IF (CC_E(JC).EQ.' ON') THEN
NAC_E = NAC_E+1
CN_E(NAC_E) = JC
END IF
End DO
DO JD=1,NDC
IF (CD_E(JD).EQ.' ON') THEN
NACD_E = NACD_E+1
CDN_E(NACD_E) = JD
END IF
End DO

allocate((c_cnt(NCT),cd_cnt(NDC),c_class(NCT,numclass),cd_class(NDC,numclass),c_tot(NCT),cd_tot(NDC),t_class(numclass),v_class(numclass),c_sum(NCT),cd_sum(NDC))
allocate(conc_c(NCT,numclass),conc_cd(NDC,numclass))

READ(RSI)T_CLASS,V_CLASS,C_CLASS,CD_CLASS,T_TOT,T_CNT,SUMVOLT,V_CNT,V_TOT,C_TOT,C_CNT,CD_TOT,CD_CNT

ENDIF
IF(NPI > 0)READ(RSI)YS,VS,VST,YST,DTP,QOLD
CLOSE (RSI)
ENDIF
CE_QUAL_W2 = 1
CALL INIT

DO JW=1,NWB
DO JB=BS(JW),BE(JW)
DO I=US(JB),DS(JB)
! E(I)=EROUGH(JW)
DZ(:,I)=DZM(JW)
ENDDO
ENDDO
ENDDO
ENDDO
!

! determining initial horizontal velocities and water levels
!

once_through=.true.
!

IF (initwl == 'ON') init_vel=.true.
!

if (.not. restart_in) then
!

if (init_vel) then
!

allocate (qssi(imx),loop_branch(nbr),elwss(imx),uavg(imx))
!

elwss=elws
!

call initial_water_level

! deALLOCATE (ESTR,WSTR,QSTR,KTSW,KBSW,SINKC,POINT_SINK,QNEW)
!
! deALLOCATE (ESTR,WSTR,QSTR,KTSW,KBSW,SINKC,POINT_SINK,QNEW,tavg, tavgw)
!

b=bsave
!

call initgeom
!

call initcond
!
WX 5/7/13
!

call initial_u_velocity
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
CALL GRAPH(ngraph)
DO JH=1,NHY
 IF (HYDRO_PLOT(JH)) CALL GRAPH_OPEN (JH,HYD(:,:,JH), HNAME(JH), HYMIN(JH),HYMAX(JH),1.0, LNAME(JH))
END DO
DO JC=1,NCT
 IF (CONSTITUENT_PLOT(JC)) CALL GRAPH_OPEN (JH+JC,C2(:,:,JC), CNAME(JC), CMIN(JC), CMAX(JC), CMULT(JC), LNAME(JH+JC))
END DO
DO JD=1,NDC
 IF (DERIVED_PLOT(JD)) CALL GRAPH_OPEN (JH+JC+JD,CD(:,:,JD),CDNAME(JD),CDMIN(JD),CDMAX(JD),CDMULT(JD),LNAME(JH+JC+JD))
END DO
INITIALIZE_GRAPH = .FALSE.
IF (.NOT. RESTART_IN) CALL CPU_TIME (START)
IF (macrophyte_on.and.constituents) call porosity
IF(SELECTC == "ON")CALL SELECTIVEINIT ! new subroutine for selecting water temperature target
IF(AERATEC == "ON") CALL AERATE

DO WHILE (.NOT. END_RUN.AND. .NOT. STOP_PUSHED)
 IF (JDAY >= NXTVD) CALL READ_INPUT_DATA (NXTVD)
 CALL INTERPOLATE_INPUTS
 DLTTVD = (NXTVD-JDAY)*DAY
 DLT = MIN(DLT,DLTTVD+1.0)
 DLTS1 = DLT
 IF (DLT <= DLTTVD+0.999) THEN
 DLTS = DLT
 ELSE
 KLOC = 1
 ILOC = 1
 END IF
 210 continue ! timestep violation entry point
 IF(SELECTC == "ON")CALL SELECTIVE ! new subroutine for selecting water temperature target
 IF(NIT/=0) THEN
 CALL initial_water_level !WX 11/11/2012
 ELSE
 CALL initial_u_velocity !WX 1/14/2013
 END IF
 CALL HYDROINOUT

DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 DO I=IU,ID ! WX 2/28/13
 DO WHILE (EL(KTI(I),I) > ELWS(I))
 KTI(I) = KTI(I)+1
 END DO
 END DO
 END DO
END DO

CALL HYDROINOUT

234
KTI(I) = MAX(KTI(I)-1,2)
KTMAX = MAX(2,KTI(I))
KTWB(JW) = MAX(KTMAX,KTWB(JW))

Z(I) = (EL(KT,I)-ELWS(I))/COSA(JB)
ZMIN(JW) = MAX(ZMIN(JW),Z(I))
END DO
END DO
END DO

!***

!** Task 2.2: Hydrodynamic calculations **
!***

DO JW=1,NWB
KT = KTWB(JW)
DO JB=BS(JW),BE(JW)
IU = CUS(JB)
ID = DS(JB)
 !***

!** Task 2.2.1: Boundary concentrations, temperatures, and densities **
!***

IUT = IU
IDT = ID
IF (UP_FLOW(JB)) THEN
 IF (.NOT. INTERNAL_FLOW(JB)) THEN
 DO K=KT,KB(IU)
 IF (QIND(JB)+QINSUM(JB).GT.0.0) THEN
 TIN(JB) = (TINSUM(JB) *QINSUM(JB)+TIND(JB) *QIND(JB))/(QIND(JB)+QINSUM(JB))
 CIN(CN(1:NAC),JB) = MAX((CINSUM(CN(1:NAC),JB)*QINSUM(JB)+CIND(CN(1:NAC),JB)*QIND(JB))/(QIND(JB)+QINSUM(JB)),
 0.0)
 T1(K,IU-1) = TIN(JB)
 T2(K,IU-1) = TIN(JB)
 C1S(K,IU-1,CN(1:NAC)) = CIN(CN(1:NAC),JB)
 QIN(JB) = QIND(JB)+QINSUM(JB)
 ELSE
 QIN(JB) = 0.0
 TIN(JB) = TIND(JB)
 T1(K,IU-1) = TIND(JB)
 T2(K,IU-1) = TIND(JB)
 C1S(K,IU-1,CN(1:NAC)) = CIND(CN(1:NAC),JB)
 END IF
 END DO
 ELSE IF (.NOT. DAM_INFLOW(JB)) THEN !TC 08/03/04
 IF (JBUH(JB) >= BS(JW) .AND. JBUH(JB) <= BE(JW)) THEN
 TIN(JB) = T1(KT,UHS(JB))
 CIN(CN(1:NAC),JB) = MAX(C1S(KT,UHS(JB),CN(1:NAC)),0.0)
 FOR ALL K=KT:KB(IU) !DO K=KT,KB(IU)
 T1(K,IU-1) = T1(K,UHS(JB))
 T2(K,IU-1) = T1(K,UHS(JB))
 C1S(K,IU-1,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C1(K,IU-1,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C2(K,IU-1,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 END IF
 END IF
ELSE
 QIN(JB) = 0.0
 TIN(JB) = 0.0
 T1(K,IU-1) = 0.0
 T2(K,IU-1) = 0.0
 C1S(K,IU-1,CN(1:NAC)) = 0.0
 C1(K,IU-1,CN(1:NAC)) = 0.0
 C2(K,IU-1,CN(1:NAC)) = 0.0
ENDIF
END DO
ELSE IF (.NOT. DAM_INFLOW(JB)) THEN !TC 08/03/04
 IF (JBUH(JB) >= BS(JW) .AND. JBUH(JB) <= BE(JW)) THEN
 TIN(JB) = T1(KT,UHS(JB))
 CIN(CN(1:NAC),JB) = MAX(C1S(KT,UHS(JB),CN(1:NAC)),0.0)
 FOR ALL K=KT:KB(IU) !DO K=KT,KB(IU)
 T1(K,IU-1) = T1(K,UHS(JB))
 T2(K,IU-1) = T1(K,UHS(JB))
 C1S(K,IU-1,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C1(K,IU-1,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C2(K,IU-1,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 END IF
ENDIF
END IF
END DO

BEGIN
ELSE
 CALL UPSTREAM_WATERBODY
 TIN(JB) = T1(KT,IU-1)
 CIN(CN(1:NAC),JB) = MAX(C1(KT,IU-1,CN(1:NAC)),0.0)
END IF
ELSE
 TIN(JB) = TINSUM(JB)
 QIN(JB) = QINSUM(JB)
 CIN(CN(1:NAC),JB) = MAX(CINSUM(CN(1:NAC),JB),0.0)
 DO K=KT,KB(ID)
 T1(K,IU-1) = TIN(JB)
 T2(K,IU-1) = TIN(JB)
 C1S(K,IU-1,CN(1:NAC)) = CIN(CN(1:NAC),JB)
 END DO
END IF
ELSE IF (DN_FLOW(JB)) THEN
 DO K=KT,KB(ID)
 T1(K,ID+1) = T2(K,ID)
 T2(K,ID+1) = T2(K,ID)
 C1S(K,ID+1,CN(1:NAC)) = C1S(K,ID,CN(1:NAC))
 END DO
 END IF
ELSE IF (UP_HEAD(JB)) THEN
 IUT = IU-1
 IF (UH_INTERNAL(JB)) THEN
 IF (JBUH(JB) >= BS(JW) .AND. JBUH(JB) <= BE(JW)) THEN
 DO K=KT,KB(IUT)
 RHO(K,IUT) = RHO(K,UHS(JB))
 T1(K,IUT) = T2(K,UHS(JB))
 T2(K,IUT) = T2(K,UHS(JB))
 C1S(K,IUT,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C1(K,IUT,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C2(K,IUT,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 END DO
 ELSE
 CALL UPSTREAM_WATERBODY
 END IF
 ELSE IF (UH_EXTERNAL(JB)) THEN
 DO K=KT,KB(IUT)
 RHO(K,IUT) = DENSITY(TUH(K,JB),DMAX1(TDS(K,IUT),0.0D0),DMAX1(TISS(K,IUT),0.0D0))
 T1(K,IUT) = TUH(K,JB)
 T2(K,IUT) = TUH(K,JB)
 C1S(K,IUT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C1(K,IUT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C2(K,IUT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 END DO
 END IF
ELSE IF (DN_HEAD(JB)) THEN
 IDT = ID+1
 IF (DH_INTERNAL(JB)) THEN
 IF (JBDH(JB) >= BS(JW) .AND. JBDH(JB) <= BE(JW)) THEN
 DO K=KT,KB(IDT)
 RHO(K,IDT) = DENSITY(TUH(K,JB),DMAX1(TDS(K,IUT),0.0D0),DMAX1(TISS(K,IUT),0.0D0))
 T1(K,IDT) = TUH(K,JB)
 T2(K,IDT) = TUH(K,JB)
 C1S(K,IDT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C1(K,IDT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C2(K,IDT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 END DO
 ELSE
 CALL UPSTREAM_WATERBODY
 END IF
 ELSE IF (DH_EXTERNAL(JB)) THEN
 DO K=KT,KB(IDT)
 RHO(K,IDT) = DENSITY(TUH(K,JB),DMAX1(TDS(K,IUT),0.0D0),DMAX1(TISS(K,IDT),0.0D0))
 T1(K,IDT) = TUH(K,JB)
 T2(K,IDT) = TUH(K,JB)
 C1S(K,IDT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C1(K,IDT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C2(K,IDT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 END DO
 END IF
ELSE
 CALL UPSTREAM_WATERBODY
END IF
END IF
END IF
END IF
END IF
END FORALL
 !DO
ELSE
 CALL UPSTREAM_WATERBODY
 TIN(JB) = T1(KT,IU-1)
 CIN(CN(1:NAC),JB) = MAX(C1(KT,IU-1,CN(1:NAC)),0.0)
END IF
ELSE
 TIN(JB) = TINSUM(JB)
 QIN(JB) = QINSUM(JB)
 CIN(CN(1:NAC),JB) = MAX(CINSUM(CN(1:NAC),JB),0.0)
 DO K=KT,KB(ID)
 T1(K,IU-1) = TIN(JB)
 T2(K,IU-1) = TIN(JB)
 C1S(K,IU-1,CN(1:NAC)) = CIN(CN(1:NAC),JB)
 END DO
END IF
END IF
IF (DN_FLOW(JB)) THEN
 DO K=KT,KB(ID)
 T1(K,ID+1) = T2(K,ID)
 T2(K,ID+1) = T2(K,ID)
 C1S(K,ID+1,CN(1:NAC)) = C1S(K,ID,CN(1:NAC))
 END DO
 END IF
IF (UP_HEAD(JB)) THEN
 IUT = IU-1
 IF (UH_INTERNAL(JB)) THEN
 IF (JBUH(JB) >= BS(JW) .AND. JBUH(JB) <= BE(JW)) THEN
 DO K=KT,KB(IUT)
 RHO(K,IUT) = RHO(K,UHS(JB))
 T1(K,IUT) = T2(K,UHS(JB))
 T2(K,IUT) = T2(K,UHS(JB))
 C1S(K,IUT,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C1(K,IUT,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 C2(K,IUT,CN(1:NAC)) = C1S(K,UHS(JB),CN(1:NAC))
 END DO
 ELSE
 CALL UPSTREAM_WATERBODY
 END IF
 ELSE IF (UH_EXTERNAL(JB)) THEN
 DO K=KT,KB(IUT)
 RHO(K,IUT) = DENSITY(TUH(K,JB),DMAX1(TDS(K,IUT),0.0D0),DMAX1(TISS(K,IUT),0.0D0))
 T1(K,IUT) = TUH(K,JB)
 T2(K,IUT) = TUH(K,JB)
 C1S(K,IUT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C1(K,IUT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 C2(K,IUT,CN(1:NAC)) = CUH(K,CN(1:NAC),JB)
 END DO
 END IF
ELSE
 CALL UPSTREAM_WATERBODY
END IF
END IF
END IF
END IF
END FORALL
 !DO
T2(K,IDT) = T2(K,DHS(JB))
C1S(K,IDT,CN(1:NAC)) = C1S(K,DHS(JB),CN(1:NAC))
C1(K,IDT,CN(1:NAC)) = C1S(K,DHS(JB),CN(1:NAC))
C2(K,IDT,CN(1:NAC)) = C1S(K,DHS(JB),CN(1:NAC))
END DO
ELSE
 CALL DOWNSTREAM_WATERBODY
END IF
DO K=KT,KB(ID)
 RHO(K,IDT) = DENSITY(T2(K,IDT),DMAX1(TDS(K,IDT),0.0D0),DMAX1(TISS(K,IDT),0.0D0))
END DO
ELSE IF (DH_EXTERNAL(JB)) THEN
 DO K=KT,KB(ID)
 RHO(K,IDT) = DENSITY(TDH(K,JB),DMAX1(TDS(K,IDT),0.0D0),DMAX1(TISS(K,IDT),0.0D0))
 T1(K,IDT) = TDH(K,JB)
 T2(K,IDT) = TDH(K,JB)
 C1S(K,IDT,CN(1:NAC)) = CDH(K,CN(1:NAC),JB)
 C1(K,IDT,CN(1:NAC)) = CDH(K,CN(1:NAC),JB)
 C2(K,IDT,CN(1:NAC)) = CDH(K,CN(1:NAC),JB)
 END DO
END IF
END IF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
**
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!****** Density pressures
!!
!! DO I=IUT,IDT
!! DO K=KT,KB(I)
!! P(K,I) = P(K-1,I)+RHO(K,I)*G*H(K,JW)*COSA(JB)
!! END DO
!! END DO
!!
!!****** Horizontal density gradients
!!
!! DO I=IUT,IDT-1
!! HDG(KT,I) = DLXRHO(I)*(BKT(I)+BKT(I+1))*0.5D0*H(KT,JW)*(P(KT,I+1)-P(KT,I))
!! DO K=KT+1,KBMIN(I)
!! HDG(K,I) = DLXRHO(I)*BHR2(K,I)*((P(K-1,I+1)-P(K-1,I))+(P(K,I+1)-P(K,I)))
!! END DO
!! END DO
!!
!!****** Adjusted wind speed and surface wind shear drag coefficient
!!
!! DO I=IU-1,ID+1
!! WIND10(I) = WIND(JW)*WSC(I)*DLOG(10.0D0/Z0(JW))/DLOG(WINDH(JW)/Z0(JW)) ! older version
!! FETCH(I) = FETCHD(I,JB)
!! IF (COS(PHI(JW)-PHI0(I)) < 0.0) FETCH(I) = FETCHU(I,JB)
!! IF (FETCH(I) <= 0.0) FETCH(I) = DLX(I)
!! IF (FETCH_CALC(JW)) THEN
!! ZB = 0.8D0*DLOG(FETCH(I)*0.5D0)-1.0718D0
!! WIND10(I) = WIND10(I)*(5.0D0*ZB+4.6052D0)/(3.0D0*ZB+9.2103D0)
!! END IF
!! IF(WIND10(I) >= 15.0)THEN ! SW 1/19/2008
! \(CZ(I) = 0.0026D0 \)
! ELSEIF(WIND10(I) >= 4.0)THEN
! \(CZ(I) = 0.0005D0*DSQRT(WIND10(I)) \)
! ELSEIF(WIND10(I) >= 0.5)THEN
! \(CZ(I)= 0.0044D0*WIND10(I)**(-1.15D0) \)
! ELSE
! \(CZ(I)= 0.01D0 \)
! ENDIF
! \(CZ(I) = 0.0 \)
! IF (WIND10(I) >= 1.0) CZ(I) = 0.0005*SQRT(WIND10(I))
! IF (WIND10(I) >= 4.0) CZ(I) = 0.0005*SQRT(WIND10(I))
! IF (WIND10(I) >= 15.0) CZ(I) = 0.0026
! END DO
!!!****** Longitudinal and lateral surface wind shear and exponential decay
! DO I=IUT,IDT-1
! WSHX(I) = CZ(I)*WIND10(I)**2*RHOA/RHOW* DCOS(PHI(JW)-PHI0(I))* ICESW(I)
! WSHY(I) = CZ(I)*WIND10(I)**2*RHOA/RHOW*DABS(DSIN(PHI(JW)-PHI0(I)))*ICESW(I)
! WWT = 0.0
! IF (WIND10(I) /= 0.0) WWT = 6.95D-2*(FETCH(I)**0.233D0)*WIND10(I)**0.534D0
! DFC = -8.0D0*PI*PI/(G*WWT*WWT+NONZERO)
! DO K=KT,KBMIN(I)
! DECAY(K,I) = DEXP(DMAX1(DFC*DEPTHB(K,I),-30.0D0))
! END DO
!!!****** Branch inflow lateral shear and friction
! DO JJB=1,NBR
! IF (I == UHS(JJB) .AND. .NOT. INTERNAL_FLOW(JJB)) THEN
! BETABR = (PHI0(I)-PHI0(US(JJB)))
! IF (JJB >= BS(JW) .AND. JJB <= BE(JW)) THEN
! DO K=KT,KBMIN(I)
! IF (U(K,US(JJB)) < 0.0) THEN
! UXBR(K,I) = UXBR(K,I)+ABS(U(K,US(JJB)))*DCOS(BETABR) *VOLUH2(K,JJB)/(DLT*DLX(I))
! UYBR(K,I) = UYBR(K,I) +ABS(DSIN(BETABR))*VOLUH2(K,JJB)/DLT
! END IF
! END DO
! END IF
! ELSE
! CALL UPSTREAM_BRANCH
! END IF
! END IF
! IF (I == DHS(JJB)) THEN
! BETABR = (PHI0(I)-PHI0(DS(JJB)))
! IF (I == US(JB) .AND. UHS(JB) /= DS(JJB)) THEN
! IF (JJB >= BS(JW) .AND. JJB <= BE(JW)) THEN
! DO K=KT,KBMIN(I)
! IF (U(K,DS(JJB)) > 0.0) THEN
! UXBR(K,I) = UXBR(K,I)+U(K,DS(JJB))* DCOS(BETABR) *VOLDH2(K,JJB)/(DLT*DLX(I))
! UYBR(K,I) = UYBR(K,I) +ABS(DSIN(BETABR))*VOLDH2(K,JJB)/DLT
! END IF
! END DO
! ELSE
! CALL DOWNSTREAM_BRANCH
! END IF
! IF (I /= US(JB)) THEN
! IF (JJB >= BS(JW) .AND. JJB <= BE(JW)) THEN
! DO K=KT,KBMIN(I)
! IF (U(K,DS(JJB)) > 0.0) THEN

238
! \text{UXBR}(K,I) = \text{UXBR}(K,I) + U(K,DS(JJB)) \cdot \cos(BETABR) \cdot VOLDH2(K,JJB)/(DLT \cdot DLX(I))
! \text{UYBR}(K,I) = \text{UYBR}(K,I) + \text{ABS}(\sin(BETABR)) \cdot VOLDH2(K,JJB)/DLT
! \text{END IF}
! \text{END DO}
! \text{ELSE}
! \text{CALL DOWNSTREAM_BRANCH}
! \text{END IF}
! \text{END IF}
! \text{END IF}
! \text{END DO}
! \text{DO } K = \text{KT}, \text{KBMIN}(I)
! \text{FRICBR}(K,I) = (\text{FI}(JW)/8.0D0) \cdot \rho(K,I) \cdot (\text{UYBR}(K,I)/(\text{DLX}(I) \cdot H2(K,I)))^2
! \text{END DO}
! \text{END DO}

!! Vertical eddy viscosities/diffusivities
! \text{FIRSTI}(JW) = \text{IUT}
! \text{LASTI}(JW) = \text{IDT}
! \text{DO } I = \text{IUT}, \text{IDT} - 1
! \text{CALL CALCULATE_AZ}
! \text{IF (KBMIN}(I) <= \text{KT} + 1 \text{. AND. KB}(I) > \text{KBMIN}(I) \text{) THEN}
! \text{AZ(KBMIN}(I),I) = \text{AZMIN}
! \text{DZ}(\text{KBMIN}(I),I) = \text{DZMIN}
! \text{END IF}
! \text{END DO}
! \text{IF } (\text{AZC}(JW) \neq ' \text{TKE}. \text{OR. AZC}(JW) \neq ' \text{TKE1}) \text{ THEN}
! \text{AZT}(:,\text{IDT} - 1) = \text{AZ}(:,\text{IDT} - 1)
! \text{DO } I = \text{IUT}, \text{IDT} - 2
! \text{DO } K = \text{KT}, \text{KBMIN}(I)
! \text{AZT}(K,I) = 0.5 \cdot \text{AZ}(K,I) + \text{AZ}(K,I + 1))
! \text{END DO}
! \text{AZ}(\text{KBMIN}(I),I) = \text{AZMIN} \quad ! \text{SG 10/4/07 SW 10/4/07}
! \text{END DO}
! \text{AZ}(:,\text{IDT} - 1) = \text{AZT}(:,\text{IDT} - 1)
! \text{END IF}
! \text{DO } JWR = 1, \text{NIW}
! \text{IF (WEIR_CALC) \text{AZ}(KBWR(JWR)-1:KBWR(JWR),IWR(1:NIW)) = 0.0}
! \text{END DO}

!! Average eddy diffusivities
! \text{IF } (\text{AZC}(JW) \neq ' \text{TKE}. \text{AND. AZC}(JW) \neq ' \text{TKE1}) \text{ THEN}
! \text{DZ}(\text{KT}:\text{KB}(IDT)-1,\text{IDT}) = \text{DZT}(\text{KT}:\text{KB}(IDT)-1,\text{IDT}) \quad ! \text{DZT is only used for non-TKE algorithms}
! \text{ELSE}
! \text{DZ}(\text{KT}:\text{KB}(IDT)-1,\text{IDT}) = \text{DZ}(\text{KT}:\text{KB}(IDT)-1,\text{IDT})
! \text{ENDIF}
! \text{DO } I = \text{IUT}, \text{IDT} - 1
! \text{DO } K = \text{KT}, \text{KB}(I)-1
! \text{IF } (K < \text{KBMIN}(I)) \text{ THEN}
! \text{IF } (\text{KB}(I-1) >= \text{KB}(I) \text{. AND. I =/= IUT}) \text{ THEN}
! \text{DZ}(K,I) = \text{DZ}(K,I-1)
! \text{ELSE}
! \text{DZ}(K,I) = \text{DZMIN}
! \text{END IF}
! \text{ELSE}
! \text{IF } (\text{AZC}(JW) \neq ' \text{TKE}. \text{AND. AZC}(JW) \neq ' \text{TKE1}) \text{ THEN}
! \text{IF } (I =\text{IUT}) \text{ THEN} \quad ! \text{SW 10/20/07}
! \text{DZ}(K,I) = \text{DZT}(K,I)
! \text{ELSE}
! DZ(K,I) = (DZT(K,I)+DZT(K,I-1))*0.5D0 ! SW 10/20/07 (DZT(K,I)+DZT(K+1,I))*0.5 ! FOR
NON-TKE ALGORITHMS, AVERAGE DZ FROM EDGES TO CELL CENTERS
! ENDIF
! ENDIF
! END IF
! END DO
! END DO

!! Hypolimnetic aeration
!!
! IF(AERATEC == ' ON' .and. oxygen_demand)CALL DZAERATE
!!
!!****** Density inversions
!
! DO I=IUT,IDT
! DO K=KT,KB(I)-1
! DZQ(K,I) = MIN(1.0D-2,DZ(K,I)) !MIN(1.0E-4,DZ(K,I)) No reason to limit DZ in
rivers/estuaries-used in ULTIMATE scheme
! END DO
! END DO

!!****** Wind, velocity, and bottom shear stresses @ top and bottom of cell
!
! SB(:,IUT:IDT-1) = 0.0
! DO I=IUT,IDT-1
! ST(KT,I) = WSHX(I)*BR(KTI(I),I)
! DO K=KT+1,KBMIN(I)
! ST(K,I) = WSHX(I)*DECAY(K-1,I)*BR(K,I)
! IF (.NOT. IMPLICIT_VISC(JW)) ST(K,I) = ST(K,I)+AZ(K-1,I)*(BR(K-1,I)+BR(K,I))*0.5D0*(U(K-1,I)-&
(108x395)U(K,I))/((AVH2(K-1,I) + &
(118x395)AVH2(K-1,I+1))*0.5D0)
! END DO
! GC2 = 0.0
! IF (FRIC(I) /= 0.0) GC2 = G/(FRIC(I)*FRIC(I))
!
! HRAD=BHR2(KT,I)/(BR(KTI(I),I)-BR(KT+1,I)+2.0D0*AVHR(KT,I))
! IF(MACROPHYTE_ON.AND.MANNINGS_N(JW))THEN
! CALL MACROPHYTE_FRICTION(HRAD,FRIC(I),EFFRIC,KT,I)
! GC2=G*EFFRIC*EFFRIC/HRAD**0.33333333D0
! ELSE IF(.NOT.MACROPHYTE_ON.AND.MANNINGS_N(JW))THEN
! GC2=G*FRIC(I)*FRIC(I)/HRAD**0.33333333D0
! END IF
! IF (ONE_LAYER(I)) THEN
! SB(K,I) = GC2*(BR(KTI(I),I)-BR(KT+1,I)+2.0D0*H(K,JW))*U(K,I)*DABS(U(K,I))
! ELSE
! SB(K,I) = GC2*(BR(KTI(I),I)+2.0D0*AVHR(KT,I))GC2*(BR(KTI(I),I)+2.0D0*AVHR(KT,I))*U(K,I)*DABS(U(K,I))
! END DO
! DO K=KT+1,KBMIN(I)-1
! HRAD=(BHR2(K,I)/(BR(K,I)-BR(K+1,I)+2.0D0*H(K,JW)))
! IF(MACROPHYTE_ON.AND.MANNINGS_N(JW))THEN
! CALL MACROPHYTE_FRICTION(HRAD,FRIC(I),EFFRIC,K,I)
! GC2=G*EFFRIC*EFFRIC/HRAD**0.33333333D0
! ELSE IF(.NOT.MACROPHYTE_ON.AND.MANNINGS_N(JW))THEN
! GC2=G*FRIC(I)*FRIC(I)/HRAD**0.33333333D0
! END IF
! IF (KT /= KBMIN(I)) THEN
! SB(K,I) = GC2*(BR(K,I)-BR(K+1,I)+2.0D0*H(K,JW))*U(K,I)*DABS(U(K,I))
! END DO
! END IF
! END IF
CALL MACROPHYTE_FRICTION(HRAD,FRIC(I),EFFRIC,KBMIN(I),I)

ELSE IF (.NOT. MACROPHYTE_ON.AND.MANNINGS_N(JW)) THEN
 GC2 = G*FRIC(I)*FRIC(I)/HRAD**0.33333333D0
END IF

IF (KBMIN(I) /= KB(I)) THEN
 SB(KBMIN(I),I) = GC2*(BR(KBMIN(I),I)-BR(KBMIN(I)+1,I)+2.0D0*H2(K,I))*U(KBMIN(I),I)*DABS(U(KBMIN(I),I))
ELSE
 SB(KBMIN(I),I) = GC2*(BR(KBMIN(I),I)+2.0D0*H2(K,I))*U(KBMIN(I),I)*DABS(U(KBMIN(I),I))
ENDIF

ENDIF

DO K = KT, KBMIN(I)-1
 SB(K,I) = SB(K,I)+ST(K+1,I)
END DO

SB(KBMIN(I),I) = SB(KBMIN(I),I)+WSHX(I)*DECAY(KBMIN(I),I)*(BR(KBMIN(I)-1,I)+BR(KBMIN(I),I))*0.5D0
END DO

****** Horizontal advection of momentum

DO I = IU, ID-1
 DO K = KT, KBMIN(I)
 UDR = (1.0D0+DSIGN(1.0D0,(U(K,I)+U(K,I+1))*0.5D0))*0.5D0
 UDL = (1.0D0+DSIGN(1.0D0,(U(K,I)+U(K,I-1))*0.5D0))*0.5D0
 ADMX(K,I) = (BH2(K,I+1)*(U(K,I+1)+U(K,I))*0.5D0*(UDR*U(K,I)+(1.0-UDR)*U(K,I+1))-BH2(K,I)*U(K,I+1)+U(K,I-1))*0.5D0*(UDL*U(K,I-1)+(1.0D0-UDL)*U(K,I))/DLXR(I)
 END DO
END DO

****** Horizontal dispersion of momentum

DO I = IU, ID-1
 DO K = KT, KBMIN(I)
 DM(K,I) = AX(JW)*(BH2(K,I+1)*(U(K,I+1)-U(K,I))/DLX(I+1)-BH2(K,I)*(U(K,I)+U(K,I-1))/DLX(I))/DLXR(I)
 END DO
END DO

****** Vertical advection of momentum

DO I = IU, ID-1
 DO K = KT, KB(I)-1
 AB = (1.0D0+DSIGN(1.0D0,(W(K,I+1)+W(K,I))*0.5D0))*0.5D0
 ADMZ(K,I) = (BR(K,I)+BR(K+1,I))*0.5D0*(W(K,I+1)+W(K,I))*0.5D0*(AB*U(K,I)+(1.0-AB)*U(K+1,I))
 END DO
END DO

****** Gravity force due to channel slope

DO I = IU, ID-1
 GRAV(KT,I) = AVHR(KT,I)*(BKT(I)+BKT(I+1))*0.5D0*G*SINAC(JB)
 DO K = KT+1, KB(I)
 GRAV(K,I) = BHR2(K,I)*G*SINAC(JB)
 END DO
END DO
!!**

!!** Task 2.2.3: Water surface elevation **

!!**

****** Tridiagonal coefficients

 BHRHO(IU-1:ID+1) = 0.0D0; D(IU-1:ID+1) = 0.0D0; F(IU-1:ID+1) = 0.0D0
 DO I=IU,ID-1
 DO K=KT,KBMIN(I)
 BHRHO(I) = BHRHO(I)+(BH2(K,I+1)/RHO(K,I+1)+BH2(K,I)/RHO(K,I))
 END DO
 DO K=KT,KB(I)
 D(I) = D(I)+(U(K,I)*BHR2(K,I)-U(K,I-1)*BHR2(K,I-1)-QSS(K,I)+(UXBR(K,I)-UXBR(K,I-1))*DLT)
 F(I) = F(I)+(-SB(K,I)+ST(K,I)-ADMX(K,I)+DM(K,I)-HDG(K,I)+GRAV(K,I))
 END DO
 END DO

****** Boundary tridiagonal coefficients

 D(IU) = 0.0D0
 DO K=KT,KB(IU)
 D(IU) = D(IU)+(U(K,IU)*BHR2(K,IU)-QSS(K,IU))+UXBR(K,IU)*DLT
 END DO
 IF (DN_FLOW(JB)) THEN
 DO K=KT,KB(ID)
 D(ID) = D(ID)-U(K,ID-1)*BHR2(K,ID-1)-QSS(K,ID)+(UXBR(K,ID)-UXBR(K,ID-1))*DLT+QOUT(K,JB)
 END DO
 END IF
 IF (UP_HEAD(JB)) THEN
 DO K=KT,KBMIN(IU-1)
 BHRHO(IU-1) = BHRHO(IU-1)+(BH2(K,IU)/RHO(K,IU)+BH2(K,IU-1)/RHO(K,IU-1))
 END DO
 DO K=KT,KB(IU)
 D(IU) = D(IU)+(-SB(K,IU)+ST(K,IU)-ADMX(K,IU)+DM(K,IU)-HDG(K,IU)+GRAV(K,IU))
 END DO
 END IF
 IF (DN_HEAD(JB)) THEN
 DO K=KT,KBMIN(ID)
 BHRHO(ID) = BHRHO(ID)+(BH2(K,ID+1)/RHO(K,ID+1)+BH2(K,ID)/RHO(K,ID))
 END DO
 DO K=KT,KB(ID)
 D(ID) = D(ID)+U(K,ID)*BHR2(K,ID)-U(K,ID-1)*BHR2(K,ID-1) -QSS(K,ID)+UXBR(K,ID)-UXBR(K,ID-1))*DLT)
 F(ID) = F(ID)+(-SB(K,ID)+ST(K,ID)-HDG(K,ID)+GRAV(K,ID))
 END DO
 END IF

END DO
END DO

DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 !ELWS(IU-1) = ELWS(IU) !wx 2/28/13 !MOVE TO INITWL
 !ELWS(ID+1) = ELWS(ID) !TC
 IF (INTERNAL_FLOW(JB) .AND. NOT. DAM_INFLOW(JB)) THEN
 !ELWS(IU-1) = ELWS(IU)
 !ELWS(ID+1) = ELWS(ID)
 END IF
 END DO
END DO
QIN(JB) = 0.0D0
DO K=KTWB(JWUH(JB)),KB(UHS(JB))
 QIN(JB) = QIN(JB)+U(K,UHS(JB))*BHR2(K,UHS(JB))
END DO
QIN(JB) = QSSI(UHS(JB))

END IF
IF (UP_FLOW(JB)) D(IU) = D(IU)-QIN(JB)

****** Surface elevations: Z calculation from ELWS

DO I=IU,ID
 Z(I) = (EL(KT,I)-ELWS(I))/COSA(JB)
 ZMIN(JW) = MAX(ZMIN(JW),Z(I))
END DO
DO WHILE (EL(KTI(I),ID+1) > ELWS(I))
 KTI(I) = KTI(I)+1
END DO
KTI(I) = MAX(KTI(I)-1,2)
KTMAX = MAX(2,KTI(I))
KTWB(JW) = MAX(KTMAX,KTWB(JW))
END IF
IF (UH_INTERNAL(JB)) THEN
 Z(IU-1) = ((-EL(KTWB(JWUH(JB)),UHS(JB))+Z(UHS(JB))*COSA(JBUH(JB)))+EL(KT,IU-1)+SINA(JB)*DLXR(IU-1))/COSA(JB)
 ELWS(IU-1) = EL(KT,IU-1)-Z(IU-1)*COSA(JB)
 KTI(IU-1) = 2
 DO WHILE (EL(KTI(IU-1),IU-1) > ELWS(IU-1))
 KTI(IU-1) = KTI(IU-1)+1
 END DO
 KTI(IU-1) = MAX(KTI(IU-1)-1,2)
END IF
IF (UH_EXTERNAL(JB)) Z(IU-1) = (EL(KT,IU-1)-(ELUH(JB)+SINA(JB)*DLX(IU)*0.5D0))/COSA(JB)
IF (DH_INTERNAL(JB)) THEN
 Z(ID+1) = ((-EL(KTWB(JWDH(JB)),DHS(JB))+Z(DHS(JB))*COSA(JBDH(JB)))+EL(KT,ID+1))/COSA(JB)
 ELWS(ID+1) = EL(KT,ID+1)-Z(ID+1)*COSA(JB)
 KTI(ID+1) = 2
 DO WHILE (EL(KTI(ID+1),ID+1) > ELWS(ID+1))
 KTI(ID+1) = KTI(ID+1)+1
 END DO
 KTI(ID+1) = MAX(KTI(ID+1)-1,2)
IF (KTI(ID+1) > KB(ID)) THEN
 Z(ID+1) = Z[ID+1] = Z(ID)-SLOPE(JB)*DLX(ID)/2.0D0
 ELWS(ID+1) = EL(KT,ID+1)-Z(ID+1)*COSA(JB)
 KTI(ID+1) = 2
 DO WHILE (EL(KTI(ID+1),ID+1) > ELWS(ID+1))
 KTI(ID+1) = KTI(ID+1)+1
 END DO
 KTI(ID+1) = MAX(KTI(ID+1)-1,2)
END IF
IF (DH_EXTERNAL(JB)) Z(ID+1) = (EL(KT,ID+1)-(ELDH(JB)-SINA(JB)*DLX(ID)*0.5D0))/COSA(JB)

****** Implicit water surface elevation solution

****** Boundary surface elevations

IF (UH_INTERNAL(JB)) THEN
 Z(IU-1) = ((-EL(KTWB(JWUH(JB)),UHS(JB))+Z(UHS(JB))*COSA(JBUH(JB)))+EL(KT,IU-1)+SINA(JB)*DLXR(IU-1))/COSA(JB)
 ELWS(IU-1) = EL(KT,IU-1)-Z(IU-1)*COSA(JB)
 KTI(IU-1) = 2
 DO WHILE (EL(KTI(IU-1),IU-1) > ELWS(IU-1))
 KTI(IU-1) = KTI(IU-1)+1
 END DO
 KTI(IU-1) = MAX(KTI(IU-1)-1,2)
END IF
IF (UH_EXTERNAL(JB)) Z(IU-1) = (EL(KT,IU-1)-(ELUH(JB)+SINA(JB)*DLX(IU)*0.5D0))/COSA(JB)
IF (DH_INTERNAL(JB)) THEN
 Z(ID+1) = ((-EL(KTWB(JWDH(JB)),DHS(JB))+Z(DHS(JB))*COSA(JBDH(JB)))+EL(KT,ID+1))/COSA(JB)
 ELWS(ID+1) = EL(KT,ID+1)-Z(ID+1)*COSA(JB)
 KTI(ID+1) = 2
 DO WHILE (EL(KTI(ID+1),ID+1) > ELWS(ID+1))
 KTI(ID+1) = KTI(ID+1)+1
 END DO
 KTI(ID+1) = MAX(KTI(ID+1)-1,2)
END IF
IF (KTI(ID+1) > KB(ID)) THEN
 Z(ID+1) = Z[ID+1] = Z(ID)-SLOPE(JB)*DLX(ID)/2.0D0
 ELWS(ID+1) = EL(KT,ID+1)-Z(ID+1)*COSA(JB)
 KTI(ID+1) = 2
 DO WHILE (EL(KTI(ID+1),ID+1) > ELWS(ID+1))
 KTI(ID+1) = KTI(ID+1)+1
 END DO
 KTI(ID+1) = MAX(KTI(ID+1)-1,2)
END IF
END IF
IF (DH_EXTERNAL(JB)) Z(ID+1) = (EL(KT,ID+1)-(ELDH(JB)-SINA(JB)*DLX(ID)*0.5D0))/COSA(JB)

****** Implicit water surface elevation solution
! FORALL(I=IU,ID) !DO I=IU,ID
! A(I) = -RHO(KT,I-1)*G*COSA(JB)*DLT*DLT* BHRHO(I-1)*0.5D0/DLXR(I-1)
! C(I) = -RHO(KT,I+1)*G*COSA(JB)*DLT*DLT* BHRHO(I) *0.5D0/DLXR(I)
! V(I) = RHO(KT,I) *G*COSA(JB)*DLT*DLT*(BHRHO(I) *0.5D0/DLXR(I)+BHRHO(I-1)*0.5D0/DLXR(I-1))
! D(I) = DLT*(D(I)+DLT*(F(I)-F(I-1)))+DLX(I)*BI(KT,I)*Z(I)
! END FORALL !DO
! IF (UP_HEAD(JB)) D(IU) = D(IU)-A(IU)*Z(IU-1)
! IF (DN_HEAD(JB)) D(ID) = D(ID)-C(ID)*Z(ID+1)
! BTA(IU) = V(IU)
! GMA(IU) = D(IU)
! DO I=IU+1,ID
! BTA(I) = V(I)-A(I)/BTA(I-1)*C(I-1)
! GMA(I) = D(I)-A(I)/BTA(I-1)*GMA(I-1)
! END DO
! Z(ID) = GMA(ID)/BTA(ID)
! DO I=ID-1,IU,-1
! Z(I) = (GMA(I)-C(I)*Z(I+1))/BTA(I)
! END DO

!****** Boundary water surface elevations

IF (UP_FLOW(JB) .AND. .NOT. HEAD_FLOW(JB)) Z(IU-1) = Z(IU)
IF (UP_FLOW(JB) .AND. HEAD_FLOW(JB)) END
IF (DN_FLOW(JB)) Z(ID+1) = Z(ID)
IF (DN_FLOW(JB)) THEN
Z(ID+1) = Z(ID)
ELWS(ID+1) = EL(KT,ID+1)-Z(ID+1)*COSA(JB)
END IF

!****** UPDATE KTI OF IU-1 & ID+1

! IU-1
DO WHILE (EL(KTI(IU-1),IU-1) > EL(KT,IU-1)-Z(IU-1)*COSA(JB))

KTI(IU-1) = KTI(IU-1)+1
END DO

KTI(IU-1) = MAX(KTI(IU-1)-1,2)

! ID+1
DO WHILE (EL(KTI(ID+1),ID+1) > EL(KT,ID+1)-Z(ID+1)*COSA(JB))

KTI(ID+1) = KTI(ID+1)+1
END DO

KTI(ID+1) = MAX(KTI(ID+1)-1,2)

!****** Updated surface layer and geometry

IF (.NOT. TRAPEZOIDAL(JW)) THEN
DO I=IU-1,ID+1
IF (EL(KT(I),Z(I))*COSA(JB) > EL(KTI(I),Z(I))*COSA(JB)) THEN
DO WHILE (EL(KT(I),Z(I))*COSA(JB) > EL(KTI(I),Z(I)) .AND. KTI(I) /= 2)

Z(I) = (EL(KT(I),Z(I)=-2)*(EL(KTI(I),Z(I)-2)*EL(KTI(I),Z(I)))*COSA(JB))*(B(KTI(I),Z(I)-2))
END DO

END IF
IF (MACROPHYTE_ON) THEN

END IF
KTIP = KTI(I)

! C KEEPING TRACK IF COLUMN KTI HAS MACROPHYES
IF (KTIP.GT.2) KTICOL(I) = .FALSE.
END IF

KTI(I) = MAX(KTI(I)-1,2)
END DO
ELSE IF (EL(KT,I)-Z(I)*COSA(JB) < EL(KTI(I)+1,I)) THEN

DO WHILE (EL(KT,I)-Z(I)*COSA(JB) < EL(KTI(I)+1,I) .AND. KTI(I) < KB(I))

Z(I) = (EL(KT,I)-EL(KTI(I)+1,I)-(EL(KT,I)-EL(KTI(I)+1,I)-Z(I)*COSA(JB))*B(KTI(I)+1,I))/COSA(JB)

KTI(I) = KTI(I)+1
IF (MACROPHYTE_ON) KTICOL(I) = .TRUE.
END IF

IF (KTI(I) >= KB(I)) EXIT

END DO

! KTI(I) = MAX(KTI(I)-1,2) ! WX 2/28/13

END IF

BI(KT:KB(I),I) = B(KT:KB(I),I)
BI(KTI(I),I) = B(KTI(I),I)
H1(KT,I) = H(KT,JW)-Z(I)
AVH1(KT,I) = (H1(KT,I)+H1(KT+1,I))*0.5D0
IF (KT == KTI(I) OR. KTI(I) >= KB(I)) THEN

BH1(KT,I) = B(KT,I)*H1(KT,I)
ELSE

BH1(KT,I) = BI(KT,I)*H1(KT,I)
END IF

IF (KT == KTI(I) OR. KTI(I) >= KB(I)) THEN

BH1(KT,I) = BH1(KT,I)/(H1(KT,I)-(EL(KTI(I)+1,I)-EL(KB(I)+1,I))) ! SW 1/23/06
VOL(KT,I) = BH1(KT,I)*DLX(I)
END DO

AVHR(KT,I) = H1(KT,I) + (H1(KT,I+1) - H1(KT,I))/(0.5D0*(DLX(I)+DLX(I+1)))*0.5D0*DLX(I)
! SW 07/29/04 (H1(KT,I+1) +H1(KT,I))*0.5
IF (KB(I) < KB(J)) AVHR(KT,I) = ((H1(KT,I)-(EL(KBI(I)+1,I)-EL(KB(I)+1,I))) & +(H1(KT+1,I)-(EL(KBI(I)+1,I+1)-EL(KB(I)+1,I+1)))-H1(KT,I))*0.5D0*DLX(I) & +(EL(KBI(I)+1,I)+(EL(KBI(I)+1,I+1)-EL(KB(I)+1,I+1)))/0.5D0*DLX(I)) ! SW 1/23/06
BHR1(KT,I) = BH1(KT,I)/(BH1(KTI(I)+1,I)+BH1(KTI(I)+1,I)) ! SW 1/23/06
VOL(KT,I) = BH1(KT,I)*DLX(I)
END DO

AVHR(KT,I) = H1(KT,I)
BHR1(KT,I) = BH1(KT,I)
DLVOL(JB) = 0.0
ELSE

AVHR(KT,I) = H1(KT,I)
CALL GRID_AREA2
H1(KT,I) = H(KT,JW)-Z(I)
AVH1(KT,I) = (H1(KT,I)+H1(KT+1,I))*0.5
CALL GRID_AREA1(EL(KT,I)-Z(I),EL(KT+1,I),BH1(KT,I),BI(KT,I))

BKT(I) = BH1(KT,I)/(BH1(KTI(I)+1,I)+BH1(KTI(I)+1,I))
END DO

AVHR(KT,I) = H1(KT,I) + (H1(KT,I+1) - H1(KT,I))/(0.5D0*(DLX(I)+DLX(I+1)))*0.5D0*DLX(I)
! SW 07/29/04 (H1(KT,I+1) +H1(KT,I))*0.5
ELSE

AVHR(KT,I) = H1(KT,I)
BHR1(KT,I) = BH1(KT,I)
DLVOL(JB) = 0.0
ELSE

AVHR(KT,I) = H1(KT,I)
CALL GRID_AREA2
H1(KT,I) = H(KT,JW)-Z(I)
AVH1(KT,I) = (H1(KT,I)+H1(KT+1,I))*0.5
CALL GRID_AREA1(EL(KT,I)-Z(I),EL(KT+1,I),BH1(KT,I),BI(KT,I))

BKT(I) = BH1(KT,I)/(BH1(KTI(I)+1,I)+BH1(KTI(I)+1,I))
END DO

AVHR(KT,I) = H1(KT,I) + (H1(KT,I+1) - H1(KT,I))/(0.5D0*(DLX(I)+DLX(I+1)))*0.5D0*DLX(I)
! SW 07/29/04 (H1(KT,I+1) +H1(KT,I))*0.5
ELSE

AVHR(KT,I) = H1(KT,I)
CALL GRID_AREA2
H1(KT,I) = H(KT,JW)-Z(I)
AVH1(KT,I) = (H1(KT,I)+H1(KT+1,I))*0.5
CALL GRID_AREA1(EL(KT,I)-Z(I),EL(KT+1,I),BH1(KT,I),BI(KT,I))

BKT(I) = BH1(KT,I)/(BH1(KTI(I)+1,I)+BH1(KTI(I)+1,I))
END DO

AVHR(KT,I) = H1(KT,I) + (H1(KT,I+1) - H1(KT,I))/(0.5D0*(DLX(I)+DLX(I+1)))*0.5D0*DLX(I)
! SW 07/29/04 (H1(KT,I+1) +H1(KT,I))*0.5
\begin{verbatim}
+(\text{H1}(\text{KT},\text{I}+1)-\text{el}(\text{kbi}(\text{i})+1,\text{i}+1)-\text{el}(\text{kb}(\text{i})+1,\text{i}+1)) \cdot -\text{H1}(\text{KT},\text{I})+(\text{el}(\text{kbi}(\text{i})+1,\text{i})&
-\text{el}(\text{kb}(\text{i}),\text{i})))/(0.5D0*(\text{DLX(\text{I})}+\text{DLX(\text{I}+1)}))*0.5D0*\text{DLX(\text{I})} ! \text{SW 1/23/06}
\text{BHR1}(\text{KT},\text{I}) = \text{BHR1}(\text{KT},\text{I})+(\text{BH1}(\text{KT},\text{I}+1)-\text{BH1}(\text{KT},\text{I}))/0.5D0*\text{DLX(\text{I})}
! \text{SW 07/29/04}
\text{AVHR}(\text{KT,ID}+1) = \text{H1}(\text{KT,ID}+1)
\text{BHR1}(\text{KT,ID}+1) = \text{BH1}(\text{KT,ID}+1)
\text{DLVOL(JB)} = 0.0
\text{ENDIF}
! \text{ELWS(CUS(JB):DS(JB)+1) = EL(CUS(JB):DS(JB)+1)-Z(CUS(JB):DS(JB)+1)*COSA(JB)}
! \text{WX 3/3/13}
\text{DO I=IU,ID}
\text{DLVOL(JB) = DLVOL(JB)+(BH1(KT,I)-BH2(KT,I))*DLX(I)}
\text{IF (KT == 2 .AND. H1(KT,I) > H(2,JW) .AND. .NOT. SURFACE_WARNING) THEN}
 \text{WRITE (WRN,'(A,I0,A,F0.3)') 'Water surface is above the top of layer 2 in segment ',I,' at day ',JDAY}
 \text{WARNING_OPEN = .TRUE.}
 \text{SURFACE_WARNING = .TRUE.}
\text{ENDIF}
\text{END DO}
\text{ENDIF(MACROPHYTE_ON) THEN}
 \text{IF DEPTH IN KTI LAYER BECOMES GREATER THAN THRESHOLD, SETTING}
 \text{MACROPHYTE CONC. IN KTI COLUMN TO INITIAL CONC.}
 \text{DO I=IU,ID}
 \text{DEPKTI=ELWS(I)-EL(KTI(I)+1,I)}
 \text{ENDIF(MACROPHYTES, SETTING CONC. OF MACROPHYTES IN NEW COLUMNS TO}
 \text{INITIAL CONCENTRATION IF COLUMN DEPTH IS GREATER THAN 'THRKTI'}
 \text{IF(.NOT.KTICOL(I) .AND. DEPKTI.GE.THRKTI) THEN}
 \text{KTICOL(I) = .TRUE.}
 \text{JT=KTI(I)}
 \text{MACT(JT,KT,I)=0.0}
 \text{DO M=1,NMC}
 \text{MACRC(JT,KT,I,M)=MACWBCI(JW,M)}
 \text{COLB=EL(KTI(I)+1,I)}
 \text{COLDEP=ELWS(I)-COLB}
 \text{MACRM(JT,KT,I,M)=MACWBCI(JW,M)*COLDEP*CW(JT,I)*DLX(I)}
 \text{MAct(JT,KT,I)=MAct(JT,KT,I)+MACRM(JT,KT,I,M)}
 \text{END DO}
 \text{END IF}
\text{ENDIF(MACROPHYTES, WHEN COLUMN DEPTH IS LESS THAN 'THRKTI', ZEROING OUT CONC.}
 \text{IF(KTICOL(I) .AND. DEPKTI.LT.THRKTI) THEN}
 \text{KTICOL(I) = .FALSE.}
 \text{JT=KTI(I)}
 \text{MACT(JT,KT,I)=0.0}
 \text{DO M=1,NMC}
 \text{MACMBRT(JB,M) = MACMBRT(JB,M)+MACRM(JT,KT,I,M)}
 \text{MACRC(JT,KT,I,M)=0.0}
 \text{MACRM(JT,KT,I,M)=0.0}
 \text{END DO}
 \text{END IF}
\text{ENDIF}
\end{verbatim}
IUT = IU
IDT = ID
IF (UP_HEAD(JB)) IUT = IU-1
IF (DN_HEAD(JB)) IDT = ID+1

****** Pressures

DO I=IUT,IDT
 DO K=KT,KB(I)
 P(K,I) = P(K-1,I)+RHO(K,I)*G*H1(K,I)*COSA(JB)
 END DO
END DO

****** Horizontal pressure gradients

DO I=IUT,IDT-1
 HPG(KT,I) = DLXRHO(I)*(BKT(I)+BKT(I+1))*0.5D0*(H1(KT,I+1)*P(KT,I+1)-H1(KT,I)*P(KT,I))
 DO K=KT+1,KBMIN(I)
 HPG(K,I) = DLXRHO(I)*BHR2(K,I)*((P(K-1,I+1)-P(K-1,I))+(P(K,I+1)-P(K,I)))
 END DO
END DO

******** Horizontal velocity

IF (SLOPE(JB) > 0.0 .AND. .NOT. LOOP_BRANCH(JB)) THEN
 DO I=IU,ID
 WSURF=ELWS(I)
 XAREA=0.0
 DO K=KT,KBMIN(I) !KBI(I) SW 5/21/13
 XAREA = XAREA + BHR1(K,I)
 END DO
 UAVG(I)=QSSI(I)/XAREA
 DO K=KT,KBMIN(I) ! change KB to KBMIN
 U(K,I)=UAVG(I)
 END DO
 END DO
 WSURF=ELWS(IU) ! nEEDS REFINEMENT FOR CASES WHERE A TRIB ENTERS
WX 4/11/13
 CALL XSECTIONAL_AREA(WSURF,XAREA)
 UAVG(IU)=QSSI(IU)/XAREA
 DO K=KT,KBMINT(IU-1) ! change KB to KBMIN
 U(K,IU-1)=UAVG(IU)
 END DO
 DO K=KT,KBMINT(ID+1) ! change KB to KBMIN
 U(K,ID+1)=UAVG(ID)
 END DO
 WSURF=ELWS(I)
END IF

IF (SLOPE(JB) > 0.0) THEN ! .AND. .NOT. LOOP_BRANCH(JB) !wx 8/24/13
 DO I=IU,ID
 WSURF=ELWS(I)
 ! CALL XSECTIONAL_AREA2(WSURF,XAREA)
 ! UAVG(I)=QSSI(IU)/XAREA
 ! DO K=KT,KBMINT(IU-1) ! change KB to KBMIN
 ! U(K,IU-1)=UAVG(IU)
 ! END DO
 ! DO K=KT,KBMINT(ID+1) ! change KB to KBMIN
 ! U(K,ID+1)=UAVG(ID)
 ! END DO
 ! END IF

247
END DO
END DO

I=IU ! set i=iu so that there will not be error at the end of branch (exceeding imax) WX 6/12/13
WSURF=ELWS(I)
! CALL XSECTIONAL_AREA2(WSURF,XAREA)
CALL XSECTIONAL_AREA4(WSURF,XAREA)
UAVG(IU)=QSSI(IU)/XAREA
DO K=KT,KBMIN(IU-1) ! change KB to KBMIN
 U(K,IU-1)=UAVG(IU)
END DO

!WSURF=ELWS(IU) ! nEEDS REFINEMENT FOR CASES WHERE A TRIB ENTERS !WX
4/11/13
! CALL XSECTIONAL_AREA(WSURF,XAREA)
! UAVG(IU)=QSSI(IU)/XAREA
! DO K=KT,KBMIN(IU-1) ! change KB to KBMIN
! U(K,IU-1)=UAVG(IU)
! END DO
! DO K=KT,KBMIN(ID+1) ! change KB to KBMIN
! U(K,ID+1)=UAVG(ID)
! END DO

END IF

****** Boundary horizontal velocities

IF (UP_FLOW(JB)) THEN
 IF (.NOT. HEAD_FLOW(JB)) THEN
 QINF(:,JB) = 0.0
 IF (PLACE_QIN(JW)) THEN
 !************ Inflow layer
 K = KT
 SSTOT = 0.0
 DO JC=NSSS,NSSE
 SSTOT = SSTOT+CIN(JC,JB)
 END DO
 RHOIN = DENSITY(TIN(JB),DMAX1(CIN(1,JB),0.0D0),DMAX1(SSTOT,0.0D0))
 DO WHILE (RHOIN > RHO(K,IU) .AND. K < KB(IU))
 K = K+1
 END DO
 KTQIN(JB) = K
 KBQIN(JB) = K
 END IF
 !************ Layer inflows
 VQIN = QIN(JB)*DLT
 VQINI = VQIN
 QINFR = 1.0
 INCR = -1
 DO WHILE (QINFR > 0.0D0)
 V1 = VOL(K,IU)
 IF (K <= KB(IU)) THEN
 IF (VQIN > 0.5D0*V1) THEN
 QINF(K,JB) = 0.5D0*V1/VQINI
 QINFR = QINFR-QINF(K,JB)
 VQIN = VQIN-QINF(K,JB)*VQINI
 IF (K == KT) THEN
 QINF(K,JB) = 0.5D0*V1/VQINI
 QINFR = QINFR-QINF(K,JB)
 VQIN = VQIN-QINF(K,JB)*VQINI
 END IF
 END IF
 END DO

248
K = KBQIN(JB)
INCR = 1
END IF
ELSE
QINF(K,JB) = QINFR
QINFR = 0.0D0
END IF
IF (INCR < 0) KTQIN(JB) = K
IF (INCR > 0) KBQIN(JB) = MIN(KB(IU),K)
K = K+INCR
ELSE
QINF(KT,JB) = QINF(KT,JB)+QINFR
QINFR = 0.0D0
END IF
END IF
END DO
ELSE
KTQIN(JB) = KT
KBQIN(JB) = KB(IU)
BHSUM = 0.0D0
DO K=KT,KB(IU)
BHSUM = BHSUM+BH1(K,IU)
END DO
DO K=KT,KB(IU)
QINF(K,JB) = BH1(K,IU)/BHSUM
END DO
END IF
DO K=KT,KB(IU)
U(K,IU-1) = U(K,IU-1)*BHR1(K,IU-1)
END DO
ELSE
KTQIN(JB) = KT
KBQIN(JB) = KB(IU)
IF (JBUH(JB) <= BE(JW) .AND. JBUH(JB) >= BS(JW)) THEN
DO K=KT,KB(IU)
U(K,IU-1) = U(K,UHS(JB))*BHR1(K,UHS(JB))/BHR1(K,IU-1)
END DO
ELSE
CALL UPSTREAM_VELOCITY
END IF
END IF
END IF
IF (DN_FLOW(JB)) THEN
DO K=KT,KB(ID)
U(K,ID) = QOUT(K,JB)/BHR1(K,ID)
END DO
END IF
IF (UP_HEAD(JB)) THEN
XAREA = 0.0
DO K=KT,KBMIN(IU-1)
U(K,IU-1) = (BHR2(K,IU-1)*U(K,IU-1)+DLT*(-SB(K,IU-1)+ST(K,IU-1)-HPG(K,IU-1)+GRAV(K,IU-1)))/BHR1(K,IU-1)
END DO
XAREA = XAREA + BHR1(K,IU-1)
END DO
UAVG(IU-1) = QSSI(IU)/XAREA
END IF
IF (DN_HEAD(JB)) THEN
XAREA = 0.0
END IF
249
DO K=KT,KBMIN(ID)!KB(ID+1)!
 !is this a problem? id or id+1? 5/28/13
 !(U(K,ID) = (BHR2(K,ID)*U(K,ID)+DLT*(-SB(K,ID)+ST(K,ID)-HPG(K[ID)+GRAV(K,ID)))/BHR1(K,ID)
 XAREA = XAREA + BHR1(K,ID)
END DO
UAVG(ID) = QSSI(ID)/XAREA
DO K=KT,KBMIN(ID) WX 6/17/13
 U(K,ID) = UAVG(ID) WX 6/17/13
END DO
END IF

******** Horizontal velocities

! DO I=IU,ID-1
! DO K=KT,KBMIN(I)
! U(K,I) = (BHR2(K,I)*U(K,I))/BHR1(K,I)+(DLT*(-SB(K,I)+ST(K,I)-ADMZ(K,I)+ADMZ(K-1,I)-
! ADMX(K,I)+DM(K,I)-HPG(K,I)+GRAV(K,I)&
! +UXBR(K,I)/H2(K,I))/BHR1(K,I)
! IF (INTERNAL_WEIR(K,I)) U(K,I) = 0.0D0
! END DO
! END DO
!
******** Implicit vertical eddy viscosity

! IF (IMPLICIT_VISC(JW)) THEN
! AT = 0.0D0; CT = 0.0D0; VT = 0.0D0; DT = 0.0D0
! DO I=IUT,IDT-1
! DO K=KT,KBMIN(I) KB(I) SW 10/7/07
! AT(K,I) = -DLT/BHR1(K,I)*AZ(K-1,I)*(BHR1(K-1,I)/AVHR(K-1,I)+BR(K,I)) /(AVH1(K-1,I)+AVH1(K-1,I+1))
! CT(K,I) = -DLT/BHR1(K,I)*AZ(K,I)*(BHR1(K,I) /AVHR(K,I) +BR(K+1,I))/(AVH1(K,I)
! +AVH1(K,I+1))
! VT(K,I) = 1.0D0-AT(K,I)-CT(K,I)
! DT(K,I) = U(K,I)
! END DO
! CALL TRIDIAG(AT(:,I),VT(:,I),CT(:,I),DT(:,I),KT,KBMIN(I),KMX,U(:,I))
! END DO
! END IF
!
******** Corrected horizontal velocities

! IF (UP_HEAD(JB)) THEN
! IS = ID
! IE = IU-1
! INCR = -1
! Q(IS) = 0.0D0
! DO K=KT,KB(ID)
! Q(IS) = Q(IS)+U(K,IS)*BHR1(K,IS)
! END DO
! QSSUM(IS) = 0.0D0
! DO K=KT,KB(IS)
! QSSUM(IS) = QSSUM(IS)+QSS(K,IS)
! END DO
! ELSE
! IS = IU-1
! IE = ID
! INCR = 1
! IF (DN_FLOW(JB)) IE = ID-1
! Q(IS) = 0.0D0
! DO K=KT,KB(IU)
! Q(IS) = Q(IS)+U(K,IS)*BHR1(K,IS)
END DO
END IF
QC(IS) = Q(IS)
DO I=IS+INCR,IE,INCR
QSSUM(I) = 0.0D0
DO K=KT,KB(I)
QSSUM(I) = QSSUM(I)+QSS(K,I)
END DO
BHRSUM = 0.0D0
DO K=KT,KBMIN(I)
IF (.NOT. INTERNAL_WEIR(K,I)) THEN
BHRSUM = BHRSUM+BHR1(K,I)
Q(I) = Q(I)+U(K,I)*BHR1(K,I)
END IF
END DO
IF (UP_HEAD(JB)) THEN
QC(I) = QC(I+1)+(BH1(KT,I+1)-BH2(KT,I+1))*DLX(I+1)/DLT-QSSUM(I+1)
ELSE
QC(I) = QC(I-1)-(BH1(KT,I) -BH2(KT,I)) *DLX(I) /DLT+QSSUM(I)
END IF
DO K=KT,KBMIN(I)
IF (INTERNAL_WEIR(K,I)) THEN
U(K,I) = 0.0D0
ELSE
U(K,I) = U(K,I)+(QC(I)-Q(I))/BHRSUM
IF (Q(I) /= 0.0) QERR(I) = (Q(I)-QC(I))/Q(I)*100.0
END IF
END DO
END DO

****** Head boundary flows
IF (UP_HEAD(JB)) QUH1(KT:KB(IU-1),JB) = U(KT:KB(IU-1),IU-1)*BHR1(KT:KB(IU-1),IU-1)
IF (DN_HEAD(JB)) QDH1(KT:KB(ID+1),JB) = U(KT:KB(ID+1),ID) *BHR1(KT:KB(ID+1),ID)

** tributary and distributed tributary flow distribution. This QTRF calculated below is for both TRIB and DTR
WX 8/17/13
DO I=CUS(JB),DS(JB)
BHSUM = 0.0
DO K=KTWB(JW),KB(I)
BHSUM = BHSUM+BHR1(K,I)
END DO
DO K=KTWB(JW),KB(I)
QTRF(K,I) = BHR1(K,I)/BHSUM
END DO

** CALCULATE QSS FOR TRIBUTARIES AND DISTRIBUTED TRIBUTARIES WX 8/18/13
** tributary
IF (TRIBUTARIES)THEN
DO JT=1,JWT
IF (JB==JBTR(JT)) THEN
I= MAX(ITR(JT),IU)
DO K=KTWB(JW),KB(I)
QSS(K,I) = QSS(K,I)+QTR(JT)*QTRF(K,I)
END DO
END IF
END DO
END IF
** distributed tributary

IF (DIST_TRIBS(JB)) THEN
 DO I=IU,ID
 QDT(I) = QDTR(JB)/REAL(ID-IU+1)
 END DO
ELSE
 DO I=IU,ID
 QDT(I) = 0.0
 END DO
END IF

** LOOP BRANCH FLOW

!WX 8/25/13 CALCULATE QSS FOR LOOP BRANCH, SO THAT VERTICAL VELOCITY IS RIGHT

IF (LOOP_BRANCH(JB)) THEN
 I=UHS(JB)
 DO K=KTWB(JW),KB(I)
 QSS(K,I) = QSS(K,I)-QSSI(US(JB))*QTRF(K,I)
 END DO
 I=DHS(JB)
 DO K=KTWB(JW),KB(I)
 QSS(K,I) = QSS(K,I)+QSSI(DS(JB))*QTRF(K,I)
 END DO
END IF

*** Task 2.2.5: Vertical velocities

DO JW=1,NWB !WX 11/10/2013 separate vertical velocity and others into 2 loop
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 DO I=IU,ID
 DO K=KB(I)-1,KT,-1
 WT1 = W(K+1,I)*BB(K+1,I)
 WT2 = (BHR(K+1,I)*U(K+1,I)-BHR(K+1,I-1)*U(K+1,I-1)-QSS(K+1,I))/DLX(I)
 W(K,I) = (WT1+WT2)/BB(K,I)
 END DO
 END DO
 END DO
END DO

!!** WHEN THERE IS LOOP BRANCH, VERTICAL VELOCITY IN MAIN BRANCH IS CALCULATED EARLIER THAN QSS calculated, so correction of vertical v is needed

! IF (LOOP_BRANCH(JB)) THEN !WX 8/26/13
 I=UHS(JB)
 DO K=KB(I)-1,KT,-1
 W(K,I)=0.0
 END DO
 I=DHS(JB)
 DO K=KB(I)-1,KT,-1
 W(K,I)=0.0
 END DO
END IF
*** for the first time step, BH2 is set to equal BH1, so that the numerical calculation can be steady
IF (NIT == 0) THEN !WX 5/18/13
 BH2=BH1
END IF

!!**

!!** Task 2.2.6: Autostepping **
!!**

DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 !
 IF(DLTADD(JW)==0 AND .ABS(H1(KT,I)-H2(KT,I))/H2(KT,I) > 0.5)THEN
 WRITE (WRN,'(A,F0.3,A,I0,A,F0.3/3(A,F0.3),a,i10,a)') 'Computational warning |h1-h2|/h2>0.25 on Julian
 day = ',JDAY,' at segment ',I,' timestep DLT= ',DLT,&
 ' Water surface deviation [Z,m] = ',Z(I),' H1 layer thickness(m) = ',H1(KT,I),' H2 layer
 thickness(m)=',h2(I),') 'Iteration[NIT]='+NIT,' DLT reduced'
 WARNING_OPEN = .TRUE.
 IF(H1(KT,I)>0.0)THEN
 CURMAX=DLT*0.5
 ELSE
 CURMAX=DLTMIN
 ENDIF
 GO TO 220
 ELSEIF (H1(KT,I) < 0.0) THEN
 WRITE (WRN,'(A,F0.3/A,I0/4(A,F0.3))') 'Computational warning at Julian day = ',JDAY,' at segment
 I,timestep = ',DLT,&
 ' water surface deviation [Z] = ',Z(I),' m layer thickness = ',H1(KT,I),' m'
 WARNING_OPEN = .TRUE.
 IF (DLT > DLTMIN) THEN
 WRITE (WRN,'(A,I0/2(A,F0.3),A,I0)') 'Negative surface layer thickness in segment ',I,' time step reduced to
 DLTMIN,' s on day ',JDAY,' at iteration ',NIT
 WARNING_OPEN = .TRUE.
 CURMAX = DLTMIN
 GO TO 220
 ELSE
 WRITE (W2ERR,'(A,F0.3/A,I0)') 'Unstable water surface elevation on day ',JDAY,'negative surface layer
 thickness '/&
 'using minimum timestep at iteration ',NIT
 WRITE (W2ERR,'(A)') 'Segment, Surface layer thickness, m, Flow m3/s, U(KT,I) m/s, ELWS, m'
 DO II=MAX(CUS(JB),I-3),MIN(DS(JB),I+3)
 WRITE (W2ERR,'(T4,I3,T19,F10.2,t37,f10.2,1x,f10.2,2x,f10.2)') II,H1(KT,II),QC(II),U(KT,II),ELWS(II)
 END DO
 TEXT = 'Runtime error - see w2.err'
 ERROR_OPEN = .TRUE.
 GO TO 230
 ENDIF
 ELSE
 END DO
 END DO
END IF
END IF
END DO
IF (VISCOSITY_LIMIT(JW)) TAU1 = 2.0*MAX(AX(JW),DXI(JW))/(DLX(I)*DLX(I))
IF (CELERITY_LIMIT(JW)) CELRTY = SQRT((ABS(RHO(KB(I),I)-RHO(KT,I)))/1000.0*G*DEPTHB(KBI(I),I)*0.5) ! SW 1/23/06
DO K=KT,KB(I)
 IF (VISCOSITY_LIMIT(JW) .AND. .NOT. IMPLICIT_VISC(JW)) TAU2 = 2.0*AZ(K,I)/(H1(K,JW)*H1(K,JW))
 QTOT(K,I) = (ABS(U(K,I))*BHR1(K,I)+ABS(U(K,I-1))*BHR1(K,I-1)+(ABS(W(K,I))*BB(K,I)+ABS(W(K-1,I)))*BB(K-1,I))*DLX(I)
 & DLX(I)*ABS(BH2(K,I)-BH1(K,I))/DLT+ABS(QSS(K,I)))*0.5
 DLTCAL = 1.0/((QTOT(K,I)/BH1(K,I)+CELRTY)/DLX(I)+TAU1+TAU2+NONZERO)
 IF (DLTCAL < CURMAX) THEN
 KLOC = K
 ILOC = I
 CURMAX = DLTCAL
 IF (DLTFF*CURMAX < MINDLT) THEN
 KMIN = K
 IMIN = I
 END IF
 END IF
END DO
END DO
END DO
!!** Restore timestep dependent variables and restart calculations
!!220 CONTINUE
IF (CURMAX < DLT .AND. DLT > DLTMIN) THEN
 DLT = DLTFF*CURMAX
 IF (DLT <= DLTMIN) THEN
 WRITE (WRN,'(A,F0.3/A,F0.3,A)') 'Computational warning at Julian day = ',JDAY,' timestep = ',DLT,' sec: DLT<DLTMIN set DLT=DLTMIN'
 WARNING_OPEN = .TRUE.
 DLT = DLTMIN
 NV = NV+1
 Z = SZ
 U = SU
 W = SW
 AZ = SAZ
 AVH2 = SAVH2
 AVHR = SAVHR
 KTI = SKTI
 BKT = SBKT
 QSS = 0.0
 SB = 0.0
 DLTS = DLT
 do jw=1,nwb
 do jb=bs(jw),be(jw)
 do i=us(jb)-1,ds(jb)+1
 VOL(KTWB(JW),I) = BH2(KTWB(JW),I)*DLX(I)
 BI(KTWB(JW),I) = B(KTI(I),I)
 end do
 end do
 end do
 CURMAX = DLTMAXX/DLTFF
 IF (PIPES) THEN
YST = YSTS
VST = VSTS
YST = YSTS
DTP = DTPS
QOLD = QOLDS
END IF

********** Macrophytes
DO JW=1,NWB
DO M=1,NMC
IF (MACROPHYTE_CALC(JW,M)) THEN
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 DO I=CUS(JB),DS(JB)
 DO K=KT,KB(I)
 MAC(K,I,M)=SMAC(K,I,M)
 IF(KTICOL(I))THEN
 JT=KTI(I)
 ELSE
 JT=KTI(I)+1
 END IF
 JE=KB(I)
 DO J=JT,JE
 MACRC(J,K,I,M)=SMACRC(J,K,I,M)
 MACRM(J,K,I,M)=SMACRM(J,K,I,M)
 END DO
 END DO
 END DO
END IF
END DO
END DO
END DO
GO TO 210
!WX 11/29/12
!END IF !WX 11/12/2012
!DLTLIM(KMIN,IMIN) = DLTLIM(KMIN,IMIN)+1.0

*** Layer bottom and middle depths
DO JW=1,NWB
 DO JB=BS(JW),BE(JW)
 DO I=CUS(JB)-1,DS(JB)
 DEPTHB(KTWB(JW),I) = H1(KTWB(JW),I)
 DEPTHM(KTWB(JW),I) = H1(KTWB(JW),I)*0.5
 END DO
 if(kbi(i) < kb(i) .and. (el(kbi(i)+1,i)-el(kb(i)+1,i)) < h1(ktwb(jw),i))then ! SW 7/22/10 if h1 < elev diff this
 depthb(ktwb(jw),i)=(h1(ktwb(jw),i)-(el(kbi(i)+1,i)-el(kb(i)+1,i))) ! SW 1/23/06
 depthm(ktwb(jw),i)=(h1(ktwb(jw),i)-(el(kbi(i)+1,i)-el(kb(i)+1,i)))*0.5
 endif
 DO K=KTWB(JW)+1,KMX
 DEPTHB(K,I) = DEPTHB(K-1,I)+ H1(K,I)
 DEPTHM(K,I) = DEPTHM(K-1,I)+(H1(K-1,I)+H1(K,I))*0.5
 END DO
 END DO
END DO
CALL temperature
IF (CONSTITUENTS) CALL wqconstituents

CALL LAYERADDSUB
if(error_open)go to 230

CALL BALANCES

CALL UPDATE
if(restart_in)then
 if(iopenfish==0)nxtmts=jday
endif

IF (JDAY.GE.NXTMTS.OR.JDAY.GE.TSRD(TSRDP+1).or.nit==1) THEN ! OUTPUT AT FREQUENCY OF TSR FILES
IF(HABTATC == ' ON')CALL FISHHABITAT(iopenfish) ! OUTPUT AT FREQUENCY OF TSR FILES
IF(AERATEC == ' ON'.and.oxygen_demand)CALL AERATEOUTPUT
IF(RESTART_IN)iopenfish=1
IF(ENVIRPC == ' ON')CALL ENVIRP
iopenfish=1
ENDIF ! OUTPUT AT FREQUENCY OF TSR FILES

CALL OUTPUTA !**** Screen output
DO JW=1,NWB
 IF (SCREEN_OUTPUT(JW)) THEN
 IF (JDAY >= NXTMSC(JW) .OR. JDAY >= SCRD(SCRDP(JW)+1,JW)) THEN
 IF (JDAY >= SCRD(SCRDP(JW)+1,JW)) THEN
 SCRDP(JW) = SCRDP(JW)+1
 NXTMSC(JW) = SCRD(SCRDP(JW),JW)
 END IF
 KT = KTWB(JW)
 NXTMSC(JW) = NXTMSC(JW)+SCRF(SCRDP(JW),JW)
 CALL SCREEN_UPDATE (DLG)
 CALL DATE_AND_TIME (CDATE,CCTIME)
 ! DO JH=1,NHY
 ! IF (HYDRO_PLOT(JH)) CALL GRAPH_UPDATE (JH,HYD(:,;JH), HNAME(JH), HYMIN(JH),1.0, LNAME(JH))
 ! END DO
 ! DO JC=1,NCT
 ! IF (CONSTITUENT_PLOT(JC)) CALL GRAPH_UPDATE (JH+JC,C2(:,;JC), CNAME(JC), CMIN(JC), CMULT(JC), LNAME(JH+JC))
 ! END DO
 ! DO JD=1,NDC
 ! IF (DERIVED_PLOT(JD)) CALL GRAPH_UPDATE (JH+JC+JD,CD(:,;JD),CDNAME(JD),CDMIN(JD),CDMULT(JD),LNAME(JH+JC+JD))
 ! END DO
 END IF
 END IF
END DO ! END OF MAIN DO WHILE LOOP

230 CONTINUE
IF (STOP_PUSHED) THEN
 TEXT = 'Execution stopped at '//CCTIME(1:2)//':'//CCTIME(3:4)//':'//CCTIME(5:6)//' on '//CDATE(5:6)//'/'//CDATE(7:8)//'/'
//CDATE(3:4)
CALL RESTART_OUTPUT ('rso.opt')
END IF

IOPENFISH=3
IF(ENVIRPC == " ON")CALL ENVIRP
IF(HABTATC == " ON")call fishhabitat(iopenfish) ! FINAL OUTPUT FOR ENVIR
PERFORMANCE
CALL ENDSIMULATION

240 CONTINUE
! CALL DEALLOCATE_GRAPH

 !IF(CLOSEC===' ON' .AND. END_RUN)THEN
 CALL EXITDIALOG(DLG,TEXT)
 ELSE
 CALL STOP_W2 (DLG,TEXT)
 ENDIF
 RETURN
END FUNCTION CE_QUAL_W2
subroutine initial_water_level

USE MAIN
USE GLOBL; USE NAMESC; USE GEOMC; USE LOGICC; USE PREC; USE SURFHE; USE KINETIC;
USE SHADEC; USE EDDY
USE STRUCTURES; USE TRANS; USE TVDC; USE SELWC; USE GDAYC; USE SCREENC; USE TDGAS;
USE RSTART
USE MACROPHYTEC; USE POROSITYC; USE ZOOPLANKTONC
USE INITIALVELOCITY
IMPLICIT NONE
EXTERNAL RESTART_OUTPUT
INTEGER :: JBU, JBD, JJW
REAL :: QGATE, WSUP, BRLN, WLSLOPE, DIST, WLDIFF
REAL :: QLOOP1, QLOOP2
LOOP_BRANCH=.FALSE.

! estimating initial flows in each segment
QSSI=0.0

! first considering specified flows: upstream inflows, tributaries, distributed tribs, structural withdrawals and withdrawals
DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 DO I=IU,ID
 IF (I == IU .AND. UP_FLOW(JB)) THEN !wx 2/13/13
 QSSI(I)=QIND(JB)+QSSI(I) !WX 7/6/13
 END IF
 IF (I == IU .AND. DAM_INFLOW(JB)) THEN !CB 4/27/2011
 DO JJW=1,NWB
 DO JJB=BS(JJW),BE(JJW)
 IF (DS(JJB) == ABS(UHS(JB))) THEN
 DO JS=1,NSTR(JJB)
 QSSI(I)=QSSI(I)+QSTR(JS,JJB)
 END DO
 END IF
 END DO
 END DO
 END IF
 IF (TRIBUTARIES) THEN
 DO JT=1,NTR
 IF (ITR(JT) == I) QSSI(I)=QSSI(I)+QTR(JT)
 IF (DIST_TRIBS(JB)) THEN
 DO JJB=BS(JJW),BE(JJW)
 IF (DS(JJB) == ABS(UHS(JB))) THEN
 DO JS=1,NSTR(JJB)
 QSSI(I)=QSSI(I)+QSTR(JS,JJB)
 END DO
 END IF
 END DO
 END IF
 END DO
 END IF
QSSI(I) = QSSI(I) + QDTR(JB) / REAL(ID - IU + 1) ! SINCE INITIAL WL UNKNOWN, DISTRIBUTING FLOW EVENLY BTW. SEGS.
END IF
IF (WITHDRAWALS) THEN
 DO JWD=1,NWD
 IF (IW(JWD) == I) QSSI(I) = QSSI(I) - QWD(JWD)
 END DO
END IF
IF (I == ID) THEN
 DO JS=1,NSTR(JB)
 QSSI(I) = QSSI(I) - QSTR(JS, JB)
 END DO
END IF
END DO
! INCLUDING FLOWS WITHIN BRANCH UPSTREAM OF SEGMENT
DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 DO I=IU+1,ID
 QSSI(I) = QSSI(I) + QSSI(I-1)
 END DO
 END DO
END DO
! DETERMINING IF SEGMENT IS DOWNSTREAM INTERNAL HEAD BOUNDARY OF ANOTHER *UPSTREAM* BRANCH, AND ADDING FLOW TO SEGMENT AND SEGMENTS DOWNSTREAM
DO JJW=1,NWB
 DO JJB=BS(JJW),BE(JJW)
 IF (DHS(JJB) == I) THEN
 DO II=I,ID
 QSSI(II) = QSSI(II) + QSSI(DS(JJB))
 END DO
 END IF
 END DO
END DO
! DETERMINING IF SEGMENT IS DOWNSTREAM OF SPILLWAY BELOW ANOTHER BRANCH
DO JS=1,NSP
 IF (ESP(JS) < EL(2,I)) THEN ! DISREGARDING IF CREST ABOVE GRID
 IF (I == IDSP(JS)) THEN
 DO II=I,ID
 QSSI(II) = QSSI(II) + QSSI(IUSP(JS))
 END DO
 END IF
 END IF
END DO
! DETERMINING IF SEGMENT IS DOWNSTREAM OF GATE BELOW ANOTHER BRANCH
DO JG=1,NGT
 IF (EGT(JG) < EL(2,I)) THEN ! DISREGARDING IF CREST ABOVE GRID
 IF (I == IDGT(JG)) THEN
 DO II=I,ID
 QSSI(II) = QSSI(II) + QSSI(IUSP(JS))
 END DO
 END IF
 END IF
END DO
IF(DYNGTC(JG) == 'FLOW') THEN
 QGATE = BGT(JG)
 DO II=1,ID
 QSSI(II) = QSSI(II) + QGATE
 END DO
ELSE
 DO II=1,ID
 QSSI(II) = QSSI(II) + QSSI(IUGT(JG))
 END DO
END IF
END IF
END IF
END DO

! DETERMINING IF BRANCH IS A SECONDARY BRANCH THAT LOOPS AROUND AN ISLAND WITH INTERNAL HEAD BOUNDARIES AT UPSTREAM AND DOWNSTREAM BC
! ATTACHED TO A SINGLE BRANCH
DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IF(UH_INTERNAL(JB) AND DH_INTERNAL(JB)) THEN
 DO JJW=1,NWB
 DO JJB=BS(JJW),BE(JJW)
 IF(UHS(JB) > US(JJB) AND UHS(JB) < DS(JJB)) THEN
 JBU = JJB
 END IF
 END DO
 END DO
 END IF
 END DO
END DO
DO JW=1,NWB
 DO JB=BS(JW),BE(JW)
 IF(DHS(JB) > US(JJB) AND DHS(JB) < DS(JJB)) THEN
 JBD = JJB
 END IF
 END DO
END DO
LOOP_BRANCH(JB) = JBU == JBD
IF(LOOP_BRANCH(JB)) THEN
 CALL LOOP_FLOW_DIVIDE(JBU, QSSI(UHS(JB)-1), QLOOP1, QLOOP2)
 ! recalculate flow in the main branch
 DO II=UHS(JB),DS(JB)-1
 QSSI(II) = QSSI(II) - QSSI(UHS(JB)-1) + QLOOP1
 END DO
 ! recalculate flow in the loop branch
 DO II=US(JB),DS(JB)
 QSSI(II) = QSSI(II) + QLOOP2
 END DO
 QIN(JB) = QSSI(US(JB)) ! FOR THE PURPOSE OF SCR OUTPUT
 TIN(JB) = T2(KTWB(JW),US(JB))
END IF
END IF
END DO
END DO
! GIVEN ESTIMATED FLOWS FOR EACH SEGMENT, ESTIMATING WL WITH NORMAL DEPTH EQUATION
DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 ! ONLY CONSIDERING BRANCHES WITH SLOPES > 0
 IF (SLOPE(JB) > 0.0 .AND. .NOT. LOOP_BRANCH(JB)) THEN
 IU = CUS(JB)
 ID = DS(JB)
 DO I=IU,ID
 CALL NORMAL_DEPTH(QSSI(I))
 END DO
 END IF
 END DO
END DO

! SMOOTHING WATER SURFACE ELEVATIONS, FIRST WITHIN BRANCHES
DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 IF (DH_EXTERNAL(JB)) ELWS(ID) = ELDH(JB)+SINA(JB)*DLX(ID) !WX 7/11/13 make sure downstream tide is considered
 IF (SLOPE(JB) > 0.0 .AND. .NOT. LOOP_BRANCH(JB)) THEN
 DO I=ID-1,IU,-1
 IF(ELWS(I+1) > ELWS(I)) THEN
 ELWS(I) = ELWS(I+1)
 END IF
 END DO
 END IF
 END IF
 END DO
END DO

! SMOOTHING WATER SURFACE ELEVATIONS AT INTERNAL HEAD BOUNDARIES
DO JW=1,NWB
 KT = KTWB(JW)
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 IF (SLOPE(JB) > 0.0 .AND. .NOT. LOOP_BRANCH(JB) .AND. DH_INTERNAL(JB)) THEN
 DO I=ID-1,IU,-1
 IF(ELWS(DHS(JB)) > ELWS(ID)) THEN
 ELWS(ID) = ELWS(DHS(JB))
 END IF
 END IF
 END DO
 END IF
 END DO
END DO

! IF SPILLWAY OR GATE AT DOWNSTREAM END OF BRANCH, MAKING SURE WATER LEVEL IS ABOVE CREST ELEVATION
DO JW=1,NWB
 KT = KTWB(JW)
DO JB=BS(JW),BE(JW)
! IF (SLOPE(JB) > 0.0 .AND. .NOT. LOOP_BRANCH(JB) .AND. NSTR(JB) == 0) THEN !wx 10/29/13
IF (SLOPE(JB) > 0.0 .AND. .NOT. LOOP_BRANCH(JB)) THEN
IU = CUS(JB)
ID = DS(JB)
! SPILLWAYS
DO JS=1,NSP
IF (ESP(JS) < EL(2,ID)) THEN ! DISREGARDING IF CREST ABOVE GRID !WX 10/30/13
EL(2,I) = EL(2,ID)
END IF
IF (ID == IUSP(JS)) THEN
WSUP = ESP(JS) + (QSSI(ID) / A1SP(JS)) **(1.0 / B1SP(JS)) ! ESTIMATING UPSTREAM WS ELEV
END IF
END DO
END IF
ELWS(ID) = WSUP !WX 10/30/13 CHANGED POSTION WITH THE LINE ABOVE
DO I = ID-1, IU, -1
IF (ELWS(I+1) > ELWS(I)) THEN
ELWS(I) = ELWS(I+1)
END IF
END DO
END IF
END IF
END IF
END IF
END IF
! SMOOTHING WATER LEVEL AROUND LOOP BRANCHES !&ELWS(IU-1) ELWS(ID+1) !WX 11/13
DO JW=1,NWB
KT = KTWB(JW)
DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 IF (LOOP_BRANCH(JB))THEN
 WLDIFF=ELWS(UHS(JB))-ELWS(UHS(JB))
 BRLEN=0.0
 DO I=IU,ID
 BRLEN=BRLEN+DLX(I)
 END DO
 WLSLOPE=WLDIFF/BRLEN
 DIST=DLX(IU)/2.0
 ELWS(IU)=ELWS(UHS(JB))-WLSLOPE*DIST
 DO I=IU+1,ID
 DIST=DIST+(DLX(I-1)+DLX(I))/2.0
 ELWS(IU)=ELWS(UHS(JB))-WLSLOPE*DIST
 END DO
 END IF
 ! ELWS(IU-1) = ELWS(IU)+SLOPE(JB)*DLX(IU)/2.0 !WX 5/21/13
 ! ELWS(ID+1) = ELWS(ID)-SINA(JB)*(DLX(ID)+DLX(ID+1))/2.0 !WX 5/21/13
 END DO
END DO
RETURN
END SUBROUTINE INITIAL_WATER_LEVEL

**

!* S U B R O U T I N E L O O P F L O W D I V I D E *
!**

************************************WX 8/23/13 SUBROUTINE TO CALCULATE Q1 & Q2 FOR MAIN STEM AND LOOP
BRANCH RESPECTIVELY

SUBROUTINE LOOP_FLOW_DIVIDE(JBU1, FLOW, QLOOP1, QLOOP2)
USE GLOBAL; USE GEOMC; USE EDDY; USE LOGICC; USE MAIN, ONLY: KBI
! INTEGER, PARAMETER ::JMAX=40
REAL(R8) :: FLOW
REAL :: X1, X2, FUNCVAL1, FUNCVAL2, XACC, FMID, FUNC1, RTBIS, DX, XMID
REAL :: QLOOP1, QLOOP2, WSURF2, DEPTH2, XAREA2, WPER2, HRAD2,FMANN2
REAL :: WSURF1, DEPTH1, XAREA1, WPER1, HRAD1,FMANN1
INTEGER :: JJ, JBU1, JMAX

! FIRST, BRACKETING ROOT
X1=0.0001
X2=1.0
JMAX=50
CALL MANNINGS_EQN2(JBU1, FLOW,X1,FUNCVAL1)
CALL MANNINGS_EQN2(JBU1, FLOW,X2,FUNCVAL2)
DO JJ=1,JMAX
 IF(FUNCVAL1*FUNCVAL2 > 0.0)THEN
 IF(ABS(FUNCVAL1) < ABS(FUNCVAL2))THEN
 X1=X1/2.0
 CALL MANNINGS_EQN2(JBU1, FLOW,X1,FUNCVAL1)
 ELSE
 X2=X2+1.5*(X2-X1)
 END IF
 ELSE
 X1=X1+1.5*(X1-X2)
 END IF
ENDDO
CALL MANNINGS_EQN2(JBU1, FLOW, X2, FUNCVAL2)
END IF
ELSE
EXIT
END IF
END DO

! FINDING ROOT BY BISECTION
XACC=0.0005
CALL MANNINGS_EQN2(JBU1, FLOW, X2, FMID)
CALL MANNINGS_EQN2(JBU1, FLOW, X1, FUNC1)
!
! IF(FUNC1*FMID .GE. 0.) PAUSE 'ROOT MUST BE BRACKETED IN RTBIS'
IF(FUNC1.LT.0.)THEN
 RTBIS=X1
 DX=X2-X1
ELSE
 RTBIS=X2
 DX=X1-X2
ENDIF
DO J=1,JMAX
 DX=DX*.5
 XMD=RTBIS+DX
 CALL MANNINGS_EQN2(JBU1, FLOW, XMID, FMID)
 IF(FMID.LE.0.)RTBIS=XMID
 IF(ABS(DX).LT.XACC .OR. FMID.EQ.0.)THEN
 ! calculate qloop1 & qloop2, basing on water level
 I=UHS(JB)
 WSURF1=RTBIS+EL(KBI(I)+1,J)
 CALL XSECTIONAL_AREA(WSURF1, XAREA1, KTTOP1)
 DEPTH1=RTBIS
 WPER1=0.5*(B(KBI(I),J)+B(KTTOP1,J))+2.0*DEPTH1
 HRAD1=XAREA1/WPER1
 IF(MANNINGS_N(JW))THEN
 FMANN1=FRIC(I)
 ELSE
 FMANN1=HRAD1**0.166666667/FRIC(I)
 END IF
 QLOOP1=XAREA1*HRAD1**0.6667*SLOPE(JBU1)**0.5/FMANN1
 END IF
 I=US(JB)
 WSURF2=WSURF1
 CALL XSECTIONAL_AREA(WSURF2, XAREA2, KTTOP2)
 DEPTH2=WSURF2-EL(KBI(I)+1,J)
 WPER2=0.5*(B(KBI(I),J)+B(KTTOP2,J))+2.0*DEPTH2
 HRAD2=XAREA2/WPER2
 IF(MANNINGS_N(JW))THEN
 FMANN2=FRIC(I)
 ELSE
 FMANN2=HRAD2**0.166666667/FRIC(I)
 END IF
 QLOOP2=XAREA2*HRAD2**0.6667*SLOPE(JB)**0.5/FMANN2
RETURN
END IF
END DO
!
! PAUSE 'TOO MANY BISECTIONS IN RTBIS'
END SUBROUTINE LOOP_FLOW_DIVIDE

**
**
SUBROUTINE NORMAL_DEPTH(FLOW)

USE GLOBAL; USE GEOMC ; USE MAIN, ONLY: KBI

INTEGER, PARAMETER ::JMAX=40
REAL(R8) :: FLOW
REAL :: X1, X2, FUNCVAL1, FUNCVAL2, XACC, FMID, FUNC1, RTBIS, DX, XMID
INTEGER :: JJ, J

! FIRST, BRACKETING ROOT
X1=0.001
X2=1.0
CALL MANNINGS_EQN(FLOW,X1,FUNCVAL1)
CALL MANNINGS_EQN(FLOW,X2,FUNCVAL2)

DO JJ=1,JMAX
 IF(FUNCVAL1*FUNCVAL2 > 0.0)THEN
 IF(ABS(FUNCVAL1) < ABS(FUNCVAL2))THEN
 X1=X1/2.0
 CALL MANNINGS_EQN(FLOW,X1,FUNCVAL1)
 ELSE
 X2=X2+1.5*(X2-X1)
 CALL MANNINGS_EQN(FLOW,X2,FUNCVAL2)
 END IF
 ELSE
 EXIT
 END IF
END DO

! FINDING ROOT BY BISECTION
XACC=0.01
CALL MANNINGS_EQN(FLOW,X2,FMID)
CALL MANNINGS_EQN(FLOW,X1,FUNC1)

! IF(FUNC1*FMID.GE.0.) PAUSE 'ROOT MUST BE BRACKETED IN RTBIS'
IF(FUNC1.LT.0.)THEN
 RTBIS=X1
 DX=X2-X1
ELSE
 RTBIS=X2
 DX=X1-X2
ENDIF
DO J=1,JMAX
 DX=DX*.5
 XMID=RTBIS+DX
 CALL MANNINGS_EQN(FLOW,XMID,FMID)
 IF(FMID.LE.0.)RTBIS=XMID
 IF((ABS(DX).LE.XACC) .OR. FMID.EQ.0.)THEN
 RETURN
 END IF
END DO

! PAUSE 'TOO MANY BISECTIONS IN RTBIS'
END SUBROUTINE NORMAL_DEPTH
SUBROUTINE MANNINGS_EQN(FLOW, DEPTH, FUNCVALUE)

USE GLOBAL; USE GEOMC; USE EDDY; USE LOGICC; USE MAIN, ONLY: KBI

REAL(R8) :: FLOW
REAL :: WSURF, DEPTH, XAREA, WPER, HRAD, FMANN, FUNCVALUE

! WSURF=EL(KBI(I)+1,I)+DEPTH
WSURF=EL(KBI(I)+1,I)+DEPTH ! CB 7/7/10 !KBMIN WX 6/12/13
CALL XSECTIONAL_AREA(WSURF, XAREA, KTTOP)
WPER=0.5*(B(KBI(I),I)+B(KTTOP,I))+2.0*DEPTH
HRAD=XAREA/WPER
IF(MANNINGS_N(JW)) THEN
 FMANN=FRIC(I)
ELSE
 FMANN=HRAD**0.166666667/FRIC(I)
END IF

FUNCVALUE=FLOW-XAREA*HRAD**0.6667*SLOPE(JB)**0.5/FMANN
RETURN
END SUBROUTINE MANNINGS_EQN

!***

!** S U B R O U T I N E M A N N I N G S E Q U A T I O N 2
!***

SUBROUTINE MANNINGS_EQN2(JBU1, FLOW, DEPTH1, FUNCVALUE)

USE GLOBAL; USE GEOMC; USE EDDY; USE LOGICC; USE MAIN, ONLY: KBI

REAL(R8) :: FLOW
REAL :: WSURF1, DEPTH1, XAREA1, WPER1, HRAD1, FMANN1, FUNCVALUE
REAL :: WSURF2, DEPTH2, XAREA2, WPER2, HRAD2, FMANN2
INTEGER :: KTTOP1, KTTOP2, JBU1

!FOR SEGMENT UHS(JB)
I=UHS(JB)
WSURF1=EL(KBI(I)+1,I)+DEPTH1
CALL XSECTIONAL_AREA(WSURF1, XAREA1, KTTOP1)
WPER1=0.5*(B(KBI(I),I)+B(KTTOP1,I))+2.0*DEPTH1
HRAD1=XAREA1/WPER1
IF(MANNINGS_N(JW)) THEN
 FMANN1=FRIC(I)
ELSE
 FMANN1=HRAD1**0.166666667/FRIC(I)
END IF

!FOR SEGMENT US(JB)
I=US(JB)
WSURF2=WSURF1
CALL XSECTIONAL_AREA(WSURF2, XAREA2, KTTOP2)

RETURN
END SUBROUTINE MANNINGS_EQN2
DEPTH2 = WSURF2 - EL(KBI(I)+1,I)
WPER2 = 0.5*(B(KBI(I),I)+B(KTTOP2,I))+2.0*DEPTH2
HRAD2 = XAREA2/WPER2
IF(MANNINGS_N(JW)) THEN
 FMANN2 = FRIC(I)
ELSE
 FMANN2 = HRAD**0.166666667/FRIC(I)
END IF

FUNCVALUE = FLOW - XAREA1*HRAD1**0.6667*SLOPE(JBU1)**0.5/FMANN1 -
 XAREA2*HRAD2**0.6667*SLOPE(JB)**0.5/FMANN2
RETURN
END SUBROUTINE MANNINGS_EQN2

**

! ** SUBROUTINE CROSS SECTIONAL AREA **
!**

SUBROUTINE XSECTIONAL_AREA(WSURF,XAREA,KTTOP) ! USED FOR WATER
LEVEL CALCULATION
USE GLOBAL; USE GEOMC; USE MAIN; USE INITIALVELOCITY
REAL :: XAREA, WSURF ! KTTOP SW 4/5/13
INTEGER :: KTTOP
! KTTOP = 2
DO K=2,KMX-1
 IF(EL(K,I) < WSURF) THEN
 KTTOP = K-1
 EXIT
 END IF
 KTTOP = K ! CB 8/10/10
END DO
!
DO WHILE (EL(KTTOP,I) > WSURF)
 KTTOP = KTTOP+1
 XAREA = (WSURF-EL(KTTOP+1,I)) * BSAVE(KTTOP,I)
 DO K=KTTOP+1,KBI(I) ! KBMIN WX 6/12/13
 XAREA = XAREA + BSAVE(K,I)*H(K,JW)
 END DO
!
RETURN
END SUBROUTINE XSECTIONAL_AREA

**

! ** SUBROUTINE CROSS SECTIONAL AREA 2 **NOT USED **
!**

SUBROUTINE XSECTIONAL_AREA2(WSURF,XAREA) ! NOT USED
USE GLOBAL; USE GEOMC; USE MAIN; USE INITIALVELOCITY
IMPLICIT NONE
REAL :: XAREA, XAREA1,XAREA2, WSURF ! KTTOP SW 4/5/13
INTEGER :: KTTOP1, KTTOP2

! KTTOP = 2
DO K=2,KMX-1
 IF(EL(K,I) < WSURF) THEN
 KTTOP1=K-1
 EXIT
 END IF
END DO
DO K=2,KMX-1
 IF(EL(K,I+1) < elws(i+1)) THEN
 KTTOP2=K-1
 EXIT
 END IF
END DO
! DO WHILE (EL(KTTOP,I) > WSURF)
! KTTOP = KTTOP+1
! END DO
XAREA1=(WSURF-EL(KTTOP1+1,I)) / COSA(JB) * BSAVE(KTTOP1,I) ! XAREA1=(WSURF-EL(KTTOP1+1,I)) * BSAVE(KTTOP1,I)
XAREA2=(ELWS(I+1)-EL(KTTOP2+1,I+1)) / COSA(JB) * B(KTTOP2,I+1) ! XAREA2=(ELWS(I+1)-EL(KTTOP2+1,I+1)) * BSAVE(KTTOP2,I+1)
XAREA=XAREA1 +(XAREA2 -XAREA1) /(0.5*(DLX(I)+DLX(I+1)))*0.5*DLX(I)
DO K=KTTOP1+1,KBMIN(I) ! KBI(I) SW 5/21/13
 XAREA = XAREA + BH(K,I) +(BH(K,I+1) -BH(K,I)) /(0.5*(DLX(I)+DLX(I+1)))*0.5*DLX(I)
END DO
BHR(K,I) = BH(K,I) +(BH(K,I+1) -BH(K,I)) /(0.5*(DLX(I)+DLX(I+1)))*0.5*DLX(I)
RETURN
END SUBROUTINE XSECTIONAL_AREA2

**

!** SUBROUTINE CROSS SECTIONAL AREA 3 **NOT USED
!**

SUBROUTINE XSECTIONAL_AREA3(XAREA)
USE GLOBAL; USE GEOMC; USE MAIN; USE INITIALVELOCITY
IMPLICIT NONE
REAL :: XAREA, XAREA1,XAREA2, WSURF ! KTTOP SW 4/5/13
XAREA=0.0
DO K=KT,KBMIN(I) !KBI(I) SW 5/21/13
 XAREA = XAREA + BHR1(K,I)
END DO
RETURN
END SUBROUTINE XSECTIONAL_AREA3

**

** SUBROUTINE CROSS SECTIONAL AREA 4 **

SUBROUTINE XSECTIONAL_AREA4(WSURF,XAREA) !USED FOR VELOCITY CALCULATION
USE GLOBAL; USE GEOMC; USE MAIN; USE INITIALVELOCITY
IMPLICIT NONE
REAL :: XAREA, XAREA1, XAREA2, WSURF ! KTTOP SW 4/5/13
INTEGER :: KTTOP1, KTTOP2

! KTTOP = 2
!!!find the tope layer of i and i+1 that have water: kttop2, kttop2
DO K=2,KMX-1
IF(EL(K,I) < WSURF)THEN
 KTTOP1=K-1
 EXIT
END IF
END DO
DO K=2,KMX-1
IF(EL(K,I+1) < elws(i+1))THEN
 KTTOP2=K-1
 EXIT
END IF
END DO

! DO WHILE (EL(KTTOP,I) > WSURF)
! KTTOP = KTTOP+1
! END DO

XAREA1=(WSURF-EL(KTTOP1+1,I)) / COSA(JB) * BSAVE(KTTOP1,I) ! XAREA1=(WSURF
-EL(KTTOP1+1,I)) * BSAVE(KTTOP1,I)
DO K=KTTOP1+1,KT
 XAREA1=XAREA1+H(K,JW) * BNEW(K,I)
END DO

XAREA2=(ELWS(I+1)-EL(KTTOP2+1,I+1)) / COSA(JB) * B(KTTOP2,I+1) ! XAREA2=(ELWS(I+1)
-EL(KTTOP2+1,I+1)) * BSAVE(KTTOP2,I+1)
DO K=KTTOP2+1,KT
 XAREA2=XAREA2+H(K,JW) * BNEW(K,I+1)
END DO

XAREA=XAREA1 + (XAREA2 - XAREA1) / (0.5 * (DLX(I) + DLX(I+1))) * 0.5 * DLX(I)

RETURN
END SUBROUTINE XSECTIONAL_AREA4

!** SUBROUTINE INITIAL HORIZONTAL VELOCITY **

SUBROUTINE INITIAL_U_VELOCITY
USE GLOBAL; USE GEOMC
USE INITIALVELOCITY

REAL :: XAREA, !, WSURF
INTEGER :: K

DO JW=1,NWB
 KT = KTWB(JW)
END DO
DO JB=BS(JW),BE(JW)
IF (SLOPE(JB) > 0.0 .AND. .NOT. LOOP_BRANCH(JB)) THEN
 IU = CUS(JB)
 ID = DS(JB)
 DO I=IU,ID
 WSURF=ELWS(I)
 CALL XSECTIONAL_AREA2(WSURF,XAREA)
 !
 ! DO K=KT,KBMIN(I) !KB(i) SW 5/21/13
 !
 ! XAREA = XAREA + BHR1(K,I)
 !
 ! END DO
 UAVG(I)=QSSI(I)/XAREA
 !
 ! DO K=KT,KBMIN(I) ! change KB to KBMIN
 ! U(K,I)=UAVG(I)
 ! END DO
 END DO
 END DO
END IF
END DO
END DO
RETURN
END SUBROUTINE INITIAL_U_VELOCITY
SUBROUTINE HYDROINOUT

USE MAIN
USE GLOBAL; USE NAMESC; USE GEOMC; USE LOGICC; USE PREC; USE SURFHE; USE KINETIC;
USE SHADEC; USE EDDY
USE STRUCTURES; USE TRANS; USE TVDC; USE SELWC; USE GDAYC; USE SCREENC; USE TDGAS;
USE RSTART
USE MACROPHYTCEC; USE POROSITYC; USE ZOOPLANKTONC; USE INITIALVELOCITY
IMPLICIT NONE
EXTERNAL RESTART_OUTPUT

INTEGER :: JBU, JBD, JLAT, JWU
REAL(R8) :: ELW, CGAS, TM, VPTG, DTVL, RHOTR, VQTR, VQTRI, QTRFR, AKBR, FW
REAL(R8) :: TSUM,QSUMM

!***

!** Task 2.1: Hydrodynamic sources/sinks **
!***

QINSUM = 0.0; TINSUM = 0.0; CINSUM = 0.0; UXBR = 0.0; UYBR = 0.0
DO JW=1,NWB
KT = KTWB(JW)
DO JB=BS(JW),BE(JW)
IU = CUS(JB)
ID = DS(JB)
TSUM = 0.0; CSUM = 0.0; QSUM(JB) = 0.0; QOUT(:,JB) = 0.0; TOUT(JB)=0.0; COUT(:,JB)=0.0

!****** Densities
DO I=IU-1,ID+1
DO K=KT,KB(I)
TISS(K,I) = 0.0
DO JS=1,NSS
TISS(K,I) = TISS(K,I)+SS(K,I,JS)
END DO
RHO(K,I) = DENSITY(T2(K,I),DMAX1(TDS(K,I),0.0D0),DMAX1(TISS(K,I),0.0D0))
END DO
END DO

! v3.5 deleted pumpback code from v3.2
DO JS=1,NSTR(JB)
IF (QSTR(JS,JB) /= 0.0) THEN
CALL DOWNSTREAM_WITHDRAWAL (JS)
END IF
END DO
DO K=KT,KB(ID)
QSUM(JB) = QSUM(JB) +QOUT(K,JB)
TSUM = TSUM +QOUT(K,JB)*T2(K,ID)
CSUM(CN(1:NAC)) = CSUM(CN(1:NAC))+QOUT(K,JB)*C2(K,ID,CN(1:NAC))
END DO
IF (QSUM(JB) /= 0.0) THEN
TOUT(JB) = TSUM/QSUM(JB)
COUT(CN(1:NAC),JB) = CSUM(CN(1:NAC))/QSUM(JB)
END IF
IF (QSUM(JB) /= 0.0 .AND. DAM_OUTFLOW(JB)) THEN !TC 08/03/04
TINSUM(JBDAM(JB)) = (TSUM +QINSUM(JBDAM(JB))*TINSUM(JBDAM(JB)))
/(QSUM(JB) & +QINSUM(JBDAM(JB)))

END DO
END SUBROUTINE HYDROINOUT
\[
\text{CINSUM}([CN(1:NAC),JBDAM(JB)]) = \\
(\text{CSUM}([CN(1:NAC)] + \text{QINSUM}(JBDAM(JB)) \times \text{CINSUM}([CN(1:NAC),JBDAM(JB)])) / (\text{QSUM}(JB) + \text{QINSUM}(JBDAM(JB))) \\
\text{QINSUM}(JBDAM(JB)) = \text{QINSUM}(JBDAM(JB)) + \text{QSUM}(JB)
\]

END IF
END DO
END DO

ILAT = 0
JWW = NWD
withdrawals = jww > 0
JTT = NTR
tributaries = jtt > 0
JSS = NSTR
IF (SPILLWAY) THEN
! CALL SPILLWAY_FLOW
DO JS=1,NSP

!****** Positive flows
QSP(JS)=QSSI(IUSP(JS)) ! SW

JLAT = 0
JBU = JBUSP(JS)
JBD = JBDSP(JS)
IF (QSP(JS) >= 0.0) THEN
IF (LATERAL_SPILLWAY(JS)) THEN
!
JLAT = 1
JWW = JWW+1
IWD(JWW) = IUSP(JS)
QWD(JWW) = QSP(JS)
KTWD(JWW) = KTUSP(JS)
KBWD(JWW) = KBUSP(JS)
EWD(JWW) = ESP(JS)
JBWD(JWW) = JBU

I = MAX(CUS(JBWD(JWW)),IWD(JWW))
JB = JBWD(JWW)
JW = JWUSP(JS)
KT = KTWB(JW)
CALL LATERAL_WITHDRAWAL(JWW)
DO K=KTW(JWW),KBW(JWW)
QSS(K,I) = QSS(K,I)-QSW(K,JWW)
END DO
ELSE
JSS(JBU) = JSS(JBU)+1
KTSW(JSS(JBU),JBU) = KTUSP(JS)
KBSW(JSS(JBU),JBU) = KBUSP(JS)
JB = JBU
POINT_SINK(JSS(JBU),JBU) = .TRUE.
ID = IUSP(JS)
QSTR(JSS(JBU),JBU) = QSP(JS)
ESTR(JSS(JBU),JBU) = ESP(JS)
KT = KTWB(JWUSP(JS))
JW = JWUSP(JS)
CALL DOWNSTREAM_WITHDRAWAL(JSS(JBU))
! moved code
QSUM(JB) = 0.0; TSUM = 0.0; CSUM = 0.0
DO K=KT,KB(ID)
QSUM(JB) = QSUM(JB)+QOUT(K,JB)
TSUM = TSUM+QOUT(K,JB)*T2(K,ID)
DO JC=1,NAC

272
IF (CN(JC)==NDO .AND. CAC(NDO) == ' ON' .AND. GASSPC(JS) == ' ON' .AND. QSP(JS) > 0.0) THEN
 ! MM 5/21/2009
 T2R4=T2(K,ID)
 CGAS=C2(K,ID,CN(JC))
 CALL TOTAL_DISSOLVED_GAS (PALT(ID),0,JS,T2R4,CGAS)
 CSUM(CN(JC)) = CSUM(CN(JC))+QOUT(K,JB)*CGAS
ELSE
 CSUM(CN(JC)) = CSUM(CN(JC))+QOUT(K,JB)*C2(K,ID,CN(JC))
END IF
END DO
ELSE
 CSUM(CN(JC)) = CSUM(CN(JC))+QOUT(K,JB)*C2(K,ID,CN(JC))
END IF
END DO
END IF
IF (QSUM(JB) /= 0.0) THEN
 TOUT(JB) = TSUM /QSUM(JB)
 COUT(CN(1:NAC),JB) = CSUM(CN(1:NAC))/QSUM(JB)
END IF

! moved code
IF (IDSP(JS) /= 0 .AND. US(JBD) == IDSP(JS)) THEN
 QSUMM = 0.0; TSUM = 0.0; CSUM = 0.0
 DO K=KT,KB(ID)
 QSUMM = QSUMM+QNEW(K)
 TSUM = TSUM+QNEW(K)*T2(K,ID)
 DO JC=1,NAC
 IF (CN(JC)==NDO .AND. CAC(NDO) == ' ON' .AND. GASSPC(JS) == ' ON' .AND. QSP(JS) > 0.0) THEN
 T2R4=T2(K,ID)
 CGAS=C2(K,ID,CN(JC))
 CALL TOTAL_DISSOLVED_GAS (PALT(ID),0,JS,T2R4,CGAS)
 CSUM(CN(JC)) = CSUM(CN(JC))+QNEW(K)*CGAS
 ELSE
 CSUM(CN(JC)) = CSUM(CN(JC))+QNEW(K)*C2(K,ID,CN(JC))
 END IF
 END DO
 END DO
 IF (QSUMM /= 0.0) THEN
 TINSUM(JBD) = (TSUM +QINSUM(JBD)*TINSUM(JBD)) /(QSUMM+QINSUM(JBD))
 CINSUM(CN(1:NAC),JBD) = (CSUM(CN(1:NAC))+QINSUM(JBD)*CINSUM(CN(1:NAC),JBD))/(QSUMM+QINSUM(JBD))
 QINSUM(JBD) = QINSUM(JBD)+QSUMM
 END IF
END IF

! END IF
! QSUM(JB) = 0.0; TSUM = 0.0; CSUM = 0.0
! DO K=KT,KB(ID)
! QSUM(JB) = QSUM(JB)+QOUT(K,JB)
! TSUM = TSUM+QOUT(K,JB)*T2(K,ID)
! DO JC=1,NAC
! IF (CN(JC)==NDO .AND. CAC(NDO) == ' ON' .AND. GASSPC(JS) == ' ON' .AND. QSP(JS) > 0.0) THEN
! T2R4=T2(K,ID)
! CGAS=C2(K,ID,CN(JC))
! CALL TOTAL_DISSOLVED_GAS (PALT(ID),0,JS,T2R4,CGAS)
! CSUM(CN(JC)) = CSUM(CN(JC))+QOUT(K,JB)*CGAS
! ELSE
! CSUM(CN(JC)) = CSUM(CN(JC))+QOUT(K,JB)*C2(K,ID,CN(JC))
! END IF
! END DO
! END DO
! IF (QSUM(JB) /= 0.0) THEN
! TOUT(JB) = TSUM /QSUM(JB)
! COUT(CN(1:NAC),JB) = CSUM(CN(1:NAC))/QSUM(JB)
! END IF

273
! END IF
! IF (IDSP(JS) /= 0) THEN
ELSEIF (IDSP(JS) /= 0) THEN
! IF (US(JBD) /= IDSP(JS) .OR. HEAD_FLOW(JBD) .OR. UP_HEAD(JBD)) THEN
 JTT = JTT + 1
 QTR(JTT) = QSP(JS)
 ITR(JTT) = IDSP(JS)
 PLACE_QTR(JTT) = PDSPC(JS) == 'DENSITY'
 SPECIFY_QTR(JTT) = PDSPC(JS) == 'SPECIFY'
 IF (SPECIFY_QTR(JTT)) THEN
 ELTRT(JTT) = ETDSP(JS)
 ELTRB(JTT) = EBDSP(JS)
 END IF
 JBTR(JTT) = JBD
 IF (JLAT == 1) THEN
 CSUM(CN(1:NAC)) = 0.0; TSUM = 0.0; QSUMM = 0.0
 DO K=KTW(JWW),KBW(JWW)
 QSUMM = QSUMM + QSW(K,JWW)
 TSUM = TSUM + QSW(K,JWW)*T2(K,IWD(JWW))
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
 END DO
 IF(QSUMM == 0.0) THEN
 TTR(JTT) = 0.0
 CTR(:,JTT) = 0.0
 ELSE
 TTR(JTT) = TSUM/QSUMM
 DO JC=1,NAC
 CTR(CN(JC),JTT) = CSUM(CN(JC))/QSUMM
 END IF (CN(JC) == NDO .AND. GASSPC(JS) == 'ON' .AND. QSP(JS) > 0.0) THEN
 TDG_SPILLWAY(JWW,JS) = .TRUE.
 CALL TOTAL_DISSOLVED_GAS (PALT(ITR(JTT)),0,JS,TTR(JTT),CTR(CN(JC),JTT))
 END IF
 ELSE
 TTR(JTT) = TOUT(JB)
 DO JC=1,NAC
 CTR(CN(JC),JTT) = COUT(CN(JC),JB)
 END IF (CN(JC) == NDO .AND. GASSPC(JS) == 'ON' .AND. QSP(JS) > 0.0) THEN
 TDG_SPILLWAY(JWW,JS) = .TRUE.
 CALL TOTAL_DISSOLVED_GAS (PALT(ITR(JTT)),0,JS,TTR(JTT),CTR(CN(JC),JTT))
 END IF
 ELSE IF (LATERAL_SPILLWAY(JS)) THEN
 TSUM = 0.0; QSUMM = 0.0; CSUM = 0.0
 ILAT(JWW) = 1
 DO K=KTW(JWW),KBW(JWW)
 QSUMM = QSUMM + QSW(K,JWW)
 TSUM = TSUM + QSW(K,JWW)*T2(K,IWD(JWW))
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
 END DO
 TINSUM(JBD) = (TINSUM(JBD) * QINSUM(JBD) + TSUM) / (QSUMM + QINSUM(JBD))
 CINSUM(CN(1:NAC),JBD) = (CINSUM(CN(1:NAC),JBD) * QINSUM(JBD) + CSUM(CN(1:NAC))) / (QSUMM + QINSUM(JBD))
 QINSUM(JBD) = QSUMM + QINSUM(JBD)
 ELSE IF (CAC(NDO) == 'ON' .AND. GASSPC(JS) == 'ON' .AND. QSP(JS) > 0.0) THEN
 TDG_SPILLWAY(JWW,JS) = .TRUE.
 END IF
 ENDIF
 ELSE IF (QSP(JS) < 0.0) THEN

\[JTT = JTT + 1 \]
\[JWW = JWW + 1 \]
\[IWD(JWW) = IDSP(JS) \]
\[ITR(JTT) = IUSP(JS) \]
\[QTR(JTT) = -QSP(JS) \]
\[QWD(JWW) = -QSP(JS) \]
\[KTWD(JWW) = KTDSJP(JS) \]
\[KBWD(JWW) = KBDSP(JS) \]
\[EWD(JWW) = ESP(JS) \]
\[PLACE_QTR(JTT) = PUSPC(JS) \]
\[SPECIFY_QTR(JTT) = PUSPC(JS) \]
\[IF (SPECIFY_QTR(JTT)) THEN \]
\[ELTRT(JTT) = ETUSP(JS) \]
\[ELTRB(JTT) = EBUSP(JS) \]
\[END IF \]
\[JBTR(JTT) = JBU \]
\[JBWD(JWW) = JBD \]
\[I = \text{MAX}(CUS(JBWD(JWW)),IWD(JWW)) \]
\[JB = JBWD(JWW) \]
\[JW = JWDSJP(JS) \]
\[KT = KTWD(JW) \]
\[CALL LATERAL _ WITHDRAWAL (JWW) \]
\[\text{DO } K = KTWD(JWW), KBWD(JWW) \]
\[QSS(K, I) = QSS(K, I) - QSW(K, JWW) \]
\[\text{END DO} \]
\[IF (IDSP(JS) /= 0) THEN \]
\[TSUM = 0.0, QSUMM = 0.0, CSUM = 0.0 \]
\[\text{DO } K = KTWD(JWW), KBWD(JWW) \]
\[QSUMM = QSUMM + QSW(K, JWW) \]
\[TSUM = TSUM + QSW(K, JWW)*T2(K, IWD(JWW)) \]
\[CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K, JWW)*C2(K, IWD(JWW), CN(1:NAC)) \]
\[\text{END DO} \]
\[TTR(JTT) = TSUM/QSUMM \]
\[\text{DO } JC = 1, NAC \]
\[CTR(CN(JC), JTT) = CSUM(CN(JC))/QSUMM \]
\[IF (CN(JC) == NDO _ AND _ GASSPC(JS) == ' ON' _ AND _ QSP(JS) > 0.0) THEN \]
\[TDG _ SPILLWAY(JWW, JS) = .TRUE. \]
\[CALL TOTAL _ DISSOLVED _ GAS (PALT(I), 0, JS, TTR(JTT), CTR(CN(JC), JTT)) \]
\[\text{END IF} \]
\[\text{END DO} \]
\[ELSE IF (CAC(NDO) == ' ON' _ AND _ GASSPC(JS) == ' ON' _ AND _ QSP(JS) > 0.0) THEN \]
\[TDG _ SPILLWAY(JWW, JS) = .TRUE. \]
\[\text{END IF} \]
\[\text{END DO} \]
\[\text{END IF} \]
\[IF (PUMPS) THEN \]
\[\text{DO } JP = 1, NPU \]
\[JLAT = 0 \]
\[JWU = JWUPU(JP) \]
\[JBU = JBUPU(JP) \]
\[JBD = JBDPU(JP) \]
\[IF (LATERAL _ PUMP(JP)) THEN \]
\[ELW = EL(KTWD(JWU), IUPU(JP)) - Z(IUPU(JP))*COSA(JBU) \]
\[JW = JWW + 1 \]
\[JBWD(JWW) = JBU \]
\[IWD(JWW) = IUPU(JP) \]
\[ELSE \]
\[ELW = EL(KTWD(JWU), IUPU(JP)) - Z(IUPU(JP))*COSA(JBU) - DLX(IUPU(JP))*0.5 \]
\[JSS(JBU) = JSS(JBU) + 1 \]
END IF
IF (JDAY >= ENDPU(JP)) PUMPON(JP) = .FALSE. ! CB 1/13/06
IF (JDAY >= STRTPU(JP) .AND. JDAY < ENDPU(JP)) THEN

IF (ELW <= EOFFPU(JP)) PUMPON(JP) = .FALSE. ! CB 1/13/06
IF (ELW > EOFFPU(JP) .AND. QPU(JP) > 0.0) THEN
IF (PUMPON(JP)) THEN
IF (LATERAL_PUMP(JP)) THEN
JLAT = 1
QWD(JWW) = QPU(JP)
KTWD(JWW) = KTPU(JP)
KBWD(JWW) = KBPU(JP)
EWD(JWW) = EPU(JP)
I = MAX(CUS(JBWD(JWW)),IWD(JWW))
JB = JBWD(JWW)
JW = JWU
KT = KTWD(JW)
CALL LATERAL_WITHDRAWAL (JWW)
DO K=KTW(JWW),KBW(JWW)
 QSS(K,I) = QSS(K,I)-QSW(K,JWW)
END DO
ELSE
KTSW(JSS(JBU),JBU) = KTPU(JP)
KBSW(JSS(JBU),JBU) = KBPU(JP)
JB = JBU
POINT_SINK(JSS(JBU),JBU) = .TRUE.
ID = IDPU(JP)
QSTR(JSS(JBU),JBU) = QPU(JP)
ESTR(JSS(JBU),JBU) = EPU(JP)
KT = KTWB(JW)
JW = JWU
CALL DOWNSTREAM_WITHDRAWAL (JSS(JBU))
IF (IDPU(JP) /= 0 .AND. US(JBD) == IDPU(JP)) THEN
 QSUMM = 0.0; TSUM = 0.0; CSUM = 0.0
 DO K=KT,KB(ID)
 QSUMM = QSUMM +QNEW(K)
 TSUM = TSUM +QNEW(K)*T2(K,ID)
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC))+QNEW(K)*C2(K,ID,CN(1:NAC))
 END DO
 IF (QSUMM /= 0.0) THEN
 TINSUM(JBD) = (TSUM +TINSUM(JBD))/QSUMM
 CINSUM(CN(1:NAC),JBD) = (CSUM(CN(1:NAC))+CINSUM(CN(1:NAC),JBD)*QINSUM(JBD))/(QSUMM+QINSUM(JBD))
 END IF
ENDIF
QSUM(JB) = 0.0; TSUM = 0.0; CSUM = 0.0
DO K=KT,KB(ID)
 QSUM(JB) = QSUM(JB) +QOUT(K,JB)
 TSUM = TSUM +QOUT(K,JB)*T2(K,ID)
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC))+QOUT(K,JB)*C2(K,ID,CN(1:NAC))
END DO
IF (QSUM(JB) /= 0.0) THEN
 TOUT(JB) = TSUM /QSUM(JB)
 COUT(CN(1:NAC),JB) = CSUM(CN(1:NAC))/QSUM(JB)
ENDIF
ENDIF
IF (IDPU(JP) /= 0) THEN
 IF (US(JBD) /= IDPU(JP) .OR. HEAD_FLOW(JBD) .OR. UP_HEAD(JBD)) THEN
 JTT = JTT+1
 QTR(JTT) = QPU(JP)
 ITR(JTT) = IDPU(JP)
 PLACE_QTR(JTT) = PPUC(JP) == 'DENSITY'
 SPECIFY_QTR(JTT) = PPUC(JP) == 'SPECIFY'
 IF (SPECIFY_QTR(JTT)) THEN
 ELTRT(JTT) = ETPU(JP)
 ELTRB(JTT) = EBPU(JP)
 END IF
 JBTR(JTT) = JBD
 IF (ILAT == 1) THEN
 TSUM = 0.0; QSUMM = 0.0; CSUM(CN(1:NAC)) = 0.0
 DO K=KTW(JWW),KBW(JWW)
 QSUMM = QSUMM + QSW(K,JWW)
 TSUM = TSUM + QSW(K,JWW)*T2(K,IWD(JWW))
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
 END DO
 TTR(JTT) = TSUM / QSUMM
 CTR(CN(1:NAC),JTT) = CSUM(CN(1:NAC))/QSUMM
 ELSE
 TTR(JTT) = TOUT(JB)
 CTR(CN(1:NAC),JTT) = COUT(CN(1:NAC),JB)
 END IF
 ELSE IF (LATERAL_PUMP(JP)) THEN
 TSUM = 0.0; QSUMM = 0.0; CSUM = 0.0
 ILAT(JWW) = 1
 DO K=KTW(JWW),KBW(JWW)
 QSUMM = QSUMM + QSW(K,JWW)
 TSUM = TSUM + QSW(K,JWW)*T2(K,IWD(JWW))
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
 END DO
 TINSUM(JBD) = (TSUM + TINSUM(JBD)*QINSUM(JBD))/(QSUMM + QINSUM(JBD))
 CINSUM(CN(1:NAC),JBD) = (CSUM(CN(1:NAC)) + CINSUM(CN(1:NAC),JBD)*QINSUM(JBD))/(QSUMM + QINSUM(JBD))
 QINSUM(JBD) = QINSUM(JBD) + QSUMM
 END IF
 END IF
END IF
END IF
END IF
END IF
END IF
END IF
END IF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ELSE IF (PIPES) THEN
 YSS = YS
 VSS = VS
 VSTS = VST
 YSTS = YST
 DTPS = DTP
 QOLDS = QOLD
 CALL PIPE_FLOW (NIT)
END IF
DO JP=1,NPI
 if(dynpipe(jp) == 'ON')then ! SW 5/10/10
 qpi(jp)=qpi(jp)*bp(jp)
 endif
!***** Positive flows

JLAT = 0
JBU = JBUPI(JP)
JBD = JBDPI(JP)
IF (QPI(JP) >= 0.0) THEN
 IF (LATERAL_PIPE(JP)) THEN
 JLAT = 1
 JW = JWUPI(JP)
 JWD(JWW) = IUPI(JP)
 QWD(JWW) = QPI(JP)
 KTWD(JWW) = KTUPI(JP)
 KBWD(JWW) = KBUPI(JP)
 EWD(JWW) = EUPI(JP)
 JBWD(JWW) = JBU
 I = MAX(CUS(JBWD(JWW)),JWD(JWW))
 JB = JBWD(JWW)
 JW = JWUPI(JP)
 KT = KTWB(JW)
 CALL LATERAL_WITHDRAWAL(JWW)
 DO K=KTW(JWW),KBW(JWW)
 QSS(K,I) = QSS(K,I)-QSW(K,JWW)
 END DO
 ELSE
 JSS(JBU) = JSS(JBU)+1
 KTSW(JSS(JBU),JBU) = KTDPI(JP)
 KBWS(JSS(JBU),JBU) = KBDPI(JP)
 JB = JBU
 POINT_SINK(JSS(JBU),JBU) = .TRUE.
 ID = IUPI(JP)
 QSTR(JSS(JBU),JBU) = QPI(JP)
 ESTR(JSS(JBU),JBU) = EUPI(JP)
 KT = KTWB(JWUPI(JP))
 JW = JWUPI(JP)
 CALL DOWNSTREAM_WITHDRAWAL(JSS(JBU))
 IF (IDPI(JP) /= 0 .AND. US(JBD) == IDPI(JP)) THEN
 QSUMM = 0.0; TSUM = 0.0; CSUM = 0.0
 DO K=KT,KB(ID)
 QSUMM = QSUMM +QNEW(K)
 TSUM = TSUM +QNEW(K)*T2(K,ID)
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) +QNEW(K)*C2(K,ID,CN(1:NAC))
 END DO
 IF (QSUMM /= 0.0) THEN
 TINSUM(JBD) = (TSUM +QINSUM(JBD)*TINSUM(JBD))/(QSUMM+QINSUM(JBD))
 CINSUM(CN(1:NAC),JBD) = (CSUM(CN(1:NAC)) +QINSUM(JBD)*CINSUM(CN(1:NAC),JBD))/(QSUMM+QINSUM(JBD))
 QINSUM(JBD) = QINSUM(JBD) +QSUMM
 END IF
 END IF
 QSUM(JB) = 0.0; TSUM = 0.0; CSUM = 0.0
 DO K=KT,KB(ID)
 QSUM(JB) = QSUM(JB) +QOUT(K,JB)
 TSUM = TSUM +QOUT(K,JB)*T2(K,ID)
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) +QOUT(K,JB)*C2(K,ID,CN(1:NAC))
 END DO
 IF (QSUM(JB) /= 0.0) THEN
 TOUT(JB) = TSUM /QSUM(JB)
 COUT(CN(1:NAC),JB) = CSUM(CN(1:NAC))/QSUM(JB)
 END IF
 END IF
END IF
END IF

IF (IDPI(JP) /= 0) THEN
IF (US(JBD) /= IDPI(JP) .OR. HEAD_FLOW(JBD) .OR. UP_HEAD(JBD)) THEN
JTT = JTT+1
QTR(JTT) = QPI(JP)
ITR(JTT) = IDPI(JP)
PLACE_QTR(JTT) = PDPIC(JP) == 'DENSITY'
SPECIFY_QTR(JTT) = PDPIC(JP) == 'SPECIFY'
IF (SPECIFY_QTR(JTT)) THEN
ELTRT(JTT) = ETUPI(JP)
ELTRB(JTT) = EBUPI(JP)
END IF
JBTR(JTT) = JBD
IF (ILAT == 1) THEN
TSUM = 0.0; QSUMM = 0.0; CSUM(CN(1:NAC)) = 0.0
DO K=KTW(JWW),KBW(JWW)
QSUMM = QSUMM + QSW(K,JWW)
TSM = TSM + QSW(K,JWW)*T2(K,IWD(JWW))
CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
END DO
TTR(JTT) = TSM / QSUMM
CTR(CN(1:NAC),JTT) = CSUM(CN(1:NAC))/QSUMM
ELSE
TTR(JTT) = TOUT(JB)
CTR(CN(1:NAC),JTT) = COUT(CN(1:NAC),JB)
END IF
ELSE
IF (LATERAL_PIPE(JP)) THEN
TSUM = 0.0; QSUMM = 0.0; CSUM = 0.0
ILAT(JWW) = 1
DO K=KTW(JWW),KBW(JWW)
QSUMM = QSUMM + QSW(K,JWW)
TSM = TSM + QSW(K,JWW)*T2(K,IWD(JWW))
CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
END DO
TINSUM(JB) = (TINSUM(JB) * QINSUM(JB) + TSM) / (QSUMM + QINSUM(JB))
CINSUM(CN(1:NAC),JB) = (CINSUM(CN(1:NAC),JB) * QINSUM(JB) + CSUM(CN(1:NAC)))/(QSUMM + QINSUM(JB))
QINSUM(JB) = QSUMM + QINSUM(JB)
END IF
ENDIF
ELSE
JTT = JTT+1
JWW = JWW+1
IWD(JWW) = IDPI(JP)
ITR(JTT) = IUPI(JP)
QTR(JTT) = -QPI(JP)
QWD(JWW) = -QPI(JP)
KTWD(JWW) = KTDPI(JP)
KBWD(JWW) = KBDPI(JP)
EWD(JWW) = EDPI(JP)
PLACE_QTR(JTT) = PUPIC(JP) == 'DENSITY'
SPECIFY_QTR(JTT) = PUPIC(JP) == 'SPECIFY'
IF (SPECIFY_QTR(JTT)) THEN
ELTRT(JTT) = ETUPI(JP)
ELTRB(JTT) = EBUPI(JP)
END IF
JBTR(JTT) = JBU
JBWD(JWW) = JBD
ENDIF
ENDIF
ELSE
I = MAX(CUS(JBWD(JWW)),IWD(JWW))
JB = JBWD(JWW)
JW = JWDPI(JP)
KT = KTWB(JW)
CALL LATERAL_WITHDRAWAL (JWW)
DO K=KTW(JWW),KBW(JWW)
 QSS(K,I) = QSS(K,I)-QSW(K,JWW)
END DO
IF (IDPI(JP) /= 0) THEN
 TSUM = 0.0; QSUMM = 0.0; CSUM = 0.0
 DO K=KTW(JWW),KBW(JWW)
 QSUMM = QSUMM +QSW(K,JWW)
 TSUM = TSUM +QSW(K,JWW)*T2(K,IWD(JWW))
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC))+QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
 END DO
 TTR(JTT) = TSUM/QSUMM
 CTR(CN(1:NAC),JTT) = CSUM(CN(1:NAC))/QSUMM
END IF
END IF
END DO
END IF
IF (GATES) THEN
 ! CALL GATE_FLOW xxxx must set flow rate !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 DO JG=1,NGT
 !****** Positive flows
 QGT(JG)=QSSI(IUGT(JG)) ! sw
 JLAT = 0
 JBU = JBUGT(JG)
 JBD = JBDGT(JG)
 IF (QGT(JG) >= 0.0) THEN
 IF (LATERAL_GATE(JG)) THEN
 JLAT = 1
 IWD(JWW) = IUGT(JG)
 QWD(JWW) = QGT(JG)
 KTWD(JWW) = KTUGT(JG)
 KBWD(JWW) = KBUGT(JG)
 EW(JWW) = EGT(JG)
 IF (DYNGTC(JG) == 'ZGT' .AND. GTCHAR == 'EGT2ELEV') THEN ! SW 2/25/11
 IF (EGT2(JG) /= 0.0) THEN
 EW(JWW) = EGT2(JG)
 ENDIF
 ENDIF
 END IF
 ENDIF
 IF (QGT(JG) /= 0) THEN
 ! CALL GATE_FLOW xxxx must set flow rate !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 ENDIF
 END DO
 !****** Positive flows
 QGT(JG)=QSSI(IUGT(JG)) ! sw
 JLAT = 0
 JBU = JBUGT(JG)
 JBD = JBDGT(JG)
 IF (QGT(JG) >= 0.0) THEN
 IF (LATERAL_GATE(JG)) THEN
 JLAT = 1
 IWD(JWW) = IUGT(JG)
 QWD(JWW) = QGT(JG)
 KTWD(JWW) = KTUGT(JG)
 KBWD(JWW) = KBUGT(JG)
 EW(JWW) = EGT(JG)
 IF (DYNGTC(JG) == 'ZGT' .AND. GTCHAR == 'EGT2ELEV') THEN ! SW 2/25/11
 IF (EGT2(JG) /= 0.0) THEN
 EW(JWW) = EGT2(JG)
 ENDIF
 ENDIF
 ENDIF
 ENDIF
END IF

**** Positive flows
QGT(JG)=QSSI(IUGT(JG)) ! sw
SPECIFY_QTR(JTT) = PDGTC(JG)
IF (SPECIFY_QTR(JTT)) THEN
 ELTRT(JTT) = ETDGTC(JG)
 ELTRB(JTT) = EBDGTC(JG)
END IF

JBTR(JTT) = JBD
DO K=KTW(JWW),KBW(JWW)
 QSUMM = QSUMM +QSW(K,JWW)
 TSUM = TSUM +QSW(K,JWW)*T2(K,IWD(JWW))
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC))+QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
END DO

IF(QSUMM==0.0)THEN
 TTR(JTT)=0.0
 CTR(:,JTT)=0.0
ELSE
 TTR(JTT) = TSUM/QSUMM
 DO JC=1,NAC
 CTR(CN(JC),JTT) = CSUM(CN(JC))/QSUMM
 IF (CN(JC) == NDO .AND. GASGTC(JG) == ' ON' .AND. QGT(JG) > 0.0) THEN
 TDG_GATE(JWW,JG) = .TRUE.
 CALL TOTAL_DISSOLVED_GAS (PALT(ID),1,JG,TTR(JTT),CTR(CN(JC),JTT))
 END IF
 END DO
 ELSE IF (CAC(NDO) == ' ON' .AND. GASGTC(JG) == ' ON' .AND. QGT(JG) > 0.0) THEN
 TDG_GATE(JWW,JG) = .TRUE.
 END IF
ELSE
 JSS(JBU) = JSS(JBU)+1
 KTSW(JSS(JBU),JBU) = KTUGT(JG)
 KBSW(JSS(JBU),JBU) = KBUGT(JG)
 JB = JBU
 POINT_SINK(JSS(JBU),JBU) = .TRUE.
 ID = IUGT(JG)
 ESTR(JSS(JBU),JBU) = EGT(JG)
 IF(DYNGTC(JG) == ' ZGT' .AND. GT2CHAR == 'EGT2ELEV')THEN
 IF(EGT2(JG) /= 0.0)THEN
 ESTR(JSS(JBU),JBU) = EGT2(JG)
 END IF
 END IF
 ELSE IF (CAC(NDO) == ' ON' .AND. GASGTC(JG) == ' ON' .AND. QGT(JG) > 0.0) THEN
 TDG_GATE(JWW,JG) = .TRUE.
 END IF
ELSE
 QSTR(JSS(JBU),JBU) = QGT(JG)
 KT = KTWB(JWUGT(JG))
 JW = JWUGT(JG)
 CALL DOWNSTREAM_WITHDRAWAL (JSS(JBU))
ENDIF

! moved code section from below
QSUM(JB) = 0.0; TSUM = 0.0; CSUM = 0.0
DO K=KT,KB(ID)
 QSUM(JB) = QSUM(JB)+QOUT(K,JB)
 TSUM = TSUM+QOUT(K,JB)*T2(K,ID)
 DO JC=1,NAC
 IF (CN(JC) == NDO .AND. CAC(NDO) == ' ON' .AND. GASGTC(JG) == ' ON' .AND. QGT(JG) >
 0.0) THEN
 T2R4=T2(K,ID)
 CGAS=C2(K,ID,CN(JC))
 CALL TOTAL_DISSOLVED_GAS (PALT(ID),1,JG,T2R4,CGAS)
 CSUM(CN(JC)) = CSUM(CN(JC))+QOUT(K,JB)*CGAS
 ELSE
 CSUM(CN(JC)) = CSUM(CN(JC))+QOUT(K,JB)*C2(K,ID,CN(JC))
 END IF
 END DO
END DO
IF (QSUM(JB) /= 0.0) THEN
 TOUT(JB) = TSUM /QSUM(JB)
 COUT(CN(1:NAC),JB) = CSUM(CN(1:NAC))/QSUM(JB)
END IF

! end code moved section
IF (IDGT(JG) /= 0 .AND. US(JBD) == IDGT(JG)) THEN
 QSUMM = 0.0
 TSUM = 0.0
 CSUM = 0.0
 DO K=KT,KB(ID)
 QSUMM = QSUMM+QNEW(K)
 TSUM = TSUM+QNEW(K)*T2(K,ID)
 DO JC=1,NAC
 IF (CN(JC) == NDO .AND. CAC(NDO) == 'ON' .AND. GASGTC(JG) == 'ON' .AND. QGT(JG) > 0.0) THEN ! MM 5/21/2009
 T2R4=T2(K,ID)
 CGAS=C2(K,ID,CN(JC)) ! MM 5/21/2009
 CALL TOTAL_DISSOLVED_GAS(PALT(ID),1,JG,T2R4,CGAS)
 CSUM(CN(JC)) = CSUM(CN(JC))+QNEW(K)*CGAS
 ELSE
 CSUM(CN(JC)) = CSUM(CN(JC))+QNEW(K)*C2(K,ID,CN(JC))
 END IF
 END DO
 END DO
 IF (QSUMM /= 0.0) THEN
 TINSUM(JBD) = (TSUM +QINSUM(JBD)*TINSUM(JBD))/(QSUMM+QINSUM(JBD))
 CINSUM(CN(1:NAC),JBD) = (CSUM(CN(1:NAC))+QINSUM(JBD)*CINSUM(CN(1:NAC),JBD))/(QSUMM+QINSUM(JBD))
 END IF
ENDIF
EndInit

END DO
SPECIFY_QTR(JTT) = PDGTC(JG) == 'SPECIFY'
IF (SPECIFY_QTR(JTT)) THEN
 ELTRT(JTT) = ETDGT(JG)
 ELTRB(JTT) = EBDGT(JG)
END IF
JBTR(JTT) = JBD
 IF (JLAT == 1) THEN
 DO JC = 1, NAC
 QSUMM = QSUMM + QSW(K,JWW)
 TSUM = TSUM + QSW(K,JWW)*T2(K,IWD(JWW))
 CSUM(CN(1:NAC)) = CSUM(CN(1:NAC)) + QSW(K,JWW)*C2(K,IWD(JWW),CN(1:NAC))
 END DO
 JBD = JBD
 TTR(JTT) = TSUM/QSUMM
 DO JC = 1, NAC
 CTR(CN(JC),JTT) = CSUM(CN(JC))/QSUMM
 IF (CN(JC) == NDO .AND. GASGTC(JG) == 'ON' .AND. QGT(JG) > 0.0) THEN
 TDG_GATE(JWW,JG) = .TRUE.
 CALL TOTAL_DISsolved_GAS (PALT(ID),1,JG,TTR(JTT),CTR(CN(JC),JTT))
 END IF
 END DO
 ELSE
 TTR(JTT) = TOUT(JB)
 DO JC = 1, NAC
 CTR(CN(JC),JTT) = COUT(CN(JC),JB)
 IF (CN(JC) == NDO .AND. GASGTC(JG) == 'ON' .AND. QGT(JG) > 0.0) THEN
 TDG_GATE(JWW,JG) = .TRUE.
 CALL TOTAL_DISsolved_GAS (PALT(ID),0,JS,TTR(JTT),CTR(CN(JC),JTT))
 END IF
 END DO
 END IF
ELSE IF (CAC(NDO) == 'ON' .AND. GASGTC(JG) == 'ON' .AND. QGT(JG) > 0.0) THEN
 TDG_GATE(JWW,JG) = .TRUE.
ELSE IF (LATERAL_GATE(JG)) THEN
 TINSUM(JB) = (TINSUM(JB) * QINSUM(JB) + TSUM) / (QSUMM + QINSUM(JB))
 CINSUM(CN(1:NAC),JB) = (CINSUM(CN(1:NAC),JB) * QINSUM(JB) + CSUM(CN(1:NAC))) / (QSUMM + QINSUM(JB))
 QINSUM(JB) = QSUMM + QINSUM(JB)
END IF
ELSE IF (QGT(JG) < 0.0) THEN
 JTT = JTT + 1
 JWW = JWW + 1
 IWD(JWW) = IDGT(JG)
 ITR(JTT) = IUGT(JG)
 QTR(JTT) = -QGT(JG)
 QWD(JWW) = -QGT(JG)
 KTWD(JWW) = KTDGT(JG)
 KBWD(JWW) = KBDGT(JG)
 EWD(JWW) = EGT(JG)
 PLACE_QTR(JTT) = PUGTC(JG) == 'DENSITY'
ELSE IF (SPECIFY_QTR(JTT)) THEN
tributaries = jtt > 0
withdrawals = jww > 0

DO JW=1,NWB
KT = KTWB(JW)
DO JB=BS(JW),BE(JW)
IU = CUS(JB)
ID = DS(JB)
IF (EVAPORATION(JW)) THEN
EVBR(JB) = 0.0
DO I=IU,ID
FW = AFW(JW)+BFW(JW)*WIND2(I)**CFW(JW)
IF (RH_EVAP(JW)) THEN
EA = EXP(2.3026*(7.5*TDEW(JW))/(TDEW(JW)+237.3)+0.6609)
ES = EXP(2.3026*(7.5*T2(KT,I))/(T2(KT,I)+237.3)+0.6609))
IF (TDEW(JW) < 0.0) EA = EXP(2.3026*(9.5*TDEW(JW))/(TDEW(JW)+265.5)+0.6609)
IF (T2(KT,I) < 0.0) ES = EXP(2.3026*(9.5*T2(KT,I))/(T2(KT,I)+265.5)+0.6609))
TAIRV = (TAIR(JW)+273.0)/(1.0-0.378*EA/760.0)
DTV = (T2(KT,I)+273.0)/(1.0-0.378*ES/760.0)-TAIRV
DTVL = 0.0084*WIND2(I)**3
IF (DTV < DTVL) DTV = DTVL
FW = (3.59*DTV**0.3333333+4.26*WIND2(I))
END IF
TM = (T2(KT,I)+TDEW(JW))*0.5
VPTG = 0.35+0.015*TM+0.0012*TM*TM
END IF
ELSE IF (CAC(NDO) == ' ON'.AND. GASGTC(JG) == ' ON'.AND. QGT(JG) > 0.0) THEN
TDG_GATE(JWW,JG) = .TRUE.
END IF
END IF
END DO
END IF
END DO
END IF

tributaries = jtt > 0
withdrawals = jww > 0

DO JW=1,NWB
KT = KTWB(JW)
DO JB=BS(JW),BE(JW)
IU = CUS(JB)
ID = DS(JB)
IF (EVAPORATION(JW)) THEN
EVBR(JB) = 0.0
DO I=IU,ID
FW = AFW(JW)+BFW(JW)*WIND2(I)**CFW(JW)
IF (RH_EVAP(JW)) THEN
EA = EXP(2.3026*(7.5*TDEW(JW))/(TDEW(JW)+237.3)+0.6609)
ES = EXP(2.3026*(7.5*T2(KT,I))/(T2(KT,I)+237.3)+0.6609))
IF (TDEW(JW) < 0.0) EA = EXP(2.3026*(9.5*TDEW(JW))/(TDEW(JW)+265.5)+0.6609)
IF (T2(KT,I) < 0.0) ES = EXP(2.3026*(9.5*T2(KT,I))/(T2(KT,I)+265.5)+0.6609))
TAIRV = (TAIR(JW)+273.0)/(1.0-0.378*EA/760.0)
DTV = (T2(KT,I)+273.0)/(1.0-0.378*ES/760.0)-TAIRV
DTVL = 0.0084*WIND2(I)**3
IF (DTV < DTVL) DTV = DTVL
FW = (3.59*DTV**0.3333333+4.26*WIND2(I))
END IF
TM = (T2(KT,I)+TDEW(JW))*0.5
VPTG = 0.35+0.015*TM+0.0012*TM*TM
END IF
\[
\text{EV(I)} = \text{VPTG} \times (T2(KT,I) - TDEW(JW)) \times \text{FW} \times \text{BI(KT,I)} \times \text{DLX(I)} / 2.45E9
\]

IF (EV(I) < 0.0 .OR. ICE(I)) EV(I) = 0.0

QSS(KT,I) = QSS(KT,I) - EV(I)

EVBR(JB) = EVBR(JB) + EV(I)

END DO

END IF

IF (PRECIPITATION(JW)) THEN

QPRBR(JB) = 0.0

DO I=IU,ID

QPR(I) = PR(JB) \times \text{BI(KT,I)} \times \text{DLX(I)}

QPRBR(JB) = QPRBR(JB) + QPR(I)

QSS(KT,I) = QSS(KT,I) + QPR(I)

END DO

END IF

IF (TRIBUTARIES) THEN

! THIS PIECE OF CODE IS MOVED TO W2_37_W2N90 LINE1238

DO JT=1,JTT

!!********** Inflow fractions

! IF (JB == JBTR(JT)) THEN
! I = MAX(ITR(JT),IU)
! QTRF(KT:KB(I),JT) = 0.0
! IF (PLACE_QTR(JT)) THEN
!
!!************** Inflow layer

! SSTOT = 0.0
! DO J=NSSS,NSSE
! SSTOT = SSTOT + CTR(J,JT)
! END DO
! RHOSTR = DENSITY(TTR(JT),CTR(NTDS,JT),SSTOT)
! K = KT
! DO WHILE (RHOSTR > RHO(K,I) .AND. K < KB(I))
! K = K+1
! END DO
! KTR(JT) = K
! KBTR(JT) = K
!
!!************** Layer inflows

! VQTR = QTR(JT)*DLT
! VQTRI = VQTR
! QTRFR = 1.0
! INCR = -1
! DO WHILE (QTRFR > 0.0)
! IF (K <= KB(I)) THEN
! V1 = VOL(K,I)
! IF (VQTR > 0.5*V1) THEN
! QTRF(K,JT) = 0.5*V1/VQTRI
! QTRFR = QTRFR - QTRF(K,JT)
! VQTR = VQTR - QTRF(K,JT)*VQTRI
! END IF
! IF (K == KT) THEN
! K = KBTR(JT)
! INCR = 1
! END IF
! ELSE
! QTRF(K,JT) = QTRFR
! QTRFR = 0.0
! END IF
IF (INCR < 0) KTTR(JT) = K
IF (INCR > 0) KBTR(JT) = MIN(KB(I),K)
K = K+INCR
ELSE
QTRF(KT,JT) = QTRF(KT,JT)+QTRFR
QTRFR = 0.0
END IF
END DO
ELSE
IF (SPECIFY_QTR(JT)) THEN
KTTR(JT) = 2
DO WHILE (EL(KTTR(JT),I) > ELTRT(JT))
KTTR(JT) = KTTR(JT)+1
END DO
KBTR(JT) = KMX-1
DO WHILE (EL(KBTR(JT),I) < ELTRB(JT))
KBTR(JT) = KBTR(JT)-1
END DO
ELSE
KTTR(JT) = KT
KBTR(JT) = KB(I)
END IF
KTTR(JT) = MAX(KT,KTTR(JT))
KBTR(JT) = MIN(KB(I),KBTR(JT))
IF (KBTR(JT) < KTTR(JT)) KBTR(JT) = KTTR(JT)
BHSUM = 0.0
DO K=KTTR(JT),KBTR(JT)
 BHSUM = BHSUM+BH2(K,I)
 BHSUM = BHSUM+BH1(K,I) !WX 8/17/13
END DO
DO K=KTTR(JT),KBTR(JT)
 QTRF(K,JT) = BH2(K,I)/BHSUM
 QTRF(K,JT) = BH1(K,I)/BHSUM !WX 8/17/13
END DO
END IF
END IF
IF (DIST_TRIBS(JB)) THEN
AKBR = 0.0 !WX 7/8/13 AS the way flow is added and tss is added for distributed is different, I recommend
DO I=IU,ID
 QDT(I) = QDTR(JB)*BI(KT,I)*DLX(I)/AKBR
 QDT(I) = QDTR(JB)/REAL(ID-IU+1)
 QSS(KT,I) = QSS(KT,I)+QDT(I)
END DO
END IF
END IF
IF (WITHDRAWALS) THEN
DO JWD=1,NWD
 IF (JB == JBWD(JWD)) THEN
 I = MAX(CUS(JBWD(JWD)),IWD(JWD))
 CALL LATERAL_WITHDRAWAL (JWD)
 DO K=KTW(JWD),KBW(JWD)
 QSS(K,I) = QSS(K,I)-QSW(K,JWD)
 END DO
 END IF
END DO
DO JWD=1,NWD
 IF (JB == JBWD(JWD)) THEN
 I = MAX(CUS(JBWD(JWD)),JWD(JWD))
 CALL LATERAL_WITHDRAWAL (JWD)
 DO K=KTW(JWD),KBW(JWD)
 QSS(K,1) = QSS(K,1)-QSW(K,JWD)
 END DO
 END IF
END DO
END IF
END DO
END IF
END DO
END IF

IF (UH_INTERNAL(JB).AND. .NOT. LOOP_BRANCH(JB)) THEN !add the criteria of not loop branch. because loop branch qss(uhs(jb) is calculated in w2_37_win
 IF (UHS(JB) /= DS(JBUH(JB)) .OR. DHS(JBUH(JB)) /= US(JB)) THEN
 IF (JBUH(JB) >= BS(JW) .AND. JBUH(JB) <= BE(JW)) THEN
 DO K=KT,KB(IU-1)
 QSS(K,UHS(JB)) = QSS(K,UHS(JB))-VOLUH2(K,JB)/DLT
 END DO
 ELSE
 CALL UPSTREAM_FLOW
 END IF
 END IF
END IF

IF (DH_INTERNAL(JB).AND. .NOT. LOOP_BRANCH(JB)) THEN !add the criteria of not loop branch. WX
 IF (DHS(JB) /= US(JBDH(JB)) .OR. UHS(JBDH(JB)) /= DS(JB)) THEN
 IF (JBDH(JB) >= BS(JW) .AND. JBDH(JB) <= BE(JW)) THEN
 DO K=KT,KB(ID+1)
 QSS(K,CDHS(JB)) = QSS(K,CDHS(JB))+VOLDH2(K,JB)/DLT
 END DO
 ELSE
 CALL DOWNSTREAM_FLOW
 END IF
 END IF
END IF
END DO
END DO

!** Compute tributary contribution to cross-shear

IF (TRIBUTARIES) THEN
 DO JW=1,NWB
 DO JB=BS(JW),BE(JW)
 DO JT=1,JTT
 IF (JB == JBTR(JT)) THEN
 I = MAX(CUS(JB),ITR(JT))
 DO K=KTWB(JW),KBMIN(I)
 UYBR(K,I) = UYBR(K,I)+ABS(QTR(JT))*QTRF(K,JT)
 END DO
 END IF
 END DO
 END DO
 END DO
END IF

return
end subroutine hydroinout
temperature.F90

subroutine temperature

USE MAIN
USE GLOBAL; USE NAMESC; USE GEOMC; USE LOGICC; USE PREC; USE SURFHE; USE KINETIC;
USE SHADEC; USE EDDY
USE STRUCTURES; USE TRANS; USE TVDC; USE SELWC; USE GDAYC; USE SCREENC; USE
TDGAS; USE RSTART
USE MACROPHYTETC; USE POROSITYC; USE ZOOPLANKTONC; USE INITIALVELOCITY, ONLY: QSSI
USE INITIALVELOCITY
IMPLICIT NONE
EXTERNAL RESTART_OUTPUT

REAL RN1
INTEGER ::JLOOP !WX 8/25/13

DO JW=1,NWB
 KT = KTWB(JW)
 IF (.NOT. NO_HEAT(JW)) THEN
 IF (.NOT. READ_RADIATION(JW)) CALL SHORT_WAVE_RADIATION (JDAY)
 IF (TERM_BY_TERM(JW)) THEN ! SW 1/25/05
 IF(TAIR(JW).GE.5.0) THEN
 RANLW(JW) = 5.31D-13*(273.15D0+TAIR(JW))**6*(1.0D0+0.0017D0*CLOUD(JW)**2)*0.97D0
 ELSE
 RANLW(JW) = 5.62D-8*(273.15D0+TAIR(JW))**4*(1.D0-0.261D0*DEXP(-7.77D-
108**4*TAIR(JW)**2))*(1.0D0+0.0017D0*CLOUD(JW)**2)*0.97D0
 ENDIF
 ENDIF
 DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 !****** Heat exchange
 IF (.NOT. NO_HEAT(JW)) THEN
 DO I=IU,ID
 IF (DYNAMIC_SHADE(I)) CALL SHADING
 ENDIF
 !********** Surface
 IF (.NOT. ICE(I)) THEN
 IF (TERM_BY_TERM(JW)) THEN
 CALL SURFACE_TERMS (T2(KT,I))
 RS(I) = SRON(JW)*SHADE(I)
 RN(I) = RS(I)+RANLW(JW)-RB(I)-RE(I)-RC(I)
 HEATEX = RN(I)/RHOWCP*BI(KT,I)*DLX(I)
 ELSE
 CALL EQUILIBRIUM_TEMPERATURE
 HEATEX = (ET(I)-T2(KT,I))*CSHE(I)*BI(KT,I)*DLX(I)
 END IF
 TSS(KT,I) = TSS(KT,I)+HEATEX
 TSSS(JB) = TSSS(JB) +HEATEX*DLT
 SROOUT = (1.0D0-BETA(JW))*(SRON(JW)*SHADE(I)/RHOWCP)*BI(KT,I)*DLX(I)*DEXP(-
117**4*TAIR(JW)**2)*(1.D0+0.0017D0*CLOUD(JW)**2)*0.97D0
 IF(KT == KB(I)) THEN ! SW 4/18/07
 SROSED = SROOUT*TSEDF(JW)
 ENDIF
 ENDIF
 END IF
 END IF
END DO
ELSE
SROSED = SROOUT*(1.0D0-BI(KT+1,I)/BI(KT,I))*TSEDF(JW)
ENDIF
TSS(KT,I) = TSS(KT,I)+SROSED
TSSS(JB) = TSSS(JB)+SROSED*DLT
SROIN = SROOUT*B(KT+1,I)/BI(KT,I)
DO K=KT+1,KB(I)
 SROOUT = SROIN*DEXP(-GAMMA(K,I)*(H1(K,I)))
 SRONET = SROIN-SROOUT
 IF(K /= KB(I))THEN ! SW 1/18/08
 SROSED = SROOUT*(1.0D0-BI(K+1,I)/BI(K,I))*TSEDF(JW)
 ELSE
 SROSED = SROOUT*TSEDF(JW)
 ENDIF
 TSS(K,I) = TSS(K,I)+SRONET+SROSED
 TSSS(JB) = TSSS(JB)+(SRONET+SROSED)*DLT
 SROIN = SROOUT*B(K+1,I)/B(K,I)
END DO
END IF

!********** Sediment/water
DO K=KT,KB(I)
 IF(K==KB(I))THEN ! SW 4/18/07
 TFLUX = CBHE(JW)/RHOWCP*(TSED(JW)-T2(K,I))*BI(K,I)*DLX(I)
 ELSE
 TFLUX = CBHE(JW)/RHOWCP*(TSED(JW)-T2(K,I))*(BI(K,I)-BI(K+1,I))*DLX(I)
 ENDIF
 TSS(K,I) = TSS(K,I)+TFLUX
 TSSB(JB) = TSSB(JB)+TFLUX*DLT
END DO
END DO

!******** Ice cover
IF (ICE_CALC(JW)) THEN
 ! HIA = 0.2367*CSHE(I)/5.65E-8 ! SW 10/20/09 Duplicate line of code
 DO I=IU,ID
 ALLOW_ICE(I) = .TRUE.
 IF (T2(KT,I) > ICET2(JW)) ALLOW_ICE(I) = .FALSE. ! RC/SW 4/28/11
 IF (K==KB(I)) THEN ! SW 4/18/07
 DO K=KT,KB(I)
 IF (T2(K,I) > ICET2(JW)) ALLOW_ICE(I) = .FALSE.
 END DO
 ENDIF
 END DO
 END IF
 ICE_IN(JB) = .TRUE. ! RC/SW 4/28/11 eliminate ICE_IN
 DO I=IU,ID
 IF (ICETH(I) < ICEMIN(JW)) ICE_IN(JB) = .FALSE.
 END DO
DO I=IU,ID
IF(SALT_WATER(JW))THEN ! SW/RC 4/28/11
 IF(TDS(KT,I) < 35.)THEN
 RIMT = -0.0545*TDS(KT,I) ! REGRESSION FOR TDS BETWEEN 0 AND 35
 ELSE
 RIMT=-0.31462-0.04177*TDS(KT,I)-0.000166*TDS(KT,I)*TDS(KT,I) ! REGRESSION EQN FOR
 ENDIF
ENDIF
ELSE
 RIMT=-0.31462-0.04177*TDS(KT,I)-0.000166*TDS(KT,I)*TDS(KT,I) ! REGRESSION EQN FOR
ENDIF
IF (DETAILED_ICE(JW)) THEN
 IF (T2(KT,I) < 0.0) THEN
 IF (.NOT. ICE(I)) THEN
 ICETH2 = -T2(KT,I)*RHO(KT,I)*CP*H2(KT,I)/RHOIRL1
 ELSE
 TFLUX = T2(KT,I)*RHO(KT,I)*CP*H2(KT,I)*BI(KT,I)/(RHOWCP*DLT)*DLX(I)
 TSS(KT,I) = TSS(KT,I) - TFLUX
 TSSICE(JB) = TSSICE(JB) - TFLUX*DLT
 END IF
 END IF
END IF
END IF

!************** Ice balance

IF (ICE(I)) THEN
 TICE = TAIR(JW)
 DEL = 2.0D0
 J = 1
 IF(TAIR(JW).GE.5.0)THEN
 RANLW(JW) = 5.31D-13*(273.15D0+TAIR(JW))**6*(1.0D0+0.0017D0*CLOUD(JW)**2)*0.97D0
 ELSE
 RANLW(JW) = 5.62D-8*(273.15D0+TAIR(JW))**4*(1.D0-0.261D0*DEXP(-7.77D-4*TAIR(JW)**2))*(1.0D0+0.0017D0*CLOUD(JW)**2)*0.97D0
 ENDIF
 RN1=SRON(JW)/REFL*SHADE(I)*(1.0D0-ALBEDO(JW))*BETAI(JW)+RANLW(JW)
 RN(I) = RN1-RB(I)-RE(I)-RC(I) ! 4/19/10
 DEL = RN(I)+RK1*(RIMT-TICE)/ICETH(I) ! RK1 is ice conductivity 2.12 W/m/oC
 IF (ABS(DEL) > 1.0) TICE = TICE+DEL/500.0D0
 J = J+1
END DO

ABS of DEL

CALL SURFACE_TERMS (TICE)
RNI = RN(I)-RN(BH)-RB(J)-RC(I) ! 4/19/10
RN(I) = SRON(JW)/REFL*SHADE(I)*(1.0D0-ALBEDO(JW))*BETAI(JW)+RANLW(JW)

!**************** Solar radiation attenuation

TFLUX = DLX(I)*SRON(JW)/(RHOWCP*REFL)*SHADE(I)*(1.0D0-ALBEDO(JW))*BETAI(JW)+RANLW(JW)

!**************** Ice growth

IF (TICE > 0.0) THEN
 HICE = RHOICP*0.5D0*TICE*0.5D0*ICETH(I)*BI(KT,I)/(RHOWCP*DLT)
 ICETHU = -DLT*HICE/B(KTI,I,RHOIRL1)
END IF

IF (TICE < 0.0) THEN
 ICETH1 = DLT*(RK1*(RIMT-TICE)/ICETH(I))/RHOIRL1
END IF

!**************** Ice melt from water-ice interface

IF (T2(KT,I) > 0.0) THEN
 ICETH2 = -DLT*HWI(JW)*(T2(KT,I)-RIMT)/RHOIRL1
END IF

290
TFLUX = 2.392D-7*HWI(JW)*(RIMT-T2(KT,I))*BI(KT,I)*DLX(I)
TSS(KT,I) = TSS(KT,I) +TFLUX
TSSICE(JB) = TSSICE(JB)+TFLUX*DLT
END IF
END IF

!************** Ice thickness

ICE(I) = ICETH(I) > 0.0
ELSE
ICETHU = 0.0
ICETH1 = 0.0
ICETH2 = 0.0
IF (ICETH(I) < ICE_TOL .AND. ICETH(I) > 0.0) ICETH(I) = ICE_TOL
ELSE
IF (TERM_BY_TERM(JW)) CALL EQUILIBRIUM_TEMPERATURE ! SW 10/20/09 Must call
HIA = 0.2367D0*CSHE(I)/5.65D-8 ! JM 11/08 convert SI units of m/s to English
(btu/ft2/d/F) and then back to SI W/m2/C
! ICETH(I) = MAX(0.0,ICETH(I)+DLT*((RIMT-ET(I))/(ICETH(I)/RK1+1.0/HIA)-(T2(KT,I)-
ICETH(I) = MAX(0.0,ICETH(I)+DLT*((RIMT-ET(I))/(ICETH(I)/RK1+1.0D0/HIA)-
HWI(JW)*(T2(KT,I)-RIMT))/RHOIRL1) ! SW 10/20/09 Revised missing HWI(JW)
ICE(I) = ICETH(I) > 0.0
ICESW(I) = 1.0
END IF
END IF
END IF

!****** Heat sources/sinks and total inflow/outflow

IF (EVAPORATION(JW)) THEN
DO I=IU,ID
TSS(KT,I) = TSS(KT,I)-EV(I)*T2(KT,I)
TSSEV(JB) = TSSEV(JB)-EV(I)*T2(KT,I)*DLT
VOLEV(JB) = VOLEV(JB)-EV(I)*DLT
END DO
END IF
IF (PRECIPITATION(JW)) THEN
DO I=IU,ID
TSS(KT,I) = TSS(KT,I)+QPR(I)*TPR(JB)
TSSPR(JB) = TSSPR(JB)+QPR(I)*TPR(JB)*DLT
VOLEV(JB) = VOLEV(JB)-EV(I)*DLT
END DO
END IF

!***** Heat sources/sinks and total inflow/outflow

IF (EVAPORATION(JW)) THEN
DO I=IU,ID
TSS(KT,I) = TSS(KT,I)-EV(I)*T2(KT,I)
TSSEV(JB) = TSSEV(JB)-EV(I)*T2(KT,I)*DLT
VOLEV(JB) = VOLEV(JB)-EV(I)*DLT
END DO
END IF
IF (PRECIPITATION(JW)) THEN
DO I=IU,ID
TSS(KT,I) = TSS(KT,I)+QPR(I)*TPR(JB)
TSSPR(JB) = TSSPR(JB)+QPR(I)*TPR(JB)*DLT
VOLEV(JB) = VOLEV(JB)-EV(I)*DLT
END DO
END IF

!******** Heat sources/sinks and total inflow/outflow

IF (EVAPORATION(JW)) THEN
DO I=IU,ID
TSS(KT,I) = TSS(KT,I)-EV(I)*T2(KT,I)
TSSEV(JB) = TSSEV(JB)-EV(I)*T2(KT,I)*DLT
VOLEV(JB) = VOLEV(JB)-EV(I)*DLT
END DO
END IF
IF (PRECIPITATION(JW)) THEN
DO I=IU,ID
TSS(KT,I) = TSS(KT,I)+QPR(I)*TPR(JB)
TSSPR(JB) = TSSPR(JB)+QPR(I)*TPR(JB)*DLT
VOLEV(JB) = VOLEV(JB)-EV(I)*DLT
END DO
END IF
VOLPR(JB) = VOLPR(JB)+QPR(I) *DLT
DO K=KTWB(JW),KB(I)
 TSS(K,I) = TSS(K,I)+TPR(JB)*QPR(I)*QTRF(K,I)
 TSSTR(JB) = TSSTR(JB)+TPR(JB)*QPR(I)*QTRF(K,I)*DLT
 VOLPR(JB) = VOLPR(JB)+QPR(I)*DLT
END DO
END DO
END IF
IF (TRIBUTARIES) THEN
 DO JT=1,JTT
 IF (JB == JBTR(JT)) THEN
 I = ITR(JT)
 IF (I < CUS(JB)) I = CUS(JB)
 DO K=KTWB(JW),KB(I)
 IF (QTR(JT) < 0) THEN
 TSS(K,I) = TSS(K,I)+T2(K,I)*QTR(JT)*QTRF(K,I)
 TSSTR(JB) = TSSTR(JB)+T2(K,I)*QTR(JT)*QTRF(K,I)*DLT
 ELSE
 TSS(K,I) = TSS(K,I)+TTR(JT)*QTR(JT)*QTRF(K,I)
 TSSTR(JB) = TSSTR(JB)+TTR(JT)*QTR(JT)*QTRF(K,I)*DLT
 END IF
 END DO
 VOLTRB(JB) = VOLTRB(JB)+QTR(JT)*DLT
 END IF
 END DO
END IF
IF (DIST_TRIBS(JB)) THEN
 DO I=IU,ID
 DO K=KTWB(JW),KB(I)
 IF (QDT(I) < 0) THEN
 TSS(K,I) = TSS(K,I)+T2(K,I)*QDT(I)*QTRF(K,I)
 TSSDT(JB) = TSSDT(JB)+T2(K,I)*QDT(I)*QTRF(K,I)*DLT
 ELSE
 TSS(K,I) = TSS(K,I)+TDTR(JB)*QDT(I)*QTRF(K,I)
 TSSDT(JB) = TSSDT(JB)+TDTR(JB)*QDT(I)*QTRF(K,I)*DLT
 END IF
 VOLDT(JB) = VOLDT(JB)+QDT(I)*DLT
 END DO
 END DO
END IF
IF (WITHDRAWALS) THEN
 DO JWD=1,JWW
 IF (QWD(JWD) /= 0.0) THEN
 IF (JB == JBWD(JWD)) THEN
 I = MAX(CUS(JBWD(JWD)),IWD(JWD))
 DO K=KTW(JWD),KBW(JWD)
 TSS(K,I) = TSS(K,I)-T2(K,I)*QSW(K,JWD)
 TSSWD(JB) = TSSWD(JB)-T2(K,I)*QSW(K,JWD)*DLT
 END DO
 VOLWD(JB) = VOLWD(JB)-QWD(JWD)*DLT
 END IF
 END IF
 END DO
END IF
IF (UP_FLOW(JB)) THEN
 DO K=KT,KB(IU)
 IF (.NOT. HEAD_FLOW(JB)) THEN
 TSS(K,IU) = TSS(K,IU)+QINF(K,JB)*QIN(JB)*TIN(JB)
 TSSIN(JB) = TSSIN(JB)+QINF(K,JB)*QIN(JB)*TIN(JB)*DLT
 END IF
 END DO
END IF
ELSE
 IF (U(K,IU-1) >= 0.0) THEN
 TSS(K,IU) = TSS(K,IU)+U(K,IU-1)*BHR1(K,IU-1)*T1(K,IU-1)
 TSSIN(JB) = TSSIN(JB)+U(K,IU-1)*BHR1(K,IU-1)*T1(K,IU-1)*DLT
 ELSE
 TSS(K,IU) = TSS(K,IU)+U(K,IU-1)*BHR1(K,IU-1)*T1(K,IU)
 TSSIN(JB) = TSSIN(JB)+U(K,IU-1)*BHR1(K,IU-1)*T1(K,IU)*DLT
 END IF
ENDIF
END DO
VOLIN(JB) = VOLIN(JB)+QIN(JB)*DLT
ENDIF
IF (DN_FLOW(JB)) THEN
 DO K=KT,KB(ID)
 TSS(K,ID) = TSS(K,ID) -QOUT(K,JB)*T2(K,ID+1)
 TSSOUT(JB) = TSSOUT(JB)-QOUT(K,JB)*T2(K,ID+1)*DLT
 VOLOUT(JB) = VOLOUT(JB)-QOUT(K,JB) *DLT
 END DO
ENDIF
IF (UP_HEAD(JB)) THEN
 DO K=KT,KB(IU)
 IUT = IU
 IF (QUH1(K,JB) >= 0.0) IUT = IU-1
 TSSUH1(K,JB) = T2(K,IUT)*QUH1(K,JB)
 TSS(K,IU) = TSS(K,IU)+TSSUH1(K,JB)
 TSSUH(JB) = TSSUH(JB)+TSSUH1(K,JB)*DLT
 VOLUH(JB) = VOLUH(JB)+QUH1(K,JB) *DLT
 END DO
ENDIF
END IF
IF (UP_INTERNAL(JB).AND. .NOT. LOOP_BRANCH(JB)) THEN !WX 8/26/13
 IF (UHS(JB) /= DS(JBUH(JB)) .OR. DHS(JBUH(JB)) /= US(JB)) THEN
 IF (JBUH(JB) >= BS(JW) .AND. JBUH(JB) <= BE(JW)) THEN
 DO K=KT,KB(IU-1)
 TSS(K,UHS(JB)) = TSS(K,UHS(JB)) -TSSUH2(K,JB)/DLT
 TSSUH(JBUH(JB)) = TSSUH(JBUH(JB))-TSSUH2(K,JB)
 VOLUH(JBUH(JB)) = VOLUH(JBUH(JB))-VOLUH2(K,JB)
 END DO
 ELSE
 CALL UPSTREAM_CONSTITUENT(T2,TSS)
 DO K=KT,KB(IU-1)
 TSSUH(JBUH(JB)) = TSSUH(JBUH(JB))-TSSUH2(K,JB)
 VOLUH(JBUH(JB)) = VOLUH(JBUH(JB))-VOLUH2(K,JB)
 END DO
 END IF
 END IF
ENDIF
 !WX 8/26/13
IF (DN_HEAD(JB)) THEN
 DO K=KT,KB(ID+1)
 IDT = ID+1
 IF (QDH1(K,JB) >= 0.0) IDT = ID
 TSSDH1(K,JB) = T2(K,IDT)*QDH1(K,JB)
 TSS(K,ID) = TSS(K,ID)-TSSDH1(K,JB)
 TSSDH(JB) = TSSDH(JB)-TSSDH1(K,JB)*DLT
 VOLDH(JB) = VOLDH(JB)-QDH1(K,JB) *DLT
 END DO
ENDIF
IF (DH_INTERNAL(JB).AND. .NOT. LOOP_BRANCH(JB)) THEN !WX 8/26/13
 IF (DHS(JB) /= US(JBDH(JB)) .OR. UHS(JBDH(JB)) /= DS(JB)) THEN
 IF (JBDH(JB) >= BS(JW) .AND. JBDH(JB) <= BE(JW)) THEN
 DO K=KT,KB(ID+1)
TSS(K, CDHS(JB)) = TSS(K, CDHS(JB)) + TSSDH2(K, JB) / DLT
TSSDH(JBDH(JB)) = TSSDH(JBDH(JB)) + TSSDH2(K, JB)
VOLDH(JBDH(JB)) = VOLDH(JBDH(JB)) + VOLDH2(K, JB)
END DO
ELSE
CALL DOWNSTREAM_CONSTITUENT(T2, TSS)
DO K = KT, KB(ID + 1)
 TSSDH(JBDH(JB)) = TSSDH(JBDH(JB)) + TSSDH2(K, JB)
 VOLDH(JBDH(JB)) = VOLDH(JBDH(JB)) + VOLDH2(K, JB)
END DO
END IF
IF (LOOP_BRANCH(JB)) THEN
! WX 8/24/13
 TSS is already calculated in UH_INTERNAL(JB) & DH_INTERNAL(JB)
 DO JLOOP = BS(JW), BE(JW)
 IF (UHS(JB) > US(JLOOP) AND UHS(JB) < DS(JLOOP)) THEN
 EXIT
 END IF
 END DO
! WX 11/10/13 LOOP BRANCH flow and temperature should go into QSS and TSS. The previous method
will not work because tss should not depend on temperature difference. Relations should be physical
! There can be problems when there is distributed flow in the loop branch, then qloop1 should be used instead
 of qss1(us(jb))
 I = UHS(JB) !at the beginning of loop branch
 DO K = KTWB(JW), KB(I)
 TSS(K, I) = TSS(K, I) - T2(K, I) * QSSI(UH(JB)) * QTRF(K, I)
 END DO
 I = DHS(JB) !at the end of loop branch
 ! first, calculate all the sum of tss at the end of loop branch. Then, assign TSSLOOP to each layer
 TSSLOOP(DS(JB)) = 0.0
 DO K = KTWB(JW), KB(DS(JB))
 TSSLOOP(DS(JB)) = TSSLOOP(DS(JB)) + T2(K, DS(JB)) * U(K, DS(JB)) * BHR1(K, DS(JB))
 END DO
 DO K = KTWB(JW), KB(I)
 TSS(K, I) = TSS(K, I) + TSSLOOP(DS(JB)) * QTRF(K, I)
 END DO
! IF (QDT(UHS(JB)) > 0.0) THEN !IF THERE IS POSITIVE DISTRIBUTED FLOW, USE TDTR()
! I = UHS(JB)
! DO K = KTWB(JW), KB(I)
! TSS(K, I) = TSS(K, I) + T2(K, I) * U(K, I) * BHR1(K, I) - T2(K, I - 1) * U(K, I - 1) * BHR1(K, I - 1) -
! TDTR(JLOOP) * QDT(I) * QTRF(K, I) ! tss is calculated from the differences of
! END DO
! I = DHS(JB)
! DO K = KTWB(JW), KB(I)
! TSS(K, I) = TSS(K, I) + T2(K, I) * U(K, I) * BHR1(K, I) - T2(K, I - 1) * U(K, I - 1) * BHR1(K, I - 1) -
! TDTR(JLOOP) * QDT(I) * QTRF(K, I)
! END DO
! ELSE ! IF DISTRIBUTED FLOW IS NOT POSITIVE, USE T2(K, I)
! I = UHS(JB)
! DO K = KTWB(JW), KB(I)
! TSS(K, I) = TSS(K, I) + T2(K, I) * U(K, I) * BHR1(K, I) - T2(K, I - 1) * U(K, I - 1) * BHR1(K, I - 1) -
! TDTR(JLOOP) * QDT(I) * QTRF(K, I)
! END DO
! I = DHS(JB)
! DO K = KTWB(JW), KB(I)
! TSS(K, I) = TSS(K, I) + T2(K, I) * U(K, I) * BHR1(K, I) - T2(K, I - 1) * U(K, I - 1) * BHR1(K, I - 1) -
! TDTR(JLOOP) * QDT(I) * QTRF(K, I)
! END DO
! END IF
END IF
END DO
END DO

!** Temperature transport

DO JW=1,NWB
KT = KTWB(JW)
DO JB=BS(JW),BE(JW)
 IU = CUS(JB)
 ID = DS(JB)
 COLD => HYD(:,:,4)
 CALL HORIZONTAL_MULTIPLIERS1
 CALL VERTICAL_MULTIPLIERS1
 CALL HORIZONTAL_MULTIPLIERS
 CALL VERTICAL_MULTIPLIERS
 CNEW => T1(:,:,)
 SSB => TSS(:,)
 SSK => CSSB(:,:,1)
 CALL HORIZONTAL_TRANSPORT
 DO I=IU,ID
 AT(:,I) = 0.0D0; CT(:,I) = 0.0D0; VT(:,I) = 0.0D0; DT(:,I) = 0.0D0
 FORALL(K=KT:KB(I))
 AT(K,I) = -DLT/BH1(K,I)*(BB(K-1,I)*(DZ(K-1,I)/AVH1(K-1,I)+THETA(JW)*0.5D0*W(K-1,I)))
 CT(K,I) = DLT/BH1(K,I)*(BB(K,I)*(THETA(JW)*0.5D0*W(K,I)-DZ(K,I)/AVH1(K,I)))
 VT(K,I) = 1.0D0+DLT/BH1(K,I)*(BB(K,I)*(DZ(K,I)/AVH1(K,I)+THETA(JW)*0.5D0*W(K,I))+BB(K-1,I)*(DZ(K-1,I)/AVH1(K-1,I))) &
 -THETA(JW)*0.5D0*W(K-1,I)))
 DT(K,I) = CNEW(K,I)
 END FORALL
 CALL TRIDIAG(AT(:,I),VT(:,I),CT(:,I),DT(:,I),KT,KB(I),KMX,CNEW(:,I))
 END DO
END DO
END DO

END SUBROUTINE TEMPERATURE