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means of the second curve. A statistical test is then made of this 

difference by dividing it by a factor of the covariance matrix and 

comparing this to a test statistic. 

CASE I: COVARIANCE MATRIX UNKNOWN 

For this case ·with unknown, the following expression holds: 

(22) p 

where S is the pooled estimate of the covariance matrix and where k 

is the number of components being compared. One would reject the 

null hypothesis that !'z, - !'!i • 0 if 

(23) 

For example, consider the case of the tl-;o p-waves �s�h�o�~�m� in 

figure 2 (p. 20). The difference between respective Haar components 

Table XIII gives values of h1v., htv.,, (ht.'v - h',v.,), 
-tK..f �-�~�I�Z�.�~� -LL- I -LL. .... 

Using expression (23), the significant differences 

n 

were determined and are shown with an asterisk in table XIII. 

Since the difference between the first Haar component in each 

curve was significant, the two curves differed in overall level. 

Since the difference was positive, the first curve was higher on the 

average than the second. The difference between the second Haar 

component of each curve was also significant, with the first curve 
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TABLE XIII 

COMPARISON OF HAAR COMPONENTS OF P-WAVES 
BEFORE AND AFTER ADMINISTRATION 

OF t:: -THC 

/ / 
h,~, - Ii y_.,. 

i ~z.. h'-tl'L !!\f, - !!{!~ (:Z. .!lr; 11~ I Y,. 

1 5531.44 4991.08 .540.36 49.8* 

2 173.28 -38.24 211.52 12.0* 

3 -94.24 73.14 -167.38 -23.35* 

4 191.80 -151.82 343.62 42.19* 

s -22.94 1.98 -24. 92 -12.60* 

6 -20.46 37.28 -66.74 -16.29* 

7 91.24 -37.30 128 • .54 32.99* 

8 -2.04 -24.20 22.16 7.30* 

*significant at .01 level 
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showing a greater difference in level between first half and second 

half than is evident in the second curve. In fact, as can be seen 

from the values of !!.;I, and !!.i!l..' the difference is one of direction 

as well as size, with the first curve having a higher first half 

and the second curve a higher second half. 

The difference betwe:en the third Haar components is also sig-

nificant, the first curve having a negative value for h•v. while 
-3¥..f' 

the second curve has a positive value. Hence, the first curve rises 

from the first quarter to the second, while the second curve de-

creases. Looking at the difference between the fourth Haar com-

ponents, one sees that there is also a significant difference here 

with the first curve showing a decrease from the third quarter to 

the fourth and the second curve showing an increase from third 

quarter to fourth. 

From the analysis so far, it can be seen that these two 

curves differ significantly in level as well as shape. Curve 2 

seems to be a rough reversal of curve 1 with curve 1, however, show-

ing a greater difference in level between first half and second 

half than is evident in curve 2 • 

.Analysis of the remaining differences in components will add 

more detail to the difference in shape. One notes that curve 1 

shows a greater change in level from the first eighth to the second 

than is shown in curve 2. Curve 2 remains rather nat in this 

region (~~J.. = 1. 98). Differences in the si;::th and seventh com

ponents reflect the reversed trends in the two curves mentioned 

earlier. Differences in the eighth components of the two curves 

indicate that the second curve shows a much greater change in 
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level from the seventh eighth to the eighth eighth than that shovm 

in curve 2. 

These two curves differed markedly in shape with all of the 

eight components which were compared showing significant differ

ences. The confidence band for the difference between the two 

curves (see figure 3) showed a difference at all but two points. 

Doing the component by component analysis of these two curves 

allows one to say more about how the two curves differ. For 

this experiment, this analysis of the components allows one to say 

that the administration of Ll"-THC lowered the overall level of the 

p-wave and actually effected a reversal in the shape of the curve. 
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CASE II: COVARIANCE MATRIX KNOWN EXCEPT FOR A SCALA.R 

I 
For this case, ·with ~.c;t.1_;., the following expression is 

true: 

(24) p 

where s1.. is the pooled estimate of e5J... One would reject the null 

hypothesis that (!.'#• - !.'J!..) • 0 if 

(25) ) 

For an example, we will again use the data from the experiment 

on the dosage level effects on performance of a task (p. 22). The 

mean curve for the syn. &~THC was found to be l.. • (58.o, 61.3, 44.4, 
,-

36. 9) and for the ~1-THC was y_ • (63.3, 59.6, 33.2, 21.8). The 
}... 

pooled estimate of S would be 53.61. Table XIV shows the value of 

h I J: , h I Z, , h \ V - h '· V _ and 
-i I -;, '1. -tll..1 ... ~ 

--1~ For 0( • .05, t ;i.('i) = 2.81. Thus the difference between the first 

Haar components and between the second Haar components ·would be sig-

nif icant. Since, 

41;, - ~I • 22. 7 • 5.67 
~ c., '1.. ---r-

cr,1.. -\{/,_"\.. . -29. 9 • -7.h7 

L. . L 4 
L l 

the overall level of the first curve is 5.67 units higher than the 
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TABLE XIV 

COMPARISON OF HAAR OOMPONENTS OF DOSE-RESFQNSE 
CURVES OF sm. ~-THC AND A., -THC 

I 1/ fJ.;,~.- 'Yt. 
i h{i1 h•- !!.~l. - h !i'J- (~s}:. b(Z'b;)Ys. l~'L 

1 200.6 177.9 22.7 2.83* 

2 38.0 67.9 -29.9 -3.73 * 
3 -3.3 3.7 -1.0 -1.51 

4 7.5 11.4 -3.9 -.59 

*significant at .05 level 
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second, and the second curve showed a greater difference between the 

first half and the second that the first curve showed. 

In an interpretation of these results with reference to this 

particular experiment, it could be said that the performance scores 

were on the average higher with the syn. ~<?-THC than ·wi. th ~~-THC, 
and that the two higher dosage levels of the second drug effected a 

greater change in performance than the two higher levels of drug 1. 



VI. CONCLUSION 

The interpretaion of data from psychological experiments 

often involves the analysis and comparison of curves. This paper 

has summarized methods presented in texts on psychological statis

tics for the comparison of curves and has presented some altern

ative methods. 

The first kind of analysis discussed was that of finding a 

confidence band around one curve. There are no methods commonly 

in use for finding this confidence band. It was mentioned that one 

might be tempted to find a confidence interval around each point 

using an q level of significance for each interval. Doing so does 

not ta1ce into account the degree of correlation between the co

ordinate means and will result in an overall significance level 

which would be JJIUch too low. The alternative discussed allowed 

one to determine simultaneous intervals such that all of the 

intervals would cover their respective mean with l..l;l\ probability. 

The second kind of analysis discussed was finding a confi

dence band around the difference between two curves. Current methods 

presented were visual inspection, analysis of variance, and 

Hotelling';:; T2• Visual inspection of curves presents the same dif

ficulty as visual inspection of single values, in that variance 

and covariances may be so large that observed differences would not 

be statistically significant. Visual analysis can however point out 

obvious differences in different portions of the curve which would 

be obscurred by the global analysis of ANOVA or Hotelling•s T2• 
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Al.so, in the case of repeated measure, the use of A.NOVA requires a 

prior test on the shape of the covariance matrix which involves 

difficult and computer time-consuming computations. 

The alternative method discussed involved finding simultaneous 

confidence:· intervals about the difference betl1een co-ordinate means. 

This method allows one to detennine rather easily at which points 

two curves differ significantly and at which points the difference 

is not significant. This method eliminates the need for f inding 

the determinant of the covariance matrix which is necessary for 

A.NOVA with repeated measures. 

Next discussed was finding the significant components of a 

curve. The best method presently discussed in texts on psychological 

statistics is the method of orthogonal polynomials. The problem with 

this is the difficulty in interpreting the meaning of significant 

trends beyond quadratic. When trends such as cubic and .quartic and 

beyond a.re significant, it becomes difficult to visualize the shape 

of the curve from lmowledge of the significant trends. The alterna

tive presented was the use of Haar functions. All of t he signifi

cant Haar functions may be interpreted and t he shape of the curve 

determined no matter how many components a.re significant. In some 

cases, however, using Haar components may provide less easily inter

preted results if the curve can be characterized by a simple combi

nation of low degree polynomials. 

The last type of analysis discussed was that of comparing the 

components of two or more curves. The comparison of orthogonal 

polynomial components was discussed as the method presently in use. 

The results of this method are difficult to interpret if one or more 



of the curves has several significant components. The comparison 

of Haar components may in such cases provide a more easily under

stood summarization of the differences in shape of two curves. 
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As discussed above, the new methods can in some cases provide 

advantages over e:xisting techniques. It is hoped that these new 

techniques will be incorporated into the analysis of psychological 

data. 
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APPENDIX 

The following is an explanation of the vector and matrix 

multiplication which is used throughout the text to simplify not-

ation and calculation. 

Let ! and ;r be vectors. A vector as it is normally written 

(!) is usually considered to be a column vector, that is, with its 

elements arranged in a colunm: 

x c:: (~). 
A vector written with a prime (~1 ) is a row vector: 

x' • (x,, xi., ~' x"t). 

By definition, a column vector can be multiplied on the left by 

a row vector. The product is found by multiplying corresponding 

elements and surilming these products: 

x•v = {x 
- L I' 

For e=mple if ~ • (:~) , 

= (1, 1, -1, -1) 

W) = 36 + 39 - 43 - 35 = -3 

The multiplication of a vector time s a matrix is similar. A 

matrix can be multiplied on the left by a row vector and on the right 
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by a column vector: 

x 1 ·S or S·x 

Let S be a matrix such that 

S II s,z... si 3 s ,-t 

s:l, Szz.. s2J s.z.t 
s = 

s3, s 3-Z SJ3 SJi 

s'I, s~ z.. s,,..3 S44 

S could be considered to be made up of four colunm vectors of four 

elements each, or four row vectors of four elements each: 

s ,, s,J.. s,3 S It 

s • s i , Szz. S i.~ S2.ti 

s3, s ; i s)3 s 3'/ 

Stj I S~ i,. s 'i3 Si<f 

(s ,, s ''- s,?. s,"f) 

(s i., s Zl. 5-z3 5it) 
or S"' 

{s~ , s ·31- s:J> s 3'!) 

(s1, s 't z. s41 s,.'l) 

C.Onsidering S to be composed of 4 column vectors, lef t multipli-

cation by a row vector consists of multiplying the row vector times 

ea ch of the columns. The result is a row vector with 4 elements : , 
s !2.. S I 3 (' 

(xf x~ x:) x 1 ) . 
s 22.. s 23 s l'f x•. S = 

s J 1- S33 
\ s Jt 

s '1:.- 5 4 3 s-t1 



• 

\ 

= 

s (/ Sn. 

(x1 ~ x_, x~ ) 
s2f 

' (x, ~ y., ) s 2.2. 
x 
'-

s1, s 3i 

s41 s '1 

s 13 SI~ 

( X I X1. X 3 X Lf ) 
s Jj 

(x r x
2 

x 
3 

x 4 ) 
s J.i.f 

' 
s33 s J'f 

s3'-f s 4't 

(J<t s11 + :JS..S2.1 + x3 ~i + x1 s,,,, x, s 1i. + JS._s,'1..+ x~s_,'Z..+ x~~2-' 

x,s,?>+ ~5z 3 + x~sn+ ~s'f3 , :>:;s,'f+ Y'""Zs2.'"1+ ~s~+ ~sv-4) 

For example: 

6 8 7 s 6 

3 2 4 9 
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9 
(1, 1, -1, -1) ::s (1, 1, -1, -1) ' (1, 1, -1, -1) 

8 6 1 s 8 

7 6 2 3 7 

7 5 

2 4 
(1, 1, -1, -1) ' (1, 1, -1, -1) 

1 5 

2 3 

8 

3 

6 

6 

. (<6 + 9 _ 8 _ 7), (8 + 3 _ 6 _ 6), (7 + 2 _ l _ 2), (5 + h _ 5 _ 3v 
= (2, -1, 6, 1) 

A matrix can be right multiplied by a column vector. In this 
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case, consider the matrix to be composed of rows. Ea.ch row is multi

plied separately times t he column vector, with the result being a 

column vector: 

S·~ .. 

( s,, , ~ ~, s13, s1.y) 

(Si, , s 7 " Si.3' s;iq) 

( 53p 5~ZJ 53.v ~ 

( &;1' s4J! ~3' s~ 

For example: 

7 5 

2 4 

8 6 1 5 

7 6 2 3 

l 

1 

-1 

-1 

"' 

5uX1+ ~L+ SuX>+ ~ 

s,,x, + 5>r-z. + ~'lx, + ~ 

S,qiX, + ~z..xt..+ ~.,x) + Sq.(C'f 

+ 8 - 7 - 5 

9 + 3 - 2 - 4 

8 + 6 - l - 5 

7 + 6 - 2 - 3 

2 

6 

9 

8 

It should be noted that x•·S does not necessarily equal S·2£: 

As an example of vector and matrix nrultiplication involving 

the Haar coefficients, consider a curve having an average curve of 

l = (7, 12, 15, 10) 

and covariance matrix of: 

12 5 8 2 

5 14 9 3 
s .. 

8 9 15 4 

2 3 4 6 

The linear combinations of the Haar coefficients with the vector means 
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are written as h'l 
"""'l ' !!QL h'L '!14°i. and would be computed as follows: 

-3 
I 

7 

h'°i. "" (1, 1, 1, 1) 12 
-')_ 

1~ 

10 

~- (1, 1, -1, -1) 

h'°i. = -3 
(1, -1, o, 0) 

~l s (O, O, 1, -1) 

h! Sh would be found by 
-1 """i. 

h ' Sh • (11l1) 
-i -1 

• 7 + 12 + 15 + 10 = 44 

·' 
7 

12 
• 7 + 12 - 15 - 10 • 

15 

10 

7 

12 
• 7 - 12 + 0 + 0 • -5 

15 

10 

7 

12 
• 0 + 0 + 15 - 10 • 5 

15 

10 

~ 

12 s 8 2 1 

5 14 9 3 1 

8 9 15 4 1 

2 3 4 6 1 

-6 
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,. 

• (12 + 5 + 8 + 2, 5 + 14 + 9 + 3, 8 + 9 + 15 + 4, 2 + 3 + 4 + 6) l 

• (27,31,36,15) 1 

1 

s 27 + 31 + 36 + 15 • 109 

1 

1 

~2S!!2 = (1, 1, -1, -1) (12 5 8 2 

~ 
5 14 9 3 

8 9 15 4 

2 3 4 6 

1 

1 

-1 

-1 

l 

l 

l 

= (12 + 5 - 8 - 2, 5 + 14 - 9 - 3, 8 + 9 - 15 - 4, 2 + 3 - 4 - 6) 1 

l 

-1 

-1 

.. (7,7,-2,-5) 1 ,. 7 + 7 ... 2 + s • 21 

1 

-1 

-1 

/ 

h 1 Sh = (1, -1, o, 0) 12 5 8 2 1 
-3 -3 

5 14 9 3 -1 

8 9 15 4 0 

2 3 4 6 0 

I 
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I 

= (12-5, 5-14, 8-9, 2-3) 1 

-1 

• (7,-9,-1,-1) 1 • 7 + 9 = 16 

-1 

0 

0 

~~ = (o, o, 1, -1) 2 5 8 2 0 

= ( 8-2, 9-3, 

514 9 3 0 

8 9 15 4 1 

2 3 4 6 -1 

15-4, 4-6) Io 
I o 

\ _: 

~ (6,6,11,-2) 0 

0 

1 

-1 

0 

0 

:: 11 + 2 = 13 


