Transforming Technology Management Courses for Web Delivery

Wayne Wakeland
Systems Science Ph.D. Program
Portland State University
Using web technology to teach technology management

• Esp. computer modeling and simulation
• What works, and what doesn’t
• Web technology supplants lectures
 – with self-paced materials and lab exercises
 – enabling students to take courses remotely and asynchronously
• Exams are also web-delivered
Is the Web going to Transform Technology Mgmt. Education?

• Yes…but exactly how is not yet obvious
• Questions abound:
 – Is the web best used simply as a more flexible and visual vehicle for delivering course materials?
 – Is it possible to effectively assess student learning in a remote, asynchronous environment?
 – How do we ensure the quality of instruction in web courses?
Not a Research Paper

• Rather, it is a reflection on 3 years of using web technology
 – To improve computer modeling & simulation courses
• Possibly of interest to other educators
 – Who are using or considering web technology
• And to serve a springboard for scholarly research
 – To address questions being raised about web-based instruction
Use of Web Technology

• Lectures replaced with self-paced reading materials (web notes plus text)

• Plus activities (labs) conducted in a computer lab
 – Students work at their own pace
 – “Labs” reinforce key concepts in the readings
 – And prepare students to do the graded exercises
 – The instructor and a lab assistant are available
 – Students may do the labs at another location and/or at another time if they so choose
 – Labs are not graded
Assessment of Learning

- Projects
- Examinations
- Graded exercises
 - written up and submitted by the students
- Self-test (non-graded) quizzes are also available to the students.
Taking Courses at a Distance

• Potentially, yes

• Only a few have done so

• Most students attend the lab sessions
 – especially those who find the material challenging

• Some opt out of labs, or do them on their own
 – Due to their strong prior background
 – Or because they find the concepts easy to understand
Why Web-enable Courses?

• To improve course quality
• To make courses more learner-directed
• To improve efficiency
 – from the perspective of student and instructor
• Distance-enabling courses was not the driver
The Courses

• Computer Modeling & Simulation
 – How to use the tool (the simulation language)
 – And the process for conducting a simulation-based study
 – All courses meet once a week in the evening
 • to increase accessibility to local professionals

• Continuous System Simulation
 – System Dynamics (STELLA)

• Discrete System Simulation
 – General introduction, emphasizing the interpretation of simulation results using statistics (Arena)
 – Process modeling and simulation (Extend)
 – Manufacturing system simulation (ProModel)
Traditional Approach

• Students read the test
• Instructor lectured from handwritten notes
 – Using the chalkboard to outline/clarify ideas
• Students were expected to take their own notes
 – This was believed to add value
• Sometimes, typewritten notes were provided
 – To complement or update the text
• Examinations were open notes & open book
 – An incentive for students to take good notes
Evolution of the Courses

• 1997
 – Notes put into html on the web
 – Non-graded “test your knowledge” quizzes provided
 – Detailed roadmap for the course provided
 • Excel spreadsheet w/hyperlinks to notes pages, assignment sheets, and quizzes
 – Major improvement over the previous approach (?)

• 1998
 – Classrooms equipped with video projectors and web access
 – The instructor could simply lecture from the web notes
 – No less effective than the previous approach, but
 – It became clear that such lectures added limited value

• A new pedagogical approach was needed
Active or Student-directed or Inquiry-based Learning

- Prestigious universities were exploring these new approaches to learning
 - Incl. Harvard & MIT

- The ideas seemed reasonable:
 - Create materials that require the student to do more than simply read and listen
 - Have them work in teams to solve problems, do research, create presentations, etc.
 - Have students check their own comprehension as they learn new concepts
Active Learning

- Views education not as a passive transmission process, but rather as an active process
 - With ample opportunities for clarifying, questioning, applying, and consolidating
- Tools for active learning include
 - Group discussion
 - Problem solving
 - Case studies
 - Role-playing
 - Journal writing
 - Structured learning groups
- Having students work in pairs is recommended
Web materials (Nelson Baker)

• Web materials help students learn more quickly
• Some students also learn the subject better
 – lower quartile students, for example
• However, initial increases in motivation fade
• The web’s increased visual impact is important
 – Simply putting text onto the web may not be of much value
• Effective web pages for teaching should
 – Be well organized, easy to navigate, and globally integrated
 – Include samples of previous student work & discussions
 – Provide collaboration mechanisms to maintain community
Cohesive Web Design (Campbell)

• The key interactivity

• Cognitive science research indicates that humans learn better by experimenting with the real world rather than memorizing lists of rules (Schank and Cleary)

• Campbell also presents the notion of *anchored discussion*
 – developed by the Cognition and Technology group at Vanderbilt
 – Students explore and resolve complex, realistic problems
 – Video materials serve as anchors or macro contexts
More from Cognitive Theory

• Important concepts include:
 – Experiential learning
 – Situated learning
 – Lateral thinking
 – Social development theory
 • That social interaction is the key to cognition

• Teaching architectures (Shank & Cleary):
 – Simulation-based
 – Learning by Doing
 – Incidental Learning
 – Learning by Reflection
 – Case-based Learning
 – Learning by Exploring
Learning Frameworks (Bruner)

- Multiple Representations of Reality microworlds)
- Authentic Tasks
- Real-World, Case-based Contexts
- Fostering Reflective Practice
- Knowledge Construction
- Collaborative Learning
Continued Evolution of Courses

• The subject lends itself to active learning
 – The objective is for students to learn how to build models
 – And then to use these models to generate insights, and inform decisions

• Students build several models of increasing complexity, with decreasing levels of assistance
 – Addressing a real world problem completes their learning
 – Reading books and webnotes plays a support role
Conversion to WebCT

• Webnotes moved easily
• Quizzes were a challenge
 – Short essay → multiple choice
• Self-paced modules
 – vs. schedule with specific due dates
• SW demonstrations during labtime
 – To labs done by the students
Exams on the Web

• Multiple choice vs. short essay
 – Good multiple choice questions are hard to write!

• Needed to make exams “closed notes”

• Time constraint concerns
 – To limit web-searching to find answers
 – Fairness to foreign language students?

• Trust concerns
 – Is the student following the rules?
 – Who is actually taking the exam?
 – Proctor the exams?
Student Surveys

- Was lecture/lab time used effectively?
- Was using contact time for labs effective?
- Were the labs were useful?
- Did the labs take too much time?
- Were self test quizzes useful?
- Were the web notes useful?
- Was the multiple choice Midterm OK?
- Can this material can be learned as well or better via well-designed web course?
- Did taking course remotely and asynchronously work?
- Was access to WebCT a problem?
- Did it work for you to rely on the WebCT Bulletin Board for important course info.?
Survey Results 1

- Neutral about the usefulness of the lectures
- Somewhat enthusiastic about the lab sessions
 - Useful; not overly time-consuming
- Some students appear to miss the lectures
- There is much room for improvement regarding use of contact time
- Self-test quizzes were equally useful when converted to WebCT
Survey Results 2

- Curiously, the usefulness of the web notes dropped from “strongly agree” to “agree”
- Multiple-choice midterm worked fine
- Most students indicated having a good experience with using the web
- Students relying on the web-based bulletin board indicated mixed results
Preliminary Conclusions 1

• The courses are getting better
 – Creation of web notes, self-test quizzes, labs, etc.
 – The web simply provided the impetus and made the materials easier to deliver.

• But, there is much room for improvement
 – The materials are still quite static and “beg” to be made more dynamic
 – Self-test capability needs to be more complete
 – The glossary capability needs to be better exploited
 – Student interaction during the labs needs to be improved
Preliminary Conclusions 2

• Some amount of “lecture time” may need to be re-incorporated
 – In order to maximize student learning and satisfaction

• The experience for remote students is inferior
 – This will not be easy to remedy
Future Research 1

- Data is needed regarding both the quality and efficiency of web-based learning
 - For different subjects
 - For learners of varying ability
 - For different aspects of web instruction
- This will not be easy
 - Web course software may help to some degree
- Comparing the quality of learning
 - Same exam given in similar courses, one delivered traditionally and one web-based
 - May require the cooperation of instructors at multiple institutions
Future Research 2

• Comparing efficiency data between web and traditional classes will be even more difficult
 – Since there is no mechanism in traditional courses to track of how long students spend reading, doing assignments, etc.
 – This will require the cooperation of the students

• Despite the difficulty, this research is needed
 – To learn when to use and when not to use various types of web-based instruction
 • What subjects
 • Which students