Advisor

David Jay

Date of Award

3-6-2017

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Civil & Environmental Engineering

Department

Civil and Environmental Engineering

Physical Description

1 online resource (xiii, 140 pages)

DOI

10.15760/etd.3354

Abstract

The Sandy River (OR) is a costal tributary of the Columbia River and has a steep hydroshed 1316 square kilometers which is located on the western side of Mount Hood (elevation range 3 m to 1800 m). The system exhibits highly variable flow: Its average discharge is ~40 m3/s, and the highest recorded discharge was 1739 m3/s in 1964. In this study I model the geomorphic sensitivity of an 1800m reach located the downstream of the former Marmot Dam, which was removed in 2007. The hydro-geomorphic response to major flood has implications for system management and aquatic life.

Studying hydro-geomorphic change requires a systematic approach. Here, I define flows and flood hydrographs for specified return interval based on the observed hydrologic record, and then examine potential hydro-geomorphic changes using a numerical model. A Pearson Type III distribution is used to calculate 100, 75, 50, 25, 10, and 2 year return periods. Extreme event hydrographs are derived by fitting derived and observed flood hydrographs to the gamma distribution curve. Sediment transport and geomorphology are then modeled numerically with Nays2DH, a solver that is part of iRIC software. Because the model is computationally intensive, I model the domain with five different spatial grid resolutions, to find proper grid resolution. The grid resolutions used are 1.5 m, 2 m, 3 m, 4 m, and 5 m. We choose 4 m as optimum grid resolution, based on the convergence of model results. The model is run for extreme event hydrographs with six above return periods. For result visualization and analysis, we focus on flow properties and bed elevation at peak flow and at the end of each event. For both times for each event, important flow and sediment transport parameters are visualized for the entire domain in plane form and eight cross-sections at 200 m intervals. Finally, we divide the geomorphic response into areas of erosion and deposition. Linear regression analyses of mean values of erosion and deposition at peak flow for all extreme events yield R2 of 0.981 for erosion and 0.986 for deposition. The mean erosion and deposition depth at the end of the events is modeled by nonlinear regression with correlation coefficient of 0.965 for erosion and 0.998 for deposition. The regression models provide direct understanding of impacts of different floods on the geomorphic response of the river domain. examination of the model as a whole suggest that the amount of erosion and deposition in the bed and banks is a function of channel geometry, bank and bed geology, riparian area condition and strongly depend on the amount of flow through the channel.

Persistent Identifier

http://archives.pdx.edu/ds/psu/19603

Share

COinS