Published In

Hydrology and Earth Systems Sciences Discussions

Document Type


Publication Date



Land use change -- Mathematical models, Land use -- Environmental aspects, Land use -- Forecasting, Climate change -- Environmental aspects


Rapid population and economic growth in South-East-Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modelling methodologies capable of handling changing land use conditions are therefore becoming ever more important, and are receiving increasing attention from hydrologists. A recently developed Data Assimilation based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium sized catchment (2880 km²) in Northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of time varying parameter methods. The framework was utilized with two conceptual models (HBV and HyMOD) that gave good quality streamflow predictions during pre-change conditions. Although both time varying parameter models gave improved streamflow predictions under changed conditions compared to the time invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time varying parameter framework successfully models streamflow under changed land cover conditions. It also serves as an effective tool for separating the influence of climatic and land use change in retrospective studies where the lack of a paired control catchment precludes such an assessment.


Copyright 2017 The Author(s). CC BY 4.0



Persistent Identifier