Published In

Water Resources Management

Document Type


Publication Date



Hydrology, Data analysis, Hydrodynamics


We present a general Bayesian hierarchical framework for conducting nonstationary frequency analysis of multiple hydrologic variables. In this, annual maxima from each variable are assumed to follow a generalized extreme value (GEV) distribution in which the location parameter is allowed to vary in time. A Gaussian elliptical copula is used to model the joint distribution of all variables. We demonstrate the utility of this framework with a joint frequency analysis model of annual peak snow water equivalent (SWE), annual peak flow, and annual peak reservoir elevation at Taylor Park dam in Colorado, USA. Indices of largescale climate drivers—El Ni~no Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) are used as covariates to model temporal nonstationarity. The Bayesian framework provides the posterior distribution of the model parameters and consequently the return levels. Results show that performing a multivariate joint frequency analysis reduces the uncertainty in return level estimates and better captures multivariate dependence compared to an independent model.


This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.


Persistent Identifier

Included in

Hydrology Commons