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Abstract 

Forecasting how many earthquakes will occur following a potentially damaging earthquake helps 

the public and emergency operators stay safe and make informed decisions.  The U.S. Geological 

Survey issues aftershock forecasts following potentially damaging earthquakes, using models to 

predict the number of earthquakes that should occur within the next day, week, month, and year 

with 95% confidence to reflect the uncertainty in aftershock behavior.  The USGS considers the 

forecast to be “successful” when the number of earthquakes observed within the forecasted time 

period is within the 95% confidence interval.  For aftershock sequences that occur along the 

forearc of the Alaskan subduction zone, the observations consistently lie within this broad range 

of “success,” however the forecasts systematically over-predict the number of aftershocks.  This 

suggests that the parameters which drive the forecast model’s rate of decay needs to change to 

reflect the decreased observed aftershock activity.  I analyzed seventeen earthquake sequences in 

the Alaska forearc region and have developed a set of parameters that may improve early-

sequence aftershock forecasting in the region.  I stacked the 17 sequences and used maximum 

likelihood estimation to determine the new parameters and their uncertainty. Following the 

lessons of Page et al. (BSSA, 2016), I combined the inter-sequence variability and the 

uncertainty of the parameters from the stacked sequences to produce the total standard deviation 

for a new forecast model. 

Introduction 

 The U.S. Geological Survey issues forecasts after most earthquakes above magnitude 5 in 

the U.S. states and territories to inform the public and emergency managers of how many 

subsequent earthquakes, or aftershocks, are to be expected following a potentially damaging 

earthquake.  An aftershock forecast is a model which predicts the number of earthquakes above a 

minimum magnitude that should occur within the next day, week, month, and year.  Aftershock 

activity shortly after the initial earthquake, known as the mainshock, is highly uncertain, and the 

early forecasts account for this uncertainty by predicting a wide range of aftershocks that could 

occur within a given time frame.  This range is two standard deviations from the forecast median 

and is referred to as the forecast’s 95% confidence interval.  As more earthquakes happen, the 

uncertainty decreases.  Sometimes, the forecasts overpredict or underpredict the aftershock 

behavior, and the USGS needs to manually update the forecasts.  This was the case for the 

magnitude 8.2 Chignik earthquake sequence that occurred near Perryville, Alaska on 29 July, 

2021.  The early forecasts issued by the USGS during this event overpredicted the number of 

earthquakes following a magnitude of this size (Figure 1), and the USGS had to manually adjust 

the forecast to better describe the aftershock activity, which only improved forecasts in the short 

term. 



 

 

Figure 1.  Aftershock forecasts issued for the 2021 M8.2 Chignik earthquake sequence.  Each 

vertical line is a forecast, where color represents the duration of the forecast, and the shade of 

each color represents the aftershock model issued for a given duration.  The vertical extent of the 

lines reflect the 95% confidence interval for the number of earthquakes that should occur by the 

end of the forecast duration, and the forecasts are shifted upward to account for the number of 

earthquakes that have occurred prior to the start of the forecast.  The forecasts are shown at the 

end of their duration period, for example, the first forecast is issued 20 minutes after the 

mainshock and is plotted at a day and 20 minutes, a week and 20 minutes, and so on.  A forecast 

that accurately predicts the number of earthquakes will be intersected by the black cumulative 

number line.  The figure follows the design of Figure 5 from Michael et al. (2019). 

           Since the highest level of aftershock activity occurs shortly after the mainshock, it is 

critical for the forecast to reflect the early aftershock behavior so the model can be further 

improved.  I evaluated these early forecasts to evaluate whether the initial parameters used to 

create the confidence interval in the forecast need to be updated.  I focused on earthquake 

sequences that occur along the subduction zone off the coast of Southern Alaska because it is an 

active tectonic boundary whose aftershock behavior is not well characterized.  The variation in 

the observations within the 95% confidence interval defined by the forecast will determine if the 

forecast parameters need to be updated.  Specifically, if the observations cluster on one side of 

the forecast’s median instead of randomly distributed throughout the confidence interval, the 

forecast is not reflecting the observed aftershock behavior. 

Background 



 

Currently, the USGS uses a Reasenberg and Jones aftershock model, which was 

developed in 1989 and 1994 by Reasenberg and Jones to describe the rate of earthquakes of at 

least some magnitude following the mainshock at a given duration period –the period of time 

during which an aftershock forecast is in use— after the occurrence of the mainshock 

(Reasenberg and Jones, 1994).  This creates a model that decays with time to reflect the 

decreasing effect of the strain release along a fault.  The model depends on the magnitude of 

completeness (Mc), which is the minimum magnitude above which all earthquakes are detected 

(Helmstetter et al., 2006; Mignan and Woessner, 2012).  When evaluating the effectiveness of 

aftershock forecasting, it is important to consider magnitude of completeness to avoid under-

sampling (when Mc is too high) or biasing the analysis (when Mc is too low) (Mignan and 

Woessner, 2012).  Increased seismicity due to an aftershock sequence or the spatial distribution 

of seismic stations, for example, can affect the minimum magnitude above which an earthquake 

is reliably located and recorded. 

In the Reasenberg and Jones equation (Eqn. 1), the parameters that drive the aftershock 

model’s decay rate are the productivity parameter a, which controls the overall expected number 

of aftershocks for a given mainshock magnitude Mmain, and the change in the rate of aftershocks 

with time, p.  The parameter b is both the scaling of aftershock rate with mainshock magnitude 

and the ratio of small to large aftershocks, c is a unit of time representing the earliest part of the 

aftershock sequence before it starts to decay, T is time after the mainshock, and M is a minimum 

magnitude for which the model applies 

𝑅 = 10(𝑎+𝑏𝑀𝑚𝑎𝑖𝑛)10(−𝑏𝑀)(𝑇 + 𝑐)−𝑝.                                    Eqn. 1 

The Reasenberg and Jones equation can be split into three parts.  The first part 

(10(a+bMmain)) is the Utsu relationship for productivity, which states that there are approximately 

ten times as many aftershocks for a mainshock that is 1 mainshock magnitude larger, when b = 1 

(Utsu, 1961).  The second part of the equation (10-bM) is the Gutenberg-Richter relationship, 

which describes the relationship between a given magnitude and the number of earthquakes of at 

least that magnitude, regardless of when and where the earthquake occurred (Gutenberg and 

Richter, 1944).  This distribution tends to be linear on a plot of log frequency over magnitude 

when the earthquakes are detectable and when they are smaller than the mainshock.  Båth’s law 

is related to the Gutenberg-Richter relationship in that for a given mainshock magnitude, the 

average largest aftershock is between 1-1.2 times smaller, then from the largest aftershock there 

is an order of magnitude increase for each decrease in unit magnitude (Båth, 1965).  For 

example, it is expected that a magnitude 6 mainshock will have a M4.8 to M5 aftershock as the 

largest aftershock, then 10 M4s, 100 M3s, and so on.  The third part of the equation ((T+c)-p) is 

the Omori law modified by Utsu in 1961, and it describes the change in aftershock frequency 

with the reciprocal of time (Utsu, 1961).  This creates a decay curve on a plot of cumulative 

number of earthquakes with time for earthquakes above a time-dependent magnitude of 



 

completeness, which is the minimum magnitude above which the information pertaining to an 

earthquake is reliably recorded in an earthquake catalog. 

The specific values that are put into Eqn 1 are dependent on the tectonic setting.  Page et 

al. (2016) expanded on the work of Reasenberg and Jones by better characterizing parameter 

uncertainty and by globally calculating aftershock parameters based on a tectonic regionalization 

(García et al., 2012), which defines regions of similar tectonic settings.  Page et al. used a dataset 

of sequences from January 1, 1990, to January 1, 2015, and calculated the parameters by using 

maximum likelihood estimation to determine the most probable detection rate from a cumulative 

normal distribution.  The fit to the maximum likelihood estimation becomes the value that 

describes the expected productivity of a sequence in a given tectonic region, and the inter-

sequence variability is obtained through inversion.  For onshore subduction zones (defined below 

in “Geologic Setting”), Page et al. calculated the productivity parameter a to be -2.34 and the 

change in productivity p to be 0.81. 

The Page et al. aftershock parameters are referred to as ‘Generic parameters’ by the 

USGS and by this thesis, and they are used early in an aftershock sequence when the sequence’s 

behavior is highly uncertain.  Since there is high uncertainty and variability in the aftershock 

sequence in the early hours to days following the mainshock, the model includes a large 

uncertainty for the productivity parameter a, which in turn defines the large confidence interval 

seen in the early forecasts.  As time progresses, the sequence’s behavior becomes more certain 

and the model can be fine-tuned to fit the observed behavior.  When the forecasts need to be 

manually updated, the parameters are calculated using the same methods to create the generic 

parameters for the aftershocks that have occurred up to the time of the forecast.  The model thus 

transitions from Generic to a Bayesian combination, which allows the a-value to change while 

keeping the p-value fixed.  As the sequence progresses, the model can shift to a Sequence 

Specific one, in which both the a and p values are allowed to change.  By the time a Bayesian or 

Sequence Specific model is used, there have been enough aftershocks to reduce the uncertainty 

in the sequence’s behavior. 

Geologic Setting 

The tectonic regions describe geologic settings with similar stresses and characteristics, 

such as the type of fault, the depth, and the location of the event relative to the trench (García et 

al., 2012).  In a subduction zone, the onshore region is approximately where the forearc is, which 

lies between the subduction trench that is seaward of the accretionary wedge and the inland 

volcanic arc (Figure 2).  Three areas in Southern Alaska make up the Alaskan onshore region: 

the Alaskan Peninsula, Kodiak Island, and the area surrounding Cook Inlet and Anchorage. 



 

 

Figure 2.  General components of a subduction zone.  The onshore part of the subduction zone is 

approximately where the forearc is.  It is landward of the accretionary wedge, which consists of 

marine sediments that were scraped off the ocean floor as the oceanic crust is diving beneath the 

continental crust, and seaward of the volcanic arc, which is the product of the ocean crust 

melting due to high temperature and pressure. Figure from U.S. Geological Survey website on 

subduction zones (2016). 

Methods 

Seventeen earthquake sequences that occurred between January 1, 2018 and February 22, 

2022 were chosen for this study and their locations are displayed on the map in Figure 3.  A start 

date of January 1, 2018 was chosen because the USGS started issuing aftershock forecasts using 

the Page et al. parameters in 2018.  Most of the sequence mainshocks are small, between 

magnitudes 5 and 6, and there are four mainshocks greater than magnitude 7 with at least 1000 

aftershocks: the 2018 M7.1 Anchorage earthquake, the 2020 M7.8 Simeonof earthquake, the 

2020 M7.6 Sand Point aftershock to the M7.8, and the 2021 M8.2 Chignik earthquake.  The 

M7.6 Sand Point earthquake, while classified by the USGS as a large aftershock to the M7.8 

Simeonof earthquake, is considered its own aftershock sequence in this study because earthquake 

activity increased following this event.  The only determining criterion in selecting the 

earthquake sequences was that the mainshocks are all classified by the USGS as onshore 

subduction zone earthquakes.  All the earthquake sequences were retrieved from the USGS 

Comprehensive Catalog (see Data and Resources). 



 

 

Figure 3.  The spatial distribution of earthquake sequences the USGS has issued forecasts for 

that have occurred between January 1, 2018 and February 22, 2022 in the onshore subduction 

zone tectonic region.  Red circles indicate sequences with a mainshock greater than M7 and 

contain at least 1000 aftershocks.  Gray circles are sequences with a mainshock magnitude 

between 5 and 6. 

Two tools were used to evaluate the performance of the aftershock forecasts.  The first 

was the USGS oaftools package built in R, an open-source programming language for statistical 

computing (see Data and Resources for R and oaftools).  The oaftools package contains 

functions designed to process the forecast files, get aftershock data from the Comprehensive 

Earthquake Catalog, and generate plots to analyze aftershock behavior (Paris and Michael, 

2022).  The second was the USGS Aftershock GUI, which is an interface that allows the user to 

change forecast parameters and analyze the impact of those changes (see Data and Resources).  

All other computational work was done in R. 

 To determine if the forecasts are accurately describing aftershock behavior, I retrieved all 

aftershocks for the seventeen sequences from the Comprehensive Earthquake Catalog (ComCat) 

and compared each sequence’s rate of decay with the Generic forecasts.  Since the USGS only 

issues Generic forecasts up to the first two hours after a mainshock, I had to simulate forecasts to 

thoroughly analyze the aftershock behavior.  I used the USGS Aftershock GUI to create forecasts 

using a modified forecast schedule.  The simulated schedule (Table 1) mimics the USGS 



 

automatic forecast schedule, found on the USGS website (see Data and Resources), but with a 

focus on the early sequence when the Generic model is used. 

Once each sequence had simulated forecasts using the Generic aftershock parameters, I 

divided the number of completed forecasts by the number of forecasts that accurately predicted 

the number of aftershocks, then plotted the 95% confidence intervals and the forecast median 

with the observed number of aftershocks to see where the observations were relative to the 

median.  To better characterize the distribution of the observed number of aftershocks, I 

normalized the data to the forecast median by dividing the number of observed earthquakes by 

the median forecasted value, then calculated the percentage of observations that lie below the 

median.  When calculating the percentage of observations that lie below the median, I excluded 

data at the median because these often represent a forecast that predicted zero earthquakes, and 

zero earthquakes occurred, which is difficult to evaluate especially in long-term forecasting. 

I used two approaches to calculate new aftershock parameters.  First, I calculated the 

most likely a and p-values for each sequence to characterize the inter-sequence variability.  

Second, I stacked the aftershock sequences by normalizing the times of occurrence relative to the 

respective mainshocks, then combined the aftershocks into one earthquake catalog with a 

calculated mainshock magnitude for the stacked sequence (Mmainstack) using Equation 2 

𝑀𝑚𝑎𝑖𝑛𝑠𝑡𝑎𝑐𝑘 =
1

𝑏
 𝑙𝑜𝑔(∑17

1 10𝑏𝑀𝑚𝑎𝑖𝑛),     Eqn. 2 

where b is the scaling of aftershock rate with mainshock magnitude, and Mmain is the unstacked 

mainshock magnitude.  For both approaches, I used the first 10 and 70 days after each 

mainshock, chosen to reduce contamination from background seismicity, to see how the 

parameters changed as the sequence transitioned from short term to long term.  This method is 

similar to the lesson in Page et al. (2016), who calculated the most likely parameters at 10 and 

100 days.  I calculated the mean a-value, p-value, and respective standard deviations from the 

Bayesian model and the Sequence Specific model.  I also calculated the most likely a and p 

values for the stacked catalog at different magnitudes of completeness. 

  



 

Table 1. Simulated aftershock forecast schedule. 

Time (Days since the Mainshock) Time 

0.00694 10 Minutes 

0.02083 30 Minutes 

0.03472 50 Minutes 

0.08333 2 Hours 

0.25 6 Hours 

0.5 12 hours 

1  1 Day 

2  2 Days 

5  5 Days 

10 10 Days 

20 20 Days 

30 30 Days 

60 60 Days 

100 100 Days 

150 150 Days 

200 200 Days 

250 250 Days 

300 300 Days 

365 1 Year 

  



 

Results 

Prior to analyzing the Generic parameters, I normalized all the USGS-issued forecasts to 

the time of each respective mainshock to understand the temporal evolution of the a-value 

(Figure 4).  Most of the sequences were issued a final a-value lower than the Generic parameter 

of -2.34. 

 

Figure 4.  Manually adjusted a-values for the 17 earthquake sequences.  The data are colored by 

the sequence and are plotted as days since the mainshock.  Generic, Bayesian, and Sequence 

Specific parameters are shown on the same plot, but most of the points are Sequence Specific 

values.  The horizontal axis is days since the mainshock, and the vertical axis is the productivity 

parameter a. 

The first calculations described in my methods determined the percentage of forecasts 

where the observed number of aftershocks was within the forecast’s 95% confidence interval.  

This was done to see how the forecasts were doing on a broader scale.  Tables 2 and 3 show the 

ratio of forecasts that correctly predicted the number of aftershocks to the number of completed 

forecasts, for different minimum magnitudes and for different time periods, for the M7.8 

Simeonof sequence and for a better characterized M5.3 sequence.  For sequences with a 

mainshock magnitude between 5 and 6, all the forecasts reflected the observed aftershock 

behavior.  For sequences with a mainshock magnitude greater than 7, only the high-probability, 

low-magnitude forecasts were failing to fit the observed aftershock behavior. 

  



 

Table 2. Table of successful forecasts for a M7.8 aftershock sequence. 

Minimum 

Magnitude 1 Day Forecast 1 Week Forecast 1 Month Forecast 1 Year Forecast 

3 54% (7/13) 23% (3/13) 62% (8/13) 100% (13/13) 

4 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13) 

5 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13) 

6 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13) 

7 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13) 

 

Table 3. Table of successful forecasts for a M5.3 aftershock sequence. 

Minimum 

Magnitude 1 Day Forecast 1 Week Forecast 1 Month Forecast 1 Year Forecast 

3 100% (19/19) 100% (19/19) 100% (19/19) 100% (19/19) 

4 100% (19/19) 100% (19/19) 100% (19/19) 100% (19/19) 

5 100% (19/19) 100% (19/19) 100% (19/19) 100% (19/19) 

6 100% (19/19) 100% (19/19) 100% (19/19) 100% (19/19) 

7 100% (19/19) 100% (19/19) 100% (19/19) 100% (19/19) 

  



 

Figures 5a and 5b follow the design of Figure 2 from van der Elst et al. (2022) and show 

where the observed number of aftershocks lie within the 95% confidence interval for the 

previous two sequences.  In both the M7.8 and the M5.3 sequences, the observed number of 

earthquakes are distributed below the forecast median.  While the forecasts may be predicting 

aftershock behavior, the range of “success” is broad and still does not accurately represent the 

observed aftershock behavior. 

(a)



 

(b)

 

Figure 5.  The observed number of earthquakes for both the M7.8 Simeonof sequence (a) and a 

better characterized M5.3 sequence (b) are consistently at or below the forecast median.  The 

shaded blue region is the 95% confidence interval, with black lines capping both ends, and the 

dashed line is the forecast median.  If the observed number of earthquakes lies within the 95% 

CI, the data points are circles, otherwise they are unfilled triangles. 

 To quantify the distance between the observed number of earthquakes and the forecast 

median, the data for all seventeen sequences are normalized to the median (Figure 6).  I took the 

mean of the observations and found that most of the observations are below the forecast median, 

exclusive of values at the median.  The percentage of observations below the median are: 73.5% 

for 1 Day forecasts, 80.9% for 1 Week forecasts, 86.5% for 1 Month forecasts, and 82.6% for 1 

Year forecasts.  The mean of the observed/median ratio in Figure 6 is approximately 0.29 for all 

duration periods. 



 

 

Figure 6.  Normalized aftershock productivity for the 17 aftershock sequences.  The observed 

number of aftershocks are normalized to the forecast median (dashed line) and are colored 

according to the minimum magnitude the forecast was issued for.  The data are grouped by 

forecast duration period to avoid overlapping.  The red line is the mean of the data, calculated as 

roughly 0.29 for each duration period. 

 A cumulative distribution plot shows the distribution of data, and a steeper slope 

indicates the data’s mode, analogous to the peak of a histogram.  I compared the inter-sequence 

variability for all seventeen sequences by estimating the most likely short-term and long-term a 

and p values.  In Figures 7a and 7b, the lines representing 10 day and 70 day most likely 

parameters overlap, suggesting that the decay across all 17 aftershock sequences behaved 

similarly.  The 10-day and 70-day distributions are also distinct from the Generic a-value 

distribution, represented in Figures 7a and 7b as a red line.  In Figure 7b, sequences with a likely 

a-value of -4.5 were excluded because these sequences have almost no recorded aftershocks.  

Therefore, it is more difficult to identify a mean likely a-value because of the lack of an 

identifiable inflection point in the distribution.  In Figure 7c, the most likely p-values are 

horizontally offset but still exhibit a similar distribution, which indicates that the aftershock rate 

changes as expected between short term and long-term forecasting.  The Generic p-value is 

represented as a vertical line in Fig. 7c because there is no uncertainty in the p-value for the 

Generic aftershock model. 



 

(a)

 

(b)



 

(c)

 

Figure 7.  The distribution of most likely a-values for the 17 sequences.  The 10-day and 70-day 

distributions are similar to each other , and the two are distinct from the Generic a-value 

distribution from Page et al. (2016).  The p-value showed some variability between short-term 

and long-term forecasting because the decay rate is higher at 10 days than at 70 days, so the 70-

day line is shifted to lower values to account for that.  In the Bayesian model (a), the p-value was 

fixed to 0.81 and the a-values were determined using maximum likelihood estimation, whereas 

in the Sequence Specific model (b,c), both a and p were allowed to change. A histogram of the 

same data is included in the lower right corner of the plot for reference, colored by the same non-

Generic parameters used in the cumulative distribution plot. 

To account for the inter-sequence variability, I stacked the first 70 days of all seventeen 

aftershock sequences and calculated the most likely a and p values for the stacked catalog.  I also 

computed the Reasenberg and Jones aftershock model for the stacked catalog, which is shown in 

Figure 8.  The models that use the most likely Bayesian and Sequence Specific parameters better 

fit the observed aftershock behavior than the Generic Page et al. parameters.   



 

 

Figure 8.  Cumulative aftershock activity of the stacked aftershock sequencces.  The black line 

is the cumulative number of aftershocks, the green dashed line is the Generic model, and the red 

dashed and solid blue lines are the Bayesian and Sequence Specific models, respectively. 

I averaged the likely a and p values with their respective uncertainties for values obtained 

from a Bayesian model and a Sequence Specific model at 10 days and 70 days, and the results 

are in Table 4.  The new a-values are lower than the Generic Page et al. a-value, while the p-

values are closer to the Generic p-value. To test for robustness, I evaluated the a and p values at 

different magnitudes of completeness.  The a-value increases as magnitude of completeness 

increases, and the uncertainty of the a-value range is within ± 0.1, indicating that the results 

discussed in this paper are not due to catalog incompleteness.  Furthermore, the p-value range 

has an uncertainty of ± 0.05, indicating that the aftershock rate in the onshore region is consistent 

as magnitude of completeness changes. 



 

Table 4. Estimated means of a and p values for the stacked aftershock catalog. 

Aftershock Model 

Magnitude of 

Completeness (Mc) a-value p-value 

Bayesian 3.5 -3.15 ± 0.028 0.81 ± 0.000 

Sequence Specific 3.5 -3.09 ± 0.044 0.89 ± 0.054 

Bayesian 4.0 -3.04 ± 0.037 0.81 ± 0.000 

Sequence Specific 4.0 -3.03 ± 0.048 0.84 ± 0.064 

Bayesian 4.5 -2.94 ± 0.054 0.81 ± 0.00 

Sequence Specific 4.5 -2.94 ± 0.062 0.79  ± 0.078 

Discussion 

The decrease in a-value across all sequences to a value below the Generic parameter in 

Figure 4 suggests that the productivity and decay rate seen in the M8.2 Chignik earthquake 

sequence was not specific to that event.  Additionally, the consistent decrease in the a-value 

indicates that the seventeen aftershock sequences have a similar productivity and decay at a 

similar rate. 

The distribution in Figures 5a and 5b are made up of the forecast median and the 95% 

confidence interval.  These are not normal distributions because it is more likely that fewer 

earthquakes will be observed, but since the minimum number of earthquakes observed cannot go 

below zero, the distribution is bounded on the lower side.  By performing this analysis on a 

magnitude 7.8 and a 5.3, as well as normalizing the data to the median, I could rule out the 

possibility that the size of the mainshock affected the decay rate of the aftershock sequence. 

If the mean observed/median ratio in Figure 6 was closer to the forecast median, then the 

existing forecast parameters may still be working, but the mean is far from the median and 

therefore the parameters need to be adjusted.  The randomness of the minimum magnitudes 

across all forecast duration periods in Figure 6 indicates that the over-prediction is not specific to 

one forecasted minimum magnitude, nor is there a distinction between short-term forecasting and 

long-term forecasting.  Another way of looking at the distribution of observations relative to the 

median is with a histogram (Figure 9).  It is easier to see that not only do most of the observed 

number of earthquakes lie beneath the forecast median, but most of the observations are close to 

zero.  This abundance near zero is expected when considering that it is more likely for zero 

earthquakes to occur than one or more earthquakes.  The abundance of earthquakes near zero in 



 

Figure 9 could also be due to sequences with smaller mainshock magnitudes reaching a 

probability of zero earthquakes earlier. 

 

Figure 9.  Distribution of forecasts relative to the forecast median.  There is an increased number 

of observations at the median, but this could be due to the inclusion of low-probability forecasts, 

when the predicted number of earthquakes is zero and there are zero observations.  The data are 

grouped by forecast duration period, and the red vertical line is the forecast median. 

The overlap between the 10-day and 70-day parameters in Figures 7a and 7b suggest that 

the decay across all 17 aftershock sequences behaved similarly and in a consistent manner.  The 

offset between 10-day and 70-day p-value distributions could reflect the Omori decay of the 

sequence.  In other words, the aftershock rate is high in the early sequence compared to 70 days 

after the mainshock, resulting in a series of p-values that shifts the distribution to lower p-values.   

This work is important for maintaining operational awareness and providing the public 

with reliable information after potentially damaging earthquakes.  It is also necessary to provide 

reliable forecasting because the public can lose confidence in the USGS if the aftershock 

forecasting is excessively over- or under-predicting the number of aftershocks following a 

potentially damaging earthquake. 

As mentioned in the previous section, the results from my analysis are not due to catalog 

incompleteness or inconsistent aftershock decay rates.  These results are anomalous, however, 

when compared to Page et al.’s maximum likelihood solutions for the onshore region.  In Figure 

10, the estimated most likely a-values from Table 4 plot within the generic stable ocean region 

(SOR-GENERIC) and the active non-subduction zone hotspot region (ANSR-HOTSPOT).  The 

two regions have significantly lower productivity parameters compared to the onshore 



 

subduction zone (SZ-ONSHORE), which has an Omori a-value of -2.34.  This means that the 

Alaskan subduction zone is less productive than other subduction zones included in the 

estimation of the Page et al. aftershock parameters.  Sequences in the Alaska onshore region also 

return to background seismicity at a slightly faster rate than sequences in other onshore regions 

globally.  To test the accuracy and robustness of my estimations, my methods should be repeated 

on the same aftershock sequences with new parameters.  The parameters that might best 

represent the variation in Table 4 are an a-value of -3.03 ± 0.5 and a p-value of 0.82 ± 0.6.  

These parameters were estimated by taking the mean a and p values, and the uncertainty 

accounts for the inter-sequence variability. 

 

Figure 10.  Aftershock parameters derived by Page et al. (2016) and this study. The proposed 

aftershock parameters using a Bayesian model (green) and a Sequence Specific model (purple) 

with respective uncertainties have a lower a-value compared to the maximum likelihood solution 

for the onshore subduction zone a-value (light purple cross, near the top of the plot).  Triangles 

indicate parameters derived using a Mc of 3.5, diamonds derived with a Mc of 4, and stars 

derived using a Mc of 4.5.  The figure is amended from Page et al. (2016) and shows Omori 95% 

confidence limits for each tectonic region defined by García et al. (2012), with the maximum 

likelihood solution as a cross.  The uncertainty for the proposed a-value using a Bayesian model 

is a line because the aftershock rate p is fixed for the model. 

Conclusion 

 Based on the analysis, the focus for accurate aftershock forecasting is on the forecast 

median and not necessarily on the confidence interval because a “successful” forecast can be 



 

hidden inside a large confidence interval that does not reflect the true behavior of an aftershock 

sequence.  A well-characterized aftershock forecast would see observations more randomly 

distributed on both sides of the forecast median, but the aftershock forecasts issued for 

earthquake sequences in Southern Alaska are systematically predicting more earthquakes than 

observed, with at least 77% of the observations below the forecasted median.  The most likely a 

and p values for a stacked catalog are lower than the parameters defined by Page et al. (2016) for 

the onshore region.  Therefore, the Alaskan onshore region is less productive than forecasted, 

and the aftershock sequences in the Alaskan onshore region return to background seismicity 

faster than other subduction zones.  The new parameters I propose (a: -3.03, p: 0.82) for the 

Alaskan onshore subduction zone region provide an adequate starting place for further testing to 

refine the aftershock parameters in this region. 

Data and Resources 

The earthquake catalog and aftershock forecasts can be obtained from the Comprehensive 

Catalog (ComCat) at https://earthquake.usgs.gov/earthquakes/search/ (last accessed June 2022), 

and background information on the forecasts forecast parameters can be found at 

https://earthquake.usgs.gov/data/oaf/ (last accessed June 2022).  The R Statistical Programming 

language was downloaded from https://www.r-project.org/ (last accessed June 2022).  The USGS 

Aftershock GUI was downloaded from https://github.com/mbarall/oaf-gui-releases (last accessed 

June 2022).  A public release of the oaftools package and the Operational Aftershock Viewer 

will be available on https://code.usgs.gov (last accessed June 2022) following the publication of 

the associated paper in Seismological Research Letters.  The aftershock forecast schedule can be 

found at https://earthquake.usgs.gov/data/oaf/schedule.php (last accessed June 2022). 
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