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Abstract

In this paper we are going to derive the linear elasticity equations in the Strong Form to the Hellinger
Reissner Form. We find a suitable solution to solve our stress tensor. Then we will use finite element
discretization from [1]. We will run tests on a unit cube and multiple other shapes, which are described
at the end. We view the different magnitudes of the displacement vector of each shape.

1 Derivation of the Hellinger-Reissner Form

1.1 The Linear Elasticity Equations

Let Ω ⊂ R3 be a bounded domain, with boundary ∂Ω. The first-order (strong) form of the linear elasticity
problem is to find a displacement vector u : Ω→ R3 and symmetric stress tensor σ : Ω→ R3×3

sym such that:{
Aσ = ε(u) in Ω

−(∇ · σ) = f in Ω
, (1)

with appropriate conditions prescribed on the boundary ∂Ω. Here and below, R3×3
sym are the symmetric 3× 3

matrices. The function f : Ω → R3 is given, and the symmetric gradient ε(u) : Ω → R3×3
sym and compliance

tensor Aσ : Ω→ R3×3
sym are defined by

ε(u) =
1

2

(
∇u + (∇u)T

)
(2)

Aσ =
1

2µ

(
σ − λ

3λ+ 2µ
tr(σ)I

)
, (3)

where the Lamé parameters λ and µ are given. We note that the gradient of a vector field v : Ω → R3 is
defined by

∇v =


∂v1
∂x

∂v1
∂y

∂v1
∂z

∂v2
∂x

∂v2
∂y

∂v2
∂z

∂v3
∂x

∂v3
∂y

∂v3
∂z

 (4)

Furthermore, the divergence of a tensor τ : Ω→ R3×3 is defined by

∇ · τ =


∂τ11
∂x + ∂τ21

∂y + ∂τ31
∂z

∂τ12
∂x + ∂τ22

∂y + ∂τ32
∂z

∂τ13
∂x + ∂τ23

∂y + ∂τ33
∂z

 =

∇ · τ1

∇ · τ2

∇ · τ3

 , (5)
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where τj is the jth column of τ .
The main goal of this section is to derive the Hellinger-Reissner variational form of (1), and describe the

appropriate spaces of functions in which u and σ are sought. We will also briefly discuss an alternate varia-
tional formulation. The first step in the derivation of these variational forms is to multiply the equations (1)
by suitable test functions, and integrate over the domain. For v : Ω→ R3 and τ : Ω→ R3×3

sym, we obtain{ ∫
Ω
Aσ : τ dx =

∫
Ω
ε(u) : τ dx

−
∫

Ω
(∇ · σ) · v dx =

∫
Ω
f · v dx

(6)

Here, the double dot product of two matrices A,B ∈ R3×3 is defined by

A : B =

3∑
i,j=1

aijbji . (7)

We note that A : B = tr(AB) = tr(BA) = B : A. Let ai,bi ∈ R3 denote the ith columns of A and B,

respectively. If A or B is symmetric, which they are in our case, then A : B =
∑3
i=1 ai · bi as well.

1.2 Integration-By-Parts

At this stage, the key step in deriving the variational forms is integration-by-parts, and we now provide the
appropriate formula, as well as its justification.

For a scalar field v : Ω→ R and a vector field τ : Ω→ R3, we have the following product rule formula,

∇ · (vτ ) = ∇v · τ + v(∇ · τ ) , (8)

which follows directly from the standard product rule for scalar fields. Integrating both sides of (8) over Ω,
and using the Divergence Theorem on the left-hand side, we obtain our basic integration-by-parts formula,∫

∂Ω

v(τ · n) ds =

∫
Ω

∇v · τ dx+

∫
Ω

v(∇ · τ ) dx , (9)

where n : ∂Ω→ R3 is the outward unit normal vector.
Now suppose that v : Ω→ R3 and τ : Ω→ R3×3

sym. We want a natural analogue of (9). Since

v · (τn) = v1(τ1 · n) + v2(τ2 · n) + v3(τ3 · n) ,

∇v : τ = ∇v1 · τ1 +∇v2 · τ2 +∇v3 · τ3 ,

v · (∇ · τ) = v1(∇ · τ1) + v2(∇ · τ2) + v3(∇ · τ3) ,

and ∫
∂Ω

vj(τj · n) ds =

∫
Ω

∇vj · τj dx+

∫
Ω

vj(∇ · τj) dx ,

for each j, we sum these equations to obtain our main integration-by-parts formula,∫
∂Ω

v · (τn) ds =

∫
Ω

∇v : τ dx+

∫
Ω

v · (∇ · τ) dx , (10)

1.3 The Hellinger-Reissner Form

The Hellinger-Reissner form is derived by applying the integration-by-parts formula (10) to the term
∫

Ω
ε(u) :

τ dx in (6) . Since τ is symmetric, ∇u : τ = (∇u)T : τ , and we deduce that ε(u) : τ = ∇u : τ . So the
integration-by-parts formula reads∫

∂Ω

u · (τn) ds =

∫
Ω

ε(u) : τ dx+

∫
Ω

u · (∇ · τ) dx .
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Substituting this into (6), making the assumption

u = 0 on ∂Ω , (11)

and rearranging terms, we obtain, ∫
Ω

Aσ : τ dx+

∫
Ω

(∇ · τ) · u dx = 0

−
∫

Ω

(∇ · σ) · v dx =

∫
Ω

f · v dx
(12)

At this stage, we have shown that, if u, σ satisfy (1), then they satisfy (12). The Hellinger-Reissner variational
formulation is obtained by choosing appropriate spaces of functions in which to search for u, σ, and requiring
that (12) holds for all v, τ in these spaces. More specifically: Find u ∈ L2(Ω;R3) and σ ∈ H(div,Ω;R3×3

sym)
such that

a(σ, τ) + b(τ,u) = 0

−b(σ,v) =

∫
Ω

f · v dx
(13)

for all v ∈ L2(Ω;R3) and τ ∈ H(div,Ω;R3×3
sym), where

a(σ, τ) =

∫
Ω

Aσ : τ dx , b(τ,v) =

∫
Ω

(∇ · τ) · v dx .

To complete this description, we must describe the function spaces, which are

L2(Ω;R3) =

{
v : Ω→ R3 :

∫
Ω

v · v dx <∞
}
,

H(div,Ω;R3×3
sym) =

{
τ : Ω→ R3×3

sym :

∫
Ω

τ : τ dx <∞ and

∫
Ω

(∇ · τ) · (∇ · τ) dx <∞
}
.

1.4 An Alternate Variational Formulation

−
∫

Ω
(∇ · σ) · v dx will be manipulated so we can come to a solution of what σ needs to be for the integral

around the boundary to be zero. We apply the integration by parts formula to it, and we get∫
dΩ

v : (σn) ds =

∫
Ω

ε(v) : σ dx+

∫
Ω

v · (∇ · σ) dx

then we rearrange it to

−
∫

Ω

(∇ · σ) · v dx =

∫
Ω

ε(v) : σ dx−
∫
dΩ

v · (σn) dx

We will make the assumption that

σn = 0 on ∂Ω,

and when we rearrange the terms and we substitute it into the two equations in (6), we obtain,∫
Ω

Aσ : τ dx−
∫

Ω

ε(u) : τ dx = 0 (14a)∫
Ω

ε(v) : σ dx =

∫
Ω

f · v dx (14b)

After choosing appropriate function subspaces the stress tensor and displacement vector, variational form
like (13) can be obtained, but we will not pursue it further.
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2 A Discretization of the Hellinger-Reissner Form

2.1 A Stabilized Mixed Finite Element Method

We will be using a stabilized mixed finite element method of the Hellinger-Reissner form introduced in [1].
Let Ω ⊂ R3 be a polyhedron, T = {K} be a partition of Ω into tetrahedral cells (a mesh), and F = {F} be
the collection of all triangular faces in this mesh. We wish to find (σh,uh) ∈ Σh × Vh such that

a(σh, τh) + b(τh,uh) = 0 (15)

−b(σh,vh) + c(uh,vh) =

∫
Ω

f · vh dx (16)

for all τh ∈ Σh and for all vh ∈ Vh. To complete this definition we must define the finite dimensional spaces,

Σh ⊂ H(div,Ω;R3×3
sym) , Vh ⊂ L2(Ω;R3) , (17)

which we do in the next subsection, as well as the function c, which we do now. The jump stabilization term
for displacement is,

c(uh,vh) :=
∑
F∈F

hF

∫
F

[[uh]] : [[vh]] ds, (18)

where hF is the longest edge on the face F . For w : Ω → R3 that is continuous on each K ∈ T , we define
[[w]] as follows. On a face F laying on the boundary ∂Ω,

[[w]] :=
1

2
(wnT + nwT ),

where n is the unit outward normal to the boundary. For an interior face F let K+ and K− be the adjacent
tetrahedra, and let n+ and n− be the unit outward normals to K+ and K− on F (Note: n+ = −n−). On
such an F ,

[[w]] :=
1

2

(
w+(n+)T + n+(w+)T + w−(n−)T + n−(w−)T

)

2.2 Defining Σh and Vh

The spaces Σh and Vh in which we compute σh and uh are given by,

Σh = {τ ∈ C(Ω;R3×3
sym) : τ

∣∣
K
∈ P1(K;R3×3

sym) for all K ∈ T } (19)

Vh = {v : Ω→ R3 : v
∣∣
K
∈ R3 for all K ∈ T } (20)

A basis for Vh is,

{φK,j : K ∈ T and 1 ≤ j ≤ 3} where, φK,j(x) =

{
ej , x ∈ K
0, x /∈ K

and our total dimension of Vh is dim(Vh) = 3NT , where NT is the number of tetrahedra. The two spaces,
C(Ω;R3×3

sym) and P1(K;R3×3
sym), in the definition of Σh are

C(Ω;R3×3
sym) = {α : Ω→ R3×3

sym : αij ∈ C(Ω;R)} ,
P1(K;R3×3

sym) = {α : K → R3×3
sym : αij ∈ P1(K;R)} .
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We will give basis for P1(K;R3×3
sym), and to do so we first need a basis of R3×3

sym, and a basis of P1(K,R). The

space R3×3
sym of 3× 3 symmetric matrices is six-dimensional, and a basis for it, {S1, . . . , S6}, is given by

S1 =

1 0 0
0 0 0
0 0 0

 , S2 =

0 0 0
0 1 0
0 0 0

 , S3 =

0 0 0
0 0 0
0 0 1

 ,

S4 =

0 1 0
1 0 0
0 0 0

 , S5 =

0 0 1
0 0 0
1 0 0

 , S6 =

0 0 0
0 0 1
0 1 0

 .

For example, a generic α ∈ R3×3
sym has the expansion

α =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 = α11S1 + α22S2 + α33S3 + α12S4 + α13S5 + α23S6 .

For α ∈ Σh, each component αij ∈ P1(K;R) is a (scalar-valued) linear function on K, so we now describe
a basis for P1(K;R). We denote the vertices of the tetrahedron K by {z1, . . . , z4}. Since a linear function
in three variables is uniquely determined by its values at the vertices, we define four linear functions `j ∈
P1(K;R), 1 ≤ j ≤ 4, related to these vertices, by

`j(zi) =

{
1, i = j

0, i 6= j
, 1 ≤ i, j ≤ 4 .

Let hj be the perpendicular distance between zj and the plane containing the opposite face of K, and nj be
the outward normal unit vector to this face. A “point-slope” formula for `j is

`j(x) = 1− (x− zj) · nj
hj

One can verify directly that `j(zj) = 1 (the point) and ∇`j =
−nj

hj
(the “slope”). So {`1, . . . , `4} is a basis

for P1(K;R). In fact, v ∈ P1(K;R) is given by

v(x) = v(z1)`1(x) + v(z2)`2(x) + v(z3)`3(x) + v(z4)`4(x) .

Finally, a basis for P1(K;R3×3
sym) is {`iSj : 1 ≤ i ≤ 4, 1 ≤ j ≤ 6}, so dim(P1(K;R3×3

sym)) = 24. Since each
σh ∈ Σh must be continuous across faces shared by tetrahedra, σh is uniquely determined by its values at
the vertices of the mesh. Because σh(z) ∈ R3×3

sym at each vertex z, and dim(R3×3
sym) = 6, dim(Σh) = 6NV ,

where NV is the number of vertices.

2.3 Linear System for Discrete Problem

We need to develop a linear system to solve for our stress tensor and displacement vector in equations (15)-
(16). Let {φj : 1 ≤ j ≤ 3NT} be a basis of Vh, and {ψj : 1 ≤ j ≤ 6NV } be a basis of Σh. Equations (15)-(16)
hold for all τh ∈ Σh and vh ∈ Vh if and only if,

a(σh, ψi) + b(ψi,uh) = 0, 1 ≤ i ≤ 6NV

−b(σh, φk) + c(uh, φk) =

∫
Ω

fφk dx, 1 ≤ k ≤ 3NT
(21)

Using that

uh =

3NT∑
j=1

yjφj σh =

6NV∑
j=1

xjψj (22)
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for some coefficient vectors x ∈ R3NT , y ∈ R6NV , (21) is equivalent to: Find

(
x
y

)
∈ R6NV+3NT such that,(

A BT

−B C

)(
x
y

)
=

(
0
f

)
(23)

where A ∈ R6NV×6NV , B ∈ R3NT×6NV , C ∈ R3NT×3NT are given by

aij = a(ψj , ψi), 1 ≤ i, j ≤ 6NV

cij = c(φj , φi), 1 ≤ i, j ≤ 3NT

bij = b(ψj , φi), 1 ≤ i ≤ 3NT 1 ≤ j ≤ 6NV

(24)

and f ∈ R3NT is given by fk =
∫

Ω
fφk dx, 1 ≤ k ≤ 3NT

2.4 Discretization Error

The key theorem in [1] concerning discretization error is

Theorem 2.1. Let (σ,u) ∈ H(div,Ω;R3×3
sym)×L2(Ω;R3) be the exact solution of problem (13) and (σh,uh) ∈

Σh × Vh the discrete solution of the stabilized mixed finite element method (15)-(16). If σ ∈ H2(Ω;R3×3
sym)

and u ∈ H1(Ω;R3), then

‖σ − σh‖H(div,A) + ‖u− uh‖0,c ≤ Ch(‖σ‖2 + ‖u‖1) , (25)

where C is a constant that is independent of h, σ and u.

The norms appearing in this theorem are defined by,

‖τ‖2H(div,A) := a(τ, τ) + ‖div τ‖20 ,

‖vh‖20,c := ‖vh‖20 + ‖vh‖2c =

∫
Ω

vh · vh dx+ c(vh,vh)

‖u‖21 :=

∫
Ω

u · u +∇u : ∇u dx ,

|σ|22 :=

∫
Ω

3∑
K,`=1

4∑
i,j=1

(
∂2σij
∂xK∂x`

)
dx ,

‖σ‖22 :=

∫
Ω

σ : σ +

3∑
k=1

4∑
i,j=1

(
∂σij
∂xk

)2

+

3∑
k,`=1

4∑
i,j=1

(
∂2σij
∂xk∂x`

)2

dx .

The norm ‖vh‖0,c is defined for all vh ∈ Vh +H1(Ω;R3). The mesh parameter h is the longest edge in the
mesh. In other words, h = maxK hK , where hK is the diameter of K. This theorem states the error in the
stress tensor and displacement vector is approximately proportional to h.

3 Numerical Experiments

3.1 Numerical Results from [1]

In [1] the authors illustrate Theorem 2.1 by constructing an example where the exact solution is known.
They let the Lamé parameters be λ = 0.3 and µ = 0.35. The domain is a unit cube Ω = (0, 1)3 in 3D. The
displacement vector u is given by

u(x) = u(x1, x2, x3) =

24

25

26

x1(1− x1)x2(1− x2)x3(1− x3), (26)

6



and the stress tensor σ and the load f can be calculated exactly from (1)-(3). To determine σ we will first
use (3) to determine tr(σ). We can manipulate (3) to find tr(σ),

tr(σ) = (3λ+ 2µ)tr(ε(u)) . (27)

Once tr(σ) is determined we find that σ is

σ = λ(tr(ε(u)))I + 2µ(ε(u)). (28)

From (1) the load f is equal to (−∇·σ). For this model problem, the authors obtained the errors in Table 1.

Table 1: Convergence of approximations of the stress tensor and displacement vector.

h ‖σ − σh‖H(div),A order ‖uh‖C order ‖u− uh‖0 order
2−1 4.1723E+00 — 4.0747E-01 — 2.4720E-01 —
2−2 2.3595E+00 0.82 3.5554E-01 0.20 1.7403E-01 0.51
2−3 1.2849E+00 0.88 2.5527E-01 0.48 1.1168E-01 0.64
2−4 6.8023E-01 0.92 1.5243E-01 0.74 6.3889E-02 0.81
2−5 3.5167E-01 0.95 8.3310E-02 0.87 3.4309E-02 0.90

To estimate the order of convergence from convergence data one typically assumes the error model E(h) =
Chp, where C and p are unknown, and p is the order of convergence. The order of convergence can be found
by

p = log2

(
E(h)

E(h2 )

)
. (29)

This is what the authors use to compute the orders in Table 1. As h gets smaller, the computed orders
approach 1, in agreement with Theorem 2.1. Figure 1 is a sequence of four meshes. The coloring in Figure 1
is purely for visualizing the meshes—it has no physical significance. The first is our initial region, and each
image after is a refinement of the previous and these are a similar region to Theorem 2.1. On each refinement
the number of tetrahedra along an edge is doubled. Next, we take a look inside the third refinement (Figure 2)
and view the norm of the displacement vector, uh throughout the entire mesh. Figure 2 is visualizing the
third row from Table 1 where h = 2−3. The center of the mesh is where it experiences the majority of
displacement. Maximum displacement is determined by the color red, and the minimum displacement is
determined by the color blue.

3.2 A Non-Unit Cube, Stepahedron

In Figure 3 we took a new shape that contains the characteristics of a set of stairs. We shall call it a
stepahedron. It contains the same load force f as the unit cube, but has an unknown displacement vector
uh. The stepahedron was cut down the middle and at the steps to show uh on the inside. At the top of
each step the magnitude of uh is not 0 like most of the boundary on the region. They do not protrude from
the original region but it can be displaced along the surface or deform into the stepahedron. The outward
normal to each step is 0.
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Figure 1: An initial mesh on the cube (0, 1)3, and three refinements.
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Figure 2: The third refined sequence cube (0, 1)3 cut to view different magnitudes of uh.
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Figure 3: A stepahedron to cut to view different magnitudes of uh.

References

[1] L. Chen, J. Hu, and X. Huang. Stabilized Mixed Finite Element Methods for Linear Elasticity on
Simplicial Grids in Rn. Computational Methods in Applied Mathematics, 17(1):17–31, January 2017.

10


	Derivation of the Hellinger-Reissner Variational Form of the Linear Elasticity Equations, and a Finite Element Discretization
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1536599885.pdf.YR59L

