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Initial expansion of the Columbia River tidal plume: Theory and

remote sensing observations

David A. Jay,1 Edward D. Zaron,1 and Jiayi Pan1,2

Received 30 June 2008; revised 5 August 2009; accepted 16 September 2009; published 23 January 2010.

[1] Analysis of the Columbia River tidal plume using Lagrangian frontal equations
provides a concise description of the evolution of frontal depth H, velocity U, reduced
gravity g0, and frontal internal Froude number FR. Because the estuary mouth is narrow,
the initial radial plume motion is supercritical (FR > 1) for up to 12 hours. Understanding
this supercritical phase is vital, because plume properties change rapidly, with strong
ecosystem impacts. To analyze this expansion, analytical and numerical models (the latter
with three mixing formulations) were tested. Model results are compared to synthetic
aperture radar images to verify that the predicted frontal properties are realistic.
Lagrangian theory provides especially simple constraints (independent of the mixing
model) on spatial variations in FR and Ug0H. For parameters representative of the
Columbia River plume, the plume spreads 10–35 km and thins to 25–60% of its initial
depth before becoming subcritical. After liftoff, FR increases as the front accelerates
and thins, it then decreases to unity; g0 decreases, but more slowly than H and U. H,
controlled by a balance between spreading and mixing, first decreases then increases. The
strength of vertical mixing and the mixing efficiency EF (ratio of buoyancy flux to
dissipation) both play a significant role in determining plume properties, and it is
important to include both the horizontal gradient in g0 and surface slope component of the
pressure gradient. A model with an Ellison-Turner type entrainment scheme predicts
the plume trajectory better than one that assumes a constant interfacial gradient
Richardson number.

Citation: Jay, D. A., E. D. Zaron, and J. Pan (2010), Initial expansion of the Columbia River tidal plume: Theory and remote sensing

observations, J. Geophys. Res., 115, C00B15, doi:10.1029/2008JC004996.

1. Introduction

1.1. Scope

[2] This paper provides a dynamical analysis of the
Columbia River ‘‘tidal plume’’ as it emerges from the
mouth of the Columbia River (MCR). Flow through
the MCR is tidally pulsed. The tidal plume is the new water
mass entering the ocean on each ebb [Horner-Devine et al.,
2009]. The extent of the tidal plume is defined by its outer
boundary front, whose nearly circular shape is often visible
in synthetic aperture radar (SAR) images (Figure 1 and
Table 1) [Pan et al., 2007]. The tidal plume remains
supercritical (with respect to the frontal internal Froude
number FR) and distinct from the remainder of the plume
near-field (which consists of water that has emerged from
the estuary over several tidal cycles) for up to 12 hours,
after which time it becomes subcritical (FR < 1) and mixes
into the plume near-field. The transition to subcritical
conditions is often accompanied by emission of a train of

large-amplitude, nonlinear internal waves (Figure 2) [Pan et
al., 2007; Nash and Moum, 2005] that take most of the
energy out of the front [Pan and Jay, 2009]. The effects of
mixing that occurs in the early hours of tidal plume motion
endure well after the transition to subcritical conditions. We
use here Lagrangian frontal equations [Rudnick and Davis,
1988] to investigate this initial plume radial expansion and
the following transition to subcritical flow.
[3] The initial, almost radial, motion of a tidal plume

emerging from an estuary mouth poses an intriguing
dynamical problem. For a narrow estuarine mouth like the
MCR, the front is supercritical (FR > 1) from the point of
plume liftoff, due to a combination of tidal and buoyancy
forcing. This supercritical, radial expansion shows a super-
ficial resemblance to small-scale thermal plumes and river
plumes from small river mouths. However, the MCR
outflow is tidally pulsed, changing the structure of the
plume near-field [Horner-Devine et al., 2009]. Also, the
size of the fully developed tidal plume (typically 10–30 km)
is such that rotation, though not dominant, cannot be
altogether ignored, conservation of potential vorticity
requires that changes in plume thickness be compensated
by changes in total vorticity that are a function of plume
radius R [Horner-Devine, 2009].
[4] The rapid changes that occur in the tidal plume are

also vital to the plume ecosystem [Hickey et al., 2009].
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Orton and Jay [2005] estimated �20% of the vertical
mixing needed to increase plume salinity from 15 to 33.5
could be accounted for by mixing at and near the front
(�2% of tidal plume area), with more occurring in the
interior of the tidal plume. Pan and Jay [2009] have shown
that nonlinear, plume-front-generated internal waves trans-
fer mass and energy offshore, facilitating horizontal and
vertical mixing, and extending the influence of the tidal
plume to a considerable area beyond its bounding front.
Vertical mixing associated with tidal plume fronts and
internal waves may also facilitate primary productivity in
the plume area [Jay et al., 2009], and preferential occur-

rence of strong fronts and internal waves north of the
estuary mouth may be one factor leading to elevated
productivity on the Washington shelf relative to the Oregon
shelf.
[5] Several aspects of plume and frontal dynamics are

challenging to represent in numerical and analytical models.
The tidal plume front is nonhydrostatic, because of the steep
interfacial slope in the vicinity of the plume bulge, and
generates nonlinear internal waves as it decays to a subcrit-
ical state [Jay et al., 2009; Pan and Jay, 2009]. Further-
more, the dimensions of the supercritical plume front, 5–
10 m deep and 20–50 m laterally, means that it is very

Figure 1. SAR images of the tidal plume, which is almost radially symmetric under a wide variety of
upwelling (U), downwelling (D), and neutral (N) forcing conditions. R is the estimated frontal travel
distance from the end of the jetties for each image. Tidal ranges are listed in Table 1. Images were
selected to show fronts that were supercritical along at least part of their length.
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difficult to represent in a mesoscale, 3-D numerical model.
We have, therefore, used a combination of layered analytical
and numerical models and remote sensing to analyze the
tidal plume. Lagrangian frontal equations [Rudnick and
Davis, 1988] are attractive for this modeling, because of
their ability to represent frontal processes in a model of
reduced dimensionality (vertically layered and 1-D radially

symmetric in the horizontal). Because the lower layer is
motionless, our approach is effectively a 1.5 layer model in
the sense of Røed [1997].

1.2. Regional Setting

[6] The Columbia is the fourth largest river entering the
ocean from North America, with an average flow of
�7300 m3 s�1 [Bottom et al., 2005]. A typical minimum
(fall) flow is 2000–3000 m3 s�1, while the spring freshet
flow is usually 10,000–15,000 m3 s�1. Although the spring
freshet volume has been reduced by 40–45% by human
intervention, the Columbia plume still plays a major role in
coastal circulation and ecosystem processes and in the
greater northeast Pacific [Barnes et al., 1972; Hickey et
al., 1998; Thomas and Weatherbee, 2006]. The plume also
plays a vital role in the survival of juvenile Columbia River
salmonids, several races of which are classified as endan-
gered [Gustafson et al., 2007].
[7] The high river outflow from the Columbia causes the

plume to be very stratified. The shelf is also relatively steep,
with a slope of �8 � 10�4. Away from the MCR, typical
plume depths are 3–7 m in a water column 30–200 m deep,
and the plume affects the bed only immediately beneath
plume fronts and near liftoff [Orton and Jay, 2005; Spahn et
al., 2009]. Thus, the Columbia plume is ‘‘surface advected’’
in the sense of Yankovsky and Chapman [1997], and our
models neglect internal hydraulic interactions of the plume
front with the seabed, after the initial liftoff.
[8] The Columbia plume far-field assumes diverse con-

figurations [Hickey et al., 2005] and varies on coastal
weather time scales. Winds and coastal currents strongly
influence the plume’s far-field behavior and the variable
salinity of the nearshore waters with which the tidal plume
interacts. Still, the initial motion of the tidal plume is
relatively consistent and determined primarily by river
outflow and tidal forcing. Thus, this analysis focuses on
the impacts of these two factors, which together determine
the initial FR number, rather than on the effects of atmo-
spheric forcing. The MCR tidal regime is mixed semidiurnal
and diurnal, with the semidiurnal species being dominant.
The tidal range varies from �1 m on a weak lesser ebb to
4 m on the largest greater ebbs. Peak ebb currents in the
MCR entrance are very strong (1–3.5 m s�1), due to the
narrow entrance (�3 km); these strong currents drive
the initial supercritical motion.

1.3. Previous Analyses of Plume Motion

[9] The importance of buoyant plumes as a fluid dynam-
ics problem with numerous applications has resulted in a
considerable literature. Chu and Baddour [1984] and Chu
and Jirka [1986] summarize scaling laws and similarity
solutions for steady state plumes. Observations of small,
quasi-steady plumes in nature [e.g., Ingram, 1981; Luketina
and Imberger, 1987] are well described by these scalings.
Studies of plume and gravity current frontal propagation
have emphasized the importance of mixing. Laboratory
studies find that the front propagates so as to maintain an
almost constant bulk Froude number [Benjamin, 1968;
Britter and Simpson, 1978]. Mixing must, therefore, play
a major role in the determining propagation speed, because
a constant FR plume does not conserve energy [Garvine,
1982]. Observations by Garvine and Monk [1974], Luketina

Table 1. Plume Frontal Radius R and Travel Time T(R) From

SAR Images and Ambient Coastal Conditions

SAR Image Date/Timea R (km) T(R) (hours)

Upwelling
02-24-2001/0216 12.8 5.6
10-01-2001/1438 16.6 7.1
11-02-2001/0155 12.6 5.6
01-13-2002/0154 18.4 6.2
05-06-2002/0154 20.1 10.9
06-05-2002/1439 30.0 10.2
07-13-2002/1439 10.4 4.7
07-23-2002/1439 22.3 7.7
07-24-2002/0154 11.2 5.3
08-09-2002/1439 17.0 6.4
10-04-2002/0154 17.1 7.4
10-17-2002/1439 17.3 9.1
06-01-2003/1439 8.1 6.2
06-24-2003/1439 24.3 11.0
07-01-2003/1439 13.3 5.9
07-25-2003/1439 24.0 9.8
08-12-2003/0154 10.0 5.2
08-18-2003/1439 5.4 2.0
08-28-2003/1439 18.5 6.2
09-21-2003/1439 23.0 11.2

Downwelling
05-07-2001/0216 15.5 6.2
12-16-2001/0212 13.5 5.9
05-26-2002/0439 19.7 7.0
05-29-2002/1439 14.6 5.0
01-01-2003/0154 21.3 7.9
02-01-2003/0154 18.4 6.4
03-10-2003/1439 6.2 2.2
03-14-2003/0154 19.4 10.2
03-20-2003/1439 9.8 4.9
06-14-2003/1439 20.3 7.2
07-11-2003/1439 22.3 9.2
08-25-2003/1439 16.1 8.6
09-28-2003/1439 6.9 4.7

Neutral
03-20-2001/0216 18.7 9.9
09-28-2001/1426 22.8 9.3
11-26-2001/0155 24.5 9.1
01-30-2002/0154 16.0 5.3
03-26-2002/0154 20.6 8.4
04-12-2002/0154 15.1 5.8
06-23-2002/0154 20.0 6.8
06-29-2002/1439 10.2 3.8
07-16-2002/1439 8.5 1.7
10-03-2002/1439 19.4 9.6
10-04-2002/0154 16.2 7.4
11-13-2002/1439 31.3 12.0
11-20-2002/1439 11.5 5.6
12-31-2002/1439 19.2 8.0
02-18-2003/0154 13.4 5.2
04-20-2003/1439 9.7 4.2
04-30-2003/1439 20.7 6.9
05-14-2003/1439 18.2 8.1
05-21-2003/1439 7.2 2.8
05-24-2003/1439 29.3 10.8
05-25-2003/0154 25.5 10.4
05-31-2003/1439 21.1 6.7
06-01-2003/0154 7.5 4.3
aDate/time format used here is month-day-year/hour.
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and Imberger [1989], O’Donnell et al. [1998, 2008],
MacDonald and Geyer [2004], Hetland and MacDonald
[2008], and Orton and Jay [2005] suggest that mixing and
entrainment at the leading edge of buoyant plumes is
substantial, but largely confined to a zone (which may be
several km in extent) at and behind the plume front.
Additional mixing occurs near liftoff [Nash et al., 2009].
[10] Plume models have sought to explain the three-

dimensional circulation and mixing near the plume front,
and they have indicated that flow at the front influences the
dynamics of the plume interior, well behind the front
[Garvine, 1982, 1987]. This influence is caused by the
propagation of information along characteristics from the
plume front into the interior of the plume. O’Donnell [1990]
extended these modeling efforts to include interfacial drag
and entrainment in addition to the (dissipative) plume jump
conditions which had previously been used. The results
indicate that large portions of the plume will be subject to
shear-driven instability and interfacial mixing, as indicated
by the presence of extensive regions of elevated bulk
Froude number. O’Donnell [1990] focuses on the response
of the plume to along-shore ambient flow, noting that
interfacial mixing is most important when the along-shore
flow is weak. These results suggest that our analysis, which
describes the tidal plume in terms of the properties of its
bounding front, is dynamically appropriate. Questions
remain, however, regarding sensitivity to the precise form
of the mixing parameterization, and energetic consequences
of the interfacial mixing for the plume as a whole. Results
below indicate that both the turbulence closure and details
of the assumed dynamics influence plume propagation.
[11] Recent work has explored how plume dynamics and

frontal processes are modified by rotation, and motion of
the ambient flow [Fong and Geyer, 2002; Horner-Devine,
2009; Hetland, 2005]. Pritchard and Huntley [2006] used
observations and a continuity constraint to estimate the ratio
of vertical buoyancy flux to buoyancy input from the
riverine source. In their terms, the Columbia plume has

sufficient buoyancy to form a plume on all ebbs. Hetland
[2005] used an isopycnal coordinate system to investigate
plume mixing, an approach with some similarities to this
Lagrangian analysis. Nash et al. [2009] analyze plume
properties at and near the liftoff point, early in the period
modeled here. They find that (1) initial plume salinity and
thickness depend on the cumulative mixing that has
occurred in the estuary upstream of liftoff and (2) interfacial
mixing at the plume base depends on the strength of the
tidal pulse; i.e., on the shear and stratification at the base of
the plume. Pan et al. [2007] and Pan and Jay [2009]
investigated frontal fission and the resultant internal wave
generation and propagation. Here our goals are to investi-
gate the behavior of the plume between the source region
and the point of frontal collapse (transition to FR < 1), and to
refine previous models based on the assumption of constant
FR at the plume front.

2. Methods: Model Formulation

2.1. A Lagrangian Approach

[12] Jay et al. [2009] argue that (1) the Columbia tidal
plume is nearly circular; (2) plume expansion continues
after the reversal of tidal currents at the end of ebb, for up to
12 hours; (3) front-normal velocities are considerably larger
than along-frontal velocities; and (4) the vorticity of the
underlying tidal flow only subtly alters plume frontal
properties, introducing small along-frontal asymmetries.
The tidal plume is initially 8–12 m thick, but only 3–7 m
thick during the latter part of its expansion [Cudaback and
Jay, 1996, 2000; Jay et al., 2009]. These factors together
imply that, except in and near the liftoff zone, the plume
front is only weakly coupled to the underlying tidal flow.
Also implied is that the lowest-order radial expansion is a
function of frontal radius R only. Thus, we consider here the
dynamics of an initial, almost radial, expansion of a tidal
plume away from the MCR.

Figure 2. Tidal plume frontal position and the position of the lead internal soliton generated by the
front, determined from ship’s radar on 9 June 2006 starting at 0119 UT. Images were acquired at one
frame per minute and every 10th frame was processed. Frame time is coded by shade. Frontal advance
rate was determined from the portion of the front that was supercritical, along the black line.
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[13] The tidal plume and its bounding front can, given the
above properties, be described to lowest order by four
frontal variables: depth H, speed U, reduced gravity g0, and
Froude number FR = Uffiffiffiffiffi

g0H
p . These variables are Lagrangian,

they are defined only at the front, as a function of frontal
radius, R. Further, if the estuary entrance is narrow with
Kelvin number K = B/RO � 1, the initial outflow can be
treated as spreading radially from a point at the estuary
entrance, as given by Hetland and MacDonald [2008].

(Here, B is entrance width, RO =
g0
0
H0ð Þ

1
2

f
is the internal

Rossby number, f is the Coriolis parameter, and g00 and H0

are reduced gravity and plume layer depth at the entrance,
respectively.) Although the tidal plume does begin to rotate
as it thins and its front slows, plume rotation (azimuthal
flow) remains a secondary process for a supercritical tidal
plume. Formally, azimuthal flow cannot be larger than
O(eF), where eF is a small parameter to be defined.
[14] The frontal properties H, FR, U, and g0 can be

quantified using Lagrangian frontal equations [Rudnick
and Davis, 1988]. Because the initial supercritical motion
is nearly radial, these equations are applied in a cylindrical
coordinate system; R is the distance offshore from the
estuary mouth and q is the angle of rotation (Figure 3).
This analysis considers, as noted, only the initial supercrit-
ical (FR > 1), plume expansion. The equations can be solved
for subcritical conditions, but atmospheric forcing and shelf
flows (not considered here) play a much larger role as the
tidal plume merges into the larger plume near-field. Also,
we do not consider here the complex dynamics of the plume
front ‘‘plunge’’ (modeled by Garvine [1981, 1982]). Just as
hydraulic control theory defines the conditions under which
a turbulent hydraulic jump occurs, this analysis defines the
location and energetics of the plume front without specify-

ing the details of actual frontal structure in which energy is
dissipated. Thus, H, FR, U, and g0 describe plume properties
just behind the plunge, and the mixing formulation included
in the model should describe the mixing of the shear layer
just behind the actual front.
[15] One advantage of a Lagrangian approach is that the

expressions for mass deficit and freshwater fraction are
relatively simple. Also, the convective accelerations, impor-
tant in an Eulerian treatment of supercritical flow, are
included in the total acceleration. There are two disadvan-
tages. First, the plume flow is defined only at the front, as a
function of the sole independent variable, radius R. The
second issue derives from the first, the time T at which the
front reaches a particular radius is not an independent
variable, and T(R) must be derived as part of the solution.

2.2. Plume Frontal Equations

[16] Describing the tidal plume in terms of frontal prop-
erties implies the use of Lagrangian variables. Here, we
define the governing equations for mass, density and
momentum conservation using the following nondimen-
sional Lagrangian variables:

Ĥ ¼ H0 H Rð Þ Û ¼ U0 U Rð Þ V̂ ¼ eF U0 V Rð Þ
ĝ0 ¼ g00g

0 Rð Þ ĝ0 ¼ g
Dr̂
r̂0

eF ¼ 1� HTR

H0

ð1aÞ

F̂
2

R ¼ F2
R0

U2

g0H
F2
R0 ¼

U 2
0

g00H0

; ð1bÞ

where g is gravitational acceleration, Dr̂ is the plume
density difference relative to lower layer (reference) density,

Figure 3. Regional plume context and coordinate system.
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r0 is reference density, HTR is a scale for plume depth at the
point of transition to subcritical conditions (FR < 1), H0, U0,
R0, and g00 are the dimensional scales for plume front
thickness, velocity, radius, and reduced gravity, respec-
tively, and the carat ^ indicates a dimensional variable. H0,
U0, and g00 are all defined using initial values at liftoff. R0 is
the radius at which the front becomes subcritical. The small
parameter eF does not actually enter the analysis, but
processes neglected (e.g., rotation) cannot be larger than
O(eF). The definition of eF in (1a) implies that plume
rotation (V̂ ) occurs in proportion to plume thinning.
[17] Conservation of mass (water) describes the evolution

of frontal depth H as the front undergoes radial spreading
and mixing. In cylindrical coordinates and dimensional
variables, the expression of Rudnick and Davis [1988] is

DĤ

Dt̂
¼ �Ĥ @Û

@R̂
þ Û

R̂
þ 1

R̂

@V̂

@q̂

� �
þ ŴE; ð2Þ

where ŴE > 0 is a vertical entrainment velocity. From (2),
we see that changes in Ĥ following the front are controlled
by a balance between plume spreading, which thins the
plume, and turbulent entrainment of ambient waters (as
specified by ŴE), which thickens it.
[18] The total derivative in (2) describes the Lagrangian

evolution of the flow. We now use the definitions in (1a)
and (1b) to express this total derivative in another form.
This is clearest in nondimensional variables; to lowest order
we write in cylindrical coordinates

D

Dt
¼ @

@t
þ U

@

@R
þ eF

R
V
@

@q
ffi U

@

@R
þ O eFð Þ: ð3aÞ

[19] The local time derivative vanishes, because all front-
al variables are functions of R only. Ĥ and other frontal
variables are not functions of t̂ (with R̂ constant), because
they are not field variables. The form of the total derivative
in (3a) may be explained in another way. By definition, Û is
the rate at with frontal radius R̂ changes, d R̂

d t̂
; thus (using

Ĥ(R̂) as an example)

DĤ

Dt̂
¼ dĤ

dR̂

dR̂

dt̂
¼ dĤ

dR̂
Û Û � dR̂

dt̂
; ð3bÞ

because Ĥ is a function of (R̂) only. Therefore, (2) with (3b)
may be written in nondimensional form, using a parameter-
ization of entrainment velocity ŴE; to lowest order

d H

d R
ffi �H

U

dU

d R
þ U

R

� �
þ g1G1

ŴE ¼ C1G1 R̂
� �

Û g1 ¼
C1R0

H0

; ð4Þ

where ŴE = C1G1(R)Û is a spatially variable entrainment
velocity, C1 is an entrainment coefficient, and G1(R)
describes the spatial variability of the strength of entrain-
ment. The boundary condition on H(R) is

H R00ð Þ ¼ 1: ð5Þ

[20] The boundary condition is set at R̂ = B0

2
(i.e., at half

the entrance width B0, where R = R00) in recognition of the
finite entrance width, and to avoid dealing with a singularity
at R̂ = 0. It is then useful to write (4) as

d ln U Hð Þ
d R

¼ � 1

R
þ g1G1

H
; ð6Þ

where ln() is the natural logarithm. From (6), it is evident
that frontal water transport U H decreases through radial
expansion and increases due to entrainment.
[21] Momentum conservation in the radial direction may

also be treated in a vertically averaged, Lagrangian form; in
dimensional variables we have

D Û

D t̂
ffi Û

d Û

d R̂
¼ � 1

r0

1

Ĥ

Z V̂
�ĥ

d p̂

d R̂
d ẑþ t̂I

Ĥ

0
B@

1
CA

� � 1

2 Ĥ

d

d R̂
ĝ0 Ĥ

2
� �

þ C2G2

Ĥ
Û

2
� �

; ð7aÞ

t̂I ¼ C2G2 R̂
� �

ÛF
2

with the pressure gradient given by

� 1

r0

1

Ĥ

Zẑ
�ĥ

d p̂

d R̂
d ẑ ffi � 1

2 Ĥ

d

d R̂
ĝ0 Ĥ

2
� �

¼ �
d ĝ0 Ĥ
� �
d R̂

� Ĥ

2

d ĝ0

d R̂
;

ð7bÞ

where p̂ is pressure, Ĥ = ĥ + V̂ is the sum of surface
displacement V̂ and plume basal depth ĥ, C2G2(R)Û

2 is a
representation of the spatially variable interfacial stress t̂I,
C2 is a constant, and G2(R) describes the spatial variability
of vertical turbulent momentum transfer. Specifically, t̂I is
the stress on the plume by a hypothetical motionless layer
beneath the plume. This neglects the stress on the plume
associated with the tidal motion of the subsurface layer; but
this stress is, by assumption, no larger than O(eF) and is not
relevant here.
[22] The assumption of isostatic adjustment (7b) is

common in theoretical analyses of buoyant plumes [e.g.,
Garvine, 1982, 1987]. However, following Røed [1997]
we include here the effects on the pressure gradient (in both
the surface slope and baroclinic integral) of the spatial
variations in g0; these terms are often neglected in analytical
plume theories but included in numerical models [e.g.,
O’Donnell, 1990]. Then (7a) and (7b) may be written in
nondimensional form as

d lnU

d R
¼ � 1

F2
R

1

g0H

d g0 Hð Þ
d R

þ H

2

d g0

d R

� �
þ g2G2

H

� �

g2 ¼
C2R0

H0

: ð8Þ

The boundary condition on U is

U R00ð Þ ¼ 1: ð9Þ
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[23] Using the same approach as in (2), the lowest-order,
nondimensional plume density difference (or alternatively
plume reduced gravity g0) is given by

1

g0
D g0

Dt
¼ �We

H
¼ � g1G1

H
U

d ln g0ð Þ
d R

¼ � g1G1

H
; ð10Þ

with

g0 R00ð Þ ¼ 1: ð11Þ

We may also combine (4) and (10) to form a conservation
equation for density deficit g0H:

d ln g0 Hð Þ
d R

¼ � d ln Uð Þ
d R

þ 1

R

� �
ð12aÞ

or

d ln Ug0 Hð Þ
d R

¼ � 1

R
ð12bÞ

g0 Hð ÞjR00
¼ 1: ð12cÞ

[24] The density deficit is useful, because it is the
denominator of the internal Froude number FR and is
determined only by frontal divergence, the entrainment
contributions from (4) and (10) are of opposite sign
and cancel. Further analysis requires that the momentum
equation (8) be put into a more useful form; using the
equations for g0 and g0H, (10), and (12a)–(12c)

F2
R � 1

� � d ln Uð Þ
d R

¼ 1

R
� F2

R �
Pr

2

� �
g2

G Rð Þ
H

; ð13Þ

where Prandtl number Pr = g1/g2.

3. Results: Model Solutions

3.1. Solution Strategy

[25] Equations (4)–(13) define a lowest-order plume
expansion problem with seven unknown functions of R:
H, U, g0 (or g0H), FR

2, G1, G2 and T, with parameters, g1 and
g2; several components of the problem are nonlinear. We
begin by finding solutions to linear parts of the problem,
i.e., for g0 (and g0H) and FR

2 in terms of H and U. We assume
that, because entrainment of mass into the plume is the
root cause of both thickening and slowing of the plume,
G1 = G2 � G(R). Also, we replace the entrainment coeffi-
cient g1 using Prandtl number Pr, with Pr < 1. Observations
can be used to constrain g2; Pr will be related to mixing
efficiency EF.
[26] The remaining equations for H, U, and FR

2 are
nonlinear. We consider an approximate analytical solution
and compare it to a numerical solution of the nonlinear
equations. The solutions discussed below have the follow-
ing characteristics:
3.1.1. Analytical Model (Model 1)
[27] The following two assumptions are made regarding

mixing and entrainment: (1) that the depth of the mixing

layer between the plume and the underlying water is
proportional to H (with an O(1) constant) and (2) that the
mixing efficiency EF is constant. These assumptions allow a
reformulation of the problem. While the new equations are
still nonlinear, one simplification linearizes the system and
allows solutions for H, U, and FR

2 that reproduce most
features of numerical solution of the full nonlinear system.
3.1.2. Numerical Model (Model 2)
[28] The nonlinear equations for H, U, and FR

2 are
solved numerically with three different mixing schemes,
including that used in Model 1. These numerical calcu-
lations provide both a check on analytical results and the
opportunity to examine the consequences of a variety of
mixing formulations.
[29] Model 1 was also tested in a preliminary version (not

shown) in which dg0/dR was neglected in the pressure
gradient. This test showed that the full pressure gradient
variation provides for a more complex variation in H and a
more realistic solution. This is logical, since H/2 dg0/dR
scales as half of g0 dH/dR.

3.2. Solutions for Density, Density Deficit, and Froude
Number

[30] It is simple to integrate (10) and (12a)–(12c) to
obtain g0 and g0H in terms of H and U

g0 Rð Þ ¼ Exp �g2 Pr

ZR
R00

G Rð Þ
H

dR0

2
64

3
75 ð14aÞ

g0Hð ÞjR¼
U0

U

R00

R
¼ 1

U

R00

R
; ð14bÞ

with g1 = Pr g2 and G1(R) = G2(R) = G(R). From (14a), g0

decreases with R, though its variation with R depends on
G/H. It is not immediately evident from (14b) whether the
mass deficit g0H increases or decreases with R. Multiplying
(14b) by U, we see that the density deficit transport g0HU
varies as R00/R

g0H Uð ÞjR¼
R00

R
: ð15aÞ

[31] Both the mass deficit and its transport are indepen-
dent of vertical mixing. Although entrainment affects H, U
and g0 individually, its net effect cancels in the product
g0HU. The integral in (14a) is generally intractable, but we
can use (14b) to determine g0 in terms of H and U

g0 ¼ R00

R

1

H U
: ð15bÞ

The R00/R factor in g0 decreases monotonically with R, but
(HU)�1 eventually increases, explaining the slow decrease
in g0 relative to other variables. It is also useful to express
the internal Froude number FR

2 in a form independent of
g0H, using the definition of FR

2 in (1b) and (14b)

F2
R Rð Þ ¼ F2

R0

R

R00

U3: ð16Þ
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3.3. Frontal Energetics

[32] We also wish to evaluate frontal energetics from the
models. We define, therefore, turbulent kinetic energy
production P, dissipation D, buoyancy flux B, and mixing
efficiency EF = B/D in terms of the flux Richardson number
Rif

P ¼ g2G
U3

H
; ð17Þ

D ¼ P 1� Rif

� �
; ð18Þ

B ¼ g1G g0 U ¼ g2 PrG g0 U ; ð19Þ

EF ¼ �
B

D
¼ Pr F2

R0

F2
R

¼ Rif

1� Rif

Rif ¼ �
B

P
: ð20Þ

By (20), EF varies with FR0
2 /FR

2. Thus, for EF to remain <1
(as it should) as the transition point at RFR is approached, Pr
must be spatially variable, an issue addressed in the
turbulence closure schemes for both models.

3.4. Model 1: An Analytical Approach

[33] Model 1 is an approximate analytical model. For
Model 1, we interpret G(R) as the nondimensional equiva-
lent of a length scale for the depth of the mixing layer, so
that G(R) � H(R). EF is assumed constant, and Pr is
specified in terms of EF. With these assumptions, the
momentum exchange and entrainment terms are as follows:

tI ¼ g2G Rð ÞU2 ¼ const g2H U2 ffi g2H U2

WE ¼ Pr g2G Rð ÞU ¼ const EF

F2
R

F2
R0

g2 H U ffi g0002 U H F2
R

Pr ¼ EF

F2
R

F2
R0

g0002 ¼ const
EF

F2
R0

g2 ffi
EF

F2
R0

g2:

ð21Þ

Pr is now variable, and dependent on the local value of FR.
Because FR is not a priori specified, it is part of the problem
to be solved. That const in (21) is O(1) can be seen from
(13), considered at the transition point, R = RTR. At RTR, the
left-hand side of (13) vanishes, and the two terms on the
right hand side must balance, allowing evaluation of const.
If EF is O(0.25–0.35) for vigorous interfacial mixing [Kay
and Jay, 2003], Pr > 0.25–0.35 will occur (if at all) only
during an initial period of plume motion when FR

2 > FR0
2 .

[34] The equations for momentum (13) and mass (6)
conservation are, using (21)

d ln Uð Þ
dR

¼ � 1

F2
R

d ln Hð Þ
dR

� b2; ð22Þ

d ln Hð Þ
dR

¼ � 1

R
� d ln Uð Þ

dR
þ g0002 F

2
R; ð23Þ

b2 ¼ g2 1� 3

2

EF

F2
R0

� �
: ð24Þ

Equation (22) is the sum of (6) and (18), after some
rearrangement. We now need a linear evolution equation for
FR
2. We begin from the momentum equation (13) and add

dln(g0H)/dR to both sides, and then add (13) and (17) to the
result. This operation yields, after application of (21)

d F2
R

d R
þ 3 g5 �

1

R

� �
F2
R ¼ 3

d ln Hð Þ
d R

g5 ¼ g2 1� 2
EF

F2
R0

� �
:

ð25Þ

[35] Equations (22), (23), and (25) have three unknowns
(H, U, and FR

2). Equation (22) is nonlinear, but one
approximation renders it linear, we take FR

2 = FRm
2 (in (22)

only), where FRm
2 is a constant to be determined. The

solutions are lengthy and given in Appendix A. Also, g0

and D are given by (15b) and (18), respectively, and T(R) is
integrated numerically from

T Rð Þ ¼
ZR
R00

U�1 d R0 ¼
ZR
R00

1
d R0

d t

d R0: ð26Þ

[36] Typical dimensional results for Model 1 are provided
in Figures 4 and 5, which show the influence on Model 1 of
variations in g2 and EF, respectively. The initial conditions
were: FR0 = 1.85, U0 = 1.85 m s�1, g0(R0) = 0.1 m s�2, and
H00 = 10 m. FRm

2 was taken as 1.1 but has surprisingly little
influence on the solution. The scaling of R was interpreted
such that R0 = 1 at the transition point RTR. Then EF0 = 0.27
and g20 = 1.65 were set such that the middle curve in
Figures 4 and 5 produced FR = 1 at R = 1. The value of drag
coefficient C2 equivalent to g20 is C2 = 6.5 � 10�4, which
seems plausible [Sorgard et al., 1990].
[37] It is evident from Figures 4 and 5 that H is not

necessarily monotonic; there is a sharp initial decrease (due
to spreading) in H followed by a slow increase to the
transition point, due to entrainment. The initial drop in
H forces an initial increase in FR

2, a feature also shown by
most of the numerical schemes below. There is a monotonic
decrease in U, but the behavior of g0 is complex, whether g0

increases or decreases with g2 depends on R; T(R) and
maximum values of D increase with increased mixing (with
g2) as expected; both of these properties resemble the
numerical solutions of Model 2. Over a plausible range of
EF, the solutions are not very sensitive to EF, except for g

0.
In contrast, g2 is poorly constrained, and H and FR

2 are
sensitive to reasonable variations in g2.

3.5. Model 2: Numerical Solutions for Three Mixing
Formulations

[38] Model 2 obtains numerical solutions by direct
numerical integration of the governing equations (2), (7a),
(7b), and (10). Solving this system numerically provides a
means of evaluating the consistency and accuracy of the
assumptions in Model 1 and also permits experimentation
with a variety of stress and entrainment parameterizations.
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Representation of dissipative processes is, as mentioned
above, essential to modeling supercritical plume expansion,
and use of a numerical model allows exploration of a variety
of turbulence closures, including those that are not analyt-
ically tractable.
[39] Several categories of mixing occur in the waters

traversed by the tidal plume. One class of mixing processes
occurs in the plume frontal zone (or plume frontal
‘‘plunge’’), and these have been the focus of previous
modeling and observational efforts [e.g., Garvine, 1981,
1982; O’Donnell, 1990; O’Donnell et al., 1998, 2008]. A
second category of mixing processes occurs behind the front
in a region of elevated shear at the plume base [Spahn et al.,
2009]. Nonlinear internal waves are released from the front
as it becomes subcritical, causing mixing beyond the front
[Nash and Moum, 2005; Pan et al., 2007; Pan and Jay,
2009]. Given the high stratification in the plume base, it is

likely that internal waves are also involved in mixing behind
the plume front, but details are not known. Because of the
multiple mixing mechanisms, no single mixing model is
likely to be correct for the entire plume liftoff zone, tidal
plume and near-field. Our interest here is, however, more
limited, we seek a reasonable representation of mixing in
the shear layer at the base of the plume, just behind the tidal
plume front. This is consistent with the fact that we are not
representing the conditions in the actual frontal plunge.
Considering only shear mixing at the base of the plume,
however, there are still several possible approaches. Our
purpose is to examine some of these mixing parameter-
izations to see if their predictions regarding plume behavior
are sufficiently distinctive that one model may be differen-
tiated from another. And if they are different, we seek to
determine whether any one model stands out as superior.

Figure 4. Dimensional results for Model 1 for EF = 0.27 and five values of g2 = g20{0.5, 0.75, 1, 1.25,
1.5}, with g20 = 1.65. Shown are H, D, U, FR, g

0, and T.
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[40] We consider three parameterizations for the stress t̂
and entrainment ŴE. Dimensional variables are used, drop-
ping the hats. The mixing schemes will be indicated by a
parenthetical superscript on variables, as needed. Common to
all models is the assumption of constant mixing efficiency,
an assumption also used in Model 1 and supported by
numerous observations of stably stratified shear-driven
turbulence [e.g., Ivey and Imberger, 1991; Peltier and
Caulfield, 2003].
3.5.1. Scheme 1
[41] This approach uses a quadratic stress law with a drag

coefficient (CD) having a prescribed spatial variation: CD =
C2 H/H00; the dimensional stress is

t 1ð Þ ¼ C2

H

H00

U2: ð27aÞ

In this model, the entrainment WE is computed from the
buoyancy flux B by assuming a constant flux Richardson
number (Rif, ratio of buoyancy to production), or equiva-
lently, a constant mixing efficiency EF = Rif/(1 � Rif).
Essentially, the assumption here is that the mixing is driven
by shear distributed over the entire plume depth H, which is
also, therefore, the vertical scale for shear. Since plume
stratification extends essentially to the free surface, this
seems a reasonable approach. Given these assumptions, the
dimensional WE is

W
1ð Þ

E ¼ CD Rif U ¼ EF C2

H

H00

F2
R

F2
R0

U : ð27bÞ

This is the same turbulence closure as used in Model 1.
Since FR

2 is the inverse gradient Richardson number, Rig
�1,

Figure 5. Dimensional results for Model 1 for g2 = 1.65 and five values of EF = EF0 + {�0.1, �0.05, 0,
0.05, 0.1}, with EF0 = 0.27. Shown are H, D, U, g0, FR, and T. Only g0 is more sensitive to EF than g2.
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Scheme 1 is also similar to the parameterization first
suggested by Ellison and Turner [1959], at least up to a
constant.
3.5.2. Scheme 2
[42] This approach is similar to Scheme 1; it uses a

quadratic stress law, t(2) = CD UF
2, but CD = C2 = constant.

A relationship between the turbulent kinetic energy (TKE)
production P and dissipation D is also used; P is given by

P ¼ t 2ð Þ UF

‘
‘ 2ð Þ ¼ H ; ð28aÞ

where the length scale ‘ of the shear is again assumed to be
H. Entrainment is computed from the turbulent buoyancy
flux B = �g0WE by assuming a constant Rif = �B/P; thus

W
1ð Þ

E ¼ C2 Rif U � C2 EF

F2
R

F2
R0

U : ð28bÞ

Like Scheme 1, Scheme 2 has the inverse dependence on
Rig suggested by Ellison and Turner [1959].
3.5.3. Scheme 3
[43] There is some observational and theoretical support

for the assumption (used in both Schemes 1 and 2) that ‘ �
H. However, the plume more closely resembles, in its early
evolution, a strongly forced estuarine shear layer with
constant (critical) Rig [Cudaback and Jay, 2000; Seim and
Gregg, 1994]. Under this assumption, the shear is confined
to a layer beneath the plume, and the mixing layer thickness
l is determined from the critical Rig = Rigc

‘ 3ð Þ ¼ Rigc

U2

g0
¼ Rigc F

2
R H : ð29Þ

Thus, Scheme 3 consists of a quadratic stress law with an
entrainment formulation based on l

t 3ð Þ ¼ CD U 2 ð30aÞ

W
3ð Þ

E ¼ CD

Rif

Rigc

U ; ð30bÞ

where we have again assumed a constant flux Richardson
number Rif and mixing efficiency EF. This approach is both
conceptually and functionally distinct from the Ellison and
Turner [1959] approach in Schemes 1 and 2. The key idea is
that the shear is strong and that the turbulence adjusts
rapidly enough to maintain the flow in a critical state.
Laboratory results suggest the choice of Rigc as �0.25 [Rohr
et al., 1988; Piccirillo and Van Atta, 1997]. However,
internal waves, ubiquitous in the plume but absent in
laboratory studies, may influence the turbulence, perhaps
modifying Rigc in ways not explored here.

[44] Mixing Schemes 1–3 were incorporated into a
numerical model with the following properties. A multistep
predictor-corrector scheme is used to integrate (2), (7a),
(7b), and (10), with variables evaluated at the central
position using the Asselin-Robert filter [Asselin, 1972;
Robert, 1966]. Experiments with numerical convergence
show that the solution is stable and accurate, except when
FR
2 approaches FRC

2 = 1, and the calculation is ended. The
values and plausible range of the constants used in Schemes
1–4 are summarized in Table 2. CD is dependent on
environmental conditions and uncertain; it was chosen in
the numerical model to yield reasonable agreement with the
observed plume propagation distance during greater ebbs.
Limited experience suggests that the solutions are highly
sensitive to Rif and Rigc, but less so to FR(R0), and CD.
[45] Initial conditions were estimated from observations

for 8–9 August 2005 [Moritz et al., 2005]. Five moored
tripods were deployed with upward-looking acoustic Dopp-
ler current profilers (ADCPs), along with a tethered chain of
conductivity-temperature-depth profilers (CTDs), so that
simultaneous measurements of velocity and density struc-
ture are available at sites in the main navigation channel,
�500 m apart. H was defined assuming a plume base at the
salinity S = 20 isohaline; U and g0 were computed as
averages above this level. Figure 6 shows the interface data
which are the basis for the initial conditions. Fortunately,
the results are insensitive to the value of S used to define
layers, at least for S = 18–26. U and FR

2 are similar for the
two lesser ebbs and for the two greater ebbs, but show
strong time variations during each tide. The initial condi-
tions are applied at R00 = 1500 m, just outside the estuary
mouth, �2 km from the site of observations. The initial time
is referenced to local high water in the estuary, because the
onset of plume formation, several km landward of the
observation site, occurs shortly after high water.
[46] We show here Model 2 results for greater ebb

(Figure 7). Initial conditions were the same as for Model 1:
U(R00) = 1.85 m s�1, H(R00) = 10 m, g0(R00) = 0.1, and
FR(R00) = 1.85. All three mixing schemes indicate that the
plume propagates between 16 and 23 km offshore before
transitioning to subcritical flow at FR = 1, generally in accord
with observations (Table 1) for this tidal range. H initially
thins rapidly and then thickens again for all schemes. There
are still differences between the schemes, however, empha-
sizing the sensitivity of plume models to the mixing
algorithm used [cf. Hetland, 2005]. Schemes 1 and 2 are
generally realistic, but Scheme 3 shows too much thinning
at 5–10 km from the origin. Scheme 3 also differs from the
other two for g0, FR, D and transition distance (or transition
time TTR). All schemes show plausible FR histories, but
scheme 3 shows a higher maximum value of FR (at 5 km),
larger values of g0, and a slower decrease in D. Still,
predicted values for D are generally similar for Schemes
1–3.Values of U are, after the first 10 km, mostly within the
observed 0.5–0.8 m s�1 range. The similar results for U,
but diverse results for g0 and H, emphasize the importance
of the choice of length scale ‘. The biggest difference,
however, between Scheme 3 and Schemes 1 and 2 lies in
the time and location of the transition to subcritical
conditions. The transitions time TTR is �4 hr for Scheme
3 but 6–7 hours for the other two schemes. These TTR
values correspond to a transition radius, RTR, of �16 km

Table 2. Parameter Values Used in Model 2

Parameter Value Range Reference

Rif 0.2 0.1–0.3 Piccirillo and Van Atta [1997]
Rigc 0.25 0.2–0.3 Rohr et al. [1988]
CD 2–3 � 10�4 1–6 � 10�4 Sorgard et al. [1990]
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for Scheme 3, but 21–23 km for the other two. The
Scheme 3 transition occurs too early, relative to the
observations (below).
[47] It is also useful to compare the analytical and

numerical models. Results for Model 1 (Figures 4 and 5)
and Model 2 (Figure 7) are generally similar, suggesting
that linearization of (22) is not fatal to model validity.
However, Models 1 and 2 differ in detail, e.g., for U
(monotonically decreasing in Figures 4 and 5, but with a
maximum just after liftoff for all numerical schemes), D and
g0. Also, Model 1 predicts a slightly larger minimum value
of H, attainment of minimum H at a larger R, slower
propagation times, and a smaller transition radius RTR. Still,
Model 1 results are similar to those for numerical Schemes
1 and 2 in most respects, and the Model 1 predictions of
transition timing are actually better than those from the
numerical model (below).
[48] It is interesting that a reasonably realistic plume

evolution is achieved by both models with minimal tuning
of the mixing parameters and without making assumptions
about plume frontal jump conditions [cf. Garvine, 1981].
While the details of mixing in the frontal bulge are impor-
tant to the shape of the frontal plunge and the exact critical
value of FR, the basic description of plume behavior as a
balance between thinning due to radial expansion and
thickening due to entrainment is independent of these
details, as suggested by (15a). Thus, a model that does

not describe frontal behavior in detail can still provide a
reasonable representation of tidal plume behavior.
[49] The most similar and most plausible mixing models

are Schemes 1 and 2; Scheme 1 is the same as used in the
analytical model and bears a strong resemblance to Ellison
and Turner [1959]. Both assume a mixing layer scale depth
of H. Interestingly, this seems to work better than assuming
that a constant Richardson number is maintained (Scheme 3),
though perhaps tuning Rigc would improve the results for
Scheme 3.

4. Discussion

[50] Direct tests of the frontal models developed here are
difficult to obtain. Time histories of frontal properties are
needed. Vessel observations (density and velocity sections)
are available from RISE (River Influences on Shelf
Ecosystems) cruises for a number of plume expansions,
but usually with only 1–2 passes through the front. This
does not allow formation of the desired time histories of
frontal properties. Also, there is variability around the
circumference of the plume related to vorticity dynamics
[Jay et al., 2009], so that the appropriate comparison would
be to the azimuthally averaged properties; this is impractical
with vessel data. Furthermore, many plume frontal crossings
occur after the transition to subcritical conditions and do not
provide data of interest here. Finally, no RISE data are

Figure 6. Observations showing plume initial conditions in the MCR area as inferred from a moored
upward-looking ADCP and a tethered CTD chain in August 2005. (top) Seaward velocity (U), internal
wave speed (c = g0H), and Froude number (FR = U/c) are shown. (bottom) Water level and depth of the
S = 20 isohaline are shown as height above bottom (HAB). The S = 20 isohaline is not present when
the salt wedge is swept upstream during flood.
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available near the liftoff point to determine initial conditions
and the early history of frontal properties, because of
difficult sea and vessel traffic conditions.
[51] Overall, the strongest comparison to data is between

predicted front travel times and travel times from SAR
images (e.g., Figure 1 and Table 1) and ship’s radar
(Figure 2). Both allow selection of the most appropriate
point on the front for estimation of plume radius, and the
latter allows, for some periods, direct determination of
frontal speeds. Both also allow supercritical fronts to be
distinguished from subcritical fronts that are not of interest
here.
[52] There are, in comparing theory and data, the follow-

ing two potentially confounding issues: (1) the different role
of tidal currents and river flow in setting the initial Froude

number FR0 = FR(R00) and (2) the effect of coastal currents
and wind in altering frontal propagation speed. The above
theory incorporates the strength of tidal forcing and river
flow together into FR0. FR0 is the most important forcing
variable for all models, but was not be directly observed by
RISE. Results from Cudaback and Jay [2000] and other
limited observations suggest that river flow and tidal cur-
rents have distinct effect on FR0, even though both contrib-
ute linearly to the numerator. In particular, we expect
increased tidal currents (proportional to tidal range) to
increase the initial H but decrease g0, while increased river
flow should increase initial values of both H and g0. Thus,
various combinations of tidal currents and river flow may
lead to the same FR0 but different T(R) histories.

Figure 7. Numerical model results for vertical mixing Schemes 1–3 for greater ebb conditions typical
of 8 and 9 August 2005, using the initial condition data based on Figure 6. Initial conditions are R00 =
1.5 km, U(R00) = 1.85 m s�1, H(R00) = 10 m, and g00(R00) = 0.1. Model parameters are as listed in
Table 2.
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[53] Winds and alongshore currents also affect plume
propagation speed through direct advection of the tidal
plume and by contributing to mixing. We examine, there-
fore, the correlations of average plume frontal speed hUi =
R/T(R) (determined from SAR images) with tidal range in
the MCR (http://tidesandcurrents.noaa.gov/tides07/), river
flow measured at river km 86 (http://waterdata.usgs.gov/
nwis), and northward and offshore transports at 45�N,
125�W (http://www.cbr.washington.edu/dart/upwell_
com.html). Figure 8 shows that all parameters are at least
weakly correlated with hUi, but the strongest relationships
are with river flow QR and tidal range, increases in both of
which increase hUi. Offshore transport during upwelling
slows the plume slightly. This may occur either because
offshore transport is correlated with southward coastal
currents, or because offshore currents push the tidal plume
offshore into an area of stronger southward advection.
Northward transport slightly increases plume frontal speed,
likely because of direct northward advection. A multiple
linear regression modeling hUi in terms of the above four
factors has an adjusted r2 = 0.46, only marginally better than
the sum of the adjusted r2 for linear regressions of hUi
against QR (r2 = 0.27) and tidal range individually (r2 =
0.18). Nonetheless, addition of each variable improves the
regression, and the offshore and northward transports are
sufficiently independent that both contribute to the analysis.
[54] In considering Figure 8, certain correlations and

sampling biases should be considered. First, longer-lasting
plume fronts with a higher initial FR are more likely to be

observed, but the longer a plume front has been propagat-
ing, the slower it moves. Thus, there is, in principle, a
negative correlation between speed and radius, but adding
radius to the above multiple linear regression does not
explain significant additional variance. Also, frontal asym-
metry causes fronts on the north side of the plume to remain
supercritical for the longest time, and these fronts are the
most likely to be observed. Nonetheless, we use the above
regression results to estimate propagation times in the
absence of coastal forcing related to upwelling and
downwelling.
[55] We compare observed frontal travel time T(R) (from

SAR and ship’s radar) to predicted T(R), by Model 1 in
Figure 9 and by Model 2 (Scheme 2) in Figure 10. Each dot
in Figures 9 and 10 represents a travel time from a SAR or
ship radar image. The curved lines are predicted travel times
for the FR0 indicated. The solid line shows the trend of the
SAR data. In constructing Figures 9 and 10, the initial
conditions g00 and H00 associated with each FR0 were
estimated, based on Cudaback and Jay [1996, 2000].
Of interest is the fact that the observed T(R) is nearly
linear in R while the models all predict a decrease in
speed with R. The apparent linearity of the observed T(R) is
in part a sampling artifact, different values of T(R) typically
represent different initial conditions, with larger FR0 values
leading to longer travel times before the transition point is
reached. However, Figure 10 shows that the transition
points (where FR = 1) also lie along a line, so the almost
linear behavior of T(R) versus R is not unexpected.

Figure 8. The response of average plume frontal speed hUi = R/T from SAR images to forcing by river
flow QR, tidal range, offshore transport, and northward transport. hUi is distance traveled (from the MCR
to the front) divided by elapsed time since plume initiation, 1 hour after high water.
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[56] Both Models 1 and 2 provide plausible predictions of
frontal trajectories over time, with FR0 = 3 as the largest
forcing value (a conservative choice). It is evident in
Figures 9 and 10, however, that predicted travel times fall
below the average travel time line (from SAR data) for all
initial FR values (Model 2) or the larger initial values
(Model 1). Each SAR data point in Figures 9 and 10
represents a front that has not yet decreased to FR = 1;
thus, the regression fit to the SAR data inevitably over-
estimates average frontal speeds (underestimates travel time
TTR) to the transition point. This is necessarily the case,
because U decreases as the transition point is approached,
and the supercritical fronts in SAR images (taken before the
front reaches RTR) do not sample the slowest part of the
frontal trajectory. A hypothetical ‘‘correct’’ average travel
time curve would, by including the entire trajectory, fall
above the SAR regression line. Thus, the predicted travel

time lines should cross the regression line as FR = 1 is
approached. We inquire, therefore, why they do not do so in
all cases.
[57] Coastal transports influence frontal propagation, par-

ticularly for the plume fronts that have traveled the
farthest. The multiple linear regression model summarized
in Figure 8 has, therefore, been used to hindcast propaga-
tion times based only on the influence of QR and tidal range.
This is done by hindcasting frontal speed with the influence
of coastal transport removed; i.e., for a hypothetical situa-
tion without winds. The results are compared to Models 1
and 2 in Figures 11a and 11b, which show corrected SAR
data travel times and predicted travel time curves for Model
1 and for Model (Scheme 2), respectively. There are two
straight lines on each plot, the solid line is the trend for the
corrected SAR data, while the dotted line is the trend of the
uncorrected SAR data (as in Figures 9 and 10). Comparing
Figures 9 and 10 to Figures 11a and 11b, we see that
correction for coastal influences has decreased the slope of
the SAR travel times on the T(R) versus R plot; i.e.,
increased the average speed of the observed plume fronts.

Figure 9. Observed travel time T(R) versus R as extracted
from SAR images (upwelling (squares), downwelling
(inverted triangles), and neutral (triangles)) and ship’s radar
(circles). The black line is a best fit to the SAR travel times,
T(R) = 0.35R (adjusted r2 = 0.76), with T in hours and R in
km. Also shown are travel time curves predicted by Model 1
for the initial FR0 values shown, with each curve extending
to the transition point where FR = 1. For Model 1, EF = 0.27
and g2 = 1.46–2.06.

Figure 10. Observed travel time T(R) versus R from SAR
images (symbols as in Figure 9). Also shown are travel time
curves predicted by Model 2, Scheme 2 for the initial FR

values indicated, with each curve extending to the transition
point where FR = 1. The black line is a best fit to the SAR
travel times. Other initial conditions and parameters are as
in Figure 7.

Figure 11a. Predicted frontal travel time T(R) versus R
curves for Model 1. Also shown are observed T(R) values
from SAR images (squares), with T(R) corrected for
upwelling/downwelling effects; see text for details. The
solid line is the trend of the corrected T(R) values. The
dotted line is the trend of the uncorrected T(R) values from
Figure 9.

Figure 11b. Predicted frontal travel time T(R) versus R for
Model 2, Scheme 2. Also shown are observed T(R) values
from SAR images (squares), with T(R) corrected for
upwelling/downwelling effects; other details are as in
Figure 11a.
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In general, the longest travel distances occur for fronts on
the northwest side of the plume during upwelling and weak
wind conditions. These fronts are slowed by southward
coastal currents, which also provide shear that helps to
maintain FR > 1. Most plumes that have traveled <12 km
represent downwelling conditions and are accelerated by
coastal flows, though some may simply be at a very early
stage of propagation. After this correction for coastal
influences on the plume, it is evident that Models 1 and 2
provide reasonable predictions for most cases, though
Model 2 still predicts travel times that are less than many
of the observations.
[58] In summary, Figures 11a and 11b suggest that Model

1 and Scheme 2 of Model 2 predict plausible plume front
travel times, in terms of TTR values. Model 1 uses a mixing
model that is essentially the same as Scheme 1 for Model 2,
and Schemes 1 and 2 for the Model 2 are also quite similar.
What schemes 1 and 2 have in common is an assumption
that the shear length scale is directly proportion to plume
thickness, which, consequently, results in an entrainment
scheme with inverse Rig dependence [Ellison and Turner,
1959]. The performance of Scheme 3, which sets the mixing
scale length by maintaining a specified critical gradient
Richardson number Rigc, is also generally similar to
Schemes 1 and 2 with respect to velocity U and travel time
T(R). Scheme 3 differs, however, from Schemes 1 and 2
with respect to frontal depth H, density g0, and transition
time TTR. While we are not able to provide a conclusive
comparison to data for these parameters, it appears that
Scheme 3 predicts too much thinning of the plume in the
early stages of propagation, leading to a premature transi-
tion to subcritical conditions.

5. Conclusions

[59] This contribution has analyzed the initial motion of
the tidally pulsed plume emanating from the Columbia
River mouth. Following Rudnick and Davis [1988],
Lagrangian frontal equations were used, simplifying the
analysis of supercritical frontal propagation. The analysis is
applicable to the tidal plume front, which bounds the plume
near-field waters that have been in the coastal ocean less
than �12 hours. This time period is critical, because it is
during the initial interaction with coastal water that the most
rapid changes occur to the plume. After the tidal plume front
slows to a subcritical state, vertical mixing is reduced and
the tidal plume merges into the rest of the plume near-field.
[60] Model results suggest that the Lagrangian framework

is useful in that the equations are subject to analytical,
though still approximate, solutions for the plume frontal
variables: depth H, speed U, density deficit g0, and frontal
Froude number FR

2. It is important that FR
2 not be constrained

to have some simple form, even though this complicates
solution of the Lagrangian equations by adding another
unknown. Early versions of the analytical model (not
shown) that did prescribe FR

2 did not perform as well as
Model 1 (the analytical model finally implemented) or
Model 2 (the numerical model implemented with three
turbulence closures).
[61] The approximate, analytical solution (Model 1)

avoids any assumption regarding the form of FR
2, but does

assume a spatially constant mixing efficiency and that
mixing layer thickness is proportional to H. Model 1
predicts realistic frontal speeds, when compared to travel
time data from ship’s radar and SAR images.
[62] The Lagrangian frontal propagation equations can

also be solved numerically (Model 2). We have done so
with three mixing schemes, the first of which mimics Model
1, without the approximations needed to obtain analytical
results. Two of the three mixing schemes tested produce
similar results. Both assumed a specific formulation for a
vertical length scale over which vertical mixing occurs, as in
Model 1 and Ellison and Turner [1959]. Predicted FR

2

variations and travel times for the two more realistic mixing
schemes are also quite similar to Model 1.
[63] It is important to include both the barotropic and

baroclinic components of the pressure gradient, which is
formulated using an isostatic assumption for the surface
slope. The baroclinic pressure gradient component, related
to the radial density variation of the plume front, is often not
included in analytical analyses of plume dynamics.

Appendix A

[64] Here, we set out the solutions for Model 1. Model 1
has three primary unknowns: FR

2, H and U, which are
specified by solution of (22), (23), and (25). FR

2 from (25) is

F2
R ¼ e�f1 Rð Þ

 
R const1 �

3F2
Rm

1þ F2
Rm

ef1 Rð Þ
� �

�3R F2
Rm

1þ F2
Rm

� �2 f2 ExpInt f1 Rð Þð Þ
!

f1 Rð Þ ¼
3 F2

Rm g0002 þ g5
� �

þ g5
� �

1þ F2
Rm

R; ðA1Þ

f2 ¼ 1þ F2
Rm

� �
b2 � 3 g5 þ g0002 þ g5

� �
F2
Rm

� �� �
g5 ¼ 1� 2

EF

F2
R0

where

ExpInt zð Þ ¼ �
Z 1
�z

e�z
0

z0
d z0: ðA2Þ

Integration constant const1 is

const1 ¼
e�f1 R00ð Þ

R00

 
F2
R0 þ

3F2
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1þ F2
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þ 3F2
Rm

1þ F2
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!
: ðA3Þ

H from (23) is given by

H ¼ const2 e
f4 Rð Þ
f3a e

�e�f1 Rð Þ f5 Rð Þ
9f3a

const1 e

g000
2

F2
Rm
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Rmð Þ2

f2 f5 Rð Þ
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R
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with

f3a ¼
F2
Rm g0002 þ g5
� �

þ g5
� �2

F2
Rm

f4 Rð Þ ¼ b2 g
5ð Þ
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R
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U from (22) is given by
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These values were derived using the symbolic algebra
capabilities and differential equation solver inMathematica

1
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