Drafting in Self-Timed Circuits

Christopher Cowan
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_phd_day

Part of the Controls and Control Theory Commons, and the Electrical and Electronics Commons

Let us know how access to this document benefits you.

Citation Details
Cowan, Christopher, "Drafting in Self-Timed Circuits" (2018). Electrical and Computer Engineering PhD Day. 3.
https://pdxscholar.library.pdx.edu/ece_phd_day/3

This Poster is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering PhD Day by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
What is Drafting?
- Handshake pulses travel around a ring of stages.
- Intervals between the pulses change with time.
- The green interval lengthens, while the others shorten.
- This is called "drafting", like bicycle riders.
- If the interval is data, drafting corrupts the data.

The Behavior of the Internal Node in the NOR Gate Causes Drafting
- Node K discharges during the interval via a diode connected PMOS.
- As V_K decays it takes longer to charge it back to V_{DD}.
- Longer intervals (2) need longer charge time than shorter intervals (1).
- Longer charge = longer propagation delay through the NOR and drafting.

Test FIFO for Drafting
- The test circuit is a 17 stage FIFO.
- Three circulating handshake pulses and three intervals.
- The handshake decision gate is a NOR.
- The NOR decision gate can be in a Left or a Right configuration with the same logical function.
- Propagation delay changes with interval size by the decay of V_K.
- The varying propagation delay creates drafting.
- Short intervals shorten faster than longer intervals.
- In a ring FIFO this results in one long interval and the others short.

Circuit to Control Drafting
- For drafting, allow the K node to decay normally.
- For NO drafting, keep the K node constant.
- For anti-drafting (AD), force a rising profile at K.
- AD causes intervals to become equal rather than shrinking.

Control Circuit Results
- Three intervals are measured in nominal gate delays during simulation.
- During NO Draft control, the intervals do not change.
- During Draft control, two intervals become minimal and the third becomes maximum.
- During Anti-Drafting control, all intervals become equal.

References