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1 Introduction

For persons with aphasia, naming tests are useful for assessing the severity of the disease and
observing progress toward recovery. The Philadelphia Naming Test (PNT) is a leading naming
test composed of 175 items. The items are common nouns which are one to four syllables in
length and with low, medium, and high frequency (Fergadiotis et al., 2015). Since the target
word is known to the administrator, the response from the patient can be classified as correct or
an error. If the patient commits an error, the PNT provides procedures for classifying the type
of error in the response (Fergadiotis et al., 2015). Item response theory can be applied to PNT
data to provide estimates of item difficulty and subject naming ability (e.g., De Ayala (2013)).

Walker et al. (2018) developed a multinomial processing tree (MPT) model to draw more
insight from the types of errors patients commit in responding to an item. The MPT model
expands on existing models by considering items to be heterogeneous and estimating multiple
latent parameters for patients to more precisely determine at which step of word production a
patient’s ability is affected. These latent parameters represent the theoretical cognitive steps
taken in responding to an item, shown in Figure 1.

The purpose of this paper is to provide an assessment of the goodness-of-fit of the MPT model
through posterior predictive checking. Background information for the MPT model is provided
in the next section, followed by details of the statistical methods applied and results. The paper
concludes with a discussion of areas for improvement for the MPT model and implications of
use with the current design.

MPT Model Architecture

Figure 1 shows the structure of the MPT model where the probability of successfully performing
each of the processes is denoted by the letters a-h. Of the eight processes specified by the
model, Attempt, LexSem, LexPhon, LexSel, and Phon are dependent on the patient’s ability
and the item difficulty. There is one participant-only parameter Sem, one item-specific parameter
Word-T, and one global parameter Word-L. The word outcome is dependent on which processes
the subject performs correctly and will end in one of eight possible response categories: Correct,
Semantic, Formal, Mixed, Unrelated, Neologism, Abstruse Neologism, and Non-naming Attempt.

The MPT model applies the Rasch model from item response theory to estimate the Attempt,
LexSem, LexPhon, LexSel, and Phon parameters. Given the ability estimate θts for subject t
and item difficulty estimate δks for item k, the probability of correctly performing process s is
calculated as:

ψstk =
e(θts−δks)

1 + e(θts−δks)
(1)

Each of the ψstk probabilities are assumed to be independent of each other. Letting j rep-
resent the response category, the probability of following a particular branch i to category j is

Figure 1: MPT model structure
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then given by:

P (Bkji|ψt) =

S∏
s

ψ
akjis

ts (1− ψts)bkjis (2)

where akjis equals 1 if process s was performed correctly and equals 0 otherwise. Conversely,
bkjis equals 1 if process s was not performed correctly and is 0 otherwise.

Since there are multiple branches leading to the same error type, the probability of a certain
response category occurring is the sum of the probabilities for all branches leading to that error.
Let Ij be the number of possible paths for response category j. For example, Ij = 1 for the
Correct category since there is one path terminating with Correct; however, Ij = 4 for the Formal
category since there are four paths terminating with Formal. For each person t, the probability
of a particular response category j on item k is given by:

P (Ckj |ψt) =

Ij∑
i=1

S∏
s=1

ψ
askji

st (1− ψst)bskji (3)

The category counts nt = (n11t, . . . , nkJt, . . . , nK1t, . . . , nKJt) for each person t on item k
and category j follows a product-multinomial distribution:

P (N t|ψt) =

K∏
k=1

J∏
j=1

P (Ckj |ψt)nkjt (4)

The MPT model is composed of 2,923 parameters in total. There are 1,872 parameters
which are subject-specific (312 subjects times 6 subject-specific parameters), 1,050 item-specific
parameters (175 items times 6 item-specific parameters), and one global parameter. The poste-
rior distributions are calculated through Gibbs sampling with standard normal priors for subject
ability and item difficulty parameters and standard uniform for the Sem, Word-T, and Word-L
parameters.

2 Methods

We fit the MPT model using RStan (Stan Development Team, 2020) for implementing the
sampling algorithm. Four chains were run in parallel to check for model convergence, which was
observed in traceplots. The chains were thinned to reduce auto-correlation, resulting in 2,000
MCMC draws which were used for inference. For each of the 2,000 draws, a sample from the
posterior predictive distribution was sampled.

To test the goodness-of-fit of the MPT model, posterior predictive checks were used. If the
posterior distributions of the model parameters fit the data well, samples drawn from the poste-
rior predictive distribution should be similar to the observed data. That is, we can determine how
well the model fits the observed data by the extent to which the posterior predictive data aligns
with the observed data. The posterior predictive distributions were analyzed by calculating
model prediction accuracy and discrepancy statistics. Additionally, Bayesian credible intervals
were calculated to determine confidence in the participant naming ability point estimates.

Model Prediction Accuracy

Each draw from the posterior predictive distribution is a vector of length 8 composed of seven 0’s
and one 1 which indicates the response category predicted from the corresponding draw from the
posterior distribution. Following the approach of Walker et al., for each person and item combi-
nation, the mode (i.e., the most frequently predicted response category from the 2,000 posterior
predictive samples) was taken as the predicted response type. The MPT model’s accuracy and
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fit is calculated by reconstructing the data from the posterior predictive distribution. In other
words, the accuracy is the percent of the original data which can be correctly recovered from
the model parameters. Sensitivity and specificity (a.k.a., true positive and true negative rates,
respectively), as well as precision were calculated for each response category to observe the MPT
model’s accuracy across response types.

T1 and T2 Statistics

Klauer (2010) developed the T1 and T2 statistics to use as posterior predictive checking metrics
for multinomial processing tree models. We computed these T1 and T2 discrepancy statistics
to assess the recovery of the mean and covariance structure of the data, respectively. For these
statistics, we consider each item which a subject responds to as a subtree. This is to account for
item heterogeneity, which is a core feature of the MPT model. Using this approach, there are
175 subtrees, and each participant navigates each subtree once per item they are shown. We cal-
culated the T1 and T2 statistics as follows: on every draw s from the 2,000 posterior distribution
samples, we calculated T (data,ψ). For the same draw from the posterior distribution, a draw
from the posterior predictive distribution was taken and T (datapred,ψ) was calculated. This
creates 2,000 T1 and T2 statistics from the observed data and the corresponding 2,000 T1 and T2
statistics for the predicted data. The p-value for each T statistic is the proportion of times where
T (datapred,ψ) > T (data,ψ). Klauer states that the model is adequately recovering the mean or
covariance if the p-value is not small. A small p-value would indicate the T statistics from the
posterior predictive data are mostly smaller than the T statistics from the observed data. This
would suggest the model is not adequately recovering the mean or covariance structure observed
in the data.

The T1 statistic tests if the mean category frequencies across participants in the data are
recovered by the model. For each person t, the expected category counts are given by the number
of trials on each item multiplied by the probability of each category for that item. Since each
item is only attempted once per person, the expected category counts n̂kjt on item k for category
j and person t is n̂kjt = p(Ckj |ψkjt). The average expected category counts over persons is then

n̂kj. = 1
T

∑T
t=1 n̂kjt. The observed category counts nkjt are the frequencies observed in either

the data or the samples from the posterior predictive distribution. The average category counts
for the observed frequencies are similarly averaged over persons such that nkj. = 1

T

∑T
t=1 nkjt.

The T1 statistic is then given by:

T1(n, θ) =
∑
kj

(nkj. − n̂kj.)2

n̂kj.
(5)

The T2 statistic tests if the covariance structure observed in the data is adequately recovered
by the model. The expected covariance for an item/category combination σkj,lm is composed of

two parts. Part (1) is the covariance over persons of the expected counts multiplied by (T−1)
T .

This covariance is calculated for all item and category combinations. Letting k, l represent
two items and j, m represent two category types, this covariance is given by 1

T

∑T
t=1(n̂kjt −

¯̂nkjt)(n̂lmt − ¯̂nlmt) where ¯̂nkjt and ¯̂nlmt are the means of the expected counts over t for that
particular item/category combination. Note that whenever k = l and j = m this is simply the

sample variance of n̂kjt over t multiplied by (T−1)
T .

Part (2) is first computed for each person t. This person-level covariance is given by the
covariance formula for the product multinomial distribution shown in Equation 4. The covariance
between categories from two distinct items is assumed to be 0. For distinct j,m within the
same item k, this is −pkjtpkmt. When j = m, the variance is given by pkjt(1 − pkjt). These
variances/covariances are averaged over t. Then, parts (1) and (2) are summed together, such
that

σkj,lm =
1

T

T∑
t=1

(n̂kjt − ¯̂nkjt)(n̂lmt − ¯̂nlmt) +
1

T

T∑
t=1

cov(n̂kjt, n̂lmt).
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The observed covariance skj,lm is calculated from the data or predicted data and multiplied by
(T−1)
T . The T2 statistic is given by:

T2(n, θ) =
∑
kj

∑
lm

(skj,lm − σkj,lm)2
√
σkj,kjσlm,lm

(6)

Subject Ability Credible Intervals

Walker et al. constructed 95% Bayesian credible intervals to assess the reliability of the subject
ability estimates provided by the MPT model. The intervals were calculated by taking the mean
of the posterior distribution plus or minus two standard deviations. However, subject abilities
in the MPT model are not required or known to be normally distributed. Here, we calculate
Bayesian 95% highest posterior density credible interval to assess the certainty of the ability
estimates.

3 Data

Response categories to the Philadelphia Naming Test were collected from 312 subjects. Table 1
shows the description of the category responses provided by Walker et al. Of the 312 subjects, the
data for 289 of them were collected from the Moss Aphasia Psycholinguistics Project Database
(MAPPD) (Mirman et al., 2010).

Each subject was shown each of the 175 items in the PNT, giving 54,600 total responses.
The total category counts from all subjects are shown in Table 1. The category counts as a
percentage of the data are similar to those used by Walker et al. The largest difference is in
the Correct category. The data for this project contained 61.6% Correct responses. The data
used by Walker et al. contained 55.8% Correct responses. The proportions of the other response
categories differed by less than 2%.

4 Results

Prediction Accuracy

Prediction accuracy for the MPT model varies drastically by response types. Figure 2 shows the
overlap of counts between the predicted and observed data. The entries on the minor diagonal are

Table 1: Response category classification
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Figure 2: Confusion matrix showing distribution of error classification

the counts of correctly classified categories. Any counts off of the minor diagonal are incorrectly
classified. Ideally, the minor diagonal would have the highest counts for each category. However,
there is weak recovery of the less common response categories. The MPT model rarely predicts
a response type other than Correct, with the second most predicted category being Non-naming
Attempt.

Sensitivity, Specificity, and Precision

Table 3 shows the predicted category counts and accuracy statistics. The sensitivity is the
proportion of true positives (i.e., correctly predicted ones) out of all the predicted positives.
For example, the sensitivity for the Correct response category was 95%, meaning of the 33,623
Correct responses in the data, the model accurately predicted 32,045 (95%) of them. For less
common response categories, the sensitivity is very low. For example, of the 2,237 Semantic
responses, only 62 (2.8%) were accurately predicted. The MPT model predicts the Correct and
Non-naming Attempt categories the majority of the time, which gives these two categories a
relatively high sensitivity. However, the less common categories are very rarely recovered by the
model giving these categories low sensitivity (27.7% and 4.9% for the two next highest sensitivity
values).
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Figure 3: Category counts and model accuracy results

The specificity is the proportion of true negative (i.e., correctly classified zero) responses in
the data. The specificity of the MPT model is low for the Correct response category and very
high for all other categories. Looking at the Correct category, there are 20,977 negative entries in
the data. Of these, the model accurately predicted 10,529 (50.2%) to be negative. In other words,
50% of the responses in the data which were a zero in the Correct category, were predicted by the
model to be Correct. This can be seen in Figure 2 by observing the high predicted counts in the
last row of the matrix. The responses incorrectly classified as Correct are the Semantic through
Non-naming Attempt categories, all of which are predicted as Correct frequently. Conversely,
looking at a less common response type, Mixed has 53,290 negative entries in the data. The
model predicted a negative response for 53,270 (99.96%) of them.

The precision of the model is the proportion of positive predictions which are accurately
classified. For example, the Correct category was accurately predicted 33,045 (75.4%) of the
42,498 total predictions in the Correct category. However, precision is low for less common
response categories such as Unrelated. For the Unrelated category, only 20 (15.3%) of the 132
times Unrelated was predicted agreed with the data. Other than the Correct and Non-naming
Attempt categories, the precision is less than 50%. When the model predicts a positive response
for one of these categories, it is more likely than not a false positive.

T1 and T2 Statistics

Figure 4a shows the distribution of T1 statistics for the observed and predicted data. The
T1 statistic measures the recovery of the mean category counts over subjects in the data. The
statistic is larger in the predicted data for all but 4 of the 2,000 samples. This gives an extremely
high p-value of 0.998, suggesting the discrepancy between the posterior mean and the observed
data is less than that between the posterior means and the draws from the posterior predictive
distribution. In other words, the average expected category counts are closer to the observed
counts than the posterior predicted counts.

Figure 4b shows the distributions of T2 statistics from the observed and predicted data. The
T2 statistic is larger for the predicted data for every draw from the posterior distribution. This
gives a p-value of 1, indicating the MPT model is adequately recovering the covariance structure
present in the data.
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(a) T1 Statistic (b) T2 Statistic

Figure 4: Distributions of T1 and T2 statistics from observed and posterior predictive data

Credible Intervals

Participant abilities were estimated for each of the 6 subject-dependent parameters. Credible
intervals were calculated using the highest posterior density interval to observe the variability
in these estimates. These 95% credible intervals are shown in Figure 5. The Sem parameter is
a probability, limiting the support to be from 0 to 1 inclusive. As the mean ability estimate
increases, the credible intervals for Sem become narrower and the confidence in the point estimate
increases. For each processing step which is estimated by the Rasch model given in Equation 1,
the variability in the participant ability estimate increases as the mean ability increases. That
is, for subjects with a high mean ability estimate, there is more variability compared to a subject
with a low mean estimate. This is reflected in wider credible intervals for subjects with higher
ability.

5 Discussion

We replicated the MPT model on PNT data which had significant overlap with the data used
by Walker et al. Our posterior predictive counts follow a similar trend to Walker et al. with the
largest discrepancy being for the Correct category. Our data was composed of 61.6% Correct re-
sponses, while Walker et al. had 55.8% Correct. This difference in Correct responses contributes
to our posterior predictive counts being more biased toward Correct. Since the MPT model is
sensitive to data composition, users should be aware that the estimates provided by the MPT
model may be extremely biased toward high category counts observed in the data.

The prediction accuracy of the MPT model shows the high bias toward the two most frequent
response categories, Correct and Non-naming Attempt. These two categories together constitute
76.5% of the observed data. The sensitivity of the MPT model is between 0.5% and 28% for
the other 6 categories, demonstrating poor recovery of these less common responses, which are
possibly the most interesting as well. The specificity is high for infrequent response categories due
to the rarity of the event. The low specificity for Correct is owed to the model over-predicting
the category. The precision shows that while the model does predict each response category,
it does so with limited accuracy. The lack of agreement between the observed data and the
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Figure 5: 95% Highest Posterior Density Credible Intervals

posterior predictive data reflects that the model is not fitting the data closely.
The T1 and T2 statistics are chi-squared-like tests designed to measure the discrepancy be-

tween the observed and expected mean and covariance, respectively. The p-value from this test
is the proportion of times the T statistic is larger for the posterior predicted data than the ob-
served data. The model is adequately recovering the mean or covariance structure if the p-value
is not close to 0. The p-values given from the T statistics for the MPT model are very high.
This suggests the posterior draws are fitting the observed data more closely than the posterior
predicted data sets.

The credible intervals for participant abilities on the logit scale show increasing variability
with higher point estimates. For a subject with high ability estimates, the point estimate may
not be a reliable indicator for assessing recovery progress. Additionally, the credible intervals
show the narrowest intervals, and therefore the highest confidence, in the point estimates for the
Sem parameter and lower confidence for the estimates on the logit scale. Users should be aware
of the difference in the width of the credible intervals for each cognitive step when considering
the point estimates.

One potential area for improvement for the MPT model is the prior specification. The archi-
tecture of the MPT model allows for great flexibility in priors. Currently, the prior distribution
for each bifurcation probability is standard normal or standard uniform. A priori, each bi-
furcation point has 50% probability on average of successful completion. While this appears
non-informative at first, this prior specification heavily biases the outcome toward the Non-
naming Attempt and Unrelated categories, see Table 3. The category counts predicted from the
prior distribution do not resemble the pattern observed in the data, particularly for the Correct
category. This discrepancy between the prior specification and the observed data is contributing
to the poor recovery of the less common response types in the data.

A simple change to these bifurcation probabilities could account for Correct being the most
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Figure 6: Prior Predictive Analysis

likely category and reduce the number of expected Non-naming Attempts. Setting the prior
bifurcation probability to 90% for each process gives expected counts which more closely match
the observed data. The expected counts a priori setting the bifurcation probabilities to 50% and
90% are shown in Figure 6.

Currently, the model assumes standard normal distributions for subject ability. This assumes
the subject ability at each cognitive step is independent of the others. However, it seems possible
that all of the cognitive steps are impacted by the subject’s aphasia severity. Ideally, the model
would account for the subject’s overall naming ability and aphasia severity by using a multivariate
prior distribution.

With some changes to prior specification, the goodness-of-fit and accuracy of the MPT model
could be improved. Due to the item-specific effects and multiple latent parameters, the MPT
model is a significant advancement in aphasia modeling. The theoretical cognitive steps rep-
resented in the model could potentially provide valuable and precise information to clinicians
about a subject’s particular condition. However, using the model with the current prior and
parameter specifications may not perform reliably, and users should be cautious before making
any decisions on patient treatment based off information obtained from the MPT model.
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