Antiretroviral Therapy Enrollment Characteristics and Outcomes Among HIV-Infected Adolescents and Young Adults Compared with Older Adults — Seven African Countries, 2004–2013

Andrew F. Auld
Division of Global HIV/AIDS, Center for Global Health

Simon G. Agolory
Division of Global HIV/AIDS, Center for Global Health

Ray W. Shiraishi
Division of Global HIV/AIDS, Center for Global Health

Fred Wabwire-Mangen
Makerere University College of Health Sciences

Gideon Kwesigabo
Muhimbili University of Health and Allied Sciences

See next page for additional authors

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sph_facpub

Part of the Epidemiology Commons, Immune System Diseases Commons, International Public Health Commons, and the Virus Diseases Commons

Citation Details

This Article is brought to you for free and open access. It has been accepted for inclusion in OHSU-PSU School of Public Health Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Authors

This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/sph_facpub/4
World AIDS Day — December 1, 2014

World AIDS Day draws attention to the current status of the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic worldwide. The theme for this year’s observance on December 1 is “Focus, Partner, Achieve: An AIDS-Free Generation.”

The first cases of AIDS were reported more than 30 years ago in the June 5, 1981 issue of MMWR. Today, an estimated 35 million persons are living with HIV infection (I). Although AIDS-related deaths have fallen by 35% since 2005, an estimated 1.5 million persons died from AIDS in 2013 (I).

Global efforts, including the President’s Emergency Plan for AIDS Relief (in which CDC is a principal agency), have resulted in approximately 11.7 million persons in low-income and middle-income countries receiving antiretroviral therapy for HIV infection in 2013 (I). This is nearly 2 million more persons than in 2012 (I).

In the United States, nearly 648,500 persons diagnosed with AIDS have died since the first cases were reported (2), and approximately 50,000 persons become infected with HIV each year (3). An estimated 1.2 million persons in the United States are living with HIV infection (4).

References

Antiretroviral Therapy Enrollment Characteristics and Outcomes Among HIV-Infected Adolescents and Young Adults Compared with Older Adults — Seven African Countries, 2004–2013

Andrew F. Auld, MBChB1, Simon G. Agolory, MD, PhD1, Fred Widawire-Mangen, MD, PhD2, Gideon Kwegisabo, MD, PhD3, Modest Mulenga, MD4, Sebastian Hachisou, MBChB4, Emeka Asadu, MD5, Moise Zanga Tuho, MD6, Virginie Ettiegne-Traore, MD6, Francisco Mbefana, MD7, Velephi Okello, MD8, Charles Azili, MD8, Julie A. Denison, PhD9, Sharon Tsui, MPH9, Olivier Koole, MD10, Harrison Kamiru, DrPH11, Harriet Nuwagaba-Biribonwoha, MBChB8, PhD11, Charity Alfredo, MD12, Solomon Odafu, MD13, Dennis Onotu, MD13, Kunomboa A. Ekra, MD14, Joseph S. Kouakou, MD14, Peter Ehrenkrantz, MD15, George Bicego, PhD15, Kwasi Torpey, PhD16, Ya Diul Mukadi, MD17, Eric van Praag, MD18, Joris Menten, MSc19, Timothy Mastro, MD19, Carol Dukes Hamilton, MD19, Mahesh Swaminathan, MD1, E. Kainne Dokubo, MD3, Andrew L. Baughman, PhD3, Thomas Spira, MD1, Robert Colebunders, MD, PhD10, David Bangsberg, MD20, Richard Marlink, MD21, Aaron Zee, MPH1, Jonathan Kaplan, MD1, Todd V. Ellerbrock, MD1 (Author affiliations at end of text)

Although scale-up of antiretroviral therapy (ART) since 2005 has contributed to declines of about 30% in the global annual number of human immunodeficiency (HIV)-related

INSIDE

1104 Provision of Antiretroviral Therapy for HIV-Positive TB Patients — 19 Countries, Sub-Saharan Africa, 2009–2013
1108 Current Cigarette Smoking Among Adults — United States, 2005–2013
1113 Vital Signs: HIV Diagnosis, Care, and Treatment Among Persons Living with HIV — United States, 2011
1118 QuickStats

deaths and declines in global HIV incidence,* estimated annual HIV-related deaths among adolescents have increased by about 50% (1) and estimated adolescent HIV incidence has been relatively stable.† In 2012, an estimated 2,500 (40%) of all 6,300 daily new HIV infections occurred among persons aged 15–24 years.§ Difficulty enrolling adolescents and young adults in ART and high rates of loss to follow-up (LTFU) after ART initiation might be contributing to mortality and HIV incidence in this age group, but data are limited (2). To evaluate age-related ART retention challenges, data from retrospective cohort studies conducted in seven African countries among 16,421 patients, aged ≥15 years at enrollment, who initiated ART during 2004–2012 were analyzed. ART enrollment and outcome data were compared among three groups defined by age at enrollment: adolescents and young adults (aged 15–24 years), middle-aged adults (aged 25–49 years), and older adults (aged ≥50 years). Enrollees aged 15–24 years were predominately female (81%–92%), commonly pregnant (3%–32% of females), unmarried (54%–73%), and, in four countries with employment data, unemployed (53%–86%). In comparison, older adults were more likely to be male (p<0.001), employed (p<0.001), and married, (p<0.05 in five countries). Compared with older adults, adolescents and young adults had higher LTFU rates in all seven countries, reaching statistical significance in three countries in crude and multivariable analyses. Evidence-based interventions to reduce LTFU for adolescent and young adult ART enrollees could help reduce mortality and HIV incidence in this age group.

In each of seven countries (Côte d’Ivoire, Nigeria, Swaziland, Mozambique, Zambia, Uganda, and Tanzania), a representative sample of ART facilities was selected using either probability-proportional-to-size sampling or purposeful (nonrandom) sampling (Table 1). At each selected facility, a sample frame of study-eligible ART patients was created, and simple random sampling used to select the desired sample size. Eligibility criteria included having started ART during 2004–2012 and ≥6 months before data abstraction. Data were abstracted from ART medical records onto standard forms.

Mortality and LTFU were the primary outcomes of interest. A patient was considered LTFU if he/she had not attended the facility in the 90 days preceding data abstraction for a medication refill, a laboratory visit, or a clinician visit. Mortality ascertainment occurred largely through passive reporting to the health facility by family or friends, and to a lesser extent, through country-specific tracing activities to locate patients late for clinic appointments.

Study design was controlled for during analysis. Age at ART initiation was divided into three age categories (3): 15–24 years,

25–49 years, and ≥50 years. Differences in demographic and clinical characteristics across age groups were assessed using chi-square tests for categorical variables and unadjusted linear regression models for continuous variables.

To estimate the association between age group and rates of death and LTFU, Cox proportional hazards regression models were used to estimate unadjusted and adjusted hazard ratios for each outcome separately. For the multivariable analysis, to best manage missing baseline demographic or clinical data, multiple imputation with chained equations was used to impute missing data included in the model (4). Twenty imputed datasets were created for each outcome: death and LTFU (4). The imputation model included the event indicator, all study variables, and the Nelson-Aalen estimate of cumulative hazard (4). The proportional hazards assumption was assessed using visual methods and the Grambsch and Therneu test.

Demographic and clinical characteristics of adults at ART initiation were compared across age groups by country (Table 2). Age distribution was relatively constant across countries, with 5%–16% aged 15–24 years, 70%–86% aged 25–49 years, and 8%–14% aged ≥50 years. In all seven countries, the youngest age group was almost exclusively female (81%–92%), and the
middle-age group mostly female (60%–68%); in contrast, the oldest age group was mostly male in all countries, except Nigeria. In the six countries with data on pregnancy at ART enrollment, pregnancy prevalence was highest in the youngest age group in five countries, where it ranged from 16% to 32%.

In all seven countries, being married or in a civil union was least common in the youngest age group (27%–46%), reaching statistical significance in five countries. In the four countries...
What is already known on this topic?

Although scale-up of antiretroviral therapy (ART) since 2005 has contributed to a decline of about 30% in the global annual number of human immunodeficiency (HIV)-related deaths and declines in global HIV incidence, estimated annual HIV-related deaths among adolescents have increased by about 50%, and estimated adolescent HIV incidence has been relatively stable. In 2012, an estimated 2,500 (40%) of all 6,300 daily new HIV infections occurred among persons aged 15–24 years. Difficulty enrolling adolescents and young adults in ART and high rates of loss to follow-up (LTFU) after ART initiation might be contributing to mortality and HIV incidence in this age group, but data are limited.

What is added by this report?

Age-related differences in enrollment characteristics and outcomes were analyzed among 16,421 patients aged ≥15 years starting ART in seven African countries (Côte d’Ivoire, Nigeria, Swaziland, Mozambique, Zambia, Uganda, and Tanzania) during 2004–2012. Patient characteristics and outcomes were compared across three age groups: adolescents and young adults (15–24 years), middle-aged adults (25–49 years), and older adults (≥50 years). Compared with older adults, adolescents and young adults had higher LTFU rates in all seven countries, reaching statistical significance in three countries (Côte d’Ivoire, Mozambique, and Tanzania) in both crude and multivariable analyses.

What are the implications for public health practice?

The higher risk for LTFU among adolescent and young adult ART enrollees, compared with older adults, increases their risk for death and increases the risk they will transmit HIV to seronegative sex partners. Effective interventions to reduce LTFU for adolescent and young adult ART enrollees could help reduce mortality and lower HIV incidence in this age group.

with data on employment status, the youngest age group was least likely to be employed at the time of ART enrollment (14%–47%) (p<0.05).

In all seven countries, median baseline weight was lowest in the youngest age group (48.2–58.0 kg), reaching statistical significance in six countries. In three countries (Nigeria, Swaziland, and Tanzania), prevalence of World Health Organization clinical stage 4 at ART initiation differed across age groups, tending to be lowest in the youngest and highest in the oldest age group (p<0.05). Median baseline CD4 count was similar across age groups in all countries, except Nigeria, where the median was highest in the youngest age group (p=0.004). Median baseline hemoglobin was significantly lower in the youngest age group in four countries (9.4–10.7 g/dL).

Compared with older adults, rates of LTFU were higher in the youngest age group in all seven countries, reaching statistical significance in unadjusted analyses in three countries (Côte d’Ivoire [p=0.005], Mozambique [p=0.001], and Tanzania [p=0.005]) (Table 3). Even after adjusting for baseline demographic and clinical characteristics, rates of LTFU were 1.66–2.45 times as high in the youngest compared with the oldest age group in these three countries (Côte d’Ivoire [p=0.001], Mozambique [p=0.002], and Tanzania [p<0.001]).

In two countries (Swaziland and Uganda), the oldest age group had significantly higher rates of documented mortality than younger age groups (Table 3), and older age remained a significant predictor of mortality even in multivariable analyses.

Discussion

The three main findings based on the experience of the seven African countries are as follows: 1) adolescents and young adults differed significantly from older adults in ART enrollment characteristics; 2) adolescents and young adults tended to have higher LTFU rates; and 3) in two countries (Uganda and Swaziland), adults ≥50 years had higher documented mortality rates.

Adolescent and young adult ART enrollees were almost exclusively female, commonly pregnant, unmarried, and unemployed. The observation that median weight was lowest among adolescents and young adults could be explained by expected weight-for-age growth, sex differences in weight, or undernutrition. Similarly, the observation that median hemoglobin tended to be lowest in the youngest age group might reflect predominantly female sex or higher prevalence of undernutrition.

Available data suggest that this group of predominantly female adolescent and young adult ART enrollees represents a socially vulnerable population (2). Although rates of HIV-related mortality and HIV incidence have declined globally since 2005, mortality has increased and HIV incidence remained relatively stable among adolescents, with the majority of adolescent deaths and new HIV infections occurring in sub-Saharan Africa (2). In African countries with generalized epidemics, being young, female, and unemployed increases the risk for voluntary or coerced sexual contact with older, HIV-infected men (2); this might partly explain HIV infection at a young age among some of the female adolescent and young adult ART enrollees described in this report. Factors that possibly explain high LTFU rates among adolescent and young adult ART enrollees might include stigma (2), lack of money for transport (5), child care responsibilities, and migration for work (6). LTFU from ART is associated with significant increases in mortality risk (7). A recent meta-analysis suggests that 20%–60% of patients lost to follow-up die, with most of these deaths occurring after default from ART (7). Therefore, difficulties in preventing LTFU among adolescent and young adults on ART might be a contributor to HIV-related mortality in this age group. Suboptimal ART adherence among adolescents might also be contributing to adolescent mortality (1).
Table 3. Association between age group at initiation of antiretroviral therapy and rates of loss to follow-up and death — seven African countries, 2004–2013

<table>
<thead>
<tr>
<th>Country</th>
<th>Age group (yrs)</th>
<th>No. (per 100)</th>
<th>Lost to follow-up</th>
<th>Crude HR (95% CI)</th>
<th>p-value</th>
<th>Adjusted AHR* (95% CI) p-value</th>
<th>Died</th>
<th>Rate (per 100)</th>
<th>Crude HR (95% CI)</th>
<th>p-value</th>
<th>Adjusted AHR* (95% CI) p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Côte d’Ivoire</td>
<td>≥50</td>
<td>407</td>
<td>1.00</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>4.2</td>
<td>1.00</td>
<td>—</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>3,087</td>
<td>1.21 (0.92–1.59)</td>
<td>0.171</td>
<td>1.33</td>
<td>1.00–1.77 0.052†</td>
<td></td>
<td>2.9</td>
<td>0.68 (0.45–1.05)</td>
<td>0.077</td>
<td>0.76 (0.51–1.12) 0.155</td>
</tr>
<tr>
<td></td>
<td>15–24</td>
<td>188</td>
<td>1.54 (1.15–2.04)</td>
<td>0.005</td>
<td>1.66</td>
<td>1.24–2.22 0.001</td>
<td></td>
<td>3.8</td>
<td>0.87 (0.37–2.03)</td>
<td>0.732</td>
<td>0.97 (0.43–1.98) 0.393</td>
</tr>
<tr>
<td>Nigeria</td>
<td>≥50</td>
<td>399</td>
<td>1.53</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>1.5</td>
<td>1.00</td>
<td>—</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>2,805</td>
<td>0.91 (0.70–1.18)</td>
<td>0.446</td>
<td>0.94</td>
<td>0.73–1.22 0.640</td>
<td></td>
<td>1.1</td>
<td>0.79 (0.43–1.46)</td>
<td>0.441</td>
<td>0.89 (0.47–1.68) 0.714</td>
</tr>
<tr>
<td></td>
<td>15–24</td>
<td>292</td>
<td>1.09 (0.79–1.50)</td>
<td>0.604</td>
<td>1.04</td>
<td>0.75–1.44 0.818</td>
<td></td>
<td>0.8</td>
<td>0.51 (0.20–1.34)</td>
<td>0.166</td>
<td>0.74 (0.30–1.86) 0.514</td>
</tr>
<tr>
<td>Swaziland§</td>
<td>≥50</td>
<td>353</td>
<td>1.10</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>3.0</td>
<td>1.00</td>
<td>—</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>1,759</td>
<td>1.06 (0.91–1.23)</td>
<td>0.452</td>
<td>0.99</td>
<td>0.81–1.20 0.887</td>
<td></td>
<td>1.9</td>
<td>0.66 (0.46–0.93)</td>
<td>0.021</td>
<td>0.56 (0.39–0.81) 0.006</td>
</tr>
<tr>
<td></td>
<td>15–24</td>
<td>398</td>
<td>1.26 (0.94–1.70)</td>
<td>0.113</td>
<td>1.22</td>
<td>0.89–1.68 0.198</td>
<td></td>
<td>1.9</td>
<td>0.65 (0.46–0.92)</td>
<td>0.018</td>
<td>0.58 (0.38–0.90) 0.019</td>
</tr>
<tr>
<td>Mozambique</td>
<td>≥50</td>
<td>243</td>
<td>1.64</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>3.8</td>
<td>1.00</td>
<td>—</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>2,069</td>
<td>0.96 (0.78–1.18)</td>
<td>0.686</td>
<td>1.02</td>
<td>0.79–1.32 0.872</td>
<td></td>
<td>3.2</td>
<td>0.94 (0.55–1.59)</td>
<td>0.805</td>
<td>1.10 (0.62–1.96) 0.733</td>
</tr>
<tr>
<td></td>
<td>15–24</td>
<td>284</td>
<td>1.80 (1.46–2.21)</td>
<td><0.001</td>
<td>1.76</td>
<td>1.27–2.43 0.002</td>
<td></td>
<td>5.0</td>
<td>1.40 (0.72–2.71)</td>
<td>0.296</td>
<td>1.33 (0.72–2.45) 0.339</td>
</tr>
<tr>
<td>Zambia</td>
<td>≥50</td>
<td>95</td>
<td>21.4</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>3.6</td>
<td>1.00</td>
<td>—</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>1,000</td>
<td>1.01 (0.75–1.37)</td>
<td>0.928</td>
<td>0.94</td>
<td>0.69–1.29 0.722</td>
<td></td>
<td>2.3</td>
<td>0.63 (0.29–1.33)</td>
<td>0.223</td>
<td>0.66 (0.30–1.47) 0.312</td>
</tr>
<tr>
<td></td>
<td>15–24</td>
<td>119</td>
<td>1.14 (0.75–1.74)</td>
<td>0.539</td>
<td>1.21</td>
<td>0.78–1.89 0.393</td>
<td></td>
<td>5.1</td>
<td>1.32 (0.49–3.51)</td>
<td>0.582</td>
<td>1.26 (0.43–3.71) 0.679</td>
</tr>
<tr>
<td>Tanzania</td>
<td>≥50</td>
<td>83</td>
<td>21.0</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>8.0</td>
<td>1.00</td>
<td>—</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>1,198</td>
<td>1.36 (0.98–1.90)</td>
<td>0.067</td>
<td>1.47</td>
<td>1.05–2.06 0.024</td>
<td></td>
<td>6.4</td>
<td>0.80 (0.52–1.23)</td>
<td>0.309</td>
<td>0.90 (0.58–1.42) 0.661</td>
</tr>
<tr>
<td></td>
<td>15–24</td>
<td>176</td>
<td>2.01 (1.24–3.25)</td>
<td>0.005</td>
<td>2.45</td>
<td>1.50–4.01 0.001</td>
<td></td>
<td>13.5</td>
<td>1.37 (0.70–2.70)</td>
<td>0.358</td>
<td>1.40 (0.69–2.82) 0.354</td>
</tr>
<tr>
<td>Uganda</td>
<td>≥50</td>
<td>95</td>
<td>6.0</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>2.8</td>
<td>1.00</td>
<td>—</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>1,261</td>
<td>1.29 (0.76–2.17)</td>
<td>0.346</td>
<td>1.37</td>
<td>0.81–1.34 0.240</td>
<td></td>
<td>1.0</td>
<td>0.35 (0.15–0.80)</td>
<td>0.013</td>
<td>0.31 (0.13–0.76) 0.010</td>
</tr>
<tr>
<td></td>
<td>15–24</td>
<td>110</td>
<td>1.18 (0.57–2.44)</td>
<td>0.664</td>
<td>1.19</td>
<td>0.56–2.51 0.647</td>
<td></td>
<td>1.0</td>
<td>0.34 (0.07–1.66)</td>
<td>0.184</td>
<td>0.25 (0.05–1.29) 0.098</td>
</tr>
</tbody>
</table>

Abbreviations: HR = hazard ratio; CI = confidence interval; AHR* = adjusted hazard ratio.

* All variables presented in the table were included in the multivariable model for each country.
† Bold-typed p-values are statistically significant (p<0.05) or borderline significant (p=0.05–0.10).
§ In Swaziland, the study was designed to assess the effect of interfacility transfer of stable patients (down-referral) on risk for loss to follow-up, and this time-varying covariate was included in the multivariable model in addition to variables presented in the table.

High rates of LTFU among adolescent and young adult ART enrollees is also concerning from a prevention perspective, because LTFU patients are at risk for transmitting HIV to seronegative partners once ART is discontinued and viral load no longer suppressed (8). High rates of LTFU among young women, among whom the prevalence of pregnancy is high, also increases the likelihood of mother-to-child HIV transmission.

Adult ART enrollees aged ≥50 years were mostly male, commonly married, and employed. In two countries, this age group had higher documented mortality, similar to findings in other studies (9). Higher mortality in this oldest age group should probably be expected because of higher background rates of mortality in the older general population. However, HIV-related reasons for higher mortality in the oldest age group might include slower ART-induced CD4 restoration among older patients (3) or incidence of HIV-associated noncommunicable diseases, especially atherosclerotic disease (10).

The findings in this report are subject to at least four limitations. First, missing data might have introduced nondifferential measurement error. Second, because of differences in cohort size, there was greater power to detect covariate effect sizes in Côte d’Ivoire, Nigeria, Swaziland, and Mozambique than in Zambia, Uganda, and Tanzania. Third, in Zambia, Uganda, and Tanzania, clinics were purposefully selected, limiting generalizability of findings. Finally, limited active tracing for defaulting patients might have resulted in overestimates of LTFU and underestimates of mortality.

The main finding of this report is that adolescent and young adult ART enrollees differ significantly from older adults in demographic and clinical characteristics and are at higher risk for LTFU. Effective interventions to reduce LTFU for adolescent and young adult ART enrollees could help reduce mortality and HIV incidence in this age group.
References

