Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

5-20-2016

Connected Vehicles and Rural Road Weather Management

Rhonda Young Gonzaga University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Civil Engineering Commons, and the Transportation Engineering Commons Let us know how access to this document benefits you.

Recommended Citation

Young, Rhonda, "Connected Vehicles and Rural Road Weather Management" (2016). *PSU Transportation Seminars*. 8.

https://pdxscholar.library.pdx.edu/trec_seminar/8

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Connected Vehicles and Rural Road Weather Management

Rhonda Young, P.E., PhD Gonzaga University

May 20, 2016 Portland State University

Weather and Roadways

- Safety
 - ~22% of US crashes are weather related
 - 6,000 fatalities and 445, injuries
- Mobility
 - Capacity Reductions

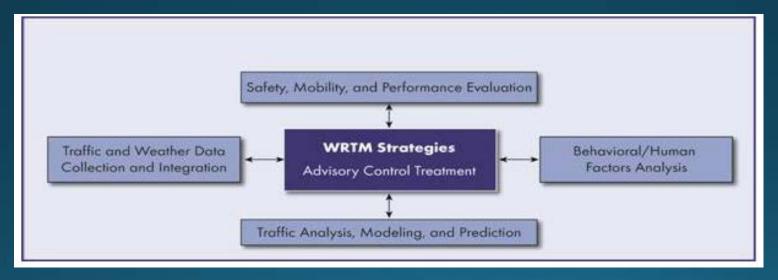
- ~23% of non-recurrent delay on highways estimated to be due to snow, ice, and fog
- Economic
 - \$2.3 billion spent annually on snow and ice removal
 - Weather related delay costs trucking companies \$2.2-\$3.5 billion annually

What is "normal" weather?

Changing Climate

- Increased temperatures and rising sea levels
- Extreme Events
 - Flooding, wildfire, blowing dust, unusual snow

Transportation System Resiliency


• How will our current transportation system adapt to new climate conditions?

What is "normal" weather?

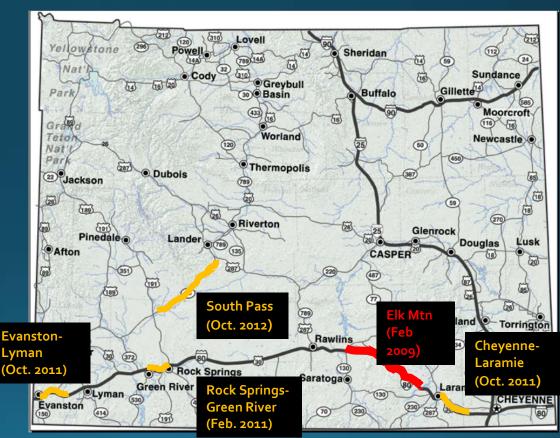
- Changing Climate
 - Increased temperatures and rising sea levels
- Extreme Events
 - Flooding, wildfire, blowing dust, unusual snow
- Transportation System Resiliency
 - How will our current transportation system adapt to new climate conditions?

WRTM aims to manage the impacts of weather on travelers

Source: ITS JPO Road Weather http://www.its.dot.gov/road_weather/weather_traffic_mang.htm

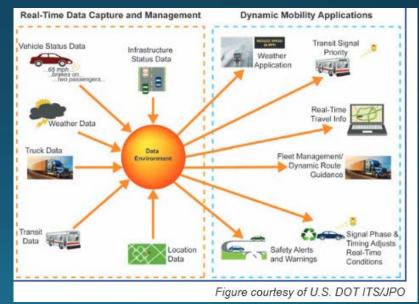
- WRTM Strategies
 - 1. Motorist Advisories, Alert and Warning
 - Passive or Active Warnings, Pretrip or En-route Alerts and Conditions
 - 2. Speed Management
 - Speed Advisories, Variable Speed Limits
 - 3. Vehicle Restrictions
 - Size/height/weight/profile restrictions, chain laws
 - 4. Road Restrictions
 - Lane-Use Restrictions, Parking Restrictions, Access Control and Facility Closures, Reversible Lane/Contra Flow [Evacuations]
 - 5. Traffic Signal Control
 - Weather-responsive signal timing plans, ramp metering control
 - 6. Incident Management
 - Service Patrols, quick clearance policies
 - 7. Asset Management
 - 8. Agency Coordination and Integration

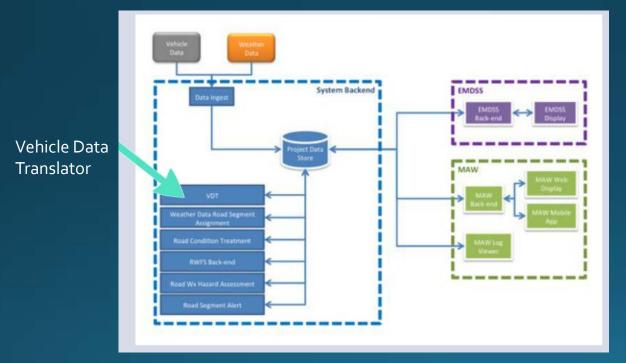
- Types of Weather
 - Road weather
 - Atmospheric weather
- Weather Information
 - Forecasting
 - Nowcasting
 - Current Conditions


- Technology needed for WRTM
 - Road Weather Information System (RWIS)
 - Depending on sensor configurations can provide air temperature, pavement temp, visibility, wind speed, surface condition, RH and dewpoint, camera for visual verification of conditions
 - Pros real-time localized weather data
 - Cons expense (capital and maintenance), point data only, locating correctly can be challenging
 - Mobile Weather Data
 - Vehicle mounted, weather sensors
 - Pros real-time localized weather for continuous roadway stretches
 - Cons require vehicles to be traveling, expensive

- Wyoming WRTM Strategies
 - 143 miles of weatherresponsive VSLs along 400-mile I-80 corridor
 - High wind alerts and light-weight vehicle closures

VSL Effectiveness


- Annual VSL Safety Benefits
 - 27.7 annual crash reduction
 - \$2.8 million per year in crash reduction benefits
- Annual VSL Road Closure Benefits
 - 10.14 fewer closures per winter season (Oct-April)
 - \$54.7 million per year in closure reduction benefits


• Can Connected Vehicle Data be used to support WRTM?

- Harness USDOT's Connected Vehicle Initiative to provide more and better weather data
- Supplement or replace RWIS?

FHWA's Vehicle Data Translator (VDT) and Pikalert ® System

Enhanced Maintenance Decision Support System

Motorist Advisory and Warning

Connected Vehicle Initiative Timeline

2014-20152015-20172017-20182018-20202020-2040PlanResearch
and Pilot
ApplicationsEvaluation of
ApplicationsDeploymentExpansion

• Winter of 2014-2015 ran a small CV project along I-80

Connected Vehicle Weather Data for Operation of Rural Variable Speed Limit Corridors Britton Hammit and Rhonda Young MPC-15-299 http://www.ugpti.org/resources/reports/deta ils.php?id=835&program=mpc

Vehicle Data Collection

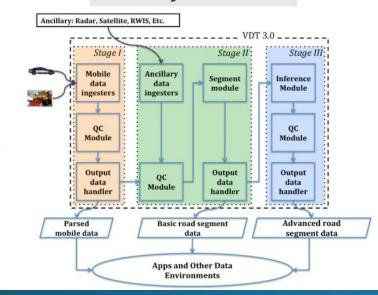
Equipment Selection

OBD Link Ford Reference OBE Chip-Kit Handmade OBE Cross Chasm C4

Data Collected

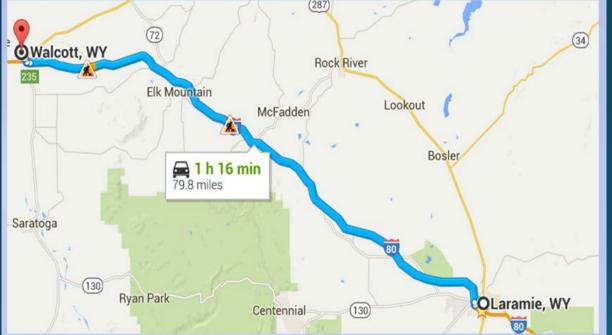
Vehicle Parameter Steering Wheel Angle Vehicle Speed Engine Speed Fuel Consumed Since Restart Transmission Gear Position Door Status Ignition Status Windshield Wiper Status Brake Pedal Status Odometer Headlamp Status High Beam Status Accelerator Pedal Position Fuel Level					
Steering Wheel Angle	Vehicle Speed				
Engine Speed	Fuel Consumed Since Restart				
Transmission Gear Position	Door Status				
Ignition Status	Windshield Wiper Status				
Brake Pedal Status	Odometer				
Headlamp Status	High Beam Status				
Accelerator Pedal Position	Fuel Level				
Torque At Transmission	Latitude & Longitude				

Data Communication



OpenXC Enab		Setti
etus	Dechboard	
Accelerator Pedal		
Brake Pedal	cff	
Engine Speed	774.0 RPM	
Fuel Consumed	0.212475 L	
Fuel Level	92,282906 %	
Headlamp	off	
High Beams	off	
Ignition Status	RUN	
Latitude	41.301464 *	
Longitude	-105.583359*	
Odometer	43886.507812 km	
Parking Brake	off	
Steering Wheel	12.700073*	
Transmission Torque	5.0 Nm	
Transmission Gear	NEUTRAL	
Vehicle Speed	0.0 km / h	
Windshield Wiper	off	
ㅋ쇼ㄹ		⊂ 9:34 AM * "∰

OpenXC Android Application


Data Processing and Analysis

NCAR's Pikalert System

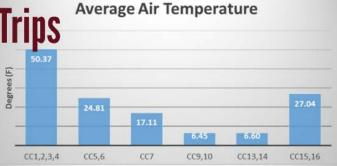
ArcGIS

- Data transmitted at 60 HZ
- Each 80 mile trip at 75 mph resulted in over 200,000 observations for each of the 16 variables
- 16 trips, over 52 million data points

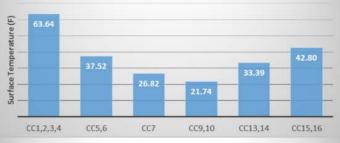
	TripID Num ber	Date	Origin	Departure Time	Destination	Arrival Time	Distance Traveled	Driver	Passenger	Vehicle
	CC1	2/6/2015	Laramie	9:00	Walcott	10:30	78miles	B.Hammit	H. Smith	2014 Ford Fusion
X	X- CC2	2/6/2015	Walcott	10:30	Laramie	12:00	78miles	B.Hammit	H. Smith	2014 Ford Fusion
	CC3	2/6/2015	Laramie	13:00	Walcott	14:30	78miles	B.Hammit	H. Smith	2014 Ford Fusion
V	CC4	2/6/2015	Walcott	14:30	Laramie	16:00	78miles	B.Hammit	H. Smith	2014 Ford Fusion
	CC5	2/15/2015	Laramie	12:00	Walcott	13:30	78miles	B.Hammit	L. Johnson	2014 Ford Fusion
	CC6	2/15/2015	Walcott	13:30	Laramie	15:00	78miles	B.Hammit	L. Johnson	2014 Ford Fusion
	CC7	2/16/2015	Laramie	8:15	Walcott	9:45	78miles	B.Hammit	S. Ganley	2014 Ford Fusion
	CC8	8 2/24/2015 Laramie Gr		12:15	Boulder	14:35	145miles	R. Young	B. Hammit	2014 Ford Fusion
	CC9	2/26/2015	Laramie	15:45	Walcott	17:00	78miles	B.Hammit		2014 Ford Fusion
	CC10	2/26/2015	Walcott	17:30	Laramie	19:00	78miles	B.Hammit	-	2014 Ford Fusion
	CC11	3/3/2015	Laramie	18:40	Herrick Lane	19:10	16miles	B.Hammit	H. Smith	2014 Ford Fusion
	CC12	3/3/2015	Herrick Lane	19:10	Laramie	19:35	16miles	B.Hammit	H. Smith	2014 Ford Fusion
	CC13	3/4/2015	Laramie	9:20	Walcott	10:40	78miles	B.Hammit		2014 Ford Fusion
	CC14	3/4/2015	Walcott	10:40	Laramie	12:05	78miles	B.Hammit		2014 Ford Fusion
	CC15	3/25/2015	Laramie	9:15	Walcott	10:30	78miles	B.Hammit		2014 Ford Fusion
	CC16	3/25/2015	Walcott	10:30	Laramie	11:45	78miles	B.Hammit	-	2014 Ford Fusion

RWIS Data Summary for Test Trips

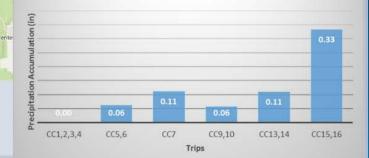
13 RWIS Stations

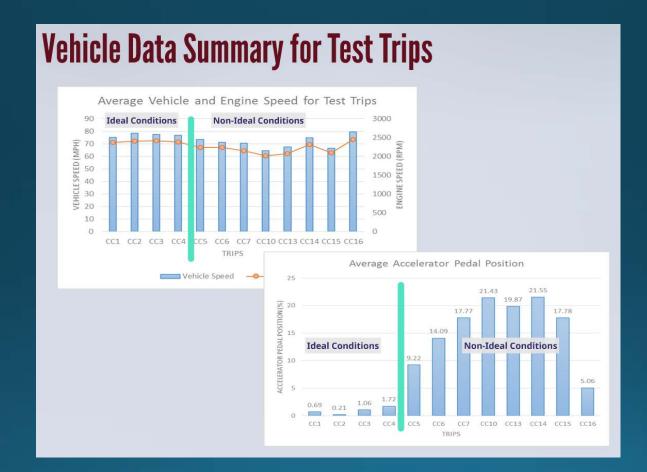

RWIS Data Summary for Test Trips

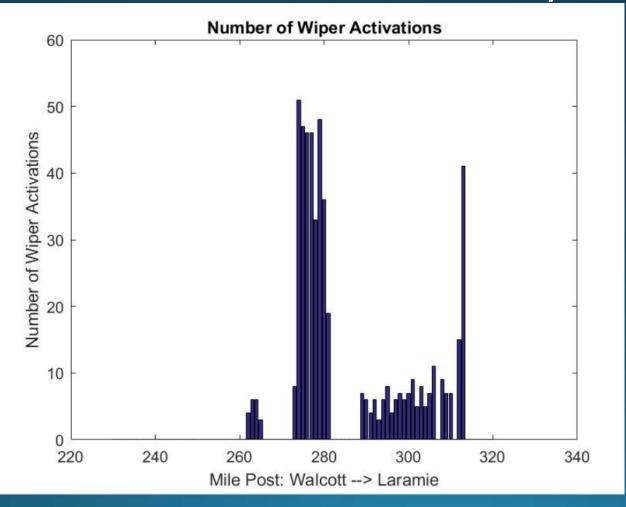
13 RWIS Stations



RWIS Weather Data


Air Temp	Precipitation Rate
Relative Humidity	Visibility
Dew Point	Surface Temperature
Average Wind Speed	Precipitation Type
Gust Wind Speed	Precipitation Intensity
Precipitation Accumulation	Surface Status

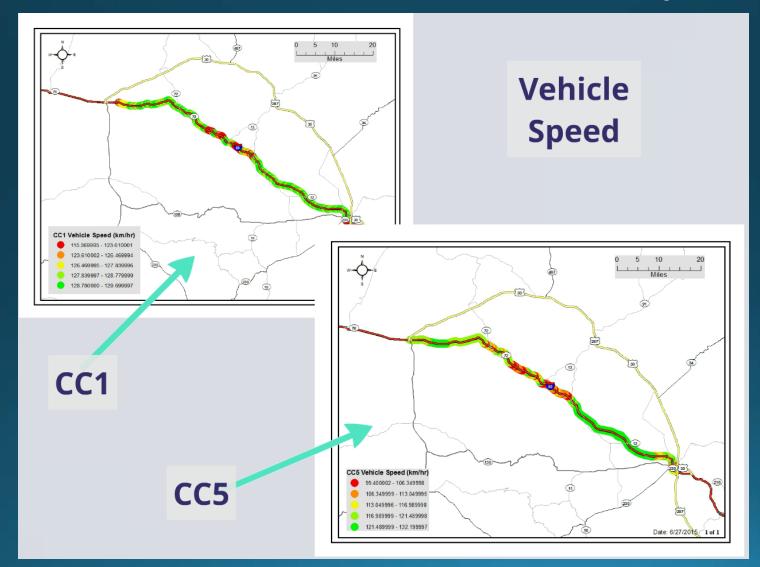


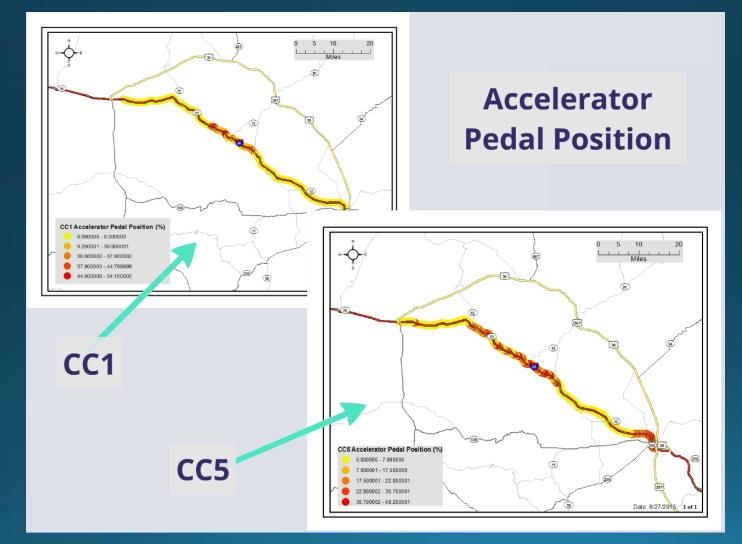

Average Surface Temperature

Average Precipitation Accumulation

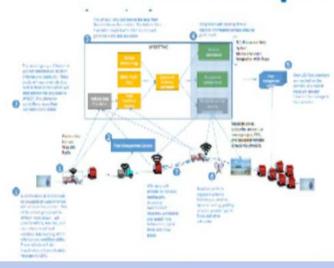

CV Road Weather Condition System **NCAR's VDT/ Pikalert System**

- Difficulty setting up Pikalert System
- Contact with NCAR


Crucial vehicle data missing from data sets

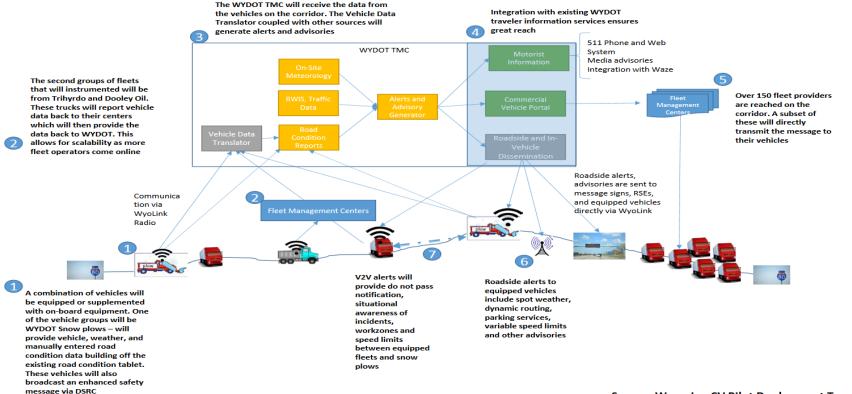

Traction and Stability Control Readings

CV Pilot Deployment Program


Connected Vehicles CV Pilot Deployment Program

• Three Wave 1 Sites

- Wyoming's I-80 Corridor
 - Rural, freight and weather focus
- New York City
 - 10,000 city and other fleet vehicles
 - Safety focus
- Tampa-Hillsborough Expressway Authority
 - Lee Roy Selmon Expressway
 - Congestion and safety focus


Wyoming DOT Connected Vehicle Pilot Deployment Program

MCFARLAND MANAGEMENT, LLC

http://www.its.dot.gov/pilots/

Source: Wyoming CV Pilot Deployment Team

Proposed Applications

- Road Weather Advisories for Trucks
- Automatic Alerts for Emergency Responders
- CV-enabled Weather-Responsive Variable Speed Limits
- Spot Weather Impact Warning
- WorkZone Warnings
- Situational Awareness
- Freight-Specific Dynamic Travel Planning

- Basic Safety Message (BSM)
 - SAE J2735
 - BSM Part 1:
 - Core data elements such as vehicle size, position, speed, heading acceleration, brake system status
 - Transmitted at 10 HZ
 - BSM Part 2:
 - Added to part 1 depending on events (e.g. ABS brakes activated)
 - Contains variable set of data elements
 - Transmitted less frequently
 - Transmitted over DSRC (~1000 meters)

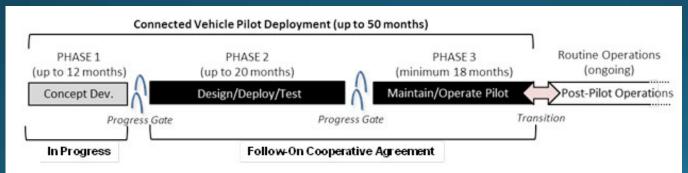
Weather Priority Vehicular Data

BSM Part 1

- Brake system status
 - Brake applied status
 - Traction control status
 - Anti-lock brake status
 - Stability control status

BSM Part 2

- Vehicle status
 - Exterior lights
 - Wipers
 - Brake system status
 - Roadway friction
 - Rain sensor
 - Ambient air temperature
 - Ambient pressure
 - Yaw rate


• Wyoming Pilot will likely have:

- CV instrumented vehicles, mainly WYDOT fleet and freight partners
- Subset of vehicles will be instrumented with external weather sensors
- Pikalert system embedded in WYDOT TMC
- Wide area weather alert dissemination

• Phase 1 Timeline

Timeline												
Task	Sep-15	Oct-15	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16
Task 1 - Program Mgt.												
Task 2 - ConOps												
Task 3 - Security Concept												
Task 4 - Safety Plan												
Task 5 - Perf. Measurment								-				
Task 6 - SyRs												
Task 7 - App Planning												
Task 8 - Human Use Appr												
Task 9 - Training Plan												
Task 10 - Partnership												
Task 11 - Outreach Plan												
Task 12 - Deployment Plan				1								
Task 13 - Readiness Summar	TY I											
	♦ webinar											

Phase 2 and 3

The future?

- Considerable interest in the area of road weather management will lead to a better understanding of driver behavior and vehicle performance in non-ideal conditions
- New knowledge will enable operation of roadways that are more adaptive to current conditions, increasing system resiliency

Could CV Technology Prevent This?

April 16, 2015 79 Vehicle Pileup J.be/IxlvxvG8zOE

April 20, 2015

TRAFFIC ALERT ONE PERSON KILLED IN MASSIVE I-80 PILEUP HAZARDOUS MATERIAL FIRE SLOWING CLEANUP