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A Comparison of Data Assimilation Methods Using a Planetary Geostrophic Model

EDWARD D. ZARON

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

(Manuscript received 1 July 2004, in final form 11 August 2005)

ABSTRACT

Assimilating hydrographic observations into a planetary geostrophic model is posed as a problem in
control theory. The cost functional is the sum of weighted model and data residuals. Model errors are
assumed to be spatially correlated, and hydrographic station data are assimilated directly. Searches in state
space and data space, for minimizing the cost functional, are compared to a direct matrix inversion algo-
rithm in the data space.

State-space methods seek the minimizer of the cost functional by performing a preconditioned search in
an N-dimensional space of state or control variables, where N is approximately 650 000 in the present
calculations. Data-space methods solve the Euler–Lagrange equations for the extremum of the cost func-
tional by working in an M-dimensional dual space, where M is the number of measurements. The following
four solvers are compared: (i) an iterative state-space solver, with a naive diagonal matrix preconditioner;
(ii) an iterative state-space solver, with a sophisticated preconditioner based on the inverse of the model’s
dynamical operators; (iii) an iterative data-space solver, with no preconditioning; and (iv) a direct, M � M
matrix inversion, data-space solver. The best solver is the iterative data-space solver, (iii), which is approxi-
mately 10 times faster than the sophisticated preconditioned state-space solver, (ii), and 100 times faster
than the direct data-space solver, (iv).

1. Introduction

The inference of oceanic flows from hydrographic
observations has a long history in physical oceanogra-
phy. The large-scale, time-averaged flow field, that is,
the general circulation, is presumed to be in nearly geo-
strophic balance with the large-scale, time-averaged
pressure field. As the pressure is related to density via
hydrostatic balance, the thermal-wind relations for the
vertical shear in the geostrophic flow have provided the
central relationship between the flow field and the
quantities observed by hydrographic measurements—
conductivity, temperature, and depth—from which the
density may be computed. This procedure of computing
the geostrophic shear from observations of density is
the “dynamic method.” It determines the deviations of
the velocity from an unknown reference velocity. The
works of Wunsch (1978) and Stommel and Schott
(1977) were seminal studies of systematic procedures
for removing the indeterminacy of the velocity field
obtained via the dynamic method.

Today, this early work is understood in a more gen-
eral context. It is now understood that determining the
general circulation fits naturally into the disciplines of
control theory and statistical estimation theory. These
more general frameworks seek to find that set of flow
and hydrographic fields that are most consistent with a
theoretical model (i.e., the equations of motion that
govern the scales of interest) and a set of observations
(i.e., the hydrographic fields and, in some cases, other
observations). This wider framework has several ad-
vantages. First, the theory provides systematic proce-
dures and tools for inferring observed fields at sites
other than those where observations were made
(Bretherton et al. 1976). Second, the theory of gener-
alized inversion permits the estimation of quantities
that were not directly observed, and it provides guid-
ance for the design of observational programs (Bennett
and McIntosh 1982). Last, this theory permits the sys-
temic testing of ocean models (Bennett and Thorburn
1992). The application of these methods in oceanogra-
phy is mature enough that several textbooks on this
subject have been published (e.g., Bennett 1992;
Wunsch 1996).

The general circulation problem is a significant com-
putational challenge. The challenge is to find the hy-
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drographic and velocity fields that are most consistent
with hydrographic observations (CTD’s and XBT’s,
primarily) and the equations of motion (expressed in an
ocean model together with its boundary conditions and
forcing functions). The solution of this challenge would
consist of a set of smoothed and gridded hydrographic
variables, improved estimates of the forcing functions
and boundary conditions (i.e., air–sea fluxes), and an
indication of the accuracy of the estimated fields. At-
tempts to determine the general circulation typically
incorporate O(100 000) or more individual observa-
tions and use ocean models with O(10 000 000) or more
computational nodes (e.g., Tziperman and Thacker
1989; Bogden et al. 1993; Marotzke and Wunsch 1993;
Schlitzer 1993; Schiller and Willebrand 1995; Marotzke
et al. 1999; Stammer et al. 2002). The present work
grew out of an effort to quantitatively test a relatively
simple ocean model based on the planetary geostrophic
equations.

The computations reported below explore the rela-
tive efficiencies of solvers for the general circulation
problem. Solvers may be classified as either “state
space” or “data space” solvers. In state-space solvers,
the minimum of the cost functional is sought by search-
ing the space of hydrographic and velocity fields, the
variables that define the state of the ocean. Data-space
solvers seek to minimize the cost functional by search-
ing in a space of dimension equal to the number of
measurements. Formally, the state space is an infinite-
dimensional space of functions, but in practice it is ap-
proximated on computer by some large-dimensional
vector. The typical dimension, N, of this approximated
state space is large, O(10 000 000), while the dimension
of the data space, M, is typically much smaller O(100
000). The data-space approach works with the so-called
dual variables (Courtier 1997a). Application of this ap-
proach to data assimilation in oceanography was first
used by Egbert et al. (1994), and it was independently
discovered by Amodei (1995).

It is found that an iterative data-space solver is more
efficient than the state-space solvers, even when a so-
phisticated preconditioner is used in the state-space
search. The measure of efficiency of the solvers is based
on the count of executions of the model operator dur-
ing the running of the algorithms. Care has been taken
to implement the algorithms in such a way as to make
a fair comparison; however, the results reported herein
do not preclude the existence of particular implemen-
tations or special cases with different performance
characteristics.

The next section briefly defines the test problem in
the context of variational data assimilation (e.g., Court-
ier 1997b) and describes the ocean model and dataset

used in the comparisons. Then, the solvers are de-
scribed and the computational work requirements of
each are laid out in detail. In the last section, example
calculations are shown that demonstrate the efficacy of
the data-space approach.

2. Problem statement

a. The cost functional

The goal is to find a set of hydrographic fields, ge-
nerically denoted by u (current, temperature, pressure,
etc.), consistent with both the ocean model, which we
denote formally as

Lu � F, �1�

and with an M-dimensional vector d of hydrographic
data,

d � Hu. �2�

In Eq. (2), the operator H � [h1, . . . , hM]T is a vector
of M linear measurement operators that relate the ob-
served data to the unknown oceanic state, u. Here L is
shorthand for the dynamical operator, which is linear in
the present study, and each hi is assumed to be a linear
functional that acts on u and produces a real number.
Model inhomogeneities, including boundary data, are
represented by F. It is assumed that L and F are defined
so that the operator L is invertable; that is, Eq. (1) is
mathematically well posed.

Because of approximations and errors in the dynami-
cal model, boundary condition data, and measure-
ments, there is no reason to expect that there exists a u
that satisfies both (1) and (2) simultaneously. Thus, one
seeks the generalized inverse of the system, that is, the
field u that minimizes the quadratic cost functional

J�u� � �Lu � F� � CF
�1 � �Lu � F�

� �Hu � d�TCd
�1�Hu � d�. �3�

The symbols CF and Cd are the covariances for the
model and data errors, respectively. The inverses of the
covariances prescribe the importance or relative weight
of the corresponding constraints in the cost functional.
Superscript T stands for vector transpose, and · indi-
cates an inner product over the appropriate space.

b. The ocean model

The above formulation is abstract and general, but it
succinctly states the form of the minimization problem.
To focus on the general circulation, the operator L is
defined next.

It is assumed that the oceanic state is approximately
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governed by the planetary geostrophic equations, a sys-
tem suggested by Hasselmann (1982) for numerical
models of the general circulation. Potential tempera-
ture, denoted by �, is used as the vertical coordinate
(Bleck 1978).

The model describes the steady, geostrophic motion
of a layer of fluid on the surface of the earth. It is
assumed that Fick’s law provides an adequate descrip-
tion for the turbulent mixing of heat. The mean strati-
fication (about which the model is linearized) is main-
tained by a small amount of uniform upwelling, which is
determined by the global balance of deep-water pro-
duction. Solutions of this system can be regarded as the
steady response of damped, baroclinic Rossby waves to
forcing at the upper, lower, and eastern boundaries.
Pedlosky (1992) sought to explain the vertical layering
of the abyssal circulation by considering the response of
this system to surface Ekman pumping.

Because the planetary geostrophic system described
below is linear, it is necessary to distinguish between
the mean state and perturbation quantities. The mean
state, about which the system is linearized, is indicated
with the overbar, and the perturbation quantities are
denoted without primes. For example, the height of an
isotherm, a function of �, 	, and �, is given by z(�) �
z(�, 	, �), where z(�) is the mean profile of depth as a
function of temperature.

Spherical coordinates are used, with longitude �, and
latitude 	 (Lorenz 1967). As mentioned above, poten-
tial temperature, �, is the local vertical coordinate. The
total velocity vector is (u, 
, �), where the velocity com-
ponents are defined by

u � a cos�
d�

dt
, � � a

d�

dt
, � �

d�

dt
, �4�

and a denotes the radius of the earth. The along-
isotherm (adiabatic) velocity vector is denoted u � (u,

). Note that the conventional vertical velocity is

dz

dt
� zt � u · �z � �z�, �5�

rather than �, which is used here. Buoyancy �g/�o, is
denoted by b, and is determined from a linear equation
of state: � � �o(1 � �), with  � 0.210�3(°C)�1. Here
B is the geostrophic Bernoulli function (Welander
1971), which is related to pressure, buoyancy, and z by
B � (p/�o) � bz. The Coriolis parameter is f � 2� sin
	, where � is the earth’s angular rotation rate. The
operators � and � · are, respectively, the horizontal
gradient and divergence operators in spherical coordi-
nates.

The horizontal momentum equations are simply geo-
strophic balance,

f k � u � ��B; �6�

the vertical momentum equation is the hydrostatic bal-
ance,

b�z � B�; �7�

the continuity equation is equivalent to conservation of
volume,

� · �uz�� � ��z��� � 0; �8�

and the energy equation expresses a simplified form of
conservation of internal energy

�z� � ��KV

z�
2 z��

�

. �9�

Boundary conditions are specified at �B, the bottom
isotherm,

z � zB, �10�

�z� � wB, �11�

at �T, the top isotherm,

z � zT, �12�

�z� � wT, �13�

and at � � �E, the eastern boundary,

z � zE, �14�

B��E, �B� � BE. �15�

Lower-case Greek characters that appear as subscripts
denote partial derivatives; Roman character subscripts
are part of the variables’ names.

In the language of the previous section, the abstract
state variable and the variables in the planetary geo-
strophic system are related via u � (u, �, z, B), the
forcing and boundary conditions are F � (zB, wB, zT,
wT, zE, BE), and the operator L is expressed by Eqs.
(6)–(15).

This form of the model and boundary conditions
yields a mathematically well-posed problem. Details re-
garding the numerical implementation of the model will
be presented below. The physical parameters used in
the model may be found in Table 1; numerical param-
eters are in Table 2.

c. The observations

For the experiments reported below, two datasets are
used. The first experiment uses an observing array con-
sisting of 662 measurements of the 9.7°C isotherm
depth, a proxy for the thermocline depth. Figure 1
shows the locations of the measurements along with the
model domain. In the second experiment, an array of
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hydrographic stations spanning the subtropical gyre is
used. The depths of 13 different isotherms were used,
resulting in a total of 1143 observations. Figure 2 shows
the locations of the hydrographic stations. The abstract
measurement operator hi simply corresponds to a point
measurement of the z field at the ith location.

The data source for both experiments consists of a
quality-controlled set of archived hydrographic casts
(Reid and Mantyla 2006). The North Pacific was chosen
as the site for these experiments because of the lack of
deep convection and the general applicability of the
planetary geostrophic system under these conditions.

Other observations are necessary to provide bound-
ary conditions for the model. Ekman pumping velocity,
wT, is derived from the annually averaged wind stress
data of Hellerman and Rosenstein (1983). It is assumed
that mixing at the ocean bottom is zero, wB � 0. The
remaining three boundary conditions on z (at the top,
bottom, and eastern boundaries) are set by performing
an objective analysis of the entire Reid–Mantyla
dataset; these smoothed data were extrapolated to the
boundaries. The only remaining boundary condition is
on the Montgomery potential on the eastern boundary;
BE � 0 is used.

Note that the inverse formulation admits errors in
the hydrographic observations and the boundary data.

d. The error covariances

For these calculations, error is admitted in the hy-
drographic observations, the boundary conditions [Eqs.

(10)–(15)], and the continuity Eq. (8). The error in the
continuity equation is assumed to arise from the linear-
ization of the planetary geostrophic system; indeed, the
mean flow speeds are comparable to the phase speed of
the baroclinic Rossby waves. The momentum equations
and the energy equation are assumed to hold without
error.

As the emphasis of this paper is on the solution meth-
ods, the reader is referred to Zaron (1995) for a justi-
fication of the assumed errors. Table 3 lists the standard
deviations of the observation errors. Table 4 lists the
magnitude and correlation scale of the assumed errors
in the boundary conditions and continuity equation.
The “% error” column indicates that the magnitude of
the assumed errors is based on a fixed percentage of the
area average of the variable, computed from the first-
guess solution.

The prior error covariances, as illustrated in Figs. 3
and 4, are neither homogeneous nor isotropic in spheri-
cal polar coordinates. The mathematical forms of the
covariance functions have been chosen to ensure that
the minimizer of (3) is an element of a reproducing
kernel Hilbert space (Bennett and McIntosh 1982;
Wahba 1990). The purpose of this is to ensure that the

FIG. 1. Data locations for thermocline depth experiment. The
662 measurement locations used in the thermocline depth experi-
ment are shown. The observations consist of the depth of the
9.6°C isotherm at each location. Squares indicate the zonal bound-
aries of the computational domain.

FIG. 2. Data locations for zonal section experiment. The sites of
the zonal section station data are shown. At each location, as
many as 13 isotherm depths are measured. There are a total of
1143 observations. The squares indicate the boundaries of the
computational domain.

TABLE 2. Numerical model parameters.

Parameter Value

Model domain North Pacific (1°–60°N
120°E–60°W)

��, zonal resolution 1° (approx)
�	, meridional resolution 2° (approx)
��, vertical resolution 0.5°C (approx)
nx, zonal grid points 128
ny, meridional grid points 32
n, vertical grid points 32
�B, bottom temperature 1°C
�T, top temperature 15°C

TABLE 1. Physical parameters.

Parameter Value

a, earth’s radius 6 � 103 km
Tday, length of day 8.64 � 104 s
g, gravitational acceleration 9.8 m s�2

KV, vertical diffusivity 1 � 10�4 m2 s�1

LTC, vertical length scale 538 m
w, mean upwelling 6.6 m yr�1
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inverse solution is a physically realizable field that does
not contain delta functions, discontinuities, or other sin-
gularities.

3. Solution methods

In this section, the methods for finding the unique
minimizer of (3) are briefly reviewed.

To provide a basis for comparing the solution meth-
ods, one must tally the computational work require-
ments of each. Rather than counting floating point op-
erations (FLOPs), use is made of the fact that the vari-
ous methods all must use one or more of the following
operators: L, L�1, L*, and L�*. Note that L is a partial-
differential operator, L�1 is its inverse, L* (another
partial-differential operator) is the adjoint of L, and
L�* is the inverse of L*. It is natural to count the work
requirements of the search algorithms in units of
“model integrations,” where one model integration is
the FLOP count for implementing L�1. The FLOP
counts for the numerical implementations of L, L*, and
L�* are nearly identical to the FLOP count for L�1;
hence, the work required to use each operator is
counted as one model integration. The work require-
ments for each solution method are then counted by
adding up the number of times any one of these opera-
tors is used.

a. The representer expansion

The representer expansion is the basis for an elegant
method of minimizing the cost functional. The elegance
of the method lies in its ability to transform a system of
coupled partial-differential equations (the Euler–
Lagrange equations for an extremum of the cost func-
tional) into a set of trivially coupled systems and a ma-
trix inversion problem. To each measurement operator,
hm, there corresponds a representer function, rm, where

m � 1, . . . , M. The minimizer of Eq. (3) may be written
as the sum of a first guess and a linear combination of
representers,

û��, �, �� � uF��, �, �� � �
m�1

M

bmrm��, �, ��, �16�

where the first guess, uF � L�1F, is the exact solution of
Eq. (1), and the bms are scalar representer amplitudes.
The explicit dependence of û, uF, and rm on the spatial
coordinates has been written out in (16) to emphasize
that the representer expansion has transformed an in-
finite-dimensional problem (with unknown function û)
into a finite-dimensional problem (with M unknowns, bm).

Each representer is obtained by solving the following
system:

Lrm � CF�m, �17�

L*�m � hm, �18�

which may be derived from the Euler–Lagrange equa-
tions for the minimizer of Eq. (3). The representer am-
plitudes, b � (b1, . . . , bM), are found by solving the
M � M system of equations

�R � Cd�b � d�, �19�

where R is the M � M representer matrix with columns

�R�m � Hrm. �20�

The M � 1 vector d� is the difference between the data
and the measurements of the first-guess field, d� � d �
HuF.

For future reference, the solution method just de-
scribed shall be called REP. The computation work
requirements of REP are 2M � 3 model integrations [1
integration for the first guess, 2M integrations to solve
Eqs. (17) and (18), and 2 more integrations to solve for
û]. Note also that an M � M linear system (19) must be
inverted to use this method. This is the algorithm de-
scribed in section 3.1.2 of Bennett (2002).

In realistic problems, the M � M system is too large
to explicitly construct and invert. One solves Eq. (19)
via an iterative method. For linear, positive-definite,
symmetric systems, the conjugate gradient algorithm is

TABLE 4. Prior covariance values.

Term Lcorr �corr % error

Continuity equation, Cz 500 km 2°C 20
Top isotherm, CzT 250 km N/A 20
Ekman pumping, CwT 1000 km N/A 20
Bottom isotherm, CzB 250 km N/A 20
Bottom w, CwB 500 km N/A 20
Eastern boundary, CzE 250 km 2°C 20

TABLE 3. Prior measurement errors.

Layer temperature (°C) Uncertainty (m)

2.0 56
2.9 78
3.9 96
4.9 104
5.8 89
6.8 80
7.8 73
8.7 68
9.7 63

10.7 60
11.6 57
12.6 54
13.6 52
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optimal (Luenberger 1973). This is the algorithm pre-
sented in section 3.1.4 of Bennett (2002). Let us call this
method REP-CG. Each iteration of the conjugate gra-
dient algorithm requires two model integrations, one
forward (L�1) and one adjoint (L�*). To actually solve
(19) will require some unknown number of conjugate
gradient search steps, NREP-CG. Once the optimal b vec-
tor is found, three more model integrations are re-
quired to obtain û. The total work of this method is
2NREP-CG � 3.

The convergence properties of the conjugate gradi-
ent algorithm depend on the conditioning of the matrix
(R � Cd). For comparison purposes, it will prove useful
to express this matrix in a different form. Using Eqs.
(17), (18), and (20) one may show that R �
HL�1CFL�*HT. Multiplying this expression on the left
and right by C�1/2

d (the Cholesky factorization of C�1
d )

allows one to write the following identity:

R � Cd � Cd
1�2�BTB � I�Cd

1�2, �21�

where B � C1/2
d L�*H C�1/2

d . The notation L�* indi-
cates the inverse of the adjoint model.

b. Direct minimization

The representer expansion solves the Euler–
Lagrange equations for the extremum of the cost func-
tional (3). In contrast, state-space methods seek the
minimizer, û, by working directly with J. When these
algorithms are implemented on a computer, the for-
mally infinite dimensional state space is reduced to
some large, finite-dimensional, vector space. In this sec-
tion, the symbols used to represent the infinite-
dimensional operators L, L�1, etc., are still used, but it
should be understood that these symbols actually refer
to the finite-dimensional approximations used in the
state-space search algorithms.

FIG. 3. Prior forcing covariances: zonal section. The prior model forcing error covariances
at 25°N are shown. Each panel shows the covariance of the field with respect to the point
marked with the asterisk (*). Units of m2 (yr °C)�2 are used in the central panel entitled
“model forcing.”
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The Hessian matrix of second derivatives of the cost
function in (3) is given by

Su � L*CF
�1L � HTCd

�1H. �22�

Because this is a symmetric and positive-definite opera-
tor, the conjugate gradient algorithm is still the optimal
search algorithm. In practice, one finds that the ill con-
ditioning of Su is so severe that a preconditioner is nec-
essary to achieve success with direct minimization
methods. Two preconditioning methods are compared
below.

The first method, J-CG1, attempts to minimize J us-
ing conjugate gradients with a simple rescaling of the
variables. Specifically, the rescaling is done so that the
diagonal elements of the rescaled Hessian are unity
(Stammer et al. 2002). To obtain the preconditioning
matrix (the inverse square root of the diagonal of Su), a

significant amount of computational work is necessary.
In the present case, 800 model integrations were nec-
essary to evaluate the 650 000 diagonal entries of Su. In
addition, each of the conjugate gradient steps requires
two model integrations. The total computational work
for this method is 2NJ-CG1 � 800, where NJ-CG1 is the
number of search steps for this method.

The second method, J-CG2, preconditions the system
by making the following change of variables:

� � CF
�1�2Lu. �23�

The N � N operator C�1/2
F is the Cholesky factorization

of C�1
F . In terms of �, the new penalty function is

J��� � �HL�1CF
1�2� � d�TCd

�1�HL�1CF
1�2� � d� � �T�.

�24�

FIG. 4. Prior forcing covariances: plan view. The prior model forcing error covariances are
shown in plan view. The units of the contoured fields are the same as those used in the
previous figure. Once again, each panel shows the covariance of the field with respect to the
point marked with the asterisk (*).
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The Hessian of J with respect to � is

S� � I � �HL�1CF
1�2�TCd

�1HL�1CF
1�2. �25�

Note that, under this transformation, the new Hessian
is equal to the identity plus a rank-M matrix, that is,

S� � I � BBT, �26�

where BT � C�1/2
d HL�1C1/2

F is an M � � matrix. Writ-
ing S� in this form reveals that S� has at most M � 1
distinct eigenvalues (Golub and Van Loan 1989), the N
eigenvalues of I are all unity, and BBT has at most M
nonzero eigenvalues. The conjugate gradient algorithm
should converge in at most 1 � M iterations. Each step
of the conjugate gradient algorithm requires two model
integrations. If the method requires NJ-CG2 searches, its
work may be counted as 2NJ-CG2 model integrations.

c. Implementation

The cost of the solution methods described above is
expressed in units of model integrations. It must be
understood that the cost of a model integration is only
one of many possible measures to consider when com-
paring various inverse methods. To convince the reader
that this measure is both fair and relevant, this section
reviews the details of the implementation of the above
solution methods.

To make the comparison fair, the same algorithms
(in fact, the same computer subroutines) are used to
implement the dynamical and statistical operators in
the data-space and state-space methods. The ocean
model defined by Eqs. (6)–(15) is implemented numeri-
cally on a computer, with the infinite-dimensional par-
tial-differential operators approximated by finite-
difference operators on a space of approximate dimen-
sion N � 650 000. To explicitly form the operators L,
L�1, and their adjoints as N � N matrices would be
impractical. Instead, these operators are implemented
as functions; for example, the N state variables at model
grid nodes are computed using an algorithmic defini-
tion of L�1. The operator L is hyperbolic (e.g., Courant
1962), with the zonal direction being the time-like di-
mension, which may be decoupled in the vertical by
projection onto vertical modes. The operator L�1 is
implemented as a zonal integral for each vertical mode
and latitude.

The correct implementation of adjoint codes can be a
challenging task, and several implementation tests out-
lined in Navon et al. (1992) were used to verify (Roache
1997) the code. First, the relationship between the for-
ward and adjoint operators were tested with the defi-
nition of the adjoint; that is, the identity

�L�� � � � � � �L*�� �27�

was verified to machine precision for random test fields
� and �. Next, the operator composition was tested by
computing the limit of the Gateaux derivative in the
direction of the gradient of J (Thepaut and Courtier
1991). Finally, a check was made for agreement be-
tween the values of the penalty function computed
from the state-space variables and the data-space vari-
ables [i.e., J(û) � bTRb � bTRC�1

d Rb].
Tests were also conducted to verify the numerical

convergence of the calculations, as a function of grid
resolution. Because the representer equations involve
the response of the model and adjoint operators to
delta function forcing, it is not evident a priori that the
solutions obtained from finite-difference approxima-
tions will be accurate. A 2 � 2 representer matrix for
measurements at two widely separated sites was used to
test for numerical convergence. The grid resolution was
refined by factors of 2 until the values in the repre-
senter matrix changed by less than 1%. This resolution
was used as the working resolution for the calculations.

The hyperbolic character of L has implications for
the structure and implementation of the model error
covariance, CF. Bennett and Budgell (1987) show that
the model forcing covariance should be chosen to yield
mathematically regular solutions to the underlying par-
tial differential equations, otherwise a solution of the
inverse problem may produce an erroneous result. Sub-
sequent grid refinements in an incorrectly posed in-
verse problem will reveal spurious discontinuities asso-
ciated with the data sites. For the linearized planetary
geostrophic system (6)–(15) a sufficient condition for
the physical realizability of the solutions is that the Fou-
rier transform of the covariance function decay like
k�4, where k is the one-dimensional wavenumber.

Note that it is necessary to implement convolutions
with both the model forcing covariance, its square root
[CF in Eq. (17), and C1/2

F � in Eq. (24)], and the opera-
tor inverse of the covariance [C�1

F (Lu � F) in Eq. (3)].
These operators are implemented in a manner similar
to that described in Purser et al. (2003). The square root
of the one-dimensional inverse covariance kernel is the
differential operator

Cx
�1�2�x1, x2� � Nx	x

�1�x1��1 � 
x
�2

�2

�x2
2�, �28�

where ��1
x is the correlation scale in the x̂ direction,

�x(x) is the standard deviation at location x, and Nx is a
normalizing coefficient (chosen to make the correlation
unity at zero lag). This differential operator is approxi-
mated using centered differences, and C�1/2

x is stored as
a tridiagonal matrix, which may be efficiently inverted.
The inverse of the model forcing covariance is ex-
pressed as the product
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CF
�1��1, �1, �1; �2, �2, �2� � 	�1��1, �1, �1�C�

�T�2��1, �2�

C�
�T�2��1, �2�C�

�1��1, �2�

C�
�1�2��1, �2�C�

�1�2��1, �2�

	�1��2, �2, �2�, �29�

which is positive definite and symmetric by construc-
tion. For reference, the one-dimensional (infinite do-
main) spatial correlation function that corresponds to
Eq. (28) is

cx�x1, x2� � �1 � |x1 � x2|
x�e�|x1�x2|
x. �30�

For every pair of “model integrations” (i.e., the appli-
cation of either L, L�1, or their operator adjoints) the
operation count for the convolutions with the model
forcing covariance is very similar in each of the above
methods. For method J-CG1, the operator C�1

F is used;
the representer methods use the operator CF; and J-
CG2 uses the operator C�1/2

F twice.
Similarly, the cost of using the measurement opera-

tors is identical in each of the solution methods. The
REP-CG method uses H and its adjoint to compute
(R � Cd)b, via Eqs. (18) and (20). The direct minimi-
zation methods also use H and its adjoint in the gradi-
ent evaluations.

Finally, it is certain that the representer and direct
minimization solvers implemented here could be modi-

fied so as to substantially alter their relative perfor-
mance. To improve J-CG2, it may be possible to use a
polynomial preconditioner or incomplete LU decom-
position (Golub and Van Loan 1989) to form an ap-
proximate inverse of the Hessian (25). Likewise, sev-
eral strategies exist for preconditioning the REP-CG
solver (Bennett 2002). These are areas of ongoing re-
search, and many practical and theoretical questions
remain unanswered.

4. Results

The solution methods outlined in the previous sec-
tion were compared in two experiments. The two ex-
periments differed only in the number and distribution
of observations. The first experiment used 662 ther-
mocline depth measurements, as shown in Fig. 1. The
second experiment used 1143 measurements at 13
depths across the subtropical gyre; the zonal band of
station locations is shown in Fig. 2.

Figure 5 shows the progress of the minimization for
the iterative solvers J-CG1, J-CG2, and REP-CG. The
noniterative, direct solver, REP, is also placed on the
graph at a point that indicates its computational work.
It can be seen that the iterative representer solver,
REP-CG, converged to the solution roughly 10 times
faster than the preconditioned state-space search, J-
CG2. The naive direct minimization, J-CG1, in which
the variables were simply rescaled, made no significant
progress compared with the other solvers. Similar per-
formance is shown in Fig. 6, which used the zonal band
of observations.

It should be emphasized that each successful solver
obtained the same optimal solution. Because the ocean
model and measurement operators are linear in this
study, there is a unique minimizer of J.

We can gain a partial understanding of these results
by considering the conditioning of the relevant Hessian
matrices. First, the Hessian for the cost function in the
naively preconditioned state-space search, J-CG1, Su in
Eq. (22), is likely enormous. To see this, note that C�1

F

and L are, respectively, fourth- and second-order dif-
ferential operators. If we let m̂ denote the maximum
vertical wavenumber that may be represented on the

FIG. 5. Solution method comparison for thermocline depth. The
plot compares the relative efficiency of the solution procedures
listed in Table 5. The x axis measures the relative amount of work
in units of model integrations, i.e., the number of times the model
operator L is inverted. As mentioned in the text, model integra-
tions and substitutions are equally expensive.

TABLE 5. Solution methods.

Method Work per step One-time work

REP 2 3 � (M � M solve)
REP-CG 2 3
J-CG1 2 800
J-CG2 2 0
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finite-difference grid, then the largest eigenvalue of Su

will scale like m̂8. Even with the state variables nondi-
mensionalized by the preconditioner, the condition
number based on just the vertical finite-difference op-
erators will scale like n8 � 1012, where the number of
vertical levels, n, is 32. This condition number is large
enough that the descent method fails in double preci-
sion arithmetic (which nominally carries 15 digits).
When there is enough data to constrain both the large
and small scales, it is conceivable that the HTC�1

d H
term will control the condition number of Su, but this
situation only arises when the model dynamics are ir-
relevant to the inversion.

The conditioning of the REP-CG and J-CG2 solvers
can be compared by looking at the expressions for the
Hessian matrices in Eqs. (21) and (26). Note that the
matrix B is the same in both cases. If the REP-CG
solver had been preconditioned with the transforma-
tion b̂ � C1/2

d b, the condition numbers of the REP-CG
and J-CG2 solvers would have been identical. This re-
sult is identical to that derived by Courtier (1997a) for
time-dependent problems. Based on the conditioning
of the Hessian, one would expect the performance of
the data-space and state-space search algorithms to be
comparable when the latter is preconditioned with the
appropriate dynamical and covariance operators [as in
Eq. (23)].

Why should it be that the data-space search, REP-
CG, performed about 10 times faster than the precon-
ditioned state-space search, J-CG2? Should one expect
similar results with other models and datasets? Golub

and Van Loan (1989) point out that conjugate gradient
algorithms generally solve matrix equations like Ax �
b, where A is a symmetric positive definite matrix, in
r � 1 steps, when A is a rank r correction to the iden-
tity. Thus, the REP-CG and J-CG2 solvers must both
converge to their solutions within M iterations.

Because the dimension of the data space is relatively
modest in these examples, it is possible to perform a
complete eigenvalue analysis of the R and Cd matrices.
Figure 7 shows the spectrum of eigenvalues of these
matrices in the “thermocline depth” experiment. The
data covariance matrix, Cd, is diagonal, so its eigenval-
ues are just its diagonal elements. Also, because the
data variances span less than an order of magnitude, the
Cd matrix is approximately a rescaled identity matrix.
The representer matrix, R, which may be interpreted as
the covariance matrix of measurements of the prior
model, has eigenvalues that span many orders of mag-
nitude. Each eigenvalue is the variance of a mode of
oceanic variability that is observable by the measure-
ment array, an antenna array mode (Bennett 1985).
Significantly, only about 60, or one-tenth, of the an-
tenna array modes have variance comparable to the
data variance. In other words, the matrix R � Cd is
roughly a rank-60 perturbation to the identity matrix. A

FIG. 7. Eigenvalue spectrum for thermocline depth experiment.
The plot shows that only about 60 of the representer matrix eigen-
values (of the 662 total) are comparable to or larger than the
eigenvalues of Cd. The data error covariance matrix, Cd, is very
nearly a rescaled version of the identity matrix. Because the R �
Cd matrix is approximately a rank-60 perturbation to the rescaled
identity matrix, the REP-CG solver converged in about 60 iter-
ates.

FIG. 6. As in Fig. 5 but solution method comparison for zonal
section.
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comparison with Fig. 5 reveals that the REP-CG1 al-
gorithm converged in slightly more than 60 iterates. An
analysis of the eigenvalue spectrum for the “zonal sec-
tion” experiment (not shown) leads to similar observa-
tions.

The degree to which this analysis would apply to
other models and datasets cannot be known a priori;
however, it would seem that in most realistic cases there
will be a significant fraction of the antenna array modes
with variance well below the level of the data error
variance. If this were not the case, it would suggest that
the state variables at the data sites are dynamically un-
coupled. In such instances there would seem to be little
value in performing the data assimilation.

Inspection of Fig. 5 shows that the J-CG2 solver con-
verged in fewer than M iterations, where M � 662. In
fact, it outperformed the data-space solver within the
first 10 iterations. Because the conditioning of the Hes-
sian should be the same as for the REP-CG solver,
there are evidently other causes for the different per-
formance of the algorithms. Briefly, there are the fol-
lowing two possibilities:

• Finite-precision arithmetic and numerical round off
errors: finite-precision arithmetic will cause the con-
jugate gradient search directions to loose the appro-
priate orthogonality relations during the iterations.

• Different initial states: the state-space and data-space
searches begin from different initial states; the con-
vergence of the conjugate gradient algorithm can be
influenced by exactly how the initial state projects
onto the eigenvectors of the associated Hessian ma-
trix.

The problems due to finite-precision arithmetic are
likely to become evident more quickly with the state-
space solvers than the data-space solvers, due to the
smaller dimensionality of the latter. However, experi-
ments with the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method (i.e., a quasi-Newton method; e.g.,
Nazareth 1979), which was recommended by Navon
and Legler (1987), did not yield significant improve-
ments. There is some evidence that the differing initial
states may be a factor in the convergence of the algo-
rithms. The phenomenon of superlinear convergence
occurs when the initial state projects preferentially onto
the eigenvectors associated with the largest eigenvalues
of the Hessian matrix (Beckermann and Kuijlaars
2001). Under these conditions, the converge rate of the
algorithm grows as the solution is sought in progres-
sively better conditioned subspaces of the Hessian. The
use of log–log coordinates in Figs. 5 and 6 exaggerates
the impression of an increasing convergence rate in

both solvers. The REP-CG solver does indeed display
superlinear convergence, but there is none at all for the
J-CG2 solver. Unfortunately, a thorough analysis of the
finite-precision and superlinear convergence aspects of
the algorithms is beyond the scope of the present work.

5. Summary

The results of this study highlight the relative merits
of data-space searches over state-space searches in the
effort to determine the oceanic general circulation via
variational or adjoint methods. The use of a relatively
simple ocean model has permitted the intercomparison
of four solution methods. In spite of its simplicity, the
physics of the model are those that should govern the
large-scale ocean circulation away from boundaries.

The iterated data-space solver (REP-CG) was able to
obtain the unique minimum of the cost functional with
the least computational work. A preconditioned state-
space search (J-CG2) was found to be more efficient
than a direct representer solver (REP), but it was still
less efficient than REP-CG. While there are many mea-
sures of the efficiency of an algorithm, which depend on
details of the implementation and underlying computer
architecture, the count of model integrations is appli-
cable across many implementations. It was shown that
the count of model integrations scales with the number
of convolutions in the algorithms, so identical results
would have been obtained if the work had been mea-
sured in units of “error covariance convolutions.” Per-
haps other metrics will prove to be relevant if these
results are extended to situations with much larger
datasets.

The iterated representer method was found to be the
most efficient solver for the Euler–Lagrange equations
that define the minimum of the cost functional; how-
ever, the applicability of this solver to the planetary
geostrophic system relied on the model’s linear dynam-
ics. What if the model had been nonlinear? When ei-
ther the model or the measurement functionals are
nonlinear, there are several options. One can use state-
space search algorithms to directly minimize the cost
functional. Sophisticated preconditioners are required,
though these may be built up using, for example, lim-
ited-memory quasi-Newton methods (e.g., LeDimet et
al. 1997). The large dimension of the state makes the
application of these methods to realistic problems chal-
lenging. Compromises are possible, such as adjusting
the stopping criteria of the search. For example, the
minimization algorithm can be stopped once the value
of J (u) has been reduced to an “acceptable” value con-
sistent with the postulated errors (Stammer et al. 2002).
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To obtain the advantages of a data-space algorithm
in the nonlinear case, one may consider a sequence of
linear inversions, where each inverse problem is ob-
tained by linearizing the model and/or measurement
operators around the previous state estimate. There is
little that can be said about the convergence of this kind
of Picard, or functional, iteration, as it depends on de-
tails that are unique to the situation. When the itera-
tions do not converge, step-length damping, the so-
called creeping algorithm (e.g., Parker 1994), can sta-
bilize the functional iteration. There has been some
success with this method in applications to geophysical
fluid flows (Bennett et al. 1997).

The results suggest that it is entirely feasible to as-
similate hydrographic station data, rather than
smoothed and gridded climatologies, into general cir-
culation models. The flow patterns diagnosed from
gridded climatologies such as Levitus (1982) are not
steady; hence, many studies have sought to use inverse
methods to determine the flow and hydrographic fields
simultaneously. Perhaps the climatologies can now be
produced by the methods described herein. Use of the
REP-CG solver, in concert with preconditioners like
those suggested in Bennett (2002), makes feasible the
assimilation of very large datasets (e.g., Rosmond and
Xu 2006).
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