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From a Locally Competitive Algorithm to Sensory Relevance Models

Walt Woods and Christof Teuscher; teuscher.:Lab, Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA; {wwoods, teuscher}@pdx.edu

e What We Can Do Now

Background

Machine Learning (ML): developing computers that learn without explicit
programming.

—

Fig. 2 - Sparse coding is representing an input stimulus as a sum of distinct parts; the pattern of
distinct parts used can then be used to identify larger patterns in the stimulus, such as the type of
object creating the stimulus.
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Memristors combine storage and logic into a single, nanoscale device. The result is
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extraordinary savings in power consumption, processing speed, and circuit area, at golfcart '
the cost of additional design requirements due to their analog nature. These
devices made the SSLCA possible.
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The tree diagram at the top of this poster (Fig. 2) illustrates the primary principle
behind sparse coding: whole objects can be broken down into distinct
components. This concept also works backwards: an input stimulus can be
represented as the sum of many distinct components, called dictionary elements,
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which can in turn be used to identify whole objects. This happens through a || > Row Header ¢ ¢ ¢ >
process known as unsupervised learning; in this work, the Locally Competitive i —
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Fig. 1 - Demonstration of Oja's rule, used to learn the optimal dictionary elements for a set of = = =
input patterns. Over time, the dictionary used to encode inputs can more accurately represent Fig. 4 - The layout of the Simple, Spiking Architecture (SSLCA); memristors are at the junctions of the
different input patterns. horizontal and vertical nanowires. Read the paper on ArXiv for more information: "Fast and Accurate

Sparse Coding of Visual Stimuli with a Simple, Ultra-Low-Energy Spiking Architecture."
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