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Dirac’s equation in semiclassical physics

Lee W. Casperson
Department of Electrical Engineering, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
(Received 26 September 1994)

Dirac’s equation provides the most rigorous basis known for many calculations in relativistic quantum
mechanics. A set of dynamical equations having greater intuitive content can be derived from Dirac’s
equation without any approximations. These secondary equations govern the properties of a Dirac par-
ticle as functions of time and space and are similar to the corresponding equations governing a classical
charged fluid. Several new density functions are implied by these equations and are appropriate for in-
corporation into the various semiclassical models of physics.

PACS number(s): 03.65.Sq

I. INTRODUCTION

Dirac’s equation is the starting point for many calcula-
tions in quantum mechanics [1]. With appropriate densi-
ty definitions it is possible to derive from Dirac’s equa-
tion a set of dynamical equations that resembles very
closely the macroscopic equations of classical fluid
mechanics [2]. Dirac’s equation is linear in the wave-
function variables, but by means of suitable manipula-
tions one can obtain as exact theorems a set of equations
that are quadratic in the wave functions. This process is
analogous to the manner in which Poynting’s theorem,
which is quadratic in the electromagnetic field variables,
is derived from the linear Maxwell-Heaviside equations.
The Dirac-equation-based theorems may be used to infer
the form of several operators and their corresponding
density functions.

The idea that the wave functions of quantum mechan-
ics might behave like a fluid is not new. This concept was
implied in Schrddinger’s models, and hydrodynamical in-
terpretations of the wave function were first emphasized
explicitly by Madelung [3]. While this line of interpreta-
tion by itself did not lead to dramatic new insights, it did
become an integral part of the hidden-variable models of
de Broglie, Bohm, and others [4-16]. The more specific
question of the relationship of the wave function for a
Dirac particle to the equations of a classical fluid is ex-
plored here, and the extraction of the resulting density
functions and their incorporation in semiclassical models
is also considered.

It is shown in Sec. II that if one employs appropriate
definitions of charge density, momentum density, etc.,
one obtains classical-appearing results such as conserva-
tion of charge or momentum for a charged fluid. Most of
the densities and the equations that interrelate these den-
sities have not been considered previously, and the results
are summarized and discussed in Sec. ITI.

II. THEORY

Dirac’s equation can be written

iﬁ%‘f-Z(—iﬁch—eca'A+e¢+Bch)¢', 1)
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where c is the speed of light, m is the electron mass, # is
Planck’s constant divided by 27, and ¢ and A are the or-
dinary scalar and vector electromagnetic potentials. In
the simplest formulations the electron wave function # in
Eq. (1) is represented by a four-component one-column
matrix. The dot product notation in Eq. (1) would seem
to suggest that the term a represents a vector, which
would have the Cartesian components a,, a,, and a,.
However, in the same way that the wave function ¢ is a
one-column matrix, the terms «, a,, and a,, as well as B
must be understood as four-by-four matrices. It is a fur-
ther requirement of the theory that these matrices must
satisfy the relationships [17]

a,a,ta,a, =a,a,ta,a,=a,a, +ta,a,=0, (3)
a,B+Ba,=a,B+Pa,=a,f+Ba,=0 . 4)

Neither the representation of the wave function ¥ in Eq.
(1) nor the detailed representations of the @ and 8 ma-
trices are unique in Dirac’s model, and if possible it is
usually considered preferable not to express these equa-
tions in an expanded form when solving problems [18].
In terms of the electromagnetic potentials, the electric
field E and the magnetic-flux density B are given by [19]
J0A

E=—V¢——5;— , (5)

B=VXA. (6)

Useful theorems can be obtained from Egs. (1)-(6) by
exploring the derivative

9ty 180 S L Al
at(d} oY)=1vy atz/;+1//oat+ ” oy, 7

where the symbol o represents an as yet unspecified
operator. As a shorthand, it is convenient to introduce
the Hamiltonian operator

H=—ifica-V—eca - A+edp+PBmc?, (8)

and with this definition Eq. (1) can be written more com-
pactly as
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o = 8 9 3 (14)
With this formula, Eq. (7) becomes dx 9y 3z |~

3 (yrop)=uyt 2yt L fow— !
o (YovI=¢ Tyt S [(HYY oy —¢loHY] . (10)

After some calculations using Eq. (8), this result can be
written in the form

Bty 190 Lt _v.(yt
at(tﬁo;&) Y az¢+h’¢(H° oH)Y—V-(¢Y'voy) ,

(11)
where the velocity operator
v=ca (12)

has been introduced in the last term.

If there is every ambiguity about the interpretation of
an operation sequence, as in the last term in Eq. (11), one
can always check the analysis by first replacing a vector
operator o by one of its scalar Cartesian components and
then later reassembling the vector equation from its com-
ponents. More specifically, one can write the spatial as-
pects of the operator j,=vo in Eq. (11) as a tensor opera-
tor current

Alternatively, the last term in Eq. (11) could be written in
shorthand as V-(¥'vow)=3,(¥'viow).

Equation (11) is a general theorem concerning the
effect of an operator on the quantum-mechanical wave
function of an electron. As specific examples, we will let
the function o in Eq. (11) represent the scalar constant e,
the vector u=er, the differential operators p= —i#V
—e A, I=rXp, u=i#d /9t —ed, and the matrix operator
s=(—i#i/4)aXa. The results of these substitutions are
given in Table I. The first of the equations in the table is
the familiar result ensuring conservation of charge; and,
as will be discussed in Sec. III, the forms of the @ and B
matrices were chosen in part to ensure that this conserva-
tion equation would result. The quantity p, in the second
equation in the table can be recognized as the electric di-
pole moment density, and a similar equation arises in dis-
cussions of Hertzian dipoles.

It is clear from fluid mechanical analogies that the pa-
rameter p, appearing in the third equation in the table
represents the momentum density, while the term
f=p.E+J, XB represents the force density, and J, is the
momentum-current density. In tensor notation the

UxOxly Ux0y1, V0,1, momentum equation for a classical uncharged fluid has
jo= |v,0xi, vy0,i, v,0i, |, (13)  been written [20]
v,0,1, v,0,i, v,0,i
eewoEy e B py=— 3p _ Oepmv;) 1s)
provided that the V operator is understood to mean the ar Pmi ox; ox;, ’
TABLE I. Fluid equations for a Dirac wave function.
Density definitions Equations
t 9p.
Charge: p.=vY'ey Y =-V-J,
Charge current: J. =1/JTve1/z
)
Dipole moment: pu=¢rTer1/z —gtﬁ= VI,
Dipole moment current: J M=¢Tver¢
- T 9, _
Momentum: P, =Re(¢'py) —gt——peE-FJeXB—V-J[,
Momentum current: J,=Re( Yvpy)
9
Orbital angular momentum: pr=tXRe(¥'py) —;Tl=r><(peE+JeXB)+C—V-Jl
Orbital angular momentum current: J,=Re(y'vr X py)
Spin-orbit coupling: C=Re(1,bfv><p¢)
9p;
Spin angular momentum: pS=RC(¢TS¢) ; =—C—V-J
Spin angular momentum current: J,=Re(¢'vsy)
1 9P
Energy: p.=Re(¥'uW¥) 3 =J,-E—V-J,

Energy current:

Ju=Re(‘I’Tvu\If)
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where v; is the i component of the velocity, p,, is the
mass density, p is the pressure, and a summation over re-
peated indices is implied. It is clear that the Dirac
momentum equation is exactly parallel to Eq. (15) if the
electromagnetic forcing terms are replaced by the pres-
sure gradient. Thus, the equation in the table may be re-
garded as an equation for the momentum density of a
charged uniform pressure fluid in the presence of electric
and magnetic fields.

It follows from the form of the fourth equation in
Table I that p, represents an orbital angular momentum
density, r X f is a torque density, and the last term results
from the spatial distribution of the angular momentum
density. The ‘“‘unexpected” term is the coupling C, and
this term is related to an intrinsic spin angular momen-
tum density. In an ordinary classical fluid one would ex-
pect the velocity and momentum density to be parallel,
but with a Dirac particle the density of the velocity-
momentum operator cross product does not vanish.

The fifth equation in the table governs the spin density.
Spin is, of course, not usually associated with a classical
fluid, but one can contemplate the possibility of a fluid of
small gyroscopes. The fourth and fifth equations may be
combined to obtain the equation

%(p1+ps)=rxf—v-(l,+ls) . (16)
This result governs the total angular momentum in the
presence of forces due to electric and magnetic fields.
The sixth equation in the table governs the energy densi-
ty, and this equation may be recognized as the wave-
function complement of Poynting’s theorem.

III. DISCUSSION

In the previous section Dirac’s equation has been used
as a basis for deriving several equations that govern the
wave functions of a Dirac particle. These equations are
listed in Table I together with the definitions of the densi-
ties involved. For greater symmetry the indicator Re for
real part could be included in all of the density
definitions, even though some of the densities are intrinsi-
cally real. It should be emphasized that these formulas
have been derived from Dirac’s equation without approx-
imation. A striking feature of these results is their close
resemblance to the equations of classical fluid mechanics.
In all cases the time derivative of a density function has
been related to the divergence of an appropriate tensor
source current density and sometimes also to electromag-
netic forcing terms.

One of the greatest difficulties with quantum mechan-
ics is that interpretations of the wave functions and the
way in which they represent physical variables are largely
lacking in intuitive content. One of the few intuitive
features of the conventional theory is conservation of
charge dp,/0t=—V-J,, but this feature was built in at
the outset. In the words of Morse and Feshbach, “We
used the choice of charge and current density expressions
and the requirement that they satisfy the equation of con-
tinuity to guide us in our choice of the Dirac equation”
[21]. We see now that this choice of charge continuity is
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an arbitrary basis for that derivation. Dirac’s equation is
actually a package deal. That equation implies a variety
of other conservation theorems, and conversely any of
those theorems could be considered a basis for construct-
ing the equation.

The theorems discussed here provide new insight into
the behavior of the wave function at the microscopic lev-
el. We find that the wave function of a Dirac particle in
the presence of applied fields seems to flow about in much
the same way as a classical charged fluid, carrying with it
momentum and angular momentum densities in the same
sense that it carries charge. These results are in contrast
to the Ehrenfest theorems that involve integrals over all
space, require that the wave function be well behaved at
large distances, and require that any electromagnetic
fields be constant over the dimensions of the wave packet.
In fact, Ehrenfest-like theorems can be obtained in the
appropriate limits by integrating the equations shown in
Table I.

When the results developed here are combined with
the Maxwell-Heaviside equations, various practical semi-
classical problems involving the interaction of charges
and fields can be addressed. As an early example, the
charge density shown in the table is the basis of Hartree’s
self-consistent-field method for calculating the wave func-
tions of multielectron atoms [22]. The current density in
the table can be used to calculate the magnetic field asso-
ciated with an electron in an atom in a manner analogous
to the field calculation for an orbiting electron in the
Bohr model [23]. Similarly, in the interaction of light
with atoms the dipole moment density in the table leads
directly to the polarization source term in the elec-
tromagnetic field equations, and calculations of this type
are the basis for treatments of light absorption and laser
amplification. The momentum density functions in the
table can be used for dynamical calculations, and for ex-
ample the momentum distribution or trajectory of an or-
biting electron wave packet in a Rydberg atom could be
calculated [24].

While the results of calculations such as some of those
that have just been mentioned may ultimately be the
same as in previous semiclassical models, the derivations
suggested here are conceptually more direct. The inter-
pretation of the density functions follows unambiguously
from the form of theorems that are themselves exact
consequences of Dirac’s equation. By contrast, in con-
ventional semiclassical models the form of the operators
may be determined in a more roundabout way, and the
justification for introducing the expectation values of
those operators into the classical fluid or electromagnetic
equations is more obscure.

As a final observation, it may be remarked that though
the theorems described here have been derived in an ex-
act and straightforward way from Dirac’s equation; for
the most part these theorems do not have close parallels
starting from Schrédinger’s equation. The reason for this
limitation of the Schrodinger model may be understood
from a consideration of Poynting’s theorem of elec-
tromagnetics. In studies of electromagnetic wave propa-
gation in free space, one commonly begins by construct-
ing from the Maxwell-Heaviside equations an exact wave
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equation that is second order in time and space. Some of
the higher derivatives may then be eliminated from this
equation by means of slowly varying envelope (SVE) or
paraxial approximations. It is evident that after these ap-
proximations one could no longer derive Poynting’s
theorem, which is an exact consequence of the original
Maxwell-Heaviside equations. In the same way, the exact
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theorems developed here are not necessarily consistent
with the more approximate Schrodinger equation.
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