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R&D Target-Setting Difficulties 
Addressed through Emergent Method:   

Technology Forecasting Using Data Envelopment Analysis 
 

Ann-Marie Lamb, Timothy Anderson, Tugrul Daim 
 
 

The aim of this study is to provide a foundation for researchers and managers to 
further discuss and resolve difficulties associated with R&D target-setting.  While 
multiple studies mention the difficulty of R&D target-setting, few studies exist which 
compile reasons for these difficulties; nor do they address this issue in any detail.  This 
paper provides what appears to be one of the first studies outlining reasons for R&D 
target-setting difficulties through a literature review; then also provides an initial set of 
analyses and results after applying an emerging quantitative method, Technology 
Forecasting Using Data Envelopment Analysis (TFDEA) addressing these difficulties, 
step-by-step to commercial airplanes. Results include determining the state-of-art in 
commercial airplane technology and technological rate-of-change variants in setting 
R&D targets.  

.  
 

1. Introduction 

A multitude of studies mention difficulties in R&D target-setting as well as make statements in 

support of continued research focus on this issue; yet few studies were found which compile and/or 

address these R&D target-setting difficulties into one review and deeper analysis.  One study states 

that a system of technology estimation and forecasting is needed to improve R&D target-setting, but 

to-date, this system is “…not yet well-established.” (Y.-G. Lee & Song, 2007)  Other studies mention 

R&D target-setting difficulties faced in order to set policy targets for science and technology in Israel 

(Trajtenberg, 2002) and Thailand (Sabhasri & Yuthavong, 1983).  Adding urgency to this research 

topic, a couple studies mention how the need to address R&D target-setting issues is timely and 

expected to increase in importance (Edler, Meyer-Krahmer, & Reger, 2002; Sungjoo Lee, Kang, Park, 

& Park, 2007).   Lee, et al. (2007), is one of the more comprehensive frameworks found which 

translates technology roadmapping into operational processes, yet this study also focuses on the 

overall technology planning process without delving deeper into the R&D target-setting difficulties.   

To address this research gap, first a list of R&D target-setting difficulties was necessary, and this 

is accomplished as shown below in the literature review.  Secondly, an example of addressing these 

difficulties is shown through applying an emergent method, Technology Forecasting Using Data 
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Envelopment Analysis (TFDEA) to commercial airplanes.  TFDEA has been mentioned as a possible 

method which could aid strategic R&D decision-makers (Inman, 2004). 

Complex technological barriers, as well as exogenous economic, environmental, and government 

concerns (Ashford, 1985; Esposito, 2004; Gillett & Stekler, 1995) help form a difficult set of critical 

decisions in new product development and R&D target-setting facing commercial airplane 

manufacturers.  As an earlier study indicates (A. Lamb, T. R. Anderson, & T. U. Daim, 2010), the 

whole host of parameters affecting these decisions has contributed to an application difficult for 

technology forecasting and determining strategies for R&D target-setting.  Frequently, forecasters 

overcome these airline industry challenges by focusing on one or a subset of parameters (Brueckner & 

Pai, 2009; Fraser, 1985; Liu, 1993; Masson, Brown, Soban, & Luongo, 2007; Ruffles, 2003).    

This paper highlights application of TFDEA to commercial airplanes to aid in overcoming some of 

the difficulties in technology R&D target-setting.  Specifically it addresses: 1) Methods needed which 

focus on measuring technology inputs and outputs as reliable yardsticks; 2) 

external/competitor technology monitoring; 3) trend analysis and forecasting needed; and 4) 

human-based motivation factors.  Multiple technology rates-of-change (RoC) are utilized in order to 

showcase decision-making options facing managers. 

2. Literature Review 

Setting targets was generally included as one of the tasks in the increasingly formalized 

process/approach for technological innovation seen in the literature in the late 1990s/early 2000s. 

(Chiesa, Coughlan, & Voss, 1996; McDermott & O'Connor, 2002; Song & Montoya-Weiss, 1998; 

Veryzer Jr, 1998; Zhang & Doll, 2001)  This literature included a heavy emphasis in making a 

distinction between R&D innovation processes for incremental versus new products (McDermott & 

O'Connor, 2002; Song & Montoya-Weiss, 1998; Veryzer Jr, 1998).  Then, in addition to a couple early 

examples (Nightingale, 2000; Sabhasri & Yuthavong, 1983), there has been a growth in the literature 

since 2002 stating that R&D target-setting has been difficult from several perspectives: Specific 

technology application examples--with a heavy emphasis on energy technologies--(Bosetti, Carraro, 

Sgobbi, & Tavoni, 2009; Kosugi, Hayashi, & Tokimatsu, 2004; Sungjoo Lee et al., 2007; Y.-G. Lee & 
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Song, 2007; Nightingale, 2000; Zinkle, 2005); specific industry journals (Kosugi et al., 2004; 

Nightingale, 2000; Zinkle, 2005); national perspective papers (Bosetti et al., 2009; Sabhasri & 

Yuthavong, 1983; Trajtenberg, 2002); and, in addition to these industry-specific journals, a few 

examples have begun to  appear in recent technology management and R&D research journals. 

(Bremser & Barsky, 2004; Edler et al., 2002; Sungjoo Lee et al., 2007; Y.-G. Lee & Song, 2007; 

Okuyama & Matsui, 2003).  The field today does not provide a depth of understanding of the specific 

R&D target-setting difficulties:  Four are discussed below, and then summarized in Table 1.  

R&D target-setting decision-makers struggle with what aspects of a technology to measure—what 

are the inputs, outputs, and reliable yardsticks for assessing the technology?  Methods are needed 

which focus on measuring technology inputs and outputs as reliable yardsticks (Kosugi et al., 2004; 

Sabhasri & Yuthavong, 1983; Zinkle, 2005).  (Input/output focus as reliable yardsticks)   

Also, while there appears to be general agreement on the importance of knowing external and 

competitor information for feeding the R&D target-setting decisions, decision-makers often find it 

difficult knowing how to narrow this sub-topic sufficiently in order to not become lost in all the data 

(Edler et al., 2002; Sungjoo Lee et al., 2007).  (External/competitor technology monitoring)   

One note of interest is that recent discussions by experts in the field centered around whether 

monitoring should be considered a separate, stand-alone, activity in R&D management, or a sub-

process step leading to improved capability for forecasting.  These experts advise monitoring should 

be considered as leading (in other words a sub-process step) toward improved forecasting (Roper, 

Cunningham, Porter, Mason, & Banks, 2011). Again, while there appears to be wide agreement that 

studying the historical technology development and future trends is important for setting R&D targets; 

robust and less limiting methods are needed for doing so, particularly with fewer restrictions on what 

technological aspects can be measured accurately (Edler et al., 2002; Kosugi et al., 2004; Sungjoo 

Lee et al., 2007; Y.-G. Lee & Song, 2007; Sabhasri & Yuthavong, 1983).  (Trend analysis and 

forecasting needed)   

An emerging and compelling sub-topic research area in difficulties with setting R&D targets 

revolves around the motivations of the managers involved in the target-setting process itself.  Although 

“…target setting and budget goals are intended to provide motivation for employee actions” (Bremser 
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& Barsky, 2004), there is increasing evidence that managers set technological target goals based on 

what they believe is more easily achievable rather than pushing technological progress/boundaries 

(Bremser & Barsky, 2004; Sunghan Lee, Ahn, & Choi, 2009; Nightingale, 2000).  (Human-based 

motivation factors)   

Table 1:  Literature Review on R&D Target-Setting Difficulties and Description 

 R&D Target-Setting 
Difficulties Description References 

1 Input/output focus 
as reliable 
yardsticks 

R&D target-setting decision-makers struggle 
with what aspects of a technology to 
measure—what are the inputs, outputs, and 
reliable yardsticks for assessing the 
technology? 

(Kosugi et al., 2004; 
Sabhasri & Yuthavong, 
1983; Zinkle, 2005) 

2 External/competitor 
technology 
monitoring 

Decision-makers often find it difficult to know 
how to narrow this sub-topic sufficiently in 
order to not become lost in all the external and 
competitor technology data. 

(Edler et al., 2002; 
Sungjoo Lee et al., 2007) 

3 Trend analysis and 
forecasting needed 

Robust and less limiting methods are needed 
for conducting trend and forecast analysis, 
particularly with fewer restrictions on what 
technological aspects can be measured 
accurately. 

(Edler et al., 2002; 
Kosugi et al., 2004; 
Sungjoo Lee et al., 2007; 
Y.-G. Lee & Song, 2007; 
Sabhasri & Yuthavong, 
1983) 

4 Human-based 
motivation factors 

There is increasing evidence that managers 
set technological target goals based on what 
they believe is more easily achievable rather 
than pushing technological 
progress/boundaries. 

(Bremser & Barsky, 
2004; Sunghan Lee et 
al., 2009; Nightingale, 
2000) 

 

Again, further discussion of the initial four R&D target-setting difficulties and their application to 

commercial airplanes will form the framework for deeper analysis and depth on these topics in the 

current study. 

Anderson, et al, 2008, provided historical context for technology forecasting research and fit with 

TFDEA so this will also not be covered in this paper. (Anderson, Daim, & Kim, 2008)  This paper was 

designed in mind to show managers and researchers how TFDEA can aid in strategic planning, new 

product project selection, and overall technology trends and paradigm shifts (Anderson et al., 2008; 

Scott, 1993)—but applied to commercial airplanes and specifically addressing how these sub-topics 

can be used in facing difficulties in R&D target-setting.  
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There is not one encompassing set of parameters to use for focused decision-making on airplane 

technology studies (Ashford, 1985; Esposito, 2004; Gillett & Stekler, 1995).   A couple papers describe 

the use of technological and economic parameters for jet fighters (Inman, Anderson, & Harmon, 2006; 

Martino, 1993); and although there are some shared parameters between jetfighters and commercial 

aircraft such as speed and range, there are significant differences in what is important to 

manufacturing each with the jetfighter more focused on weaponry and non-detection and less so on 

passenger economics and profit – important considerations for commercial airplanes (Gillett & Stekler, 

1995).    

Gillett and Stekler (Gillett & Stekler, 1995) provided a detailed descriptive paper on the strategic 

process of introducing a new airplane.  Based on their work, and augmented from additional literature 

sources, five critical technological performance parameters being used today by airplane 

manufacturers, and their customers, the airlines, are:  Fuel efficiency/capacity (Gillett & Stekler, 1995; 

Kumar & Hefner, 2000; Masson et al., 2007; Ruffles, 2003); range (Gillett & Stekler, 1995; Kumar & 

Hefner, 2000); max speed and typical cruising speed (Esposito, 2004); and, number of passengers 

(Gillett & Stekler, 1995; Kumar & Hefner, 2000; Wall, 2006b).   These five parameters will form the 

basis of our model for applying TFDEA in this current study. 

The current commercial airplane study focuses attention on applying TFDEA to complex and 

costly systems similar to fighter jets, but instead illustrates a current much discussed technology and 

commercial industry with more market and economic constraints than the military and fighter jets.  

3. Methodology 

The five measures of performance are utilized in the Data Envelopment Analysis (DEA) introduced 

in Charnes’ seminal paper in 1978 (Charnes, Cooper, & Rhodes, 1978).   DEA is now a widely 

accepted (Cooper & Seiford, 2004) econometrics-based method for measuring relative efficiency; in 

particular for determining organizational, decision-making, and business process efficiencies.  

However, DEA requires regular time periods for comparing relative efficiency; thus, until recently, 

rendering the method incapable of forecasting technologies which are typically introduced at 

intermittent time periods.   TFDEA is a recent extension of DEA to allow for technology applications.  
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Used concurrently with DEA, state-of-art (SoA) frontiers are conceptually combined to allow for 

TFDEA to become a dynamic method for technology forecasting and assessment.  SoA is defined as 

“the state of best implemented technology as reflected by the physical and performance 

characteristics actually achieved during the time period in question”.  (Sahal, 1976) 

To aid in conceptual understanding, the step-by-step operational explanation of TFDEA is 

provided below (Table 2) as well as explaining how these steps apply to commercial airplanes.  Steps 

correspond to equations in Appendix 1. 

Table 2:  Step-by Step Operational Explanation of TFDEA applied to Commercial Airplane 

Step Commercial Airplane ( k )  

( 1 ) For each airplane (pre 2007) 

  ( 2 ) * 
Measure that airplane relative to all previous airplanes (prior to the  
release date) 

  ( 3 ) * 
Measure the plane relative to 2007 (the year chosen for setting the 
forecast) 

   ( 4 ) ** Calculate the technological rate of change 

( 5 ) Repeat for each consecutive airplane model 

   ( 6 ) ** Calculate overall average rate of change (RoC) for all airplanes 

* Steps 2 & 3 are derived from the mathematical formulae, Eq’s (1-7), in Appendix 1. 
** Results from Steps 4 & 6 are used for forecasting future airplane models. 

4. Analysis and Discussion: Addressing Difficulties in R&D Target-Setting Through Results 
from Technology Forecasting Using Data Envelopment Analysis 

 
As discussed in the literature review section, the primary areas of difficulties in R&D target-setting 

were found to be:  Methods needed which focus on measuring technology inputs and outputs as 

reliable yardsticks; external/competitor technology monitoring; trend analysis and forecasting needed; 

and human-based motivation factors.  These provide this study with a framework in which to analyze 

the results from TFDEA applied to a set of commercial airplanes.    

4.1. Methods needed which focus on measuring technology inputs and outputs as reliable 

yardsticks 

Decision-makers struggle with what aspects of a technology to measure—what are the inputs, 

outputs, and reliable yardsticks for assessing the technology? (Kosugi et al., 2004; Sabhasri & 

Yuthavong, 1983; Zinkle, 2005)  While one researcher states the need for multiple indicators, the 

assertion continues with a recommendation to “…classify indicators into input and output indicators.” 
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(Sabhasri & Yuthavong, 1983)  Although the authors of this paper recommend combining TFDEA with 

additional methods; TFDEA is based on multiple input and output indicators.  As described in the 

literature review section above, parameters chosen to measure were from technological performance 

output parameters which could help represent the many economic/market factors influencing 

technology design of commercial aircraft.  There is no one standard for a researcher doing a study of 

this type on commercial aircraft; therefore rationale was tied with the literature review findings above to 

focus on the parameters below.   

 First Customer Flight Year.  A year of new product introduction was needed and was settled 

on first customer flight date because that is the first commercial use.   

 Maximum Passengers.  The maximum number of passengers that an airplane can transport is 

used as a primary payload and profit goal for a commercial plane.   

 Maximum Speed.  Maximum speed (Esposito, 2004) is the maximum speed at which a plane 

is designed to operate.  

 Cruising Speed.  The air speed at which an airplane model is designed to operate most 

efficiently.  It occurs between ascent and descent phases and forms the majority of the time of the 

flight. (Esposito, 2004; Gillett & Stekler, 1995) 

 Maximum Range at Full Payload.  The long range commercial planes particularly needed the 

economies with pushing the passenger capacity (Gillett & Stekler, 1995; Kumar & Hefner, 2000; 

Wall, 2006b).   Maximizing passenger load is often a tradeoff with range so that is why the three 

class configuration was chosen because it allows maximum range particularly for the longer 

overseas flights which were an important market driver.   Other than in the definition section, this 

parameter will now be referred to simply as range for the purposes of brevity.   

 Passenger Fuel Efficiency.  Although frequently mentioned as a critical performance output 

parameter; there appears to be widely differing definitions for fuel efficiency.  To provide a 

consistent measurement reflecting the importance of passengers as “economics”—revenue 

generators, this study will focus on passenger fuel efficiency (Thomas, 2005).   Fuel capacity 

(Gillett & Stekler, 1995; Kumar & Hefner, 2000; Masson et al., 2007; Ruffles, 2003) was collected 

in order to derive passenger fuel efficiency as fuel efficiency has economic and technology trade-
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offs such as allowing longer ranges and reduced overall weight.  Passenger fuel efficiency (PFE) 

can be generalized as: 

 

CapacityFuel

RangePassengers
EfficiencyFuelPassenger

*
      (9) 

 

The set of parameters used for this forecasting study are summarized in Table 3. 

Table 3:  Variable Definitions 
Variable Abbrev. Unit Definition 

First Customer 
Flight Year 

Year Year of 
Commercialization

The date the customer 
(airline) first flies the 
model. 

Maximum 
Passengers  

Passengers Quantity of 
Passengers 

The maximum number 
of passengers 
expected to fly on 
the standard model 
(3-class 
configuration). 

Cruising Speed Cruising 
Speed 

km/hr 
 

The air speed at which 
the airplane is 
designed to operate 
with maximum 
efficiency. 

Maximum 
Speed 
 
 

Max Speed km/hr 
 
 

The maximum speed 
at which the airplane 
is designed to 
operate, typically 
with decreased 
range. 

Maximum 
Range at Full 
Payload 

Range 1000s km The maximum range 
at which a standard 
model can fly 
carrying a full 
payload. 

Fuel Capacity  
 
 
 

 Kiloliters 
 
 
 

Fuel weight when all 
tanks are full.  Not 
used in model 
except to derive 
passenger fuel 
efficiency below. 

Fuel Efficiency  km/liters Derived variable with 
range divided by fuel 
capacity. 

Passenger Fuel 
Efficiency 
(log10PFE) 

PFE (passengers*km) 
/liters 

Derived from the 
above variables: 
Max Passengers, 
Max Range at Full 
Payload, and Fuel 
Capacity. 
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The model with it’s performance outputs is depicted in Figure 1 below.  As technological strategy is 

built off of trade-offs in decision-making and goals, the authors will also explore various combinations 

of parameters to determine a variety of technological rate-of-changes.  Together, this information 

provides a foundation of information and data for airplane manufacturers to utilize in strategic decision-

making for setting R&D targets; addressing competitive and technological evolution and prediction. 

Future models could consider inputs such as cost per plane, R&D cost, R&D time, annual 

maintenance cost, and/or required crew size. 

 
Figure 1: Illustration - Performance Output Variables for Commercial Aircraft Model 

 

 By creating increased focus on inputs, outputs and objective design and performance data, 

TFDEA can enable increased reliable yardsticks in which to study technological progress.   

4.2. External/competitor technology monitoring 

TFDEA requires individual technology introduction start dates; and to collect this data by 

manufacturer aids in building the specificity needed to examine the technology for both special 

innovative events as well as possible competitor strategy; therefore, as a method, TFDEA focuses 

necessarily on both external and competitor technology monitoring.  Table 4 is the list of past 

commercial airplane models with their associated performance output. 

 
 

Commercial 
Aircraft 

Constant 1 

Range 

Passengers 

PFE  

Max Speed 

Cruising Speed  

Combinations of 
parameters are 
explored to show 
various technological 
efficiencies, RoC and 
associated potential 
strategies 
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Table 4:  Historical data set used for this study (*Note, Fuel Capacity used only to derive PFE) 

  Aircraft Y
ea

r 

R
an

ge
 

*F
ue

l C
ap

ac
ity

  

P
as

se
ng

er
s 

P
F

E
 

lo
g 1

0(
P

F
E

) 

C
ru

is
in

g 
S

pe
ed

  

M
ax

 S
pe

ed
  

1 DC8-55 1965 9.205 88.55 132 13.721 2.619 870 933
2 DC8-62 1966 9.620 91.89 159 16.646 2.812 870 965
3 747-100 1969 9.800 183.38 366 19.559 2.973 893 945
4 747-200 1971 12.700 199.16 366 23.339 3.150 893 945
5 DC10-30 1972 10.010 137.51 250 18.199 2.901 870 934
6 DC10-40 1973 9.265 137.51 250 16.844 2.824 870 934
7 L1011-TriStar 500 1979 10.200 120.34 234 19.834 2.987 892 955
8 747-300 1983 12.400 199.16 412 25.652 3.245 902 945
9 767-200ER 1984 12.200 90.77 181 24.327 3.192 849 913
10 767-300ER 1988 11.065 90.77 218 26.575 3.280 849 913
11 747-400 1989 13.450 216.84 416 25.803 3.251 902 977
12 MD-11 1990 12.270 146.17 293 24.595 3.203 870 934
13 A330-300 1993 10.500 97.17 295 31.877 3.462 870 913
14 A340-200 1993 15.000 155.04 261 25.252 3.229 870 913
15 A340-300 1993 13.700 147.85 295 27.335 3.308 870 913
16 MD-11ER 1996 13.408 157.53 293 24.939 3.216 870 934
17 777-200ER 1997 14.305 171.17 301 25.155 3.225 892 945
18 777-300 1998 11.120 171.16 365 23.713 3.166 892 945
19 A330-200 1998 12.500 139.10 253 22.735 3.124 870 913
20 A340-600 2002 14.600 195.88 380 28.323 3.344 881 913
21 A340-500 2003 16.700 214.81 313 24.334 3.192 881 913
22 777-300ER 2004 14.685 181.28 365 29.568 3.387 892 945
23 777-200LR 2006 17.370 181.28 301 28.841 3.362 892 945
24 A380-800 2007 15.200 323.55 525 24.664 3.205 902 945

**Note, data revised from (A.-M. Lamb, T. Anderson, & T. Daim, 2010) 

The commercial airplane example includes airplanes manufactured by Boeing, Airbus, and 

Lockheed Martin, and McDonnell-Douglas.   

It was shown in a previous study that of all the R&D activities, monitoring external technology 

received the lowest percentage of R&D funds (Edler et al., 2002).  TFDEA could enable focus on what 

information to track on competitor/external technology and thereby also ease this area of difficulty for 

target-setting. 

4.3. Trend analysis and forecasting needed. 

Again, while there is some agreement that studying the historical technology development and 

future trends is important for setting R&D targets; quantitative and less limiting methods are needed 

for doing so, particularly with fewer restrictions on what technological aspects can be measured 



 11

accurately (Edler et al., 2002; Kosugi et al., 2004; Sungjoo Lee et al., 2007; Sabhasri & Yuthavong, 

1983). 

4.3.1. Trend analysis   

.  For this study, two sets of parameters are used as a basis for strategic discussion in setting 

targets.  In running the model, the authors found these two sets to represent the fastest and slowest 

technological rate of change (Table 5).   The Efficiency at Time of Release column show a value of one 

if the product was considered efficient upon release.  Several airplane models were introduced as non 

state-of-art (SoA).  A few possibilities exist to explain these results.   

First, a previous study by the same authors showed (A. Lamb et al., 2010) the complexities of 

exogenous (economic, social, and political) factors which are considered in the new product 

introduction decisions for airplane manufacturers; and while the TFDEA model likely accounts for 

some of the economic considerations within the passenger fuel efficiency parameter, improvements to 

the model could work toward accounting for a greater number of the exogenous factors where 

possible.  One recent example is that for various political reasons, the Airbus A380 entailed far greater 

development costs than expected; yet various European governments financially supported 

development in which profit from this model is far from certain or projected to take even 20 years for 

Airbus to see a profit (Matlack, 2006, Oct. 10).   

Secondly, the long product lifecycle of these airplane models, sometimes reaching 30 years 

combined with the high development costs and long design lead times could lend itself toward high 

risk product introductions for the manufacturers as a different manufacturer may be first entrant to a 

market, leading toward a potential increase in non-state-of- art product introductions. 

Thirdly, while this dataset concentrates on the longer range and 100+ passenger airplane models; 

even within this segmentation there are subsets of airplane models built to accommodate more 

specific range requirements and smaller numbers of passengers.  This could potentially account for 

some of the product differentiation results.  Also, it may form part of the airplane manufacturer’s 

strategy to design an initial model with higher priority on reaching a market segmentation first; 

potentially sacrificing some design and/or performance capability, even if considered non-state-of-art. 
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Trends in non-state-of-art, efficiency and overall technological rate of change match fairly well with 

historic knowledge of airplane competitiveness; for example, after the initial DC8, airplane model state 

of art introductions, the manufacturer found itself uncompetitive in the market place with its 

subsequent DC10 models and the dominance of the Boeing 747 performance.   

The DC8-62 is a good example to use in which to further explain the actual trends.  To simplify, 

one set of parameters and rate-of-change results will be discussed (passengers, range, and 

passenger fuel efficiency).  The third column, Efficiency at Time of Release corresponds to  628

628





DCt

DC
 

and again, the value of one translates to the DC8-62 as being released as state-of-art upon its first 

flight in 1966.  However, in 2007, it is now being compared against newer airplanes that would 

outperform it by at least 22.4% on every output.  A technology rate-of-change,  2007

628DC
, is determined 

to be (1.224)1/(2007-1966)=1.0049. In other words, the model shows that DC8-62’s obsolescence is 

explained by an annual improvement of nearly .5%.  As expected most older airplane models no 

longer qualify as efficient in 2007.  Note, however, that Airbus’ first introduction of the A330-300 

remains efficient in 2007 (this will be reviewed later in the study).  One model to note is that when 

introduced, the 747-400 had the max output in 3 of the 5 parameters; range, passengers, and max 

speed.  If all the parameters were used in the analysis, then two of the Boeing 747s (747-300 and 

747-400) would also still qualify as state-of-art with respect to 2007 in at least one, or some 

combination, of the outputs.  As expected with a product given these characteristics, models 

introduced since 2004 also qualify as state-of-art. 
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Table 5: Efficiency & Rate of Change Results (Past Models) 

Parameters:

Airplane Model Year E
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1 DC8-55 1965 1 1.31306 1.006506 1 1.036782 1.00086
2 DC8-62 1966 1 1.224527 1.004953 1 1.012435 1.000301
3 747-100 1969 1 1.121813 1.003029 1 1.010078 1.000264
4 747-200 1971 1 1.066136 1.00178 1 1.010078 1.000279
5 DC10-30 1972 1.085832 1.186446 1.018338 1.036782
6 DC10-40 1973 1.115439 1.221014 1.018338 1.036782
7 L1011-TriStar_500 1979 1.05457 1.152885 1 1.011211 1.000398
8 747-300 1983 1 1.023841 1.000982 1 1
9 767-200ER 1984 1.016489 1.072785 1.016492 1.046808

10 767-300ER 1988 1 1.050501 1.002596 1 1.033532 1.001737
11 747-400 1989 1 1.020941 1.001152 1 1
12 MD-11 1990 1.018599 1.06799 1.017837 1.032142
13 A330-300 1993 1 1 1 1
14 A340-200 1993 1 1.048588 1.003395 1 1.029588 1.002085
15 A340-300 1993 1 1.030277 1.002133 1 1.024468 1.001728
16 MD-11ER 1996 1.026105 1.058958 1.016798 1.030187
17 777-200ER 1997 1.007184 1.051809 1 1.009574 1.000953
18 777-300 1998 1.045742 1.061711 1.011211 1.011211
19 A330-200 1998 1.06489 1.093434 1.036782 1.036782
20 A340-600 2002 1 1.006888 1.00137 1 1.006888 1.001374
21 A340-500 2003 1 1.028063 1.006943 1 1.014706 1.003656
22 777-300ER 2004 1 1 1 1
23 777-200LR 2006 1 1 1 1
24 A380-800 2007 1 1 1 1

1.00317 1.00124Total Avg RoC= Total Avg RoC=

Passengers, Range, PFE Passengers, Range, PFE, Max Speed 
& Cruise Speed

 
 

The Boeing 767 family is a good example of an evolving product in which the manufacturer 

prioritizes market entry above technology performance.  The Boeing 767 was not initially introduced 

for very long ranges (it was initially introduced as a medium range—out of scope for our dataset—but 

was given some improvements to reach the long-range market, thus the extended range designator 

ER, 767-200ER, and the model reflects Boeing’s need to get into this market segment by indicating it 

was not competitive at the time of its release in 1984, yet further improvements by Boeing then 

decreased passenger capacity which enabled the highest PFE of all previous airplanes in our dataset 

then enabling the 767-300ER, to be introduced as state-of-art in 1988.  The model, for the most part 

reflecting technological evolution, has predicted earlier technological improvements than what market 
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and other exogenous factors would allow for as well as Boeing retrofitting a previous airplane 

structure.    

Both Boeing and Airbus introduced incremental plane models (777-300 and 330-200 respectively) 

in 1998 that, according to both the three and five output models, were technologically inefficient.  The 

777-300 was introduced to replace earlier 747 models (747-100 and 747-200), and although the goal 

of surpassing 747-200 fuel efficiency was met, technological changes were kept to a minimum in order 

to maintain maximum commonality to 777-200 to minimize maintenance costs for the airlines.  As 

previously referred to, the decision to introduce a new airplane model is mitigated highly by market, 

economic, political and other exogenous factors (Esposito, 2004; Fraser, 1985; Gillett & Stekler, 1995; 

A. Lamb et al., 2010); so the decision by Boeing to maintain greater commonality in order to minimize 

maintenance costs for the airlines is another example of where the model indicates economic trade-

offs in decision-making by airline manufacturers.   

On the same note, the Airbus 330-200, in part, was introduced in 1998 to compete with the Boeing 

767-300ER (interestingly introduced ten years earlier in 1988), and although the 330-200 outperforms 

or equals its intended competitor in four of the five performance outputs; the 767-300ER still 

outperformed in passenger fuel efficiency.  As this example indicates, with superior performance 

models introduced in between long periods of development time—this last point reflects a good part of 

the reason why forecasters have had difficulty in applying forecasting methods to commercial 

airplanes (Ashford, 1985; Esposito, 2004; Gillett & Stekler, 1995). 

4.3.1.1. Technology Rate-of-Change (RoC) 

The measurement of technological progress discussed in the section above, and how one 

technology surpasses another over time, combine to determine the technological rate-of-change 

(RoC).  The airplane models that were released as state-of-art, as well as having been surpassed by 

subsequent aircraft model technology, are used to calculate the rate at which overall airplane 

technology progressed (


).     The model RoC variant used for this study is further explained in 

Appendix 2.  The RoC calculation for each technology (airplane model) is: 



 15

                    ft

k
= 

)(
1

tt kf
ft

k






  k , such that  kt

k
1  ,  ft

k
>1              (8) 

. 

Table 5 shows which airplane models fit these criteria and thus contribute to the overall RoC for 

commercial airplanes.  One example is the 747-300, efficient when released, but compared to 2007 

has now been surpassed by subsequent airplane models and therefore contributes a RoC of 1.000982 

= (1.023841)1/(2007-1983)
.   As shown in Table 5, the three parameter model (passengers, range, and 

passenger fuel efficiency) average annualized RoC for this set of aircraft is 1.003. This corresponds to 

technology progressing at just 3/10s of a percent average change annually.  In contrast, the slower 

average annual RoC (taking into account all five parameters) is just 1.001; 1/10s of a percent change 

annually.  Both RoC seem low; however, as the authors showed in initial analysis of this study (A. 

Lamb et al., 2010), when considering the physical challenges in regards to speed of sound barriers, 

the high product development costs, as well as the conflicting exogenous factors (market, economic, 

environmental, and political)—the commercial airplane RoC appears to be more reasonable.   

Additionally, the authors also considered two other RoC results in previous TFDEA studies; nearly 

11% for wireless communications (Anderson et al., 2008), and approximately 3% for jet fighters 

(Inman et al., 2006), the commercial aircraft technology progress appears acceptable for our model 

forecast.  “These comparatively slow RoCs are also consistent with the long production and service 

lifecycles of commercial passenger aircraft—if the RoC was faster, aircraft models would be retired 

much more quickly” (Lamb et al., 2010) 

Again, utilizing TFDEA provided a quantitative-based method for R&D target-setting decision-

makers to study past technological trends; a method which allows for relevant technological 

input/output indicators. 

4.3.2. Forecasting   

The same parameter output specifications were gathered on four future airplane models which 

Boeing and Airbus have announced development on         Table 6.   While most specifications were 

drawn from a key source on aircraft performance (Jackson et al., 2009), some triangulation of data 

sources was necessary to ensure parameters were for 3-class passenger data.  
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        Table 6: Suggested Specifications for Forecasted Models 

 Airplane Model:   

Parameter: 
787-8 

Dreamliner 747-8 
787-9 

Dreamliner 
A350-
900 

Year 2010 2011 2013 2013 
Cruising Speed 902 908 902 902 

Maximum Speed 945 977 945 945 
Range 15.7 14.816 15.75 15 

Passengers 242 467 280 315 
Fuel Capacity 126.9 243.1 126.54 135.8 

Passenger Fuel 
Efficiency (PFE) 29.940 28.462 34.851 34.794 

PFElog10 3.399 3.349 3.55 3.549 

  

Specifications for future products are difficult for forecasters as they tend to alter closer to the 

release date.  Given this, the primary airplane model where some assumption was made on latest 

data was the Boeing 747-8.  Originally, Boeing had made the assumption the airlines would be 

prioritizing passenger comfort with wider seats and lounge area; however, in reality, as more actual 

orders are made, the airlines are putting a higher priority on revenue and ordering options with 

increased passenger seating.  The shift in priorities and associated economic and profit strategies; 

however, provides for a more realistic view of the commercial passenger new product introduction.  

Using the above specifications and running the model with both the 3 and 5 parameter RoCs 

provides the results in Table 7. Eq. (9) is the output-oriented equation for determining the results in the 

column: Predicted Efficiency at Time of Release.  The outputs are multiplied by the coefficient of 

technological progress )( --in other words RoC, raised to an exponent equal to the number of time 

periods that have passed from forecast year assessment (2007 in our model) to the manufacturer’s 

stated introduction year for the technology (Inman, 2004). 

},...,1{,)(
,,

sryy kttt

kr

t

kr


       (9) 
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Table 7: Forecasts of Future State-of-Art & Release Dates 

Parameters:

Airplane Model 
(Forecast) M
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787-8 Dreamliner 2010 0.996501 1 2003.8 0.989973 1 2011.4
747-8 2011 0.979892 1 2012 0.975083 1 2022.2

787-9 Dreamliner 2013 0.956494 1 2015.7 0.956494 1 2037.5
A350-900 2013 0.959307 1 2013.6 0.959307 1 2034

2.67 14.55

*Note: If efficiency relative to 2007 SoA<1, then future planes are expected to be efficient compared to 
       all previous planes introduced prior to 2007. If predicted efficiency at time of release =1;
       then that model is expected to be efficient given the model output parameters used.

Passengers, Range, PFE: 
 RoC=1.003

Passengers, Range, PFE, Max 
Speed & Cruise Speed:

RoC=1.001

MAD= MAD=

 

With the 3 parameter RoC of 3/10s of a percent, the model, while not too far off for the last three 

model forecasts, shows that with technological progress specifications of the 787-8 Dreamliner, the 

forecast with the current measured variables shows the airplane could have been introduced in late 

2003 although still considered SoA relative to 2007 frontier.  While not covered in detail in this paper, 

TFDEA uses a composite comparison of prior airplanes to compare the 787-8 Dreamliner to; in this 

case it is compared 25% to Airbus’ A330-300 and 75% to Boeing’s own 777-200LR.  The composite 

outputs show the 787-8 Dreamliner having superior performance to the composite airplane in both 

range and PFE.  However, being compared 75% to the 777-200LR introduced in 2006 results in the 

predicted year of release being closer to the 777-200LR (787-8 Dreamliner predicted year of release 

at 2003), rather than the A330-300 year of 1993.  TFDEA comparison composites are explained in 

detail in (Inman, 2004). 

These results could also be an indication of the model not being able to capture the differences 

and investment needed for new structural airplane models as opposed to follow-on models.  Details of 

the huge design investment Boeing made in incorporating 50% composite materials into the 787-8 

Dreamliner (whereas it had not had a long-range airplane model prior to this with more than 10%) are 

covered in depth in (A. Lamb et al., 2010).  A second example of this to watch is that when Airbus first 

announced plans for the A350-900, the plans entailed fewer changes to the structure than what the 

airliner customers demanded for design changes to include into the fuselage—this model is; therefore, 



 18

an interesting one to monitor for actual compared to model predictions.  A possible third example of 

how the model may not reflect new structural models compared to follow-on models is to look at the 5-

parameter RoC predicts the 787-8 Dreamliner first customer flight date fairly accurately.  Upon 

reflection this could be expected as a more radical structure would have higher numbers of 

performance parameters to have a greater influence and interdependencies on the overall design.   

Given the results from the trending and forecasting sections, further exploration in the model is 

recommended in order to more accurately depict differences between more or less design structure 

changes (new or follow-on models).  One suggestion would be to include an input/cost variable:  

‘Design man weeks to first service per passenger’ was suggested as a possible proxy cost variable for 

commercial airplanes (Matlack, 2006, Oct. 10; Pinto, 2009).   

Some additional technological developments (as input parameters) that could be compelling in this 

model (and would need a way to measure) are:  Engine developments (Mecham, 2005b; Wall, 2006a; 

Wall & Mecham, 2005; www.boeing.com, 2009); plane construction and aerodynamics (Anon, 2006; 

Mecham, 2005a; Wall, Flottau, & Anselmo, 2006; Wall & Mecham, 2006); composite material structure 

(Anon, 2006; Mecham, 2005a; Read, 2005; Toensmeier, 2005; "www.aerospace.org," 2009; 

www.boeing.com, 2009), and expected use of advanced systems controls (Mecham, 2006; Wall et al., 

2006; Wall & Mecham, 2006; Watkins & Walter, 2007).  Researchers in this section mention the 

frustration in the industry with the importance of advancements in these technologies, but with the 

difficulty of measuring them particularly as a cost in new design airplanes.  

With any of these inputs, it is recommended to explore a different underlying math (or constraint) 

to the TFDEA model, with testing results given a “Decreasing returns to scale (DRS) [which] refers to 

diminishing returns for additional input beyond points of inflection” (Inman, 2004).  Obtaining a 5% 

increase in passenger fuel efficiency performance for the highest performing commercial airplanes (or 

new structural models) may cost significantly more than 5% increase for the remaining models (or 

follow-on models)—a possible explanation for the model predicting the 787-8 Dreamliner introduction 

to be much earlier than reality.  Eq. (2) in Appendix 1 would be replaced with 1
1

,




n

j

h

kj .  Both the 
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resulting forecast and historical technological performance data can be used to address the remaining 

R&D difficulty:  Human-based motivation factors.  

4.4. Human-based motivation factors 

Recent research indicates the growing attention to difficulties in R&D target-setting based on 

human motivation and its associative effects on setting targets.  Target-setting is intended to motivate 

managers involved in the target-setting process (Bremser & Barsky, 2004) yet there is increasing 

evidence that managers set technological target goals based on what they believe has a high 

probability of success—thereby increasing odds of receiving benefits tied to meeting those targets 

(Sunghan Lee et al., 2009).  Technological progress could be sacrificed to the more immediate 

concern of receiving benefits.   The TFDEA method is particularly well-suited to address this concern.  

As shown earlier through the TFDEA commercial airplane example: 1) Inputs and outputs as 

reliable yardsticks; 2) external/competitor technology monitoring; and 3) trend analysis and 

forecasting; are all exposed to decision-makers in an objective and quantifiable method for R&D 

target-setting.  By utilizing historical product introductions and actual technological performance data, 

critical data pertaining to the technology is captured as part of the target-setting decision-making 

process.  While TFDEA can also be combined with less quantitative-based methods in order to better 

capture expert opinion and other qualitative inputs; using the TFDEA results leaves less room for 

managers to base target decisions on only the most achievable goals.   Decisions can now be based 

on rewards for meeting lower ends of possible technological progress or possibly higher rewards for 

reaching technological breakthroughs and pushing the SoA. 

Using the data from this study, one case of this could include:  Boeing’s 2005 747-8 

announcement stated, “…the 747-8 will burn 13% less fuel per seat than a 416-seat 747-400” 

(Thomas, 2005).  Testing this claim, the performance data in the model shows (25.803/28.462=91%) 

 9%.  Using passenger fuel efficiency, the 747-8 will burn 9% less fuel.   (Caution should be used in 

this assessment, as the exact parameters used in Boeing’s less fuel per seat are unknown; and their 

model could have included more or fewer parameters.)  Given this, the results are still significant, 

showing a clear improvement in fuel efficiency for the 747-8.   
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In the same announcement, Boeing compared the 747-8 with Airbus’ 380, “…the 747-8 will burn 

12% less [fuel] than a 542-seat A380”(Thomas, 2005).  In this case, the performance data in our study 

(altering the A380-8 passenger seating from 525 to 542 passengers) indicates (26.575/28.462=93%) 

 7% less fuel.   

Rewards could be easily scaled based on the lower or higher expected technological performance 

gains.  Using the last example of burning less fuel, higher rewards could be given to managers who 

reach the 12% less fuel burned; and lower rewards if technological progress prove to be at the lower 

end of the target of 7% less fuel burned. 

5. Findings To-Date/Research Implications 

To date, this study has contributed to research in the field of R&D target-setting by compiling a list 

of difficulties in R&D target-setting from the literature and it is hoped it can be a starting basis 

particularly for those managers and researchers interested in collaborating on this topic for further 

development. This study addresses: 1) Methods needed which focus on measuring technology 

inputs and outputs/reliable yardsticks; 2) external/competitor technology monitoring; 3) trend 

analysis/forecasting needed; and 4) human-based motivation factors.  These difficulties have 

been discussed and analyzed using TFDEA with respect to applicability of using the method to 

address R&D target-setting. 

The study showcases the capability of TFDEA to be applied to strategic decision-making in new 

product planning; and in particular, provides a step-by-step process of one approach to overcome four 

areas of R&D target-setting difficulties.  It is an initial step toward addressing limitations in earlier 

commercial aircraft forecast studies; as well as from an earlier study on commercial airplanes which 

found multiple regression, linear regression, and growth curve forecasting methods too limiting on 

numbers of inputs and/or outputs which could be measured with this data (A. Lamb et al., 2010).  

There are also several implications of this study for practitioners.  As shown in the trend of 

literature on this topic, prior to this study, few examples have delved deeper into addressing specific 

difficulties for organizations facing the difficult decision of how to set R&D targets; it is hoped by the 

authors that by using the commercial aircraft example it aids the understanding of how some of these 
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difficulties can be addressed.  Specifically, airline manufacturers are able to use the TFDEA model for 

projecting state-of-art for future aircraft models while observing the rate of technological change (RoC) 

and output parameter performance needed.  The results from this type of analysis can be used in new 

product development in order to validate, or invalidate, design plans and R&D target-setting.  In 

conjunction, the aircraft suppliers can also use the RoC to project the necessary performance 

capabilities of airplane parts.   

6. Limitations/Future Research Opportunities 

There are several limitations to this study.  First of all, the study focused on gaps in the difficulty in 

R&D target-setting literature and while every effort was made to bring forward specific difficulties, 

interviews with R&D managers and case studies on the same topic could expose even further areas of 

difficulties which the current literature may be missing.  It is hoped this study can be a starting basis for 

researchers interested in R&D target-setting difficulties; but it is fully expected by the authors that 

much more can be gained for the research field with increased academic pursuit on this topic in future. 

Future work could include: 

 Further additions to reasons for difficulties in R&D target-setting.  Examples could include; the 

difficult decision to pursue incremental or breakthrough technology development (Bosetti et 

al., 2009; Sungjoo Lee et al., 2007; Trajtenberg, 2002); the need to be vision-driven and 

depart from neutrality (Okuyama & Matsui, 2003; Trajtenberg, 2002); the need for inter-

dependent component technology methods (Edler et al., 2002; Kosugi et al., 2004; Sungjoo 

Lee et al., 2007; Sabhasri & Yuthavong, 1983; Zinkle, 2005); high costs of R&D target-setting 

processes (Bosetti et al., 2009; Edler et al., 2002; Kosugi et al., 2004; Okuyama & Matsui, 

2003);  

 Adding further depth and discussion to the same four R&D target-setting difficulties with 

additional quantitative and qualitative methods;  

 Additionally, while this study focused on five performance output parameters; a next step in 

developing this model could be to take into account not only additional output parameters, but 
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also current design (input) parameters to see how these might change both the state-of-art 

trends and forecast outlook. 

 Another opportunity for continuing the development of this model would be to add a form of 

cost as an input in order to deepen analysis comparison between new and follow-on airplane 

models.   

Any of the above input variables could be used in order to better understand overall technology 

advancement of each plane being introduced as well as to help with predictor estimates where 

needed.    
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Appendix 1: TFDEA Mathematical Notation, Output-Oriented DEA Model (Anderson & Inman, 
2011) 

Mathematical Notation for TFDEA Eq. 
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Details of the above math is outlined in (Anderson & Inman, 2011) 

Appendix 2: Rate of Change Mathematical Notation for Constant (Static) Frontier Year 

                 Mathematical Notation for Rate of Change, Constant Frontier Year Eq. 
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An overview of the above math is outlined in (Inman, 2004).  While in most cases a variable 

frontier year seems to fit with our expectation of how technology develops, in this case, a constant (or 

static) frontier year was utilized given a static technological frontier is likely to be much more 

parsimonious in fitting (Akaike, 1974), and thus can be much more robustly fit given limited or low-

quality performance data.  Thus, it could be useful within a current generation of technology, or useful 

for when technologies within a generation are richly differentiated with features or options; for example 

seating options within an airplane model with +/- 10% difference in passenger seating arrangements.  

Additionally, tests were conducted by the authors to find that for this particular dataset, static frontier 

year had the lowest MAD. 
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