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ABSTRACT 
 

 
The decline of waterfowl populations and their requisite wetland habitats remains a 

concern. Because migratory bird refuges are often artificial landscapes of actively managed 

wetlands, and wildlife populations experience their greatest change during the breeding 

season, refuges should be designed to maximize breeding habitat. While past nest success 

studies have focused on at-nest variables, new approaches are needed to evaluate the effect of 

composition and configuration of plant communities at the landscape scale. This study aims to 

quantify landscape patterns within individual refuge management units to determine influence 

upon historical nesting success averages of ducks at Malheur National Wildlife Refuge in 

southeastern Oregon. The Mayfield estimate of nest success for 8 duck species yields a 

survival rate of 25% for the years 1987-1998 with a range of 0-74% across 48 management 

units. FRAGSTATS was used to calculate a suite of 9 landscape pattern metrics per unit at the 

class-level for each of 3 wetland habitat classes, and at the landscape-level using all habitat 

types. These 36 variables were tested for association with survival rate using Pearson R 

correlation. Results suggest fragmentation of dry meadow habitat; patch size, complexity, and 

extensiveness of wet meadow habitat; and diversity of habitats across the landscape positively 

influence duck nest success at the scale of the individual management unit. 
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INTRODUCTION 
 
 

The primary reason for decline of duck populations is loss of wetland habitats 

(Bellrose 1980). Wetland area in North America continues to decrease by approximately 

60,000 acres each year (EPA 2009). Wildlife refuges established for migratory birds attempt 

to mitigate these losses by constructing and managing wetland landscapes representing a 

variety of habitat types. Because wildlife experience the greatest change in population during 

the breeding season, nest success is the key variable in the population dynamics of many birds 

(Aebischer 1999, Rotella 2008). Refuge landscapes, therefore, should be designed to support 

nesting habitat requirements.  

The National Wildlife Refuge System (NWRS) conserves species populations by 

preserving and managing habitat (USFWS 1976). Wetland restoration and creation has 

become an increasingly important part of remediating the continuing decline of wetlands 

nation-wide (USFWS 2003). Refuges are often established on lands that were historically 

wetlands and floodplains prior to flood control and channelization and in areas suitable for the 

creation of artificial wetlands (USFWS 2003). The most significant practices on refuges 

includes the manipulation of land and water (USFWS 1976). Habitat is recreated and 

maintained by construction and active management of water system infrastructure, such as 

dikes, canals, impoundments, and dams (USFWS 2003). As of 2003, the NWRS actively 

manages 1.6 million acres of wetlands on refuges (USFWS 2003). 

Topography and irrigation practices influence the spatial arrangement of wetland plant 

communities that comprise various types of habitat. Wetland impoundments, or ponds, are 
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defined as relatively homogenous non-linear areas that are different from their surroundings 

(Forman 1995). Calculation of landscape pattern metrics relies on the patch-matrix model of 

landscapes, where the matrix is conceptually the most extensive and connected landscape 

element (Forman 1995). In practice, the matrix is comprised of patch types considered 

background to the patch type or types under investigation (McGarigal et al. 2002).  

Landscape structure is characterized by its composition and configuration of land-

cover. Composition includes the categorical type of landscape components, or patches, 

whereas configuration provides spatial context in absolute and relative space by measures of 

location and placement of patches in a mosaic. Measures of composition and configuration 

can be computed at three levels:  patch, class, and landscape. Patch-level metrics are 

descriptive statistics about individual patches and involve measurements of size, perimeter, 

and shape about individual areas. Class-level metrics consider all patches of a single type, or 

class, across a landscape and provide a measure of fragmentation.  Landscape-level metrics 

use all classes, or patch types, in their calculation and represent a measure of heterogeneity for 

the entire landscape mosaic. Higher level class and landscape-level metrics are 

computationally dependent on lower level patch metrics (McGarigal et al. 2002). While 

patch-level indices alone do not characterize the landscape, they have been a dominant theme 

in avian habitat ecology stimulated by island biogeographic theory (MacArthur and Wilson 

1967), and compliment non-spatial explanatory data traditionally collected for nest success 

research.  

Past studies (Table 1) have found patch-level metrics can predict reproductive success 

of ground-nesting birds (Bellrose 1980, Horn et al. 2005, Paton 1994, Skagen et al. 2005, 
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Stephens et al. 2003). Bellrose (1980) for example, found waterfowl restricted to a narrow 

band of nest cover surrounding a wetland have greater exposure to predators. Horn et al. 

(2005) discovered a statistically significant relationship with patch size and duck nest success 

in the prairie grasslands of North Dakota. Skagen et al. (2005) found nest survival of ground 

nesting birds increased with patch size up to 65 ha in northeastern Colorado, citing a lack of 

difference in larger patches to difference in predator communities in their study. Meta-

analyses of literature has further established evidence of a positive relationships between 

patch size and nest success (Paton 1994), and a detectable effect of fragmentation at the 

patch-scale (Stephens et al. 2003). 

 Use of class and landscape-level metrics to quantify landscape beyond the patch 

boundary is sparse among studies of nest success (Stephens et al. 2003). Passinelli and 

Schiegg (2006) studied nest success of a ground nesting bird species in Switzerland at four 

spatial scales to find nest predation increased with distance to nearest wetland. Species 

occurrence, abundance, and richness are measures of wetland bird productivity more often 

studied for relation to landscape scale variables. The amount of wetland habitat available 

across a landscape has been found to directly influence these measures (Fairbairn and 

Dinsmore 2001, Naugle et al 1999, Riffell et al. 2003, and Taft and Haig 2006). Riffell et al. 

(2003) suggest future landscape-level research should include demographic data such as nest 

success to compliment studies of wetland bird productivity. 
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    The goal of my research is to explore the relationships between landscape structure 

beyond the individual patch and nest success of ducks in the actively-managed wetlands at 

Malheur National Wildlife Refuge (NWR) in southeastern Oregon. My hypothesis is that 

class and landscape-level composition and configuration of wetland habitat types influence 

duck nest success. Similar to most refuge landscapes, the Malheur NWR is a mosaic of land-

cover habitat types managed at the landscape scale. As a result, determining landscape 

influences on nest success may offer insights toward the optimal design and management of 

migratory bird habitat. 

 
STUDY AREA 

 
 

Malheur National Wildlife Refuge (Refuge) is an 187,000 acre complex of freshwater 

riparian wetlands surrounded by high-desert uplands (4100’ above MSL) in the Interior 

Columbia Basin ecosystem (Figure 2). The Refuge was established by the U.S. Fish and 

Wildlife Service (USFWS) in 1908 to conserve Malheur, Mud, and Harney Lakes for 

migratory birds (Cornely 1982, Langston 2003). Malheur Lake is the largest freshwater marsh 

in the Western United States and historically highly productive for water birds (Cornely 

1982). In 1935, the Donner und Blitzen River Valley, and in 1942 the Double O Ranch, were 

added to the Refuge to protect water sources to the lakes and additional breeding habitat. The 

Refuge provides habitat to over 320 bird species at various times of the year and is an 

important breeding ground to migratory birds along the Pacific Flyway (Cornely 1982, 

Langston 2003).   
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within these fields is controlled with irrigation infrastructure constructed before and during 

the early establishment of the Refuge (Langston 2003). This system includes more than 1000 

water control structures and an extensive network of canals to distribute spring runoff from 

the Donner und Blitzen River and Silver Creek (Figure 2). Habitat objectives are met by 

adjusting the timing and amount of water applied to each field to grow a specific type and 

abundance of vegetation. These habitat objectives are developed to meet the Refuge’s wildlife 

population goals. A better understanding of the relationship between habitat landscape 

structure and nest success may help Refuge managers meet their avian population goals. 

 
Table 2. Habitat descriptions for the Blitzen Valley and Double O areas of Malheur NWR (USFWS 2010). 

 

Land-cover Habitat Type Ecosystem Description 
Dry Meadow (DM) wetland 50-70% cover live native grasses e.g., creeping wildrye (Leymus 

triticoides) 

Emergent Marsh (EM) wetland Dominated by emergents e.g, harstem bullrush (Scirpus acutus) 

Open Water wetland Includes submergent vegetation e.g., sago pondweed 
(Potamogeton pectinatus) 

Wet Meadow (WM) wetland 75% cover water-tolerant grasses, rushes (Juncus spp.), and 
sedges (Carex spp.)  

Playa upland Predominantly bare ground, hypersaline shallow flooding 

Public Use Area upland Developed areas for public use incl. parking, wildlife 
observation, amenities 

Riparian Shrub wetland 40-80% canopy cover native shrubs e.g., willow (Salix spp.) 

Riverine wetland Linear water conveyance features such as rivers and canals 

Sagebrush Lowlands upland 20% cover sagebrush species (Artemisia tridentata ssp.), 
elevated areas in valley 

Sagebrush Steppe upland 20% cover sagebrush species (Artemisia tridentata ssp.), above 
surrounding rim  

Salt Desert Scrub upland <15% cover shrubs e.g., greasewood (Sarcobatus spp.), <20% 
herbaceaous veg 



 

Figure 3Figure 3. Management fields and Management fields and Management fields and land-cover 
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2008). Eight species of ducks are represented in the data totaling 1275 records (Table 3) with 

598 hatched, 563 failed, and 114 of unknown fate. The dataset includes the data required to 

calculate nest survival; date found, number of eggs when found, age of nest when found, date 

of last visit, and fate; and potential explanatory variables including the plant community 

surrounding the nest; emergent marsh (EM), wet meadow (WM), or dry meadow (DM). I 

consider these three land-cover classes to comprise the entirety of wetland habitat for nesting 

requirements.  

Location data includes the field name within which the nest was found, however, lack 

spatial coordinates of the individual nests since commercial handheld Global Positioning 

System (GPS) technology was not available during the census period. This precludes 

landscape-ecological analysis at the patch level and depends on averaging the nest success 

within each field for analysis with class and landscape-level metrics.  

Though species of dabbling ducks have somewhat different nesting chronology and 

habitat preference, Horn et al. (2005) found nests of all species intermingled in space and time 

and therefore appropriate to pool nest data across all species within each field. I assume 

survival is equally probable for all species. Predation is the primary reason for nest failure 

(376/563 = 67%) as opposed to abandonment (176/563 = 31%). Predators do not discriminate 

among duck species and abandonment occurs for reasons such as weather, flooding, and 

disturbance, to which all species are equally subjected. Further, I assumed the landscape 

within each field had not changed between years because wetland plant communities serving 

as duck nesting habitat are largely perennial (Guard 1995), and there have been no 

geomorphic events, nor large-scale management actions (USFWS 2010) to influence the 
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distribution of habitat within the time period examined.  I assumed the range of influence of 

inter-annual variables, such as weather, surrogate prey populations, and predator control 

practices, are represented within the 11 year period of these data and therefore do not bias the 

long-term average. Pooling data across species and years provides a more robust estimate of 

historic survival rate for each field. 

 
Nest Survival per Field 

 
 

I calculated the Mayfield Nest Survival Rate to assign an average nest success for each 

field (Table 4). The Malheur Lake and Martha Lake fields were removed because their 

boundaries encompass a disproportionate amount of unmanaged land containing habitat 

classes not found in the other fields. Hensler and Nichols (1981) used simulation testing to 

determine a minimum sample size of 20 nests is needed to estimate survival with any 

precision. Using less than 20 nest records to calculate survival rate may misrepresent the 

influence of landscape metrics in any one field, however, I chose an arbitrary minimum of 5 

to retain some sample of nests for estimating average success while producing a suitable 

sample size of fields for correlation analysis. The total sample size after censoring is 956 

nests. I pooled nest data across species and years to achieve an average 19.9 ± 17.0 nests per 

field for survival calculation across 48 fields. The range is 5 to 77 nests with 30 fields having 

less than 20 nests. The mean survival rate is 25% ± 17% with a range of 0 to 74%.   
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2005). Fifteen land-cover categories, including the three wetland nesting habitat classes, 

describe all habitat types pertinent to Refuge management and the CCP effort. Dunes, lava 

flows, and springs habitat classes occur at a spatial scale or distribution irrelevant to this 

study, and the category lake basin occurs outside the management areas, resulting in 11 

mapped land-cover categories (Table 2). The dataset was initially created by merging: 1) soils 

GIS data developed in 1997 by the Natural Resources Conservation Service (NRCS 2006) and 

2) wetlands developed using aerial photography from 1974 and 1983, and validated with field 

visits in 1984, by the National Wetlands Inventory (NWI 1986). The data was updated with 

field-reference data collected using GPS in 2010, and air photo interpretation (NAIP 2005). 

Accuracy assessment using the field-reference data results in an overall accuracy of 81%. 

Though vegetative land-cover conditions change within and between years, the purpose of 

this dataset is to describe objective habitat, not habitat availability, and carries the assumption 

that plant community composition and configuration did not change during the time period of 

the contributing datasets (USFWS 2010). 

Preparing the GIS data for use with FRAGSTATS consisted of clipping habitat data to 

the field boundaries and converting to raster format. In landscape-ecological terms, the extent 

of the scale is therefore defined by the field boundary and varies in size for each field. 

McGarigal et al. (2002) recommend a cell size that is less than half the narrowest dimension 

of the smallest patches to retain necessary spatial resolution of the vector data and 

subsequently represent the configuration of the land-cover classes. The clipped habitat data 

were converted to raster datasets in ASCII format with 10 m resolution. The 10 m cell size 

thus represents the grain of the scale in landscape-ecological terms. 
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Landscape Metrics Calculation 
 
 

Though landscape metrics do not always provide definitive quantitative information, 

they often provide comparative information useful for ranking options and lending insight 

toward future study (Leitao et al. 2006).  A suite of landscape metrics described by Leitao et 

al. (2006) were calculated using FRAGSTATS software (McGarigal et al. 2002) and the raster 

habitat map of the Refuge. FRAGSTATS offers hundreds of landscape metrics that can be 

calculated, however, most of them are redundant.  While some metrics are inherently 

redundant because they are alternate ways of representing the same basic information, metrics 

that are empirically redundant may provide useful information about aspects of the landscape 

under observation that are statistically correlated (Leitao et al. 2006, McGarigal et al. 2002).  

Leitao et al. (2006) propose a core-set of ten metrics, selected to maximize landscape 

pattern description while minimizing redundancy, and to serve the typical needs of planners 

and managers. I used the Percentage of Landscape (PLAND) version of Class Area 

Proportion, and because the field landscapes are different sizes, Patch Density (PD) instead of 

Number of Patches.  Most of these metrics can be applied at both the class and landscape-

levels, however, PLAND is only available at the class-level, and Contagion (CONTAG) and 

Patch Richness (PR) are only available at the landscape-level. To calculate a class-level 

version of the Contagion index, I add the Clumpiness Index (CLUMPY) to the suite proposed 

by Leitao et al. (2006) resulting in 9 landscape-level metrics, and 9 class-level metrics 

calculated for each habitat type (Table 5).  Patch-based metrics, Mean Patch Size (AREA), 

Radius of Gyration (GYRATE), Shape (SHAPE), Proximity (PROX), Euclidean Nearest 



 
Neighbor (ENN), and Edge Contr

(AM). Because patch size is an important controlling factor of the composition, configuration, 

and function of landscapes, 

larger patches 

large patches of habitat likely contain more nests than small 

multiplies the metric by the proportional abundance of the individual patch 

class area

the individual patch area to the total area of the landscape.

habitat 

the wetland habitat 

and dry meadow (DM)

 

Neighbor (ENN), and Edge Contr

Because patch size is an important controlling factor of the composition, configuration, 

and function of landscapes, 

larger patches (Leitao et al. 2006). 

large patches of habitat likely contain more nests than small 

multiplies the metric by the proportional abundance of the individual patch 

class area. At the landscape

the individual patch area to the total area of the landscape.

habitat types to create a dataset useful 

wetland habitat 

and dry meadow (DM)

Table 5. 

 

Neighbor (ENN), and Edge Contr

Because patch size is an important controlling factor of the composition, configuration, 

and function of landscapes, AM 

itao et al. 2006). 

large patches of habitat likely contain more nests than small 

multiplies the metric by the proportional abundance of the individual patch 

. At the landscape-level, 

the individual patch area to the total area of the landscape.

to create a dataset useful 

wetland habitat types where 

and dry meadow (DM), were evaluated in this study.

. Landscape metric descr

Neighbor (ENN), and Edge Contrast (ECON)

Because patch size is an important controlling factor of the composition, configuration, 

AM estimates the disproportionate ecological importance of 

itao et al. 2006). In this study, the use of AM addresses the assumption that 

large patches of habitat likely contain more nests than small 

multiplies the metric by the proportional abundance of the individual patch 

level, AM multiplies the 

the individual patch area to the total area of the landscape.

to create a dataset useful for research beyo

where nests were found, 

, were evaluated in this study.

Landscape metric descriptions (Leitao et al. 2006, 

ECON), were calculate

Because patch size is an important controlling factor of the composition, configuration, 

the disproportionate ecological importance of 

In this study, the use of AM addresses the assumption that 

large patches of habitat likely contain more nests than small 

multiplies the metric by the proportional abundance of the individual patch 

multiplies the metric by the 

the individual patch area to the total area of the landscape.

for research beyo

nests were found, emergent marsh (EM), wet meadow (WM), 

, were evaluated in this study. 

 
iptions (Leitao et al. 2006, 

 

calculated using 

Because patch size is an important controlling factor of the composition, configuration, 

the disproportionate ecological importance of 

In this study, the use of AM addresses the assumption that 

large patches of habitat likely contain more nests than small patches

multiplies the metric by the proportional abundance of the individual patch 

metric by the 

the individual patch area to the total area of the landscape. Metrics 

for research beyond this study. C

emergent marsh (EM), wet meadow (WM), 

iptions (Leitao et al. 2006, McGarigal et al. 

using an area weighted 

Because patch size is an important controlling factor of the composition, configuration, 

the disproportionate ecological importance of 

In this study, the use of AM addresses the assumption that 

patches. At the class

multiplies the metric by the proportional abundance of the individual patch area to 

metric by the proportional abundance of 

Metrics were calculated 

nd this study. Class-level metrics 

emergent marsh (EM), wet meadow (WM), 

McGarigal et al. 2002).

an area weighted mean 

Because patch size is an important controlling factor of the composition, configuration, 

the disproportionate ecological importance of 

In this study, the use of AM addresses the assumption that 

At the class-level, AM 

area to the total 

proportional abundance of 

calculated for all 

level metrics for 

emergent marsh (EM), wet meadow (WM), 

2002). 

18 

mean 

Because patch size is an important controlling factor of the composition, configuration, 

In this study, the use of AM addresses the assumption that 

AM 

the total 

proportional abundance of 

for 

emergent marsh (EM), wet meadow (WM), 

 



 

properties file 

only) or 

analysis type 

of the same 

was selected to eliminate any patch greater than the

from the focal patch as being proximate. 

ECON_AM

and all wetland

contrast), as is the external background 

field or off

 

 

Setting run parameters for 

properties file to specif

or borders (none), 

analysis type was set to standard and the 8

of the same patch. A

was selected to eliminate any patch greater than the

from the focal patch as being proximate. 

ECON_AM (Table 7

and all wetland-habitat to non

contrast), as is the external background 

field or off-refuge land

Setting run parameters for 

specify the class names

borders (none), and whether or not to include each class in the output

set to standard and the 8

A search distance radius 

was selected to eliminate any patch greater than the

from the focal patch as being proximate. 

(Table 7). All wetland habitat pairs are assigned a weight of zer

habitat to non-wetland h

contrast), as is the external background 

land.  

Table 6

 

Setting run parameters for FRAGSTATS software 

the class names within the raster map

whether or not to include each class in the output

set to standard and the 8-

search distance radius 

was selected to eliminate any patch greater than the

from the focal patch as being proximate. An edge weight file 

All wetland habitat pairs are assigned a weight of zer

wetland habitat pairs are assigned a weight of one (maximum 

contrast), as is the external background of the raster map that 

Table 6. FRAGSTATS Class Properties File.

FRAGSTATS software 

within the raster map

whether or not to include each class in the output

-cell rule is used to consider 

search distance radius of 30 m is specified 

was selected to eliminate any patch greater than the distance of one diagonal cell size away 

n edge weight file 

All wetland habitat pairs are assigned a weight of zer

abitat pairs are assigned a weight of one (maximum 

of the raster map that 

. FRAGSTATS Class Properties File.
 

 
 

FRAGSTATS software includes 

within the raster map, status as

whether or not to include each class in the output

cell rule is used to consider 

is specified for PROX_AM. 

distance of one diagonal cell size away 

n edge weight file was created for use with 

All wetland habitat pairs are assigned a weight of zer

abitat pairs are assigned a weight of one (maximum 

of the raster map that represents 

. FRAGSTATS Class Properties File. 

includes constructing 

status as background (external 

whether or not to include each class in the output (Table 6

cell rule is used to consider adjacent cells as part 

or PROX_AM. 

distance of one diagonal cell size away 

was created for use with 

All wetland habitat pairs are assigned a weight of zero (no contrast) 

abitat pairs are assigned a weight of one (maximum 

represents a neighboring 

 

 

constructing a class 

background (external 

(Table 6). The 

adjacent cells as part 

or PROX_AM. Thirty meters 

distance of one diagonal cell size away 

was created for use with 

o (no contrast) 

abitat pairs are assigned a weight of one (maximum 

a neighboring Refuge 

19 

background (external 

he 

adjacent cells as part 

Thirty meters 

distance of one diagonal cell size away 

o (no contrast) 

abitat pairs are assigned a weight of one (maximum 

Refuge 



 

 

habitat 

metrics include all 

fields with a calculated survival type.

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

landscape (NP=1).

Nine landscape

habitat type were calculated for 48 fields resulting i

metrics include all habitats in their calculation. The playa 

fields with a calculated survival type.

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

landscape (NP=1). 

 

Table 7

Nine landscape-level metrics and 

were calculated for 48 fields resulting i

habitats in their calculation. The playa 

fields with a calculated survival type.

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

 

Table 7. FRAGSTATS Edge 

Landscape Metrics per Field

metrics and nine class

were calculated for 48 fields resulting i

habitats in their calculation. The playa 

fields with a calculated survival type. The emergent marsh (EM) and dry meadow (DM) 

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

. FRAGSTATS Edge weights matrix.
 

Landscape Metrics per Field
 
 

nine class-level metrics 

were calculated for 48 fields resulting in 36 

habitats in their calculation. The playa 

The emergent marsh (EM) and dry meadow (DM) 

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

 

weights matrix. 

Landscape Metrics per Field 

level metrics for each wetland nesting 

36 total metrics (Table 8

habitats in their calculation. The playa habitat type 

The emergent marsh (EM) and dry meadow (DM) 

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

 

for each wetland nesting 

metrics (Table 8). The landscape 

habitat type did not occur in any 

The emergent marsh (EM) and dry meadow (DM) 

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

for each wetland nesting 

). The landscape 

did not occur in any 

The emergent marsh (EM) and dry meadow (DM) 

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 

habitat class. This occurs when there is only one patch of that particular class within the 

20 

 

). The landscape 

did not occur in any 

habitats are not present in all 48 fields resulting in a lower sample size. The Euclidean Nearest 

Neighbor (ENN) metrics has more missing data values than the other metrics for each wetland 



 
Table 8. Summary statistics of landscape pattern me
EM for class

 
 

explains the variability in a 

sample-

. Summary statistics of landscape pattern me
EM for class-level emergent marsh habitat, WM for wet meadow, an

 

Multi-variate regression can determine

explains the variability in a 

-size to retain statistical power.  

. Summary statistics of landscape pattern me
level emergent marsh habitat, WM for wet meadow, an

variate regression can determine

explains the variability in a dependent variable

size to retain statistical power.  

. Summary statistics of landscape pattern me
level emergent marsh habitat, WM for wet meadow, an

descriptions of the metrics).

Data Analysis

variate regression can determine

dependent variable

size to retain statistical power.  Green (1991) suggests 

. Summary statistics of landscape pattern metric for 48 fields. LAND prefixes the landscape
level emergent marsh habitat, WM for wet meadow, an

descriptions of the metrics).

Data Analysis 
 
 

variate regression can determine which set of 

dependent variable, however, the method requires a minimum 

Green (1991) suggests 

tric for 48 fields. LAND prefixes the landscape
level emergent marsh habitat, WM for wet meadow, and DM for dry meadow (See Table 5

descriptions of the metrics). 

 

which set of independent 

, however, the method requires a minimum 

Green (1991) suggests the rule

tric for 48 fields. LAND prefixes the landscape
d DM for dry meadow (See Table 5

independent variables best 

, however, the method requires a minimum 

rule-of-thumb 

tric for 48 fields. LAND prefixes the landscape-level metrics 
d DM for dry meadow (See Table 5 for the 

variables best 

, however, the method requires a minimum 

thumb formula N = 

21 

level metrics 
for the 

 

formula N = 



22 
 
50 + 8m where m = the number of predictors, is accurate for studies with 7 or less predictors. 

My arbitrary minimum nest sample size of 5 resulted in a total of 48 fields available and 

below the minimum of 58 as per Green’s (1991) rule-of thumb. Following Hensler and 

Nichols’ (1981) minimum sample size of 20 nests for survival estimation would have resulted 

in only 18 fields available for analysis, far below the minimum required sample size for 

regression with multiple predictors. Unfortunately, the more species and years pooled to meet 

these minimum sample size requirements, the more subject the estimation is to the issues 

associated with biological and temporal assumptions. Further, inclusion of all calculated 

metrics in multiple regression analysis would result in a sample size of 24 because dry 

meadow is not present in all fields. For this reason, I used the univariate Pearson R correlation 

analysis method to individually assess the relationships among landscape pattern metrics and 

the potential influence of landscape variables upon duck nest success. 

Correlation matrices for each set of landscape metrics were developed using R 

statistical software (R Development Core Team  2008). The graphical matrix provides a 

histogram of the variables along the diagonal, a scatterplot with an ordinary least squares 

(OLS) best-fit line for each pair-wise combination below the diagonal, and the corresponding 

coefficient of correlation (r) value above. The tabular matrix shows the r-values below the 

diagonal and corresponding significance (p) value above.   

The coefficient of correlation (r) provides a measure of strength and direction of 

association between variables (Rogerson 2006). I examined the pair-wise associations 

between Rate and landscape metrics, as well as between landscape metrics, to assess 

redundancy among the dataset. Significance values (p) determine the probability with which 
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the correlation is real and to not have occurred by chance (Rogerson 2006). Scatterplots of 

pair-wise relationships were used to assess the shape, or linearity of relationships among 

variables. Histograms were used to assess normality and appropriate transformation to remedy 

non-normal variables. Both graphics provided information about the presence of outliers. 

Transformation of the non-normal variables reduces the effect of outliers and may provide a 

better indication of a significant relationship (McDonald 2009). The log-transformation for 

positively skewed data, and the square-transformation for negatively skewed data were used, 

with the addition of a constant, 1, when zeros are present in the data.   

While correlation does not determine causation, it provides information for assessing 

the potential relationship among variables. Positive relationships, where the variable Rate 

plotted on the Y-axis, increases with increasing value of the landscape variable plotted on the 

X-axis, are quantified with a positive r-value.  Negative relationships, where Rate decreases 

with an increase in the landscape variable, are quantified as negative r-values. I consider 

correlation between landscape metrics and nest success to be statistically significant when the 

p-value is less than the commonly accepted level of 0.05. 

 
Association between Survival Rate and Landscape Variables 

 
 

I determined the distribution of survival rate among fields to be random by testing for 

spatial autocorrelation, Moran’s I = -0.09, p = 0.45. The frequency distribution of Rate is 

slightly skewed to the right (Figure 5). Log transformation results in an outlier because the 

lowest rate is 0.00 for the Grain Field. The untransformed data appears to yield the nearest 

normal distribution suitable for analysis. 
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DISCUSSION 
 
 

This study explored the influence of actively managed wetland landscape structure on 

duck nest success, to build upon the explanatory results of past studies, and provide insight to 

design implications for refuges. Based on correlation analysis of survival rate with landscape 

pattern metrics calculated from a habitat map, several potential nest success-landscape 

relationships may exist (Figure 9). Of the 36 metrics evaluated, Landscape Patch Richness 

(LAND_PR); Wet Meadow Shape (WM_SHAPE_AM), Mean Patch Size 

(WM_AREA_AM), and Radius of Gyration (WM_GYRATE_AM); and Dry Meadow Patch 

Density (DM_PD), are the most statistically significant, p < 0.05, and have the strongest 

correlations, r >= 0.30. 

 
Biogeographical Relevance 

 

The landscape-level metric patch richness is a count of all habitat types within a 

landscape. The median is 7 with a range of 3 to 10 (Table 8). My results show that as the 

habitats within a field become more diverse, nest success increases. Examining a sample of 

the fields with the highest patch richness and highest survival rate, most of the fields are on 

the periphery of the Blitzen Valley where there are more upland habitat types. Diversity 

within a field may be unattractive to predators because they are not a likely location to find a 

meal, or a deterrent if the habitat class Public Use Area is present. My literature review of past 

studies did not reveal a relationship between avian productivity and habitat diversity. Analysis 
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of landscape patch richness interaction with other class-level metrics for influence on survival 

rate may reveal more relevant interpretations. 

The class-level metrics for emergent marsh habitat revealed no statistically significant 

relationships. Tall dense emergent vegetation is the characteristic plant community of many 

wetland habitats, often the most proximate to open water, and provides a maximum amount of 

nesting cover. The lack of relationship may be because of the high number of dabbling ducks 

(n = 1080) recorded in the dataset opposed to divers (n = 195). Diving ducks are restricted to 

habitat in close proximity to open water because of the distance required for flight take-offs 

and landings (Bellrose 1980). This habitat most often will be emergent marsh in a wetland 

complex environment. Dabbling ducks, however, are more likely to nest in meadow habitats 

as they can walk, take-off and land from a standing position on land unlike divers (Bellrose 

1980). The difference in amount of dabbling and diving ducks sampled may be a result of the 

access to and detectability of nests in different habitats. 

Wet meadow is the only nesting habitat type found within all 48 fields included in this 

study. If the detection of duck nests with this data collection effort is an indication of nesting 

habitat preference among duck species, than it is reasonable that the wet meadow habitat type 

is important to nest success. The influence of habitat patch size to duck productivity has been 

discovered in previous studies by Fairbairn and Dinsmore (2001), Horn et al. (2005), and 

Nudds (1992). The positive correlation between mean patch size and rate in this study 

supports this relationship. 

The relationship between avian productivity and shape complexity, however, is less 

understood (Riffell et al. 2001).  The AREA and SHAPE metrics are significantly correlated, r 
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= 0.40, p = 0.01, so some explanation may be attributed to the size of the wet meadow patch. 

In impounded wetlands, complexity of the wet meadow habitat on the downhill side may 

benefit dabbling ducks as was found by Nilsson (1978). This complexity would result in 

increased length of edge between wet meadow and the emergent marsh-open water complex, 

providing escape from predators and access to aquatic foraging. In contrast, increased edge on 

the uphill side, between wet and dry meadows, would provide greater access to predators 

from upland habitats. 

Radius of Gyration is a measure of patch extensiveness and was observed to be highly 

correlated with both mean patch size and shape complexity. An extensive patch of wet 

meadow may have more area, higher edge, or both which may contribute to increased nest 

success. Finally, nests in wet meadow may be less susceptible to abandonment because of 

flooding than those in emergent marsh, and may be less accessible to predators than nests in 

dry meadow. Analysis of plant community data within the nest dataset may corroborate this 

hypothesis. 

The dry meadow class-level metric Patch Density (PD) represents a measure of 

fragmentation of patches within a field where an increase in PD results from more patches 

within a given area (McGarigal et al. 2002). My results show that as dry meadows become 

more fragmented, nest success increases. The values of dry meadow patch density within the 

Blitzen Valley and Double O areas are relatively low compared to the other habitat classes. 

The mean patch density for all habitat types is 32.84, while the mean patch density for dry 

meadow is 1.77 patches/100 hectares (Table 8). Under normal circumstances, dry meadow 

would have a lower survival rate because of higher access by predators. This seems to be 
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mitigated within the Blitzen Valley and Double O areas where fields with the highest patch 

density of dry meadow and highest survival rate have a fragmented spatial arrangement within 

a matrix of wet meadow (Figure 9). These fields may be correlated with area of habitat types 

that provide more nest cover. Fields with higher density of dry meadow patches are often not 

impounded wetlands and may be less susceptible to unplanned flooding and subsequent nest 

failure because of abandonment. 

If these variables are biogeographically significant, it is only at this scale, at Malheur 

NWR for this time period, and for this set of duck data. Other metrics may be relevant at other 

scales at Malheur, and for other ground nesting birds. It is also likely that interactions between 

landscape variables are missed with this analysis. Any single landscape variable may not 

influence duck nest success, while in combination with others, they may be significant. It is 

also possible non-linear relationships exist between landscape indices and survival rate at 

Malheur NWR.  In a study of duck nest success in the Prairie Pothole region of the U.S., Horn 

et al. (2005) discovered a non-linear relationship between nest success and wetland patch size. 

Non-linear relationships, however, are undetected by correlation analysis. 

 
Sample Size as an Explanatory Variable 

 
 

I assessed the tenuous associations between landscape indices and survival rate using a 

post-hoc examination of sample size as an explanatory variable (Figure 10). Sample size was 

log transformed to better approximate a normal distribution and make it easier to assess a 

relationship between variables. While not statistically significant (p = 0.15), the correlation 

strength, r = 0.23, is not much lower than the strongest values in this study. Fields with few 



 
nests may be more often located in landscapes more susceptible to predatio

abndonment. 

reasons of 

forced to nest is less than desireable habitat.

availability of nests, then this 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

imply. 

 
 

nest success to reveal several significant relationships. 

nests may be more often located in landscapes more susceptible to predatio

abndonment. Assuming al

reasons of limited habitat availability

forced to nest is less than desireable habitat.

availability of nests, then this 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

 

 

This paper investigated the influence of the landscape structure of wetland habitat on 

nest success to reveal several significant relationships. 

nests may be more often located in landscapes more susceptible to predatio

Assuming all ducks select nesting habita

limited habitat availability

forced to nest is less than desireable habitat.

availability of nests, then this relationship may reveal that a more systematic amount of effort 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

Figure 10. Scatter

investigated the influence of the landscape structure of wetland habitat on 

nest success to reveal several significant relationships. 

nests may be more often located in landscapes more susceptible to predatio

l ducks select nesting habita

limited habitat availability and territoriality

forced to nest is less than desireable habitat.

relationship may reveal that a more systematic amount of effort 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

Scatterplot and regression 

CONCLUSION

investigated the influence of the landscape structure of wetland habitat on 

nest success to reveal several significant relationships. 

nests may be more often located in landscapes more susceptible to predatio

l ducks select nesting habitat 

and territoriality, a small number of ducks may be 

forced to nest is less than desireable habitat. If opportunity to find nests is related to the 

relationship may reveal that a more systematic amount of effort 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

regression line for 
 
 

CONCLUSIONS

investigated the influence of the landscape structure of wetland habitat on 

nest success to reveal several significant relationships. The diversity of habitat types;

nests may be more often located in landscapes more susceptible to predatio

t with the highest rates of success, for 

, a small number of ducks may be 

If opportunity to find nests is related to the 

relationship may reveal that a more systematic amount of effort 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

for Rate ~ Sample Size

S 

investigated the influence of the landscape structure of wetland habitat on 

nest success to reveal several significant relationships. The diversity of habitat types;

nests may be more often located in landscapes more susceptible to predation and pressures of 

th the highest rates of success, for 

, a small number of ducks may be 

If opportunity to find nests is related to the 

relationship may reveal that a more systematic amount of effort 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

 
~ Sample Size. 

investigated the influence of the landscape structure of wetland habitat on 

The diversity of habitat types;

n and pressures of 

th the highest rates of success, for 

, a small number of ducks may be 

If opportunity to find nests is related to the 

relationship may reveal that a more systematic amount of effort 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

investigated the influence of the landscape structure of wetland habitat on 

The diversity of habitat types; area, 

33 

n and pressures of 

th the highest rates of success, for 

relationship may reveal that a more systematic amount of effort 

was placed on the survey of each field beyond what an opportuistic sampling strategy may 

investigated the influence of the landscape structure of wetland habitat on 

area, 



34 
 
extensiveness, and amount of edge of wet meadow; and the fragmentation of dry meadow 

within a management unit were all observed to positively influence duck nest success.  

Habitat preservation and enhancement is the most important tactic of waterfowl 

conservation (Bellrose 1980). The mean survival rate for duck nests pooled by field at 

Malheur NWR 1987-1998 is 25% ± 17% with a range of 0 to 74%. This estimate is consistent 

with rates in the Prairie Pothole region of the U.S. 1966-1984 that ranged from <5 to 36% 

among sub-regions, sub-periods, and species (Klett et al. 1988). However, duck nest survival 

rates for fields with more than five nests in this study have a positively skewed distribution. 

Forty-five of 48 fields have a rate less than 50% with the remaining at 59, 62, and 75%. An 

obvious management objective to maximize duck productivity, and subsequently that of other 

wetland ground nesting birds, would be to identify and replicate the actionable variables that 

positively influence nest success. One of these variables may be the structural design of 

wetland landscapes by altering the composition and configuration of habitat types. Landscape 

structure of wetlands is a manageable variable at wildlife refuges, while others such as duck 

behavior, surrogate prey populations, and the weather, are not. These findings may provide 

insight to the optimal design of artificial and restored wetlands to maximize nest success, the 

key variable in the population dynamics of many birds (Aebischer 1999). 

This study also shows how established methods of estimating nest success, 

quantifying landscapes, and statistical analysis can be used with secondary data to assess 

general ideas about the influence of refuge landscapes on wildlife. Differences in spatial 

ecological patterns between landscapes can be difficult to quantify using visual map 

interpretation. At Malheur NWR, the reasons for the distribution of duck nest success across 
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fields for the period 1987-1998 are not entirely apparent by visual map interpretation. The 

field of landscape ecology provides a quantitative approach for assessing the potential 

influence of pattern on process with the use of spatial metrics derived from maps.  

Nest success has been partially explained by other habitat variables (Ivey and Dugger 

2008), yet there has been support among the scientific community to evaluate the effect of 

spatial context (Naugle et al. 1999). Landscape effects have been studied for their influence 

on wetland avian species presence/absence data, however, Riffell et al. (2003) suggest 

including nest success to enhance these bird productivity studies. The findings of this paper 

compliment past nest-success-studies by lending a landscape perspective, and compliment 

past landscape-studies of wetland bird productivity by adding the reproductive component of 

nest success.  

 
Assumptions and Issues of Scale 

 
 

This study was limited in a number of ways and caution should be applied to 

evaluating the applicability of these results. The small sample-size limited the analysis to 

univariate statistical analysis that does not account for the interaction among explanatory 

landscape variables. While sample sizes are often increased by pooling species, study areas, 

or time periods, this may lead to erroneous results if the data sets that are pooled actually 

differ (Johnson and Shaffer 1990). The behavioral nest site selection preferences of duck 

species may preclude the assumption for pooling species when calculating survival rate within 

a field (Weller 1999). While predators may not discriminate among duck species, an 

individual species habitat preference may dispose them to more or less access by predators. 
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Additionally, different habitat types may be more or less susceptible to events influencing 

abandonment such as flooding. Separating dabbling ducks, more likely to be meadow nesters, 

and diving ducks, obligate near water nesters (Bellrose 1980), or calculating survival rates by 

habitat type when included in the field data, may yield more relevant results for class-level 

metrics.  

While objective habitat may not change over the time scale studied, the quality of 

plant communities and abundance of seasonal open water within each field resulting from 

management actions may persist on the landscape for several years. The spread of invasive 

species, such as reed canary grass (Phalaris arundinacea) and perennial pepperweed 

(Lepidium latifolium), have rendered large areas of fields to be non-habitat and is not 

categorized in the objective habitat planning map. Calculating landscape metrics from a 

remotely sensed land-cover map, tested to be representative for the time period under 

observation, may yield more relevant results. Further, the 11 year period used in this study 

may not be adequate to reduce bias of inter-annual variables such as weather, surrogate prey 

populations, and predator control practices. The importance of these variables within a short 

time period likely reduces the detectable effect of landscape patterns. 

The scale at which landscape metrics are calculated is of paramount importance to the 

relevance of landscape ecological studies (Wiens 1989). Addicott et al. (1987) suggest the 

elements of scale, grain and extent, should be established relative to an organism’s perception 

and response to the environment. The spatial grain of the habitat map used in this study, and 

the categorical scale of habitat types, does not include potentially important corridors and 

barriers to predators such as dikes, roads, and irrigation ditches that may influence nest 
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success within an individual patch. Class-level metrics for these land-cover categories within 

a field may yield significant results as potential influences to nest success. The habitat map 

includes riparian shrub, riverine, and open water classes that are not nesting habitat, however, 

are part of the wetland complex within the upland matrix. I accounted for these habitat types 

by assigning zero edge contrast between these and the nesting habitat classes for the edge 

contrast index (ECON). These classes, however, often fragment nesting habitat classes and 

affect calculations of their shape complexity and patch density, further reducing the ability to 

detect an effect of the complete wetland complex. Finally, I chose the extent of the landscapes 

to be relevant to Refuge management though I examined relationships between landscape 

pattern variables with a vital rate influenced by ecological processes. The scales at which 

ecological processes occur that influence nest success are likely at a different extent than the 

management field boundary. 

 
Recommended Study 

 
 

While this study revealed statistically significant results, the ability to appropriately 

pool data for species is necessary to further study spatial differences between landscapes. The 

availability of more historical data and continued monitoring may provide the sample sizes 

required to justify necessary assumptions and better assess the effect of influential variables. 

A larger dataset would support estimating survival rate for dabbling and diving ducks 

separately to reduce issues with assumptions of pooling species. This would allow testing 

differences in abandonment and predation rates among groups of species. Data for other 

ground nesting waterfowl such as Canada Geese (Branta canadensis) may be included to 
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further increase sample size for meadow habitats. The most appropriate segregation of nest 

data for survival estimation, however, would be to pool nests by habitat type when collected 

with the field data. 

Including roads and dikes in the land-cover map would also help account for habitat 

fragmentation and access by predators. Spatially merging all wetland habitat types to assess 

class-level indices about a single wetland habitat class within a matrix of non-nesting land-

cover would allow more direct comparison to previous studies. Further, to better match scale 

to the relevant ecological processes, the extent could be systematically increased by buffering 

field boundaries.   

Using individual raster maps for each field to represent discrete landscapes is 

problematic since habitats do not always stop at the field boundary. Including a field border in 

the raster map that categorizes the boundary as refuge or off-refuge may alleviate some of this 

problem. When selecting metrics, the mean (MN) of patch based metrics with measurable 

units may provide easier interpretation than area weighted mean (AM). The Proximity 

(PROX) index could be calculated using a systematically increasing search distance for the 

potential to detect a significant relationship. Though this study was restricted to class and 

landscape-level analysis, coordinate data of nest locations should be used to incorporate 

patch-level metrics when available. Alternately, because many fields are dominated by a 

single largest patch, it is reasonable to assume this is where the majority of duck nests would 

be found. Patch-level metrics could be calculated for each field and the largest patch size per 

field per class selected for analysis. Inclusion of a max patch size metric would approximate a 

patch-level assessment. 
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Studies that assess objective habitat should consider the availability and quality of 

habitat during the time period under investigation. This information can be derived from 

historic remotely-sensed land-cover maps produced from freely available archival satellite 

imagery. Finally, future research about long-term averages of avian reproductive productivity 

should include brood success in addition to nest success. These recommendations may help 

future research about the effect of landscape structure on avian productivity, a subject that 

will remain important to understanding how refuge design and management may best protect 

these resources. 
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