PSU High School Innovation Challenge 2016 Innovation Challenge

Apr 9th, 12:30 PM - 2:30 PM

LARC: Local Agricultural Resource Conservation

Dash Justice
Portland Youth Builders

Josh Davis
Portland Youth Builders

Sid Crumble
Portland Youth Builders

Ashlie Kinney
Portland Youth Builders

Follow this and additional works at: https://pdxscholar.library.pdx.edu/innovation_challenge

Part of the Engineering Education Commons, Environmental Engineering Commons, and the Hydraulic Engineering Commons

Let us know how access to this document benefits you.

Justice, Dash; Davis, Josh; Crumble, Sid; and Kinney, Ashlie, "LARC: Local Agricultural Resource Conservation" (2016). *PSU High School Innovation Challenge*. 7. https://pdxscholar.library.pdx.edu/innovation_challenge/2016/presentations/7

This Event is brought to you for free and open access. It has been accepted for inclusion in PSU High School Innovation Challenge by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Our project conserves water by growing crops on rooftops in the city in a greenhouse and only watering crops when they need to be watered. Our project is a smart watering system that relies on a sensor input from moisture sensors in the soil. This information is then broadcasted to a computer (in this case, an Arduino circuit board) that controls the flow of water to that row of plants. This system is scalable.

Our Solution

Our project conserves water by growing crops on rooftops in the city in a greenhouse and only watering crops when they need to be watered. Our project is a smart watering system that relies on a sensor input from moisture sensors in the soil. This information is then broadcasted to a computer (in this case, an Arduino circuit board) that controls the flow of water to that row of plants. This system is scalable.

CONCLUSIONS

By watering plants only as they need it, we cut down the amount of water that gets wasted using timers. Plants don’t run on a schedule, they need based on how much they need and when they need it. By using moisture sensors in the soil adjacent to the roots, we can accurately disclose when the crop is running low on water.

DESCRIPTION

Our watering system uses an Arduino Uno with breadboard circuitry connected to a moisture sensor and pump to distribute water efficiently based on the water reading of the soil. The process is as automated as possible, to save both water and energy when soil is running low on moisture.