Portland State University

PDXScholar

Institute for Natural Resources Publications Institute for Natural Resources - Portland
2013

Pine Creek Conservation Area: 2013 Mapping and
Monitoring Report

Eric M. Nielsen
Portland State University

Matthew D. Noone

James S. Kagan
Oregon State University

Matthew T. Lee

Follow this and additional works at: https://pdxscholar.library.pdx.edu/naturalresources_pub

b Part of the Natural Resources and Conservation Commons, Sustainability Commons, and the Water

Resource Management Commons

Let us know how access to this document benefits you.

Citation Details
Nielsen, E.M., M.D. Noone, J.S. Kagan, and M.T. Lee. 2013. Pine Creek Conservation Area Mapping and
Monitoring Report. Institute for Natural Resources, Portland State University. Portland, Oregon.

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Institute for
Natural Resources Publications by an authorized administrator of PDXScholar. Please contact us if we can make
this document more accessible: pdxscholar@pdx.edu.


https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/naturalresources_pub
https://pdxscholar.library.pdx.edu/naturalresources
https://pdxscholar.library.pdx.edu/naturalresources_pub?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/168?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1031?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1057?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1057?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/naturalresources_pub/6
mailto:pdxscholar@pdx.edu

Pacific Northwest Landscape Assessment and Mapping Program T
Institute for Natural Resources %"
Portland State University

PINE CREEK CONSERVATION AREA

2013 MAPPING AND MONITORING REPORT

Eric M. Nielsen, Matthew D. Noone, James S. Kagan, and Matthew T. Lee

Institute for Natural Resources, Portland State University.



Acknowledgments

This project was completed through the effort and dedication of many individuals. Jason van
Warmerdam and Michael Conroy led the 2011 field collection effort, with assistance from Berta Youtie,
Rachel Brunner, and this report’s coauthors. Treg Christopher assisted during the 2012 field collection
effort, and Nick Bard graciously transcribed the field data collected that year. Lindsey Wise and Theresa
Burcsu assisted with project management. Brigette Whipple, cultural resources manager for the
Confederate Tribes of Warm Springs, provided valuable introductions to the cultural aspects of Pine
Creek’s ecology. Finally, we would have been unable to complete this work without the extraordinary
hospitality of Rick Hayes, manager of the Pine Creek Conservation Area. Thanks to Rick for his patient
instruction and for helping to make our time at the ranch comfortable.

Please cite this publication as:

Nielsen, E.M., M.D. Noone, J.S. Kagan, and M.T. Lee. 2013. Pine Creek Conservation Area Mapping
and Monitoring Report. Institute for Natural Resources, Portland State University. Portland, Oregon.
138 pp., including attachments and appendices.

Contact information:  Institute for Natural Resources — Portland
Portland State University
P.O. Box 751
Portland, OR 97207



OUTLINE

1.

1.1
1.2
1.3.

2.
2.1.
2.2.
2.2.1.
2.2.2.
2.2.3.
2.3.

3.
3.1.
3.1.1.
3.1.2.
3.1.3.
3.1.4.
3.1.5.
3.1.6.
3.1.7.
3.2.
3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.2.6.
3.2.7.
3.3.

4.

Attachment 1:
Attachment 2:
Attachment 3:
Attachment 4:
Attachment 5:

Introduction
Project Area
First Mapping Effort
Current Mapping and Monitoring Effort

Project Organization
Land-Cover Base Mapping
Change Estimation
Juniper Change Modeling
Photo-Interpretation Sampling
Vegetation Transects
Cultural Plants Habitat Mapping

Discussion

Current Conditions
Western Juniper
Big Sagebrush
Riparian Woody Vegetation
Other Shrubs
Native Grasses
Exotic Grasses
Exotic Forbs

Recent Change
Western Juniper
Big Sagebrush
Riparian Woody Vegetation
Other Shrubs
Bunchgrasses
Native Forbs
Exotics

Management Recommendations

Literature Cited

Land-Cover Base Mapping

Juniper Change Modeling

Photo-Interpretation Sampling

Vegetation Transects

Mapping and Modeling Plants of Tribal Interest



1. INTRODUCTION

1.1. Project Area

Pine Creek Conservation Area (PCCA), just northeast of the John Day River in Wheeler County,
Oregon, was acquired in 1999-2001 by the Confederate Tribes of Warm Springs with support from the
Bonneville Power Administration (BPA), to mitigate for wildlife losses created by the large, hydropower
Columbia River Dams, particularly the Bonneville, Dalles and John Day Dams. Many thousands of acres
of grassland, shrub steppe and riparian habitats were lost due to inundation, and the objectives of the
acquisition included restoration of similar habitats.

The majority of the approximately 35,000-acre conservation area was historically native grassland,
dominated by bluebunch wheatgrass (Pseudoroegneria spicata ssp. spicata), Idaho fescue (Festuca
idahoensis), sand dropseed (Sporobolus cryptandrus) and Thurber’s needlegrass (Achnatherum
thurberianum) and some patches of sagebrush steppe with Wyoming sagebrush (Artemisia tridentata ssp.
wyomingensis). The bottomlands along Pine Creek had extensive bottomland hardwood forests and
woodlands, riparian shrublands, mixed shrublands with black greasewood (Sarcobatus vermiculatus),
basin big sagebrush (Artemisia tridentata ssp. tridentata) and Great Basin wildrye (Leymus cinereus).
However, following years of management as a private ranch with fire suppression and altered fire
regimes, much of the site has transitioned to woodlands of western juniper (Juniperus occidentalis). At
the highest elevations there are small patches of Douglas-fir (Pseudotsuga menziesii) and Ponderosa pine
(Pinus ponderosa) forests. The management objectives upon the property’s acquisition were to restore as
much as possible to the historic mix of grasslands, shrub steppe and riparian habitats.

The nearly 18,000 acres of adjacent public lands administered by the Department of the Interior
(DOI), including the Clarno Unit of the John Day Fossil Beds National Monument and the Spring Basin
Wilderness Area of the Bureau of Land Management, enhance Pine Creek’s conservation value. Since the
management objectives for conservation should be informed by knowledge of the condition of the
surrounding public lands, we felt it important to incorporate those areas in our assessments. For most
aspects of this report, therefore, the project area is defined as the conservation area itself in combination
with the adjacent DOI land (Figure 1), approximately 52,500 acres in total.

1.2.  First Mapping Effort

As part of an interagency agreement created in 2002, the Oregon Natural Heritage Information Center
established a baseline monitoring program in 2002. This effort included the establishment of permanent
monitoring plots to allow for a detailed assessment of vegetation change in the plant communities
occurring at the site. It also included the development of an existing vegetation map, hopefully to allow
for an analysis of overall vegetation change across the conservation area. The map showed the
distribution of western juniper, native grasslands, big sagebrush, and weed-dominated areas at the site.

1.3.  Current Mapping and Monitoring Effort

In the eight years since the original map was made, a series of management actions, including juniper
clearing, prescribed fires, and riparian restoration activities have significantly changed the vegetation at
PCCA. In the spring and summer of 2010, the Oregon Natural Heritage Information Center, now the
Oregon Biodiversity Information Center at Portland State University, visited the area to assist the land
manager in developing a strategy for meeting the information needs of the Tribes and BPA in evaluating
the success of the first decade of restoration. This report details that effort, which incorporated a
combination of field inspection, photo-interpretation, and remote sensing-based mapping to assess change
since the establishment of the conservation area, to lay a new baseline against which to measure future
change, and most importantly to provide detailed information useful for land management decision-
making in the continuing restoration efforts.
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Flgure 1. The Pine Creek Conservation Area boundary is shown in white; the hatched area represents the
project and analysis area including adjacent public lands. Background layer is elevation.




2. PROJECT ORGANIZATION

2.1. Land-Cover Base Mapping (Attachment 1)

Constructing a new baseline vegetation map at 10-meter resolution using remote sensing mapping
techniques was the central activity of the project. Rather than using a classification system to assign all
locations in the project area to a single land-cover class, we broke land-cover down into 19 major
categories, and produced percent cover maps for each. The resulting maps have much greater flexibility
for supporting management activities and future remote sensing change detection work at PCCA. The
accuracy level of the maps were enhanced by a LiDAR data collection flown in spring 2011, which
greatly improved the spatial resolution of topographic data and also provided information on the height
of vegetation canopies. The map modeling process was supported by the collection of cover data at 331
unique field plots, supplementing those with over 100 additional photo-interpreted (PI) plots.

Presence of most land-cover categories was modeled at accuracies between 80-90%, and cover
modeling was also accurate for most categories. The resulting maps were used to make estimates of the
area occupied and the total percent cover of each land-cover category over PCCA, the project area
incorporating the adjacent DOI lands, and over an area including a 5-kilometer buffer around the
boundary of PCCA. These area estimates will be useful in determining future change, even if the next
iteration of monitoring is sample-based rather than relying on remote sensing. The main utility of the
cover maps, however, will be to provide a flexible base on which to plan a wide variety of ongoing
conservation management activities.

An extensive hydrological analysis was performed as an intermediate step in the land-cover mapping
process, which the LiDAR data made possible. The delineated channel networks and potential riparian
habitat, calibrated in the field, should also be helpful data in supporting future management work,
assessing recovery of riparian systems, and supporting analysis of wildlife habitat.

2.2.  Change Estimation

The original plan to derive decadal change estimates by comparing the maps produced in the 2002
effort to current conditions did not turn out as hoped. The accuracy levels of the previous map, made with
a poor aerial photography dataset, were not sufficient to support comparison with the current map.
Instead, we used three very different techniques to make change estimates for land-cover types of interest.
The only technique of the three that produced a wall-to-wall change estimation map was an image-based
change detection for western juniper. Change in big sagebrush, riparian woody vegetation, exotics, and
other vegetation types relied on sample-based approaches, either from PI of current and historic aerial
photography, or from the permanent vegetation transects installed in 2002.

2.2.1. Juniper Change Modeling (Attachment 2)

We used a remote sensing cover estimation approach to map cover of western juniper in 2002 and
2011, and differenced the images to determine areas of significant increase or decrease. Although LiDAR
data was not available from 2002, we used the current LiDAR collection to train models to accurately
predict juniper cover from aerial photography. The techniques we developed work reliably even with
older photography of varying specifications. In addition to providing information about how much juniper
change has occurred and where, we used the modeled change results to produce metrics describing the
topographic settings in which juniper cover is increasing and decreasing.

2.2.2. Photo-Interpretation Sampling (Attachment 3)

Remote sensing-based approaches to change detection for land-cover types other than western juniper
were not possible within our timeframe, given the poor accuracy of the 2002 map. However, despite not
being able to produce a wall-to-wall map showing where changes had occurred, we were able to make



statistically sound estimates of change in the area occupied by big sagebrush stands, riparian woody
vegetation, and western juniper through a photo-interpreted sampling exercise. 1000 randomly selected
points were manually assessed for western juniper cover in 2002 and 2011 aerial photography; over 2400
points were assessed for riparian woody vegetation in the same two years. The methods differed for big
sagebrush, which could not always be reliably distinguished in the older air photos. For big sagebrush we
produced an estimate the coverage of big sagebrush stands in 2009, and a proportional change estimate
from 2002 to 2009 based on those stands that could be confidently assigned in the 2002 photos. The Pl
results are the only estimates we have for change in big sagebrush and riparian woody vegetation; for
western juniper they provide an alternate approach and a check on the remote sensing change modeling
results.

2.2.3. Vegetation Transects (Attachment 4)

Most permanent vegetation transects installed in 2002 were revisited in 2011. Although they were not
randomly located and were not enough in number to support reliable estimates of change across the
conservation area, they provide important snapshots into change processes occurring at particular
locations, and give context for understanding the other change results.

2.3.  Cultural Plants Habitat Mapping (Attachment 5)

The final major product detailed in this report is an exercise in mapping habitat for two culturally
important plants, bitterroot (Lewisia rediviva) and cous biscuitroot (Lomatium cous). We used field-
generated presence and absence data, supplemented with additional locations determined in the office
with reference to air photos and topography, to model potential habitat for both species. Although the
model does not predict whether or not the habitat will be occupied, the maps produced provide a useful
starting point in seeking new populations of these species.

3. DISCUSSION

3.1. Current Conditions

We used two main approaches to establish current conditions for various aspects of land-cover in the
project area. The land-cover mapping process produced estimates of total area occupied and percent cover
for each of 19 categories of land-cover (see Attachment 1). This method made use of all available data,
and the models constructed were generally of high accuracy. For the land-cover types modeled at high
accuracy (including western juniper, big sagebrush, and riparian woody vegetation), the primary caveat in
their use is that they are calibrated to field estimates of cover which are not always accurate. It is possible
that systematic biases toward higher or lower cover estimates exist within the maps depending on how
accurately crews were able to visually estimate true cover in the field.

Photo-interpretation of aerial photography was used to estimate cover for several land-cover types
(big sagebrush stands, riparian woody vegetation, and western juniper). The random sampling approach
used for these assessments allows confidence intervals to be established and provides statistically
defensible estimates. However, PI of tree cover can yield overestimates due to oblique viewing angles and
the presence of shadows which can be difficult to distinguish from crowns.

3.1.1. Western Juniper (base mapping, juniper modeling)

The base map for coniferous trees (see Attachment 1, Table 10) indicated that western juniper is
present over approximately 45% of the project area at greater than trace amounts (52% of PCCA land).
The total projected canopy cover of juniper trees was estimated at 7.3% (8.9% at PCCA); the average
juniper occurrence has about 16% canopy cover. More acres of juniper occurrence were found on west-
facing aspects (see Attachment 2) but that may be due to the fact that the project area generally rises in



elevation to the east away from the John Day River. Lower canopy cover stands tend to occur more often
on south-facing slopes, while north-facing slopes often support stands with greater canopy cover. Higher
canopy cover stands also occur at higher elevations, generally over about 700 meters.

We chose to use the relationship between the land-cover mapping estimate of total juniper cover and
the photo-interpreted juniper cover to derive a correction factor to compensate for cover overestimation,
allowing accurate change estimates to be made from the photo-interpreted data. However, this meant that
the photo-interpreted results no longer constituted an independent assessment of juniper cover for
purposes of estimating current conditions.

3.1.2. Big Sagebrush (base mapping, photo-interpretation sampling)

The base map for big sagebrush (see Attachment 1, Table 10) indicated that big sagebrush is present
over approximately 7.4% of the project area at greater than trace amounts (6.8% of PCCA land). The total
projected canopy cover of big sagebrush was estimated at 0.72%, with an average occurrence having
about 10% canopy cover. The Pl resulted in an estimate that about 1.6% of all land in the project area was
occupied by recognizable sagebrush stands. These estimates are compatible, as the stands recognizable in
imagery were likely only the largest and densest sagebrush occurrences.

3.1.3. Riparian Woody Vegetation (base mapping, photo-interpretation sampling)

The base map for riparian woody vegetation (RWV, see Attachment 1, Table 10) indicated presence
over approximately 190 acres (77 hectares) in the project area, nearly all of it on PCCA land. The photo-
interpreted estimate was a total of 143 acres, but this did not consider all streams in the project area
(though it did consider the major ones), and it also left out some RWYV along the John Day River that was
included in the base map. The estimates are in good agreement.

3.1.4. Other Shrubs (base mapping)

The base map for other shrubs—including mountain mahogany (Cercocarpus ledifolius), antelope
bitterbrush (Purshia tridentata), gray and green rabbitbrushes (Ericameria nauseosus and Chrysothamnus
viscidiflorus), broom snakeweed (Gutierrezia sarothrae), and others; see Attachment 1, Table 10—
indicated a combined projected cover total of approximately 4%. The majority is made up of various
shrubs tolerant of disturbance in rangeland environments (e.g., broom snakeweed, rabbitbrushes), and it is
likely that most cover in this category consists of broom snakeweed, which may not be as beneficial to
wildlife as some of the other shrubs. Mountain mahogany, antelope bitterbrush, and rigid sagebrush
(Artemisia rigida) are all fairly uncommon, being present at only 1.2%, 3.5%, and 0.5% of sites in the
project area at greater than trace amounts, amounting to projected cover totals of only 0.20%, 0.18%, and
0.10% respectively.

3.1.5. Native Grasses (base mapping)

The dominant bunchgrass at PCCA, bluebunch wheatgrass, is extremely widespread, being present at
87% of sites in the project area at greater than trace amounts, with a total projected cover of 15.5%. Idaho
fescue is more restricted to cool slopes, but still occurs in meaningful amounts at 38% of sites for a total
projected cover of 6.7%. Of the less widespread natives, sand dropseed occurs over 7.8% of the project
area with a projected cover of 0.95%. Most of these occurrences are on DOI lands; it is much less
common at PCCA. Needlegrasses, primarily Thurber’s needlegrass, occur over 7.1% of sites but at lower
density, and total only 0.5% in projected cover.

3.1.6 Exotic Grasses (base mapping)

The base map for exotic grasses (see Attachment 1, Table 11) indicated their presence over 87% of
sites in the project area. Typical cover amounts were approximately 25%, resulting in a total projected



cover of about 22%. Both numbers were slightly lower at PCCA than on the adjacent DOI lands. Though
these numbers are high, the combined projected cover of bluebunch wheatgrass and Idaho fescue was
slightly higher than that of exotic grasses.

3.1.7 Exotic Forbs (base mapping)

The base map for exotic forbs (see Attachment 1, Table 11) indicated their presence over 27% of the
project area (34% on DOI lands, but only 24% at PCCA). They generally occur at lower cover amounts
than exotic grasses, and have total projected cover estimated at 2.5% (3.0% on DOI lands, but just 2.2%
at PCCA).

3.2. Recent Change

We used three quite different approaches to make assessments of change over the period of time since
the initial PCCA survey effort in 2002. As the different methods each have their strengths and
weaknesses, it is valuable to consider their results together.

The permanent plot transects established in 2002 were revisited and resampled in 2011, yielding a
non-random but representative set of species cover and diversity estimates (see Attachment 4). 52
transects were resampled, producing a total of 2600 point intercept samples and 5200m? of area sampled
for species diversity. Although the utility of the datasets produced for statistical analysis is limited by the
relatively small sample size and non-random sample locations, they do cover a variety of the habitats at
PCCA, and the in-depth information they provide about species diversity and cover of individual plants is
not available from any other source. The resulting datasets are available only in tabular form, as the small
sample size does not allow any spatial conclusions to be drawn.

PI of aerial photography was used to compare the cover change since 2002 of western juniper
individuals, big sagebrush stands, and riparian woody vegetation (RWV) (see Attachment 3). Although
all these vegetation types are included in the 2011 vegetation base map (Attachment 1), that map relied on
data sources (e.g., LIDAR) that were not available in 2002, so estimating change from historic conditions
required another approach. The fine spatial scale needed to assess these types required that we rely on
aerial photography rather than coarser resolution satellite data. We used a random sampling approach to
estimate cover of these types for both 2002 and more recently (2009 for sagebrush stands, 2011 for
juniper and RWV). The random sampling approach used for these assessments allows confidence
intervals to be established and provides the most statistically defensible estimates. However, there are
possible data quality issues involved in using air photos, due both to the effects on apparent surface cover
resulting from varying geometry across individual photos and to difficulties in interpretation itself. The
latter was a greater issue for sagebrush stand sampling than for juniper or RWV. Despite these
difficulties, the PI methodology provides the most reliable change estimates, and while continuous maps
cannot be produced, visualizing the outcomes of the samples themselves in map form can be informative
(see Attachment 3, Figures 4-6).

A remote sensing modeling technique was used to produce continuous maps of western juniper cover
in 2002 and 2011, and of change occurring in the intervening time (see Attachment 2). This method relied
on an automated analysis of both air photos and medium resolution Landsat TM imagery from both dates,
and was calibrated using high quality maps of juniper distribution derived from the 2011 LiDAR
collection. Although this approach was not feasible with any other vegetation type than western juniper
and the results are not as amenable to statistical interpretation as the random sampling approach, the
spatially-explicit outputs are very informative regarding the patterns of juniper change and will be key for
planning future management activities.

In brief, all of the methods concurred that cover amounts of both western juniper and big sagebrush
have declined over the monitoring period. Riparian woody vegetation was found via PI to have increased.
The permanent plots indicated an increase in bunchgrasses and mesic habitat shrubs, especially at higher



elevations, and a decrease in most exotic vegetation. Native forbs were found to have decreased in cover,
but that was likely due to differences in sampling date necessitated by weather conditions in 2011.
Greater detail is given about each of these vegetation categories below.

3.2.1. Western Juniper (juniper modeling, photo-interpretation sampling, permanent plots)

All approaches registered a significant decline in western juniper cover on both PCCA and DOI
lands, with fractional decreases on DOI land greater than on PCCA land. Juniper elimination was partially
offset by expansion, which occurred at about 20% the rate of elimination overall. Continued expansion is
a significant issue on PCCA land, where it occurred at about 25% the rate of elimination. Monitoring on
permanent plots indicated that in general the elimination of juniper is accompanied by improvement in
ecological conditions, although fires can have negative (but likely temporary) impacts on other native
species.

The change detection modeling approach estimated that about 4300 acres of juniper stands were lost
between 2000 and 2011, fairly evenly split between PCCA (about 2500 acres) and DOI (about 1800
acres). Because of the much greater amount of juniper on PCCA land to begin with, the loss constituted a
much larger portion of the total DOI juniper acreage (32%) than of the PCCA acreage (11%). Overall,
there was a relative decrease of about 16% in juniper stand acreage from 2000 to 2011 across the entire
project area, with about three-quarters of this decrease occurring on northwestern, northern, and
northeastern aspects.

Photo-interpreted results, based on individual tree crown cover rather than woodland extents, were
consistent with the modeled results. A total of about 800 acres of trees were eliminated between 2002 and
2011, ~520 acres from PCCA land and ~290 acres from DOI land. This was partially offset by expansion
of juniper on about 170 acres, mostly on PCCA land (~130 acres vs. ~34 acres on DOI land). This
resulted in a net decrease of ~640 acres of juniper trees (14% of the total 2002 cover), with ~380 acres of
decrease estimated on PCCA land (11% of the total 2002 cover), and ~250 acres of decrease estimated on
DOl land (24% of the total 2002 cover). Assuming that an average juniper stand has approximately 15-
20% canopy closure, the change modeling and PI results are in nearly perfect agreement.

Decreases in juniper cover were likewise observed on the permanent plots, where 12 of the 22 plots
classes as juniper plots in 2002 exhibited measurable, and often complete, declines. This rate of decrease
is very high compared to the estimates based on the above approaches, either due to chance resulting from
the low sample size, or due to the non-random distribution of the transects and disproportionately
sampled effects of particular fires. Half of the 2002 juniper plots showed improved ecological conditions,
while only three of the plots worsened. Some plots where juniper was reduced showed poorer conditions,
due to fire impacts on bunchgrasses and native forbs and increases in non-native plants. These negative
impacts are likely not permanent.

Juniper expansion occurred on some of the permanent plots, where two of the 19 grassland plots were
significantly invaded and are now properly classified as juniper-dominated. The total juniper crown cover
estimated via point intercept sampling was 7.4% in 2002, and just under 5% in 2011. This represents a
34% relative decrease, almost entirely due to wildfires on PCCA land. Again, this represents a significant
overestimate of decline compared to the results yielded by the more rigorous methods above.

3.2.2. Big Sagebrush (photo-interpretation sampling, permanent plots)

Both approaches registered a significant decrease in big sagebrush cover over the time period 2002 -
2009, or 2002 - 2011. Although the P1 sampling estimated the extent of sagebrush stands rather than
crown cover of individual plants, and the permanent plots provided limited precision due to the small
sample size, the results of the two methods were nevertheless in good agreement. The decrease occurred
on both PCCA and DOI lands, but fractional decrease was somewhat greater on PCCA land. In large part,
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sagebrush decrease seems to have resulted from fire, which presents a downside to the use of fire as a
management tool for controlling or reversing juniper expansion.

P1 of change in big sagebrush was done on the basis of recognizable stands of sagebrush rather than
individual plants, which were not reliably distinguishable in air photos. Due to the poorer quality of older
photography, it was impossible to estimate increase in sagebrush stand extent. To arrive at a change
estimate, it was necessary to assume a rate of sagebrush stand expansion. Making the fairly generous
assumption that sagebrush stand expansion since 2002 accounted for 10% of existing sagebrush stands in
2009, we estimated that the fractional cover of sagebrush stands on PCCA lands declined from 2.5% in
2002 to 1.6% in 2009. On all land in the project area, the decline was from 2.3% in 2002 to 1.6% in 2009.
Most of the sagebrush area lost came from reduction of the extent of persisting stands, although a
significant number of stands were eliminated completely. Sagebrush loss occurred in numerous portions
of the project area, and mostly seemed to result from fire. However, juniper encroachment also
contributed significantly, and was responsible for reducing the size of many persisting sagebrush stands.

Decreases in big sagebrush cover were likewise observed on the permanent plots, mostly in response
to wildfires. Out of eight shrubland plots with big sagebrush in 2002, the 2011 sampling indicated that
sagebrush had disappeared completely from four of them and declined in two others. The impact of
juniper expansion was also felt: out of the four juniper plots with big sagebrush as a stand component in
2002, three no longer had sagebrush in 2011. The total big sagebrush crown cover estimated via point
intercept sampling was 2.2% in 2002, and only 1.3% in 2011.

3.2.3. Riparian Woody Vegetation (photo-interpretation sampling, permanent plots)

No RWYV was observed in the permanent plots, so our conclusions here come completely from Pl
sampling. RWYV increased over both the eastern and western portions of Pine Creek, as well as all the
other riparian zones in the project area considered cumulatively. The relative increase was particularly
large on the western portion of Pine Creek, where the RWV cover in 2002 was significantly lower than on
the eastern portion. We estimated an RWYV increase on western Pine Creek from 10.6 acres in 2002 to
15.8 acres in 2011, on eastern Pine Creek from 22.2 acres to 26.7 acres, and on all other riparian zones
from 48.9 acres to 63.6 acres. The total RWV increase over the entire project area was estimated to be
from 105.3 acres in 2002 to 142.8 acres in 2011.

3.2.4. Other Shrubs (permanent plots)

The permanent plots indicated a cover increase for mountain mahogany, antelope bitterbrush,
snowberry (Symphoricarpos albus), and native roses (Rosa spp.). All mesic shrubs increased at higher
elevations, due to livestock removal. However, small weedy native shrubs, including broom snakeweed
and green rabbitbrush, declined from 2.5% to 1.5% cover over the monitoring interval.

3.2.5. Bunchgrasses (permanent plots)

The permanent plots indicated an increase in most native bunchgrasses, especially for those most
sensitive to livestock impacts such as Idaho fescue, bluebunch wheatgrass, and Thurber’s needlegrass.
Sand dropseed also increased, possibly due to the adaptive advantage of its C4 photosynthetic pathway in
a warming climate. On the other hand, declines were observed in smaller, more disturbance-tolerant
native grasses such as Sandberg bluegrass (Poa secunda), needle-and-thread (Hesperostipa comata),
Indian ricegrass (Achnatherum hymenoides), and squirreltail (Elymus elymoides), likely due to increased
competition with the rebounding larger bunchgrasses.

3.2.6. Native Forbs (permanent plots)

The permanent plots indicated that native forbs generally declined in cover, likely due to the later
sampling date in 2011 as compared to 2002. Increasing bunchgrass cover, short-term impacts of fire, and
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variability in spring and early summer rainfall might also have played a role, however, Cover changes
were minor, and overall diversity did not appear to be significantly altered.

3.2.7. Exotics (permanent plots)

The permanent plots indicated decreases in most exotic plants, other than medusahead (Taeniatherum
caput-medusae), which increased from 2.4% to 3.4% overall cover and became established across the
conservation area. Other increasing exotics were teasel (Dipsacus fullonum) and common mullein
(Verbascum thapsus). These biennials were not present in 2002 but have now appeared, although they are
primarily limited to riparian areas. Their appearance may be due to either rising water tables or late
season flooding. Ventenata (Ventenata dubia) also has been increasing in the region, but only appeared in
a single plot. Annual bromes, including cheatgrass (Bromus tectorum), declined from 2002 levels but
remained very high, at 24% overall cover in 2011. Introduced thistles (Cirsium spp.) dropped from 0.15%
cover in 2002 to a mere 0.04% in 2011.

3.3. Management Recommendations

Based on the 2011 and 2012 surveys and the different analyses of change since the Pine Creek
Conservation Area was acquired in 2001, existing management plans and activities appear to have been
remarkably effective in meeting the objectives of the conservation area. Overall, the amount of western
juniper in PCCA has declined, the area dominated by native bunchgrasses appears to have increased, and
there is remarkable recovery in some of the riparian areas. However, there are some recommendations
which this work, and similar research in central Oregon, indicate might improve the overall recovery rate.

Recommendation 1. Continue with efforts to manually restore areas that had been previously
farmed or had been heavily impacted by livestock due to salt or water placement.

While recovery appears to be occurring throughout much of PCCA, there has been almost no
recovery of native species in these heavily impacted areas. They provide a concentration of exotic species
and they are sources of seeds that can impact adjacent areas if burned. The plans being developed by the
U.S. Forest Service to restore the formerly farmed areas along Pine Creek and Highway 218 will address
the largest areas of these habitats. However, if these methods are effective, it would certainly be
beneficial if they could be applied to the other large disturbance patches at the site, perhaps with an initial
focus on areas dominated by medusahead.

Recommendation 2. Use sand dropseed, Thurber’s needlegrass and Great Basin wildrye in
restoration.

Based on our observations, these three species seem to be increasing and able to compete with the
introduced species present at PCCA. They occur in the types of habitats most in need of restoration, and
are likely to persist over time. Sandberg bluegrass is often recommended because it grows and establishes
quickly, but given the steep declines at the site, it probably should be avoided. Native seed sources are
available from local vendors.

Recommendation 3. Expand the capacity to use wildfire as a management technique.

There is strong circumstantial evidence that declines in western juniper cover at PCCA resulted from
the combination of livestock exclusion and the fortuitous occurrence of multiple wildfires in areas where
understory fuels and native grasses were present. In addition, while the most productive grasslands at
PCCA are on north-facing slopes, recovery appears to be occurring on all aspects and slope positions; and
on almost all soil types. Because of the terrain, prescribed fire is difficult to use in most locations at
PCCA, but expanding the conditions under which wildfire is permitted across the site is recommended.
This might include expanding work with the BLM to increase the ability to use the John Day River and
Pine Creek as meaningful fire barriers on the north, west and southern boundaries of PCCA, creating
some barrier to spread on the west, and acquiring the large private inholding, already a priority.
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Recommendation 4. Explore the use of early spring prescribed fire in consecutive years to address
western juniper and invasive species on south slopes.

While the research from PCCA and Rowe Creek indicate the best opportunities for meaningful
restoration and juniper control occur on the more productive north or northeast slopes, there are some low
gradient south-facing slopes and toe slopes that appear to support significant bunchgrass and native forb
vegetation. However, some of these locations have had very heavy invasions of annual grasses following
wildfires. The best example of this are the slopes and the lower ridges around Cove Creek. This area is
currently has high cover of many invasive annual grasses, but also has sufficient native forbs and grasses
that recovery is likely possible. Cool season burns are effective ways of significantly reducing the annual
grass seed bank as well as removing some juniper-related fuels in a less damaging way than hot fires.
Assuring that livestock is kept away from the area is critical if this type of restoration is undertaken, but
significantly reducing the annual seed inputs to the Pine Creek bottomlands could provide additional
benefits.

Recommendation 5. Protect or insulate the large remaining sagebrush or other shrub patches from
late-season, hot wildfires.

It may be very difficult to do this for sagebrush, although many of the remaining large patches of
sagebrush are located near the John Day River where it may be possible to establish natural fire breaks, or
use cool season burns to reduce flashy fuels. Bitterbrush and mountain mahogany may be higher priority
wildlife habitats at PCCA despite occuring at high cover in only limited parts of the conservation area.
The large patches of these species should be protected as well, although their habitat (especially for
mountain mahogany) provides some natural protection from fire.

Recommendation 6. Consider experimental removals of some very dense juniper patches, through
fire or cutting.

Current thinking is that the best places to focus juniper removal are those places with lower cover of
juniper and higher cover of native bunchgrasses. The mapping results indicate that most juniper stands at
PCCA have 20% or lower juniper cover. For these areas, wildfires are likely to lead to significant
recovery of the prior type which occurred at the site. However, there are some very dense stands present
as well, with juniper cover over 35%. It would be useful to know, at least on a local basis, whether or not
recovery can occur in these areas if livestock is not present.

Recommendation 7. Remove isolated junipers by cutting in areas where a wildfire has already
removed most of the trees.

There are some large areas of PCCA where western juniper has been almost entirely eradicated by
wildfire. However, isolated trees remain on many of the deep-soiled north slopes, where trees were able
to survive the fire. While juniper is easily spread by birds over large distances, most seed dispersal occurs
locally, and these isolated trees are a continual source of seeds. In slopes where natural rocky juniper
habitats do not occur uphill, removal of isolated junipers may be able to slow the reinvasion of juniper
into the local sites, and make repeated fires unnecessary, potentially allowing for more rapid regeneration
of bitterbrush and sagebrush.

Recommendation 8. Collect data on the distribution of ventenata, and identify biological control
methods if possible.

While there is no direct evidence that ventenata is likely to spread throughout PCCA, including areas
where livestock is excluded, the potential should not be ignored. The species has shown abilities to invade
natural grasslands and shrub steppe in a number of Research Natural Areas with excluded livestock. Most
of the spread of ventenata has been at higher elevation and more mesic sites, and it is possible that the
majority of PCCA is too hot and dry to support the species. However, monitoring the spread is probably
wise, given the potential damage the species may be able to cause.
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1. INTRODUCTION

The land-cover base map is the core product of this project. The data developed here can be used to
support and guide a wide range of management activities at Pine Creek Conservation Area (PCCA) and
the surrounding lands. It can also serve as an accurate baseline for change detection in the future. This
report section describes the base map products and the methods by which they were developed.

Some changes were made in the products provided compared to those originally proposed. Rather
than mapping at a polygon scale with a minimum map unit of one-half hectare, we chose to produce a
pixel-based map at much higher resolution. This permits the identification of smaller vegetation patches
than would be possible with the originally proposed product. We also had originally planned to produce a
classified map by assigning each location to one of 10-12 unique vegetation classes. However, no existing
classification appeared to meet the management needs at PCCA, which seemed better served by creating
cover maps for a variety of different land-cover elements. Reducing the existing vegetation complexity
into a small number of classes would have reduced the flexibility and utility of the map data products
considerably, and would also have been much less appropriate as a base for future change detection work.

We originally planned to make change maps for juniper, invasive grasses and forbs, and riparian and
upland shrubs. We found that the quality of the 2002 mapping was not sufficient to support this endeavor,
and attempted other means of change mapping. The only vegetation type for which we were successful in
mapping change was western juniper (see Attachment 2). The variable annual greenup timing and vigor
of annual plants, and limited resolution of satellite imagery available from the earlier time period did not
permit reliable change mapping for those types. Similar issues of spatial resolution and the difficulty of
distinguishing riparian woody vegetation and upland shrubs based on aerial photography alone made
accurate change mapping for those classes impossible. As a substitute, reliable cumulative estimates of
change in riparian vegetation and big sagebrush were produced through photo-interpretation (see
Attachment 3); however, this was not possible for herbaceous plants. The accuracy of the new maps
should permit estimates of change in all of the above vegetation types over the next monitoring cycle.

1.1. Mapping Area

The base mapping area was defined as the 2012 PCCA boundary, buffered by five kilometers on all
sides. However, field sampling for model training only occurred on PCCA land and adjacent public lands
(equivalent to the project area referenced in other sections of this report). Reliability of the map products
will decrease with increasing distance from the training area due to the lack of field sampling. However,
we felt it was important to provide spatial context for understanding the environment surrounding PCCA.
1.2.  Primary Products

In addition to describing the base mapping methodology, the following primary products are
presented and discussed in the subsequent pages:

Base Layers — backdrop and reference imagery

(1) 4-band color-IR aerial photography at 1-meter resolution, from the 2012 Oregon NAIP
(National Agricultural Imagery Program) collection

(2) LiDAR bare earth elevation and vegetation height, at 1-meter resolution
Vegetation Canopy Layers — based on LiDAR vegetation height data
(1) Percent canopy cover of vegetation over 8’ in height, at 10-meter resolution

(2) Percent canopy cover of vegetation over 3’ in height, at 10-meter resolution
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(3) Dominant vegetation height—the height which is equaled or exceeded by only 12.5% of the
surrounding 10-meter area

Hydrological Layers — based on LiDAR bare earth data, products field-calibrated
(1) Delineated perennial channels (including seasonal channels)
(2) Delineated intermittent channels
(3) Riparian areas, potentially hosting riparian woody vegetation
Base Map Outputs — vegetation map products produced for 19 separate land-cover categories
(1) Likelihood of occurrence, at 10-meter resolution
(2) Predicted percent canopy cover, at 10-meter resolution
Tabular Outputs —
(1) Rank-based associations between predictor variables and land-cover category cover amounts
(2) Bootstrapped accuracy assessment for predicted occurrences of each land-cover category
(3) Bootstrapped R? and root-mean-square error of cover models for each land-cover category

(4) Relative importance of predictor variables in presence and cover Random Forests models for
each land-cover category

(5) Tabular summaries of field cover data collected during 2011 and 2012 sampling efforts

2. METHODS
2.1. Remote Sensing and GIS Data
2.1.1. Data Selection and Acquisition

2.1.1.1. LiDAR Data

Light Detection and Ranging (LiDAR) data were collected and processed for the majority of PCCA
and some adjacent lands by Watershed Sciences of Portland, Oregon in the spring of 2011. We used the
standard 1-meter gridded product for the bare earth and highest hit elevation layers. Return intensity was
used only to a limited degree, due to inconsistencies between flight lines. We did not evaluate the point
cloud data as the gridded product appeared sufficient for our needs.

2.1.1.2. Aerial Photography

Two orthocorrected 4-band color-IR air photo collections were used during the project. Both were
collected through the National Agriculture Imagery Program (NAIP); the 2009 collection at half-meter
resolution, and the 2012 collection at 1-meter resolution. The 2009 imagery served as the basis for field
site selection, field map sheet production, and early mapping exercises. When the 2012 imagery became
available, it was substituted for the 2009 collection despite its coarser resolution. This was done in order
to produce a map more closely resembling current conditions. Both NAIP datasets were obtained as full
resolution, uncompressed tiles.

2.1.1.3. Satellite Imagery

Several SPOT-5 images over the mapping area became available during the course of a standing
request kept open during the duration of the project. An adequate image from May 2010 was used to
make initial decisions about land-cover categories for mapping and to guide field sampling. Excellent
cloud-free images from August 2, 2010 and May 10, 2012 became available later and were used as the
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primary satellite data sources for mapping. Because the images were collected in different seasons, they
illustrate different aspects of vegetation phenology and jointly contain significantly more information than
would be available from a single image.

Five Landsat TM images (August 13, 1998; August 14, 2010; April 21, 2009; June 24, 2009; June 27,
2010) were used for field site selection. The anniversary images from 1998 and 2010 were used to
provide a stratification for field sampling of changed areas; the other three images, exhibiting different
aspects of vegetation phenology, were used to stratify sampling for base mapping. The Landsat data were
not used for predictive modeling due to their coarser spatial resolution.

2.1.1.4. Other Data

The collected LiDAR data did not cover the full extent of the mapping area and were lacking from a
small portion of PCCA itself. In order to have topographic metrics available over the full mapping area,
we needed to supplement the LiDAR elevation data with conventional elevation data for the missing
areas. We downloaded 10-meter resolution elevation data from the USGS National Elevation Dataset
(NED) to meet this need.

We digitized the 2012 boundary of PCCA and adjacent federally-owned lands from available maps
georeferenced to recognizable features in the aerial photography. Roads and other travel routes in the
training area were digitized from the 2009 NAIP photography, supplemented by USGS topographic maps.

We decided against using geology and soils layers for mapping purposes because of the risk of map
artifacts due to their coarser resolution and lower spatial accuracy. We also felt that most of the predictive
power of these layers was available from metrics derived from the previously discussed datasets.

Table 1. Data sources for predictive modeling layers and their acquisition dates.

Data Type Spatial Resolution Data Source Date

LiDAR Bare Earth and Highest . .

Hit Elevation 1 meter Watershed Sciences Spring 2011

Color-IR Aerial Photography 1 meter NAIP, State of Oregon Summer 2012
. Aug. 2, 2010

SPOT Satellite Data 10 meter USGS EROS May 10, 2012

USGS Elevation 10 meter USGS National Elevation Dataset

2.1.2. Data Pre-Processing

All data layers required pre-processing to make the data maximally useful for modeling. The
following steps were performed using either ArcGIS 9.3 or ERDAS Imagine 2010.

2.1.2.1. LiDAR Data

The LiDAR bare earth elevation data tiles were reprojected to UTM Zone 11 (NADB83) at 1-meter
resolution, mosaicked into a single image, and converted from floating point to integer format with
vertical units of quarter-feet for efficiency of data storage and processing. Preliminary topographic
metrics such as slope and aspect were produced using the built-in ERDAS functions, after first smoothing
the bare earth elevation with a 3x3-cell focal mean filter. The 10-meter NED elevation data were
processed similarly to the LIDAR bare earth data.

The height above ground of vegetation and other objects was calculated by subtracting floating point
bare earth elevation from highest hit elevation and then converting to integer format with vertical units of
centimeters. As we have observed in previous gridded LiDAR datasets, an artifact occurred regularly in
steep areas, resulting in invalid height values roughly proportional to the steepness and length of the
slope, even in completely barren areas. These errors occurred in linear strips up to 15 meters wide,
oriented perpendicularly to the direction of steepest slope. We used an approach we developed previously
(Nielsen et al., in press) to flag these locations based on a simultaneous combination of high slope and
vegetation height relative to the surrounding area. Height values of these detected artifacts were recoded
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as missing data, as were the routes of the power lines crossing the mapping area. VVegetation cover in
areas with little remaining valid LiDAR height data were predicted through a different pathway that did
not use height information (section 2.5.2).

2.1.2.2. Aerial Photography

The 2009 and 2012 orthocorrected air photos were processed similarly. Individual tiles were
reprojected to UTM Zone 11 (NAD83) and then mosaicked. The 2009 mosaic was aggregated to 1-meter
resolution to reduce overhead in subsequent steps while the 2012 mosaic was kept at its native 1-meter
resolution. The datasets coregistered well with the LIDAR data and with each other, although some
differences in registration due to orthocorrection problems were observed in steep areas. Such artifacts are
difficult or impossible to resolve in post-processing. The 2009 NAIP collection was also characterized by
occasional discontinuities in the response of the near-infrared band. This impacted the southern portion of
the training area; fortunately, the 2012 collection with which final mapping was performed did not have
this issue.

2.1.2.3. Satellite Imagery

Both SPOT images were imported from the provided TIF image format, stripped of areas near the
image edges where data were missing from some bands, reprojected to UTM Zone 11 (NAD83), and
manually coregistered to the 2012 aerial photography. Images were left as digital numbers rather than
converting to surface reflectance since no comparison between the images was required. The images were
of excellent quality with minimal apparent atmospheric effects.

The Landsat TM data were imported from their native format and converted to exo-atmospheric
reflectance using the provided header information. Areas of cloud, shadow, smoke and haze were
manually digitized and removed from the images. Atmospheric variability between images was corrected
for by applying a dark object subtraction in which the minimum observed reflectance value in each band
was subtracted from all pixel values. This simple technique is appropriate when the imaged area includes
many pixels corresponding to dark water or cast shadow (Chavez 1988), a valid assumption with several
miles of the John Day River in the mapping area. We then applied a relative normalization to the
anniversary images from 1998 and 2010 by implementing the “ridge method” discussed in Chen et al.
(2005).

2.2. Training Data
2.2.1. 2011 Season

2.2.1.1. Field Training Site Selection

Targeted sites for training data acquisition were selected using an automated procedure based on the
acquired Landsat TM images. Both the historical change image pair and the selected set of three modern
images were used, to ensure that areas of recent change (e.g., burns) and the full spectrum of current
conditions were adequately represented in training data. Sites were selected only from areas either within
PCCA or on adjacent public lands, and only within 400 meters of the road and trail system.

Sampling of recently changed areas was based on the anniversary image pair. Both images were
simplified into two indices, the Normalized Difference Vegetation Index (NDVI, Rouse et al. 1973) and
the Normalized Difference Moisture Index (NDMI, Wilson and Sader 2002). A change vector analysis
procedure (Lambin and Strahler 1994) was then used to identify six distinct types of spectral change over
the 1998 — 2010 time interval. 220 points were randomly located within the change areas meeting the
accessibility criteria above. Points were created proportionally to the area represented by each of the six
change classes.
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Sampling of areas with distinct spectral response was based on the three images selected as
representative of current conditions. The red, near-infrared, and mid-infrared bands were extracted from
the three images and stacked into a single image. An ISODATA unsupervised classification was used to
break the training area into 45 classes characterized by similar spectral responses at the three dates.
Representation of distinct topographic settings was ensured by additionally intersecting the 45 spectral
classes with three classes derived from topographic curvature. The resulting classes were restricted to the
accessible regions, and then an automated procedure was used to locate the most spatially homogeneous
representative areas from each class. Three to six points were randomly selected from these areas, in
rough proportion to their frequency on the landscape. A total of 503 points resulted from this procedure.

Field crews were instructed to sample as wide a variety of the points generated through both
procedures as possible, in addition to opportunistic sampling when homogeneous areas of undersampled
vegetation types were encountered. To assist field sampling, the randomly selected sampling points were
shown on aerial photo map sheets produced from the 2009 aerial photography

2.2.1.2. Field Data Collection

Crews visited accessible locations, attempting to maximize diversity among the sampled classes. If
the assigned location was near a vegetation boundary, it was relocated nearer the center of a
homogeneous vegetation patch, and a new GPS point was taken. Small patches (less than 90 meters in
both dimensions) were only sampled if the vegetation type represented did not occur often in larger
patches. In addition, opportunistic plots were taken when unusually homogeneous examples or less
common vegetation types were encountered.

Vegetation and ground cover at PCCA were broken into categories that could be assessed quickly in
the field, feasibly mapped, and potentially prove valuable for management purposes. Percent coverage at
the plots was assessed for 19 land-cover categories: (1) conifers, including western juniper (Juniperus
occidentalis), Douglas-fir (Pseudotsuga menziesii), and ponderosa pine (Pinus ponderosa); (2) mountain
mahogany (Cercocarpus ledifolius, CERLED); (3) big sagebrush (Artemisia tridentata, ARTTRI),
including subspecies tridentata and wyomingensis); (4) rigid sagebrush (Artemisia rigida, ARTRIG); (5)
antelope bitterbrush (Purshia tridentata, PURTRI); (6) riparian woody vegetation (RWV); (7) shrubs
tolerant of disturbed rangeland (DRS), including rubber rabbitbrush (Ericameria nauseosa), green
rabbitbrush (Chrysothamnus viscidiflorus), broom snakeweed (Gutierrezia sarothrae), salt desert shrubs,
and other shrubs not incorporated elsewhere; (8) bluebunch wheatgrass (Pseudoroegneria spicata,
PSESPI); (9) Idaho fescue (Festuca idahoensis, FESIDA); (10) needlegrasses (Achnatherum spp.,
ACHSPP), primarily Thurber’s needlegrass (Achnatherum thurberianum); (11) sand dropseed
(Sporobolus cryptandrus, SPOCRY); (12) native bluegrasses (Poa spp., POANAT), primarily Poa
secunda; (13) exotic grasses (EXOGRASS), primarily cheatgrass (Bromus tectorum), medusahead
(Taeniatherum caput-madusae), and ventenata (Ventenata dubia); (14) exotic forbs (EXOFOR),
including common mullein (Verbascum thapsus), teasel (Dipsacus fullonum), and Scotch thistle
(Onopordum acanthium); (15) cryptobiotic soils and moss (MOSSCRYP); (16) exposed bedrock
(BEDROCK); (17) exposed talus (TALUS); (18) exposed bare soil (SOIL); (19) exposed ash beds (ASH).

All cover assessments were visually estimated, with the aim of producing reasonably accurate
estimates at the scale of a 45-meter radius circle plot (approximately 0.65 hectares, or 1.5 acres). Cover
was assessed in a single large plot if visibility was adequate to allow that; otherwise, five small 10-meter
radius plots were assessed located at the plot centers and 37 meters distant at 45, 135, 225, and 315
degrees. Smaller and/or irregularly shaped patches were assessed over an area determined by the crew and
sketched on the map sheets. Live and dead western juniper were distinguished, and all junipers were
separated into several size-based age classes. Photos were taken, and a range of other identifying
characteristics were collected, mostly to aid in positive plot identification and location for quality control
(see Appendix A).
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Plot data were entered into an Access database, and polygons drawn for irregularly sized polygons
were entered into a GIS system. Plot center locations, GPS error estimates, species cover data, and
available notes were exported from the database to a spreadsheet for additional quality control (section
2.2.3).

2.2.2. 2012 Season

The 2012 field season was originally planned as an effort to obtain sufficient additional field data to
perform a map-based accuracy assessment using independent data. However, we later determined that
insufficient data were available from 2011 to accurately model cover for many of the land-cover
categories. Therefore, the 2012 field data were instead used in the model building process, and we used a
model-based accuracy assessment process (section 2.6).

2.2.2.1. Field Training Site Selection

Early in 2012, draft land-cover category cover maps at 10-meter pixel resolution were built from the
field data collected in 2011, using a process similar to that discussed below. All 19 cover predictions were
stacked and passed through a 3x3-cell focal mean filter. An ISODATA unsupervised classification was
used to break the stacked cover image into thirty distinct cover type classes. The most homogeneous
representatives of each resulting cover type class were determined, and about ten points were randomly
located within each of these, subject to the same accessibility constraints used earlier. The resulting 304
points were targeted, again attempting to distribute sampling effort as evenly as possible between the
thirty classes.

2.2.2.2. Field Data Collection

By this point in the project, it had become clear that 10-meter resolution SPOT-5 satellite imagery
would be used during production of the final map, rather than the coarser resolution Landsat TM imagery.
For this reason, and because the 2012 plots were originally intended for accuracy assessment purposes,
plot size was reduced to a single 15-meter radius circle, although in heterogeneous areas sketches were
made illustrating nearby vegetation types. The categories listed for cover assessment were slightly altered
for clarity, but otherwise the protocol remained identical to that used in 2011.

2.2.3. Field Data Quality Control

Plot data from both field efforts were quality checked for category cover calls, spatial accuracy, and
internal consistency. This process focused primarily on those plots that modeled poorly in a preliminary
Random Forests modeling run (section 2.5.3.1).

Adjustments were made in the circumscription of some of the land-cover categories to make the 2011
and 2012 data completely consistent with one another; for instance, the disturbed rangeland shrubs
category now includes broom snakeweed, which was originally lumped with native forbs and sub-shrubs.
Where there was substantial doubt about the accuracy of cover calls for any category, the cover call was
changed to a token signifying missing data and the plot was not used for modeling that category.

Several plots with poor GPS data, or located near vegetation transitions were manually repositioned
with reference to aerial photography, LiDAR data, field notes on topographic setting, and field site
photos. Plots for which the correct location could not be positively verified were eliminated, as were those
located in active agricultural fields and those that were unintentionally resampled. In addition, plots in
locations that appeared to have been disturbed between the dates of field collection and more recently
acquired imagery were eliminated.

The quality checked cover data were associated with a polygon coverage, derived from either a 45-
meter circle centered on the sample point or a field-sketched polygon (2011 field season) or a 15-meter
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radius circle centered on the sample point (2012 field season). A total of 331 plots were available for
modeling from the combined 2011 and 2012 field work efforts.

2.2.4. Photointerpreted Training Data

Some land-cover categories were insufficiently sampled in the course of field work to successfully
model. Where possible, these categories were supplemented with additional positive training data
occurrences created from image interpretation. The mountain mahogany, big sagebrush, rigid sagebrush,
riparian woody vegetation, talus, bedrock, and ash bed categories were supplemented in this way. Cover
for the category of interest was estimated from aerial photography and LiDAR height images. In addition,
some negative occurrence data was added from photointerpretation. Some of these training locations were
located in poorly predicted areas where initial model runs were indicating a substantial likelihood of the
category’s occurrence in a location it was clearly absent from in imagery (this was particularly an issue
with RWV and rigid sagebrush). Other negative occurrences were entered for some categories in the
course of adding positive cover data for other categories. 112 additional training polygons were digitized,
giving a combined total of 443 plots for model training (Figure 1).

Figure 1. The 443 plot locations used for model training, with Pine Creek
Conservation Area boundary superimposed (background is elevation).
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2.3.

Predictive Metrics

The first step in generating predictive information for modeling was to produce a variety of localized
raster data layers from the available remote sensing and GIS data. These metrics are referred to as
localized because they depend only on pixel values in an immediate spatial neighborhood, generally
defined by a moving window. They fall into four main groups: metrics derived from topographic data,
LiDAR vegetation height data, aerial photography, and satellite imagery. Metrics representing
hydrological conditions were generated in a landscape perspective since they depend on upstream areas
rather than on the immediate neighborhood only. They are described separately in section 2.4 along with
the other hydrological processing tasks.

2.3.1. Topographic Data

A variety of distinct metrics describing the range of influences of local topography on growing
conditions were calculated. Most metrics were created from both the LiDAR bare earth elevation dataset
and the 10-meter NED elevation data, since we needed to map beyond the boundaries of the LIDAR

collection.

Table 2. Characteristics of topographic predictors derived from LiDAR and NED elevation data.

Computation

Metric Name Label . Description
Resolution
Bare Earth Elevation ELEV ignm(l‘(ﬁég) Bare earth elevation
Slope SLD igjm(l‘(',\li)?;) Bare earth slope in degrees
Relative Heat Load HL 181”]("(',5)9;) Relative heat load (McCune method)
Total Curvature CURS5, CUR10, 5m, 10m, 30m, thal curvature from elevation aggregated to 5m
CUR30, CUR150 | 150m (LIDAR only), 10m, 30m and 150m resolution
Planimetric Curvature CPL5, CPL10, 5m, 10m, 30m, Planimetric curvature from elevation aggregatgd to
CPL30, CPL150 | 150m 5m (LiDAR only), 10m, 30m and 150m resolution
Profile Curvature CPR5, CPR10, 5m, 10m, 30m, Pr'ofile curvature from elevation aggregate(_j to 5m
CPR30, CPR150 | 150m (LIDAR only), 10m, 30m and 150m resolution
Topographic Position Percentile of cell elevation relative to surroundin
Pe?cgntil‘fa TPP200, TPP8OO | 10m, 40m elevations within 200m and 800m ’
Topographic Position TPM200, 10m. 40m Difference between cell elevation and median
Difference from Median | TMP800 ' elevation of cells within 200m and 800m
Direct Solar Radiation RDIR 10m ArcGIS direct solar radiation across full year
Direct Solar Radiation RDUR 10 ArcGIS duration of direct solar radiation across full
. m
Duration year

The bare earth elevation (ELEV) and degree slope (SLD) data layers formed the basis for a variety of

other topographic metrics. Slope and aspect were transformed into relative heat load (HL) using formulas
from McCune (2007). Heat load describes the relative degree of solar heating expected on various slope
facets, integrating the influence of slope and aspect on sun incidence angle during the warmest part of the
day. It is a biologically meaningful quantity that is more appropriate than aspect for modeling as a
continuous variable.

Curvature was computed at a variety of spatial resolutions in order to pick up landscape features
occurring at different spatial scales. Bare earth elevation was first degraded to 5-meter, 10-meter, 30-
meter, and 150-meter resolutions. The ArcGIS curvature functions were then used to determine total
curvature (CUR), profile curvature (CPR) and planimetric curvature (CPL) at each resolution over the
surrounding 3x3-cell area.

Two types of relative topographic position metrics were calculated, each at two spatial scales. We
defined topographic position percentile (TPP) as a cell elevation’s percentile ranking relative to the cells
surrounding it, and topographic position difference from median (TPM) as the difference between the
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cell’s elevation and the median elevation of the cells surrounding it. The coarse scale metrics used a
computation radius of 800 meters, while the fine scale used a radius of 200 meters. For computational
feasibility, the coarse scale metrics were calculated at 40-meter pixel resolution, while the fine scale
metrics were calculated at 10-meter pixel resolution.

The exposure of each 10-meter pixel to direct solar radiation throughout the year was estimated using
the ArcGIS solar modeling tool. This index is substantially different from heat load because it considers
topographic shading due to the presence of surrounding slopes, calculated across the course of the sun’s
trajectory, which can have a major impact in steep, mountainous terrain. Total direct solar radiation
(RDIR) and the duration of exposure to direct solar radiation (RDUR) were computed across a full

simulated year, using the “uniform sky” option.

2.3.2. LiDAR Canopy Data

Metrics describing various aspects of vegetation canopy height, density, and variability were created
from the LiDAR height data.

Table 3. Characteristics of vegetation canopy predictors.

Predictor Name Label gggﬁﬂfﬁfn Description
- 0 -
Dominant Canopy Height HT88 10m Eiile?lgt exceeded by only 12.5% of surrounding
Lfétigriercentlle Canopy HT75 10m Height exceeded by 25% of surrounding pixels
Median Canopy Height HT50 10m Height exceeded by 50% of surrounding pixels
Median Woody Canopy HTWMD 10m Local median height of vegetation over 3 feet
Height tall
Median Tree Canopy HTTMD 10m Local median height of vegetation over 8 feet
Height tall
Normalized Dominant 88NMAX 10m Ratio of local dominant canopy height to local
Canopy Height maximum height
Normalized Mean Canopy MNNMAX 10m Ratio of local mean canopy height to local
Height maximum _height
Ratio of summed local canopy height
Canopy Rudosit FOLDY1, FOLDY2, | 1m, 2m, 4m, transitions to absolute height. Calculated on
py Rugosity FOLDY4, FOLDY8 | 8m heights at 1m, 2m, 4m, and 8m resolution,
aggregated by maximum
Normalized Height Ratio of local height variability to absolute
Standard Deviast:]ion HTA4SD, HTA8SD | 4m, 8m height. Calculated on heights at 4m and 8m
resolution, aggregated by mean
Woody Canopy Cover CC3F 10m E\rlz(lftgo;]egz ?elljllrroundlng area with vegetation
Tree Canopy Cover CC8E 10m E\rg?téo?egi f;lrroundlng area with vegetation
Fraction of surrounding area with vegetation
Top Layer Canopy Cover ccrop 10m over 90% of the dominant canopy height

The vegetation height data layer with masked cliff artifacts formed the basis for a range of predictors,

representing measures of canopy height, canopy roughness or rugosity, and total canopy cover. Many of
these predictors can only be calculated at coarser spatial scales, as they integrate the characteristics of a
number of finer resolution pixels in order to expose characteristics of a vegetation canopy rather than a
single object.

Three predictors are quantile-based descriptors of the 1-meter resolution raw height data, and were
formed by repeatedly computing medians on the 1-meter vegetation height cells in each larger 10-meter
cell. After calculating the median canopy height (HT50) at 10-meter resolution, all 1-meter cells with
heights less than the local HT50 were set to missing data. The median of the cells that remained was
taken, resulting in the 75th percentile height (HT75). The same procedure was repeated once more,
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resulting in a measure of the dominant canopy height (HT88). HT88 provides a good estimate of the
typical overall canopy height of the dominant vegetation present at most sites. If the highest vegetation
layer at a site has cover of less than 12.5%, it will be ignored, and HT88 will instead represent the height
of the dominant vegetation layer. Therefore, HT88 is useful for discriminating between vegetation types
defined on the basis of dominance.

The median tree height (HTTMD) was determined by first eliminating all 1-meter cells with height
values less than eight feet, and taking the median of the values remaining in each 10-meter cell. Rather
than indicating the height of the dominant vegetation, HTTMD describes the height of the tree layer
present (if any), no matter how sparse it is. The median height of woody vegetation (HTWMD) was
computed similarly, but used a threshold of three feet, on the assumption that most height values over that
limit at PCCA should correspond to woody vegetation.

Two additional descriptors of vertical canopy structure were derived, both based on the elevation
relief ratio of Pike and Wilson (1971). The normalized mean canopy height (MNNMAX) specifies the
fractional vertical distance of the mean canopy height between the minimum (usually zero) and maximum
heights in the 10-meter pixel, while the normalized dominant canopy height (88NMAX) specifies the same
for the dominant canopy height instead of the mean height. They were computed by:

HTmean B HTmin
HTmax - HTmin
HT88 B HTmin

HTmax - HTmin

where HTca, is the mean height across the constituent 1-meter pixels, HT88 is the dominant canopy
height, and HT i, and HT,,« are the minimum and maximum heights 1-meter pixel heights, respectively.

MNNMAX =

88NMAX =

We defined our primary rugosity measure as the ratio of the local 3-cell canopy slope distance to the
horizontal distance, summed in both north-south and east-west directions and standardized by the
vegetation height at the center cell. Horizontal distance can be eliminated from the equation since it is
determined only by the pixel resolution and is invariant across the image, leaving:

|HT; — HTy| + |HT, — HTs| + |HT; — HTg| + |HT; — HTy,|
HT,

where HT¢ represents the vegetation height at the center pixel and HTy, HTs, HTg, and HTy, represent the
vegetation heights at the pixel immediately to the north, south, east and west respectively. We calculated
the rugosity metric at four different resolutions to reveal different scales of horizontal canopy structure.
Rugosity at 2-meter, 4-meter, and 8-meter resolutions were calculated by first degrading vegetation
height, setting the coarser resolution cells to the maximum of the finer constituent cells. Aggregating by
maximum eliminates many small gaps and increasingly focuses analysis on the upper levels of the
canopy. The finer scale versions are quite affected by small breaks in canopy.

Rugosity =

We created an alternative measure of canopy roughness by following Parker and Russ (2004) to
calculate the normalized height standard deviation:
OH
HTASD = ——
HT.
where oy, represents the 3x3-cell moving window standard deviation of the vegetation height, and HT¢
represents the vegetation height at the center pixel. We calculated this metric at 4-meter and 8-meter
resolutions, aggregating by mean instead of by maximum. Only coarser resolution versions of this metric
differed substantially from the primary rugosity metric.

We generated three canopy cover predictor layers. Tree canopy cover (CC8F) was defined as the
fraction of the local 1-meter cells with height values over eight feet, while woody canopy cover (CC3F)
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was the same but with a threshold of three feet. The top layer canopy cover (CCTOP) was defined as the
fraction of 1-meter cells with height values greater than 90% of the corresponding 10-meter HT88. This
predictor attempts to estimate the overall canopy cover of the dominant layer of vegetation.

2.3.3. Aerial Photography

The predictors developed from the 2012 NAIP aerial photography focused on texture-based attributes
that exploit the high-resolution information not available from the satellite imagery. Translating elements
of spatial patterning into predictive metrics allows mapping of fine-grained vegetation types, even when
the mapping itself is done at a coarser resolution than the individual plants.

Table 4. Characteristics of aerial photography predictors.

Metric Name Label gg?jg:ﬂ'\on Description

NAIP Red Band | R1 1m NAIP red band response

NAIP NDVI V1 im NDVI from NAIP red and near-IR bands

NAIP N2VI N1 im Product of NAIP near-IR band and NDVI

Red Band T5 R1T5, R2DT5, 1m. 2m. 3m Absolute.value qf difference petween red band center cell

Texture R3DT5, R5DT5, 5m’ 9m’ ’ and median of eight surrounphng cells, calculated at _1m,
RODT5 ’ 2m, 3m, 5m, and 9m resolution, aggregated by median

Red Band R1T5N, R2DT5N, .

Normalized T5 R3DT5N, R5DTSN, ém Sm 3m, ;{atlo of {eccji tt)Jand 1(;5 texture to red band value,

Texture RODTSN ' ggregated by median

NDVI T5 V1T5, V2DT5, 1m. 2m. 3m Absolute.value qf difference petween NDVI center cell

Texture V3DT5, V5DT5, 5m’ 9m’ ’ and median of eight surrounphng cells, calculated at .1m,
VIDT5 ’ 2m, 3m, 5m, and 9m resolution, aggregated by median

NDVI V1T5N, V2DT5N, .

Normalized T5 V3DTSN, VEDTSN, ém Sm 3m, IZ{atln?ett)jfi{;\rl1DVI T5 texture to red band value, aggregated

Texture VODT5N ' y
N1T5, N2DT5, 1m. 2m. 3m Absolute value of difference between N2VI center cell and

N2VI T5 Texture | N3DT5, N5DT5, 5m‘ 9m‘ ! median of eight surrounding cells, calculated at 1m, 2m,
N9DT5 ' 3m, 5m, and 9m resolution, aggregated by median

mgxrl]alized 15 %BSTQNN@ESTEN im, 2m, 3m, Ratic_) of N2VI T5 texture to red band value, aggregated by

5m, 9m median
Texture NODT5N

It is difficult to use air photos for automated vegetation mapping because of inconsistent radiometric
properties between flight lines due to changes in sun angle, atmospheric conditions, vegetation
phenology, and sensor calibration issues. However, using metrics based on texture (variance) rather than
radiometric attributes can provide a more consistent means of object identification. Textural measures
also can vary extraneously within and between photos, due to variability in view angle, sun-surface-
sensor geometry, and atmospheric conditions, but these issues are more prevalent with tall (tree-sized)
vegetation; most vegetation types at PCCA should not be strongly affected. We developed two texture
measures that appear to respond strongly and consistently to spatial patterning, and ran them at various
resolutions to pick up signals corresponding to vegetation patterned at differing scales.

The texture metrics must be calculated from a single-band image; the resulting characteristics can
vary considerably depending on the input measure chosen. We used three different source images at 1-
meter resolution, each of which seemed to respond well to at least one of the land-cover categories of
interest. The red band, which responds strongly to the contrast of illumination and shadow, or dark woody
material and bright soil backgrounds, was extracted from the 4-band NAIP imagery. The second source
image used was NDVI, calculated from the near-infrared and red band responses, which strongly
discriminates vegetated from unvegetated areas:

nir — red

NDV] = ——
nir + red
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where nir and red represent the near-infrared and red band responses, respectively. The third source
image, N2V, was created by multiplying NDVI by nir, allowing a clearer discrimination of vegetation
crowns from their cast shadows, which can be easily confused in either of the other metrics.

We experimented with many possible moving window measures of high frequency contrast; the most
effective at PCCA was created by subtracting the median of each cell’s eight nearest neighbors from its
own value, taking the absolute value of the result. We called this metric T5 (it was the fifth texture
tested):

T5 = | e —median(a,b,c,d, f, g, h, 1) |
where the values of the pixels in the 3x3-cell computation window are named according to:

a b c
(d e f)
g h i

We generated this metric at 1-meter resolution on each of the three source images (producing R1T5,
V1T5, and N1T5). Then, we degraded each source image to various coarser resolutions (2-meter, 3-meter,
5-meter, and 9-meter) by aggregating to the coarser resolution based on the median. The T5 metric was
then produced at each of the coarser resolutions for each of the three source images (resulting in R2DT5,
R3DTS5, etc.).

Another version was made of each of the 15 texture metrics in which it was normalized by the local
value of the source image from which it was computed (also aggregated by median to the coarser
resolution), e.g.:

R1TSN = RITS
 R1

R2TSN = R2T5
" R2

etc., where R2 is determined by aggregating R1 by median to 2-meter resolution. This process resulted in
an additional 15 texture metrics, giving a total of 30 in addition to the three source images themselves.

2.3.4. Satellite Data

A range of predictive metrics were generated from the August 2010 and May 2012 SPOT-5 images.
Metrics were either the raw band responses or spectral indices based on combinations of those responses.

The normalized difference vegetation index (NDVI), an index useful for discerning variations in
vegetation vigor, was created from the near-infrared and red band responses, as described above. The
normalized difference moisture index (NDMI), useful for discerning variations in vegetation structural
attributes, was created by:

nir — mir
nir + mir
where nir and mir represent the near-infrared and mid-infrared responses respectively. The normalized
difference forestness index (NDFI, coined here) integrates characteristics of NDVI and NDMI, and is
calculated by:

NDFI = NDVI + NDMI
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Table 5. Characteristics of SPOT satellite data predictors.

Computation

Metric Name Label Resolution Description
Near-IR Band AU10B1, MA12B1 10m Near-IR band response from Aug. 2010 and
May 2012
Red Band AU10B2, MA12B2 10m Red band response from Aug. 2010 and
May 2012
Green Band AU10B3, MA12B3 10m Green band response from Aug. 2010 and
May 2012
Mid-IR Band AU10B4, MA12B4 10m Mid-IR band response from Aug. 2010 and
May 2012
Normalized Difference Vegetation Index
NDVI AULOVI, MAL2VI 10m from Aug. 2010 and May 2012
Normalized Difference Moisture Index from
NDMI AU10MI, MA12MI 10m Aug. 2010 and May 2012
Normalized Difference Forest Index from
NDFI AU10FI, MA12FI 10m Aug. 2010 and May 2012
Normalized Difference Snow Index from
NDSI AU10SI, MA12SI 10m Aug. 2010 and May 2012
Normalized difference of red and green
NDRG AUIORB, MAI2RB 10m bands from Aug. 2010 and May 2012

The normalized difference snow index (NDSI, Hall et al. 1995), an index useful not only for detecting
snow cover but also various geological properties, was created by:
™m — mir
NDSI = g—
grn + mir
where grn and mir represent the green and mid-infrared responses respectively. Finally, the normalized
difference red-green index (NDRG, coined here), which is helpful in detecting changes in soil color, was
created using:
red — grn
NDRG = ———
red + grn
where red and grn represent the red and green responses respectively. Each metric was generated from
both of the SPOT satellite images.

2.4. Hydrological Modeling

Because the predictive modeling process treats data aspatially, predictors related to landscape context
must be provided explicitly. One aspect of landscape context that is key to understanding vegetation
distribution is hydrological connectivity. In order to incorporate information related to hydrological
connectivity into predictive models, local metrics describing the influence of hydrology must be
generated through simulating flow processes.

We created a hydrological flow accumulation layer based on the LiDAR bare earth elevation,
correcting for poorly modeled flow at road crossings due to lack of information on culvert locations. We
used the flow accumulation layer to create a channel network, calibrated by field observations of the flow
thresholds at which channel formation occurs at PCCA. We then used flow accumulation and slope data
to delineate riparian zones, also calibrated locally through observations of patterns of occurrence of
riparian woody vegetation.

2.4.1. Flow Accumulation Modeling

Modeling hydrological flow accumulation was important both as a step in the process of delineating
channels and riparian zones, and also as a key input needed to generate several predictive hydrological
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metrics. Although ArcGIS can be used for estimating flow accumulation, we found that its restriction to
modeling flow in a single direction out of each pixel resulted in patterns that were not realistic in
relatively flat areas. Instead we used SAGA, an open source software package that includes a variety of
advanced topographic analysis functions (SAGA-GIS 2012), allowing a more accurate delineation of the
extent of moist areas.

To make computation feasible, hydrological modeling was performed at 3-meter resolution rather
than the full 1-meter resolution of the LiDAR elevation dataset. We reduced the resolution by aggregating
based on the minimum, setting each 3-meter cell equal to the lowest value of the 9 constituent 1-meter
cells. This resulted in a greatly reduced number of obstructed flow paths in subsequent modeling, as
compared to aggregating based on the mean. We then used SAGA to fill sinks in the elevation grid (using
the Wang & Liu method, with minslope = 0.01) and modeled flow accumulation using the SAGA
Parallel Processing method (with multiple flow directions and convergence = 1.1).

This procedure resulted in flow paths running along the upslope sides of the roads along Pine Creek
and on the east side of the John Day River, where flow paths down slopes were modeled as blocked by
the elevated road prism. We manually digitized short line segments across roads in areas where
substantial amounts of flow were being incorrectly routed along roadsides. We buffered each segment by
1.5 feet, and then set all elevation cells overlapping each buffered segment to the minimum elevation. We
ran the sink filling and flow accumulation procedures again, and the flow path problems were resolved.

2.4.2. Field Calibration

During the 2012 field effort, we generated calibration data to guide the delineation of channel
networks and riparian zones. Several stream channels with differing general flow directions were hiked in
the downstream direction, starting above the point of initial channel formation. At 100-meter intervals, a
GPS point was collected and the channel type and cover of riparian woody vegetation (RWV) were
assessed. Channels were coded as either permanent (with flowing water around July 1), seasonal (clearly
with regular flow for at least a portion of the year, and consolidated alluvial substrate), intermittent
(apparently flowing in brief but not rare episodes, with substrate composed of loose sand and rock), and
gullies (only flowing after extreme events). RWV was defined as any woody vegetation differing from
that found on surrounding slopes; we estimated the proportion of the 30-meter linear interval surrounding
each sample point that had RWV, and the maximum horizontal and vertical distance from the channel that
RWYV was found. We also noted if RWV had been observed along the channel since the last sample
location. Similar assessments were made on the lower portion of each tributary channel encountered,
above the area influenced by the main channel.

In the office, the modeled channel flow accumulation was extracted for each sample point, and the
relationships between flow accumulation, channel type, and occurrence of RWV were compiled
separately for channels generally flowing in the four cardinal directions. The horizontal and vertical
distances at which RWV was observed from channels of various sizes were used to generate a channel
size-dependent envelope within which RWV can potentially occur, by keeping only the occurrences with
the maximum distances observed along the spectrum of channel sizes. A regression was created linking
the logarithm of flow accumulation with a function taking the form of the slope cost distance described in
section 2.4.4, and this was used to parameterize the delineation of riparian zones.

2.4.3. Channel Network Delineation

Intermittent channels and seasonal/permanent channels were delineated in SAGA. The flow
accumulation thresholds at which these two channel types were observed to initiate were used to
parameterize the network delineation procedure. Each channel section was attributed by SAGA with its
stream order (Shreve 1966), a system in which whenever two streams join, the resulting channel order is
equal to the sum of the orders of the tributaries.
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2.4.4. Riparian Zones Delineation

We started with the assumption that riparian zones should occur adjacent to channels, and should
monotonically increase in their horizontal and vertical dimensions with increases in channel flow. The
first step was therefore to determine the flow quantity associated with each section of the channel
network. The channel network was broken into discrete channel reaches defined by network intersections.
Many channel segments were composed of anastomosing flow pathways, in which flow was modeled in
several adjacent parallel paths; it was necessary to consider the several paths as all contributing to a single
total flow value. Determining this effective flow required first associating each flow accumulation cell
with the nearest channel reach. For this purpose, distance was measured in terms of the cumulative slope
across each cell separating the flow accumulation cells from the channel reaches. Average reach flow was
then calculated by dividing the summed flow accumulation of the cells associated with the reach by the
length of the reach.

In order to properly model the extent of riparian zones on different size channels, we needed to
classify the channels into size classes. We determined that using nine channel classes represented a good
compromise between the ability to accurately represent riparian extents across the wide range of channel
sizes and the constraints posed by the time-intensive cost distance modeling process, which required an
independent run for each class. Channels were assigned to one of the nine classes on the basis of average
reach flow, with thresholds between the classes spaced in a regular geometric progression ranging from
the minimum reach flow at which RWV was observed to the highest occurring reach flow in the mapping
area.

We used a cost function to determine the distance riparian zones would stretch away from the
associated channel. The cost function was based on the square of slope in order to emphasize sudden
breaks in slope and produce boundaries corresponding to physiographic features such as fluvial terraces
and natural levees. The least cost distance from each cell to each of the nine channel size classes was
calculated using this squared slope cost function.

Riparian zones were demarcated by thresholds of cost distance that were a function of channel size
class. We used the occurrences of RWV in the hydrological field calibration data to select appropriate
thresholds. These observations were used to fit a mathematical model to describe cost distance threshold
in terms of the geometric mean reach flow for each of the channel size classes. We found that a
logarithmic model best fit the data, and used this to generate the shape of the function relating reach flow
to cost distance thresholds for RWV occurrence. We then corrected for the fact that the limits on riparian
zones are fixed by sudden breaks in slope by matching the generated curve to the floodplain boundaries
observable in LiDAR elevation data for a moderate-sized channel at PCCA, and applying a linear
correction to the cost distance thresholds based on this.

All cells with a least cost distance to any of the nine channel size classes less than the cost threshold
for that class were flagged as riparian. We then ran a series of 3x3-cell focal majority filters, slightly
modified to favor basin-filling, to remove speckle. Finally, we enforced a rule that all riparian cells must
be contiguously connected through other riparian cells to a channel network cell. Although the delineated
riparian zones were not used in the predictive cover modeling, several of the associated intermediate
process results were used to generate predictive metrics (section 2.4.5).

The riparian zones spatial layer provided with the deliverables was restricted to the PCCA property
boundary. The hydrological metrics are less reliable at any location lacking complete LiDAR coverage in
the upstream contributing area, including much of the area outside of the PCCA boundary. Restricting the
riparian layer to the PCCA boundary also allowed us to generate cumulative area estimates, as it excluded
the large amounts of open water on the John Day River modeled as riparian.
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2.4.5. Hydrological Predictive Metrics

Metrics describing hydrological processes and features were produced from the outputs of the
hydrological modeling performed in SAGA. For computational feasibility, all hydrological metrics were
derived from the 3-meter resolution elevation grid created from the 1-meter dataset by aggregating based
on the minimum.

Table 6. Characteristics of hydrological predictors derived from LiDAR elevation data.

. Computation S
Metric Name Label Resolution Description
Vertical distance to VDISTP 3m SAGA vertical distance above permanent channel
permanent stream network
Vertical distance to SAGA vertical distance above intermittent channel
: i VDISTI 3m
intermittent stream network
Horizontal distance to HDISTP 3m Horizontal distance to permanent channel network
permanent stream
_Horlzo_ntal distance to HDISTI 3m Horizontal distance to intermittent channel network
intermittent stream
T(')%t:ﬁsr stream order within MAXORD 10m Highest order SAGA channel within 200m
Wetness index SAGAWET 3m SAGA wetness index

. Log-scaled cost distance to channel network,

Uplandness index UPLAND 3m produced in riparian delineation procedure

SAGA was used to determine the vertical distance of each cell above the two channel networks
(intermittent and seasonal/permanent) delineated earlier (VDISTP, VDISTI). These predictors were
included because of their likely correlation to the relative impacts of cold air drainage, which can
significantly influence vegetation distribution in steep terrain. We used ArcGIS to determine the
horizontal distance of each cell to the nearest channel in each network (HDISTP, HDISTI), as well as the
highest Shreve stream order within 100 meters, if any were present (MAXORD).

The Compound Topographic Index (CTI) is a steady state soil wetness index based on local slope and
upstream contributing area (Moore 1991), with useful properties for expressing landscape position and
integrating hydrological processes. The CTI was modeled in ArcGIS but was found to inadequately
represent the extent of moist areas away from channels in low gradient areas. Instead we used the SAGA
Wetness Index (SAGAWET), a close analog to CTI, the behavior of which we found more realistic in low
gradient areas.

An “uplandness” index was created based on a log-scaled version of the riparian zones cost distances
computed above during the riparian zone modeling procedure. For each cell, the ratio of the slope-based
cost distance to the riparian threshold for each stream size class was calculated. The uplandness index was
defined as:

C, C, C3 C4 C5 Cg Cy; Cg C
UPLAND = logyo |1+ min (2,22, 22,24, 22 26, 7 20 20}
T T, T3 Ty Ts Te T7 Tg To
where Cy_g represent the slope-based cost distance to each of the nine stream size classes, and T o
represent the cost distance threshold used to define the riparian zone associated with each size class.
Higher values of the index are associated with decreasing hydrological influence.

2.5.  Modeling

After the initial predictor data summarization steps (section 2.5.1), the remainder of the modeling
procedures were implemented in the R programming language (R Development Core Team 2012).
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2.5.1. Predictor Data Summarization

All predictor metrics were aggregated or resampled to a 10-meter resolution grid of fixed extent
established by the NAIP data. Considerable care was taken to avoid unnecessary resampling and to ensure
that no pixel shifts occurred during processing of any of the layers, which would diminish the highly
accurate image coregistration needed to extract appropriate predictor data for small plots. All of the
LiDAR-based canopy metrics were occasionally impacted by the missing LiDAR height data resulting
from the artifact discussed in section 2.1.2.1. During the process of aggregating these metrics to the 10-
meter modeling resolution, if at any step less than half the finer resolution cells contained valid data, the
result was marked invalid also. After all 10-meter metrics had been created, a mask was created for each
predictor group (LiDAR topography, NED topography, LiDAR canopy, aerial photography, and SPOT
data) indicating which cells contained valid data for all metrics in the group.

Predictor data was created for each training data plot by summarizing the metrics by their zonal mean
values across the 443 training data polygons. For each predictor group, the percentage of 10-meter cells
with valid data was calculated over each polygon. The summarized predictor values and percent valid
information were exported into tables and joined to the training polygon shapefile with cover data that
was produced in section 2.2.

The validity of the merged cover/predictor dataset was checked by testing the associations between
the cover values for each land-cover category and the predictor data values. We calculated Spearman’s p
for each pairwise combination of the cover and predictor datasets. This statistic is a rank-based measure
of association appropriate in cases where data do not come from a bivariate normal distribution.

Figure 2. Areas corresponding to the three model runs based on
different subsets of predictors. The blue area (run 1) has all
predictors available, the red area (run 2) lacks valid LiDAR height
data, and the green area (run 3) lacks all LiDAR data.

2.5.2. Predictor Subsets

Not all the predictor groups are
available in all parts of the mapping
area. The LiDAR collection did not
cover the full mapping area, and the
height data was invalid in some places.
In order to create a seamless map with
the maximum possible accuracy in all
areas, it was necessary to do three
independent model runs using different
subsets of the predictive variables. The
primary model run was based on the
first predictor subset, and was applied
wherever all datasets were available.
This run used predictors from the
canopy, hydrology, LiDAR
topography, aerial photography, and
SPOT groups. The second run was
applied in areas where LiDAR
elevation data were available, but
canopy metrics were invalid; it used
predictors from the hydrology, LIDAR
topography, aerial photography, and
SPOT groups. The third run was
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applied where there was no LiDAR coverage, and used predictors from only the NED topography, aerial
photography, and SPOT groups. The portions of the mapping area where each of the predictor subsets
were applied are shown in Figure 2.

2.5.3. Presence/Absence Modeling

2.5.3.1. Classification Models Development

Predicting species cover is actually a two-fold problem. The first step is to determine whether the
species is present or absent; this is a classification problem. If it is present, its cover can be estimated in a
second, quantitative modeling step. The predictive modeling algorithm that we used, Random Forests
(Breiman 2001), can be run in two different modes corresponding to the two steps in the cover modeling
process. The first step, predicting land-cover category presence and absence, was accomplished by using
Random Forests in its classification mode.

First, the shapefile containing plot data and predictor summaries was imported into R, with the help
of the rgdal R package (Keitt et al. 2012). For each of the three runs, any plots with less than 50% valid
data for any of the predictor groups included in the predictor subset were dropped. Then, each of the land-
cover category cover values were recoded to presence and absence by treating values of 1% and less as
absent. We made this decision because it resulted in higher classification accuracy, and seemed to be a
reasonable compromise considering that many plots where categories were marked with zero cover may
well have had small amounts within the 90-by-90 meter assessment area. Our absence class therefore
allows the possibility of trace amounts of cover.

The remaining steps were performed for each of the 19 land-cover categories in three separate runs
using the different predictor subsets. A Random Forests classification model consisting of 2,500 unique
decision trees was built for each land-cover category, specifying an equal sample size selected at random
from both the presence and absence classes. We found that using an equal sample size is critical for
creating a model that balances errors of omission and commission, especially for rare or undersampled
vegetation types. A table detailing plots that were commonly mispredicted for each category was
compiled and those plots were subject to further examination and quality control (section 2.2.3). After
completing the quality control work, the modeling process was repeated and the presence/absence models
generated for each of the three runs and 19 land-cover categories were saved for later use, along with
variable importance values generated during the model construction.

2.5.3.2. Determining Optimal Probability Thresholds

When classes to be predicted are unbalanced (with the number of presences and absences unequal),
and particularly if the training dataset does not accurately reflect the proportion of class occurrences in the
landscape, it is important to have some criteria by which to ensure that they are not grossly overpredicted
or underpredicted. This can easily result when basing the classification process on some naive measure
(such as total overall accuracy of predicting a training set). To address this issue, we did an additional
round of presence/absence modeling using the same training dataset as before. For each run and land-
cover category, we determined an optimized probability threshold above which an unknown data point
would be labeled as an occurrence. We found this threshold by creating 100 bootstrapped Random Forest
models, holding out 5% of the samples during each iteration. Since the 5% sample was not used in model
generation, it could be treated as independent test data. During each iteration, we determined the
confusion matrix that would result from using any given probability as a threshold for presence
prediction, ranging from 0.01 to 0.99 in intervals of 0.01. A running total confusion matrix was kept for
each probability threshold through the 100 model iterations. The threshold value that generated the
cumulative confusion matrix best matching the prevalence of occurrences in the training set (ideally,
where the number of false negatives and false positives were equal) was selected as the optimal threshold.
Use of this probability threshold should result in maps where land-cover categories are mapped in
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proportion to their actual prevalence, even if the fraction of occurrences in the training data are not
proportional to their representation over the full landscape. We deemed this a more important goal in
creating maps useful for management than simply maximizing overall accuracy.

2.5.3.3. Map Creation

We used the presence/absence models generated for each predictor subset run and land-cover
category to predict a floating-point presence probability at each 10-meter pixel in the mapping area. The
import of predictor values from each cell and the output of the resulting probability was facilitated by the
raster R package (Hijmans and van Etten 2012). We then merged the three predictor subset runs,
correcting each predicted probability with reference to the determined optimal threshold, using:

Pin
Py = 2t’
out — (pin - t) .
0.5+ 2(1=0)’ otherwise
where p;, represents the Random Forests predicted probability, t represents the optimized threshold, and
Pout represents the standardized probability, with p = 0.5 corresponding to the minimum probability value
representing category presence at the pixel.

ifpin <t

In general, the predictions from the first predictor subset run were used if available because they were
based on the complete set of predictors. Otherwise, the second run predictions, based on all predictors
other than the vegetation canopy group, were used if available. The third run predictions were only used
outside of the LiDAR coverage area. The only exceptions to this rule were for the mountain mahogany
and bedrock land-cover categories (see section 2.5.4.3).

2.5.4. Cover Modeling

2.5.4.1 Regression Models Development

The quantitative modeling of land-cover category percent cover was accomplished by running
Random Forests in its regression mode, training models only using field data with positive occurrences.
Removing absence data prior to regression modeling avoids zero-inflation bias which can seriously
compromise measures of best fit that are key to establishing a reliable regression. For this phase, we
treated any amount of cover above zero as reflecting an occurrence. Apart from this altered threshold, the
process was similar to the classification models creation. No sample sizes were specified; all presence
data for each of the land-cover categories were used in developing each model. Rather than outputting a
table of mispredicted plots, we saved the out-of-bag R-squared value that resulted from each model fit.
The regression models were saved, along with the corresponding variable importance values.

2.5.4.2. Regression Models Correction

Random Forests regression tends to overpredict low values and overpredict high values. This can be
partially corrected by performing a regression correction to fit values predicted from the training dataset
back to the original collected data. The regression models created in the previous step were loaded and
used to repredict the cover training values. A linear least-squares regression was then performed to fit the
predicted values to the actual plot cover values. The slope and intercept characterizing the best fit
regression line were saved and used during the subsequent cover prediction phase.

2.5.4.3. Map Creation

We used the regression models generated for each predictor subset run and land-cover category to
predict a floating-point cover prediction at each 10-meter pixel in the mapping area. We then merged the
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three predictor subset runs, correcting each predicted cover value using the slope and intercept determined
in the previous step:

Cout = max ( 0,min( 100, ¢;, *m+b))

where c;, represents the Random Forests predicted cover value, m represents the correction slope, b
represents the correction intercept, and ¢, represents the corrected cover value, constrained to between
zero and 100 percent.

For the mountain mahogany and bedrock land-cover categories, we had insufficient training data
available in valid LiDAR height areas to produce a reliable regression for the first predictor subset run,
resulting in much poorer predictive strength than was possible without using the canopy predictors. For
these two categories, merged results were based only on the cover values predicted in the second and third
runs. Otherwise the predictive runs for all categories were merged as described in section 2.5.3.3.

2.5.5. Post-Processing

Several steps were taken to make the produced maps more reliable and useful. Where possible, we
smoothed the predicted presence probabilities by using a 3x3-cell focal mean on the 10-meter pixels. For
most land-cover categories, the smoothed probabilities are more reliable because they compensate for
minor registration errors between datasets and remove other sources of noise from the predictions.
However, for some land-cover categories—types that can occur in linear strips (e.g., riparian woody
vegetation along streams, exotic grasses along livestock trails, exotic forbs along channels and roads, bare
soil along roads) or in isolated small occurrences (e.g., individual conifers, exotic grasses in hotspots of
livestock disturbance)—smoothing probability values diminishes the chance of detection. We therefore
used unsmoothed probability values for these land-cover categories.

As discussed earlier, the regression approach is not well-suited to discontinuities such as that
represented by presence vs. absence. Combining the classification and regression results by constraining
the predicted cover values to locations where occurrence is found to be likely remedies this problem. We
therefore set predicted canopy cover to zero in areas with adjusted presence probability less than 0.5 (i.e.,
less than the optimized occurrence threshold).

2.6. Model Accuracy Assessment

2.6.1. Presence Model

The field data collected in 2012 were needed for additional training data for many of the land-cover
categories, and at any rate were inadequate in number to support a full map-based accuracy assessment.
Instead, we performed a bootstrap sample-based approach to assess the accuracy of the presence/absence
models for each of the land-cover categories. 5% of the plots were withheld from the model construction
phase, and the withheld plots were predicted using the models built without them. The predicted plots
were assessed against the observed data associated with them. This process was repeated 100 times for
each land-cover category, compiling a cumulative confusion matrix. For purposes of this assessment, all
predictions for plots with trace amounts of cover (greater than 0% and less than or equal to 1%) were
considered correct because our absence class allows the possibility of trace amounts. Only the first
predictor subset model run (the model run applied over most of PCCA, incorporating all predictor types)
was assessed.

2.6.2. Cover Model

We used a similar bootstrap approach to assess the accuracy of the cover regression models. Again,
5% of the plots were withheld from each model during its construction, and the cover percent was
predicted on them and saved along with the corresponding field data. The process was repeated at least 25
times and until at least 100 points had been accumulated. We calculated the R? and root-mean-square
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error (RMSE) describing the fit of the predictions to the observed data for each land-cover category. The
first predictor subset model run was used to assess for all land-cover categories other than mountain
mahogany and bedrock, which were assessed using the second subset model run, the main model used for
prediction of those categories.

2.7.  Analysis

2.7.1. Land-Cover Category Area Totals

The total area occupied by each land-cover category was estimated from the resulting maps for the
Pine Creek Conservation Area, for the adjacent Department of Interior lands, and for the full mapping
area (PCCA buffered by 5 kilometers). Two estimates were made, one based on the number of 10-by-10
meter cells predicted with over more than a trace amount of cover, and one created by summing the actual
cover predictions over all cells. The estimates may differ substantially, especially for those land-cover
categories often occurring at low density.

2.7.2. Predictor Importance

The predictor importance values produced during the classification and regression modeling phases
were compiled and assessed for the first predictor subset run, which used all predictor types. For the
mountain mahogany and bedrock categories, the importance values were taken from the second predictor
subset run because the first run was not used for these categories. For the classification modeling phase,
an index of variable importance was created by dividing the mean decrease in accuracy associated with
removing each variable from the model by the maximum mean decrease in accuracy for any variable. For
the regression modeling phase, the ratio was made using the percent increase in root mean square error.
Variable importances were compared within each model, and between the classification and regression
phases.

3. RESULTS
3.1. Riparian Modeling

3.1.1 Field Calibration

Intermittent channels appeared to initiate at a flow accumulation threshold of approximately 25,000
om? cells, representing an upslope contributing area of 22.5 hectares (56 acres). In generally north-facing
areas the threshold for intermittent channel formation seemed to be somewhat higher, probably due to
greater soil water-holding capacities. Seasonal and permanent channels were lumped, and initiated at
approximately 200,000 9m? cells, an upslope contributing area of 180 hectares (445 acres), in both north
and south-facing areas. Riparian woody vegetation also first appeared in any significance along channels
with a contributing area of 180 hectares, so riparian zones were generated only along seasonal and
permanent channels.

3.1.2. Channel Network Delineation

The resulting permanent and seasonal channel network is shown in Figure 3. Channels were not
delineated outside the LiDAR coverage area, as the NED elevation dataset was not of sufficient resolution
to produce comparable results. The channel networks were generated primarily to support the riparian
zone and cover predictive modeling, and are most suitable for viewing as broad overviews. There are
duplicate adjacent flow pathways present on some very low gradient channels (primarily in the Pine
Creek floodplain). A total of 263 kilometers of permanent/seasonal stream channels and 595 kilometers of
intermittent stream channels were delineated within the PCCA boundary; however, these estimates are
probably high because of duplicated flow pathways. Stream channel data are not provided or analyzed
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outside the PCCA boundary as they become less reliable when LiDAR coverage is lacking from the
upstream contributing area to any location.

Figure 3. Delineated permanent and seasonal stream channels, with Pine Creek Conservation
Area boundary superimposed (background is slope).

3.1.3. Riparian Zones Delineation

Riparian zones were generated only along seasonal and permanent channels, because the flow
accumulation threshold for significant presence of RWV was similar to that for formation of these
channels. The resulting riparian zones are shown in Figure 4. A total of 587 hectares (1450 acres) of
riparian zones were delineated within PCCA boundary. Note that most of this area is not currently
occupied by riparian woody vegetation, but it might represent past or future viable habitat. Riparian zones
were not delineated outside the LIiDAR coverage area, as the NED elevation dataset was not of sufficient
resolution to produce comparable results, and are not provided or analyzed outside the PCCA boundary as
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they become less reliable when LiDAR coverage is lacking from the upstream contributing area to any
location.

Figure 4. Delineated riparian zones, with Pine Creek Conservation Area boundary
superimposed (background is slope).

3.2. Cover Modeling

3.2.1. Rank-based Associations

Table 7 contains a summary of the results of the Spearman’s rank-based association test. For each
land-cover category, the predictor with the highest association from each predictor group is shown with
the corresponding p value. Strong associations are indicated by larger numbers (whether positive or
negative), while for weak associations p is near zero. Positive relationships between the category’s cover
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and the predictor are indicated by positive values, while inverse relationships are indicated by negative

values.

Table 7. Strongest predictor in each predictor group for each land-cover