OSU Teaching and Learning Facility

Portland State University. School of Architecture

Follow this and additional works at: https://pdxscholar.library.pdx.edu/research_based_design

Part of the Architecture Commons

Let us know how access to this document benefits you.

Recommended Citation
Portland State University. School of Architecture, "OSU Teaching and Learning Facility" (2012). Research-Based Design Initiative. 8.
https://pdxscholar.library.pdx.edu/research_based_design/8

This Book is brought to you for free and open access. It has been accepted for inclusion in Research-Based Design Initiative by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Proposed Methodology

How do different glazing systems impact lighting loads?
- Measure the impact of different glazing systems against use of electric lights
- Create simplified building model in Vasari
- Export through Green Building Studio into EQuest
- Run energy analysis for all of the possible glazing schemes
- Create visual comparison

How do different glazing systems impact overall energy requirements?
- Measure the impact of different glazing systems in terms of overall energy use
- Create simplified building model in Vasari
- Export through Green Building Studio into EQuest
- Run energy analysis for all of the possible glazing schemes
- Create visual comparison

Actual Timeline

Boora Proposal
- Bringing Interior Circulation to the Perimeter
- Circulation Doubles as Informal Space
- Envelope as a “Permeable” Membrane

Design Ambitions
- Increased Student Retention
- Increased Graduation Rates
- More Active Learning Environment
- Spectrum of Learning Objectives
- Meet Campus Historical Requirements

Building Program
- 72K Sq. Feet
- Lecture Halls and Classrooms for 2500 seats
- Honors College Offices

Building Performance Priorities
- Low Energy Use
- Minimal Equipment
- Low Maintenance
- Budget Restraints
Tools:

The search for the ultimate performance evaluation software

- **Revit**
 - 3D and 2D parametric form of modeling. Architects and engineers use different forms based on their particular concerns (e.g., volumes vs. wall systems).
 - Several attempts were made to work starting with the Revit model provided by Boora.

- **Revit’s GBxml**
 - Export interface: the primary suggested route for bringing a model from Revit to Ecotect. This proved almost impossible, possibly because Ecotect is no longer supported updated program. GBxml is also the file type used by Green Building Studios.

- **Ecotect**
 - As of 2011 an unsupported platform for light and energy performance analysis. Uses gbxml, format (exportable from Revit).
 - A screenshot of the 3DS Max model in its complex mesh format.

- **3DS Max**
 - Autodesk’s 3D Modeling tool used as a trial for importing the Revit Model into Ecotect.

- **Vasari (beta)**
 - The offspring of Ecotect; a simplified version with fewer daylight evaluation functions. Suggested by PAE after finding that using Revit with Ecotect would not produce the desired analyses.

- **Green Building Studios**
 - Web-based software for analysing energy use and carbon footprint. Origin of the “GB” in gbXML.
 - Exports INP format for use in EQuest.

- **Rhino**
 - An alternative 3D Modeling software known for its ease of use with unconventional shapes and materials.

- **DIVA**
 - Plug-in for Rhino that performs Daylighting and Energy Analysis.

EQuest

Freeware overall building energy analysis tool. It ultimately proved to be the most successful attempt at finding usable energy usage data.

Electric Consumption (kWh)

- Area Lighting
- Task Lighting
- Misc. Equipment
- Exterior Usage
- Fans

Annual Electricity Use (kWh x 1,000)

<table>
<thead>
<tr>
<th>Glazing Coefficients</th>
<th>UVLT</th>
<th>SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Pane</td>
<td>613</td>
<td>95</td>
</tr>
<tr>
<td>12% Spandrel</td>
<td>611</td>
<td>96</td>
</tr>
<tr>
<td>40% White Frit</td>
<td>608</td>
<td>97</td>
</tr>
<tr>
<td>80% White Frit</td>
<td>606</td>
<td>98</td>
</tr>
<tr>
<td>Triple Pane</td>
<td>603</td>
<td>99</td>
</tr>
<tr>
<td>40% Gray Frit</td>
<td>600</td>
<td>100</td>
</tr>
</tbody>
</table>

Gas Consumption (Btu)

- Water Heating
- HT Pump Supp.
- Space Heating
- Refrigeration
- Heat Reaction
- Space Cooling

Annual Gas Use (Btu x 1,000,000)

<table>
<thead>
<tr>
<th>Glazing Coefficients</th>
<th>UVLT</th>
<th>SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Pane</td>
<td>320</td>
<td>56</td>
</tr>
<tr>
<td>12% Spandrel</td>
<td>322</td>
<td>57</td>
</tr>
<tr>
<td>40% White Frit</td>
<td>324</td>
<td>58</td>
</tr>
<tr>
<td>80% White Frit</td>
<td>326</td>
<td>59</td>
</tr>
<tr>
<td>Triple Pane</td>
<td>328</td>
<td>60</td>
</tr>
<tr>
<td>40% Gray Frit</td>
<td>330</td>
<td>61</td>
</tr>
</tbody>
</table>

Annual Heating Energy (BTUs x 1,000,000)

<table>
<thead>
<tr>
<th>Glazing Coefficients</th>
<th>UVLT</th>
<th>SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Pane</td>
<td>573</td>
<td>95</td>
</tr>
<tr>
<td>12% Spandrel</td>
<td>561</td>
<td>96</td>
</tr>
<tr>
<td>40% White Frit</td>
<td>559</td>
<td>97</td>
</tr>
<tr>
<td>80% White Frit</td>
<td>557</td>
<td>98</td>
</tr>
<tr>
<td>Triple Pane</td>
<td>555</td>
<td>99</td>
</tr>
<tr>
<td>40% Gray Frit</td>
<td>553</td>
<td>100</td>
</tr>
</tbody>
</table>

Annual Cooling Energy (Watts x 100)

<table>
<thead>
<tr>
<th>Glazing Coefficients</th>
<th>UVLT</th>
<th>SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Pane</td>
<td>255</td>
<td>282</td>
</tr>
<tr>
<td>12% Spandrel</td>
<td>262</td>
<td>284</td>
</tr>
<tr>
<td>40% White Frit</td>
<td>263</td>
<td>278</td>
</tr>
<tr>
<td>80% White Frit</td>
<td>258</td>
<td>281</td>
</tr>
<tr>
<td>Triple Pane</td>
<td>271</td>
<td>284</td>
</tr>
<tr>
<td>40% Gray Frit</td>
<td>276</td>
<td>286</td>
</tr>
</tbody>
</table>

Annual Lighting Load (kWh x 1,000)

<table>
<thead>
<tr>
<th>Glazing Coefficients</th>
<th>UVLT</th>
<th>SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Pane</td>
<td>668</td>
<td>1122</td>
</tr>
<tr>
<td>12% Spandrel</td>
<td>1008</td>
<td>1350</td>
</tr>
<tr>
<td>40% White Frit</td>
<td>1181</td>
<td>1516</td>
</tr>
<tr>
<td>80% White Frit</td>
<td>1176</td>
<td>1516</td>
</tr>
<tr>
<td>Triple Pane</td>
<td>1053</td>
<td>1389</td>
</tr>
<tr>
<td>40% Gray Frit</td>
<td>1048</td>
<td>1389</td>
</tr>
</tbody>
</table>

Sample export from Ecotect, Double Pane Glazing, 12 Month University Schedule.

Sample export from EQuest, Double Pane Glazing, 12 Month University Schedule.

EQuest Model screen shot.

BIM is the predominant form of modeling; architects and engineers use different forms based on their particular concerns (e.g., volumes vs. wall systems). Several attempts were made to work starting with the Revit model provided by Boora.

Revit’s GBxml export interface: the primary suggested route for bringing a model from Revit to Ecotect. This proved almost impossible, possibly because Ecotect is no longer a supported, updated program. GBxml is also the file type used by Green Building Studios.

Ecotect as of 2011 an unsupported platform for light and energy performance analysis. Uses gbxml, format (exportable from Revit).

3DS Max Autodesk’s 3D Rendering tool. Used as a trial for importing the Revit Model into Ecotect.

Vasari (beta) The offspring of Ecotect; a simplified version with fewer daylight evaluation functions. Suggested by PAE after finding that using Revit with Ecotect would not produce the desired analyses.

Green Building Studios Web-based software for analysing energy use and carbon footprint. Origin of the “GB” in gbXML. Exports INP format for use in EQuest.

Rhino An alternative 3D Modeling software known for its ease of use with unconventional shapes and materials.

DIVA Plug-in for Rhino that performs Daylighting and Energy Analysis.