

u.s. Patent May 31,2011 Sheet 6 of 19 US 7,953,778 B2

ESTABLISH GLOBAL GENERATION
NUMBER AND ASSIGN V

TO DATA ELEMENTS AS CREATED 50

GENERATE NEW DATA ELEMENTS
ACCORDING TO WHETHER UPDATE V IS A REPLACEMENT, DELETION 52

OR INSERTION

SET NEW DATA ELEMENT
GENERATION NUMBERS ACCORDING V

TO ORDER OF UPDATES 54

CREATE VERSION LINK BETWEEN
NEW AND OLD V

DATA ELEMENT VERSIONS (IF ANY) 56

CHANGE LINK POINTER(S) TO POINT V TO NEW DATA ELEMENT 58

UPDATE GLOBAL GENERATION
NUMBER TO CORRESPOND TO V GENERATION NUMBER 60

OF LAST UPDATER

FIG. 8

u.s. Patent May 31,2011 Sheet 7 of 19 US 7,953,778 B2

20 <.
8

FIG.9A

20 <.

FIG.9B

20 <.

FIG.9C

u.s. Patent May 31,2011 Sheet 8 of 19 US 7,953,778 B2

20 <.

FIG.9D

FIG.9E

20 <.
8

FIG.9F

u.s. Patent May 31,2011 Sheet 9 of 19

MEMORY
a

UPDATE STARTED
GENERATION NUMBER

70

UPDATE COMPLETE
GENERATION NUMBER

72

US 7,953,778 B2

UPDATER NEW GENERATION NUMBER SNAPSHOTS
74

UPDATER UPDATER
181 182

NEWGEN NEWGEN

UPDATER
18n

NEWGEN

READER GENERATION NUMBER SNAPSHOTS
76

READER
191

CURGEN

READER
192

CURGEN

READER
19n

CURGEN

COMPLETED UPDATE TRACKER - -
78

UPDATER 184 UPDATER 183 UPDATER 182

COMPLETED COMPLETED COMPLETED - -
UPDATE UPDATE UPDATE

FIG. 10

u.s. Patent

FIG. 11

May 31,2011 Sheet 10 of 19

BEGIN UPDATE OPERATION

ATOMICALLY INCREMENT
UPDATE STARTED

AND COPY TO NEWGEN

PERFORM DATA ELEMENT
UPDATE PROCESSING

ACQUIRE EXCLUSIVE ACCESS TO
COMPLETED UPDATE TRACKER - -

US 7,953,778 B2

80

--.J' 82

88

NO

84

86

92

YES .---____ ~ __L..-__ ___,

ADD NEWGEN TO
COM PLETED UPDATE TRACKER - -

GOTO 98

SET UPDATE COMPLETE = NEWGEN

NO

94

YES

90

96

SET UPDATE COMPLETE =

LARGEST NEWGEN IN SEQUENCE

RELEASE
COMPLETED UPDATE TRACKER - - 98

u.s. Patent May 31,2011 Sheet 11 of 19 US 7,953,778 B2

ALLOCATE REPLACEMENT
--J' DATA ELEMENT 100

~
COPY FIELDS FROM OLD DATA

~ ELEMENT TO REPLACEMENT 102
DATA ELEMENT

~
OBTAIN NEWGEN AND ASSIGN IT TO

REPLACEMENT DATA ELEMENT --J"'
104

~
SET VERSION POINTERS IN

--J"' REPLACEMENT DATA ELEMENT 106
AND CLEAR DELETED FLAG

AS NECESSARY

~
EXECUTE MEMORY BARRIER --J"'

INSTRUCTIONS IF NECESSARY 108

~
SET VERSION POINTERS IN --J"'

OLD DATA ELEMENT 110

~
CHANGE LINK POINTERS TO

--J' POINT TO REPLACEMENT DATA
ELEMENT

112

~
PERFORM GLOBAL --J"'

GENERATION NUMBER 114
UPDATE PROCESSING

~
FREE OLD DATA ELEMENT --J"'

FOLLOWING GRACE PERIOD 116

FIG. 12

u.s. Patent May 31,2011 Sheet 12 of 19 US 7,953,778 B2

ALLOCATE REPLACEMENT
~ DATA ELEMENT 120

~
COPY FIELDS FROM OLD DATA --J"'
ELEMENT TO REPLACEMENT 122

DATA OBJECT

~
OBTAIN NEWGEN AND ASSIGN IT TO

~ REPLACEMENT DATA ELEMENT 124

~
SET VERSION POINTERS IN --J"'

REPLACEMENT DATA ELEMENT 126

~
CHANGE LINK POINTERS TO

--J"' POINT TO REPLACEMENT DATA
ELEMENT

128

• SET "DELETED" FLAG IN --J"'
REPLACMENT DATA ELEMENT 130

~
EXECUTE MEMORY BARRIER --J"'

INSTRUCTIONS IF NECESSARY 132

~
SET VERSION POINTERS IN --J"'

OLD DATA ELEMENT 134

~
PERFORM GLOBAL

--J"' GENERATION NUMBER 136
UPDATE PROCESSING

~
TO STEP 138 IN FIG. 13B

FIG.13A

u.s. Patent May 31,2011 Sheet 13 of 19

FIG.13B

FIG. 14

FROM STEP 1361N FIG.13A

FREE OLD DATA ELEMENT
FOLLOWING GRACE PERIOD

ADJUST LINK POINTERS TO
REPLACEMENTDATA ELEMENT

FREE REPLACMENT DATA ELEMENT
FOLLOWING GRACE PERIOD

ALLOCATE AND INITIALIZE NEW
DATA ELEMENT

~
OBTAIN NEWGEN AND ASSIGN IT TO

NEW DATA ELEMENT

~
SET VERSION POINTERS IN

NEW DATA ELEMENT TO NULL
AND CLEAR "DELETE" FLAG

AS NECESSARY

~
EXECUTE MEMORY BARRIER

INSTRUCTIONS IF NECESSARY

~
UPDATE LINK POINTERS TO EFFECT
INSERTION AND PERFORM GLOBAL

GENERATION NUMBER
UPDATE PROCESSING

US 7,953,778 B2

138

140

142

..J' 150

-.J'
152

..J' 154

-.J'
156

-.J'
158

u.s. Patent May 31,2011 Sheet 14 of 19 US 7,953,778 B2

ALLOCATE AND INITIALIZE NEW DATA ELEMENT ~ 160

~
OBTAIN NEWGEN ~ 162

~
SET VERSION POINTERS IN NEW DATA ELEMENl

~ TO NULL AND CLEAR DELETED FLAG
AS NECESSARY

164

~
ALLOCATE A NEW POINTER ~ FORWARDING ENTITY 166

~
ASSIGN NEWGEN AND SET

OLD/NEW VERSION POINTERS IN NEW ~
POINTER FORWARDING ENTITY 168

~
EXECUTE MEMORY BARRIER ~

INSTRUCTIONS IF NECESSARY 170

~
FILL IN NEW-VERSION POINTER ~ IN OLD POINTER FORWARDING ENTITY 172

~
CHANGE LINK POINTERS TO POINT TO

~ REPLACEMENT DATA ELEMENT 174

~
PERFORM GLOBAL ~ GENERATION NUMBER 176

UPDATE PROCESSING

~
FIG. IS FREE OLD POINTER FORWARDING ~ ENTITIES FOLLOWING GRACE PERIOD 178

u.s. Patent May 31,2011 Sheet 15 of 19 US 7,953,778 B2

Hp(B)1H

FIG.16A

FIG.16B

FIG.16C

u.s. Patent May 31,2011 Sheet 16 of 19 US 7,953,778 B2

180~

CD

FIG.16D

Hp(A)2H

FIG.16E

u.s. Patent

FIG.17

May 31,2011 Sheet 17 of 19

ACQUIRE EXCLUSIVE ACCESS TO
COMPLETED UPDATE TRACKER - -

ADD NEWGEN TO
COMPLETED UPDATE TRACKER - -

US 7,953,778 B2

194

NO

190

192

GO TO STEP 200

WAIT FOR A GRACE PERIOD
TO ELAPSE

SET UPDATE COMPLETE =
LARGEST NEWGEN IN SEQUENCE

RELEASE
COMPLETED UPDATE TRACKER - -

196

198

200

u.s. Patent

FIG. IS

May 31,2011 Sheet 18 of 19

ACQUIRE EXCLUSIVE ACCESS TO
COMPLETED UPDATE TRACKER - -

ADD NEWGEN TO
COMPLETED UPDATE TRACKER - -

YES

US 7,953,778 B2

214

NO

210

212

GO TO STEP 226

COPY LARGEST NEWGEN IN
SEQUENCE TO NEXTGEN AND
REMOVE NEWGEN SEQUENCE

RELEASE
COMPLETED UPDATE TRACKER - -

WAIT FOR A GRACE PERIOD
TO ELAPSE

ACQUIRE EXCLUSIVE ACCESS TO
COMPLETED UPDATE TRACKER

- -

SET UPDATE COMPLETE =

NEXTGEN

RELEASE
COMPLETED UPDATE TRACKER - -

216

218

220

222

224

226

u.s. Patent May 31,2011 Sheet 19 of 19 US 7,953,778 B2

J
300

FIG. 19

US 7,953,778 B2
1

EFFICIENT SUPPORT OF CONSISTENT
CYCLIC SEARCH WITH READ-COPY
UPDATE AND PARALLEL UPDATES

BACKGROUND OF THE INVENTION

1. Field of the Invention

2
wishes to update the linked list by modifYing data element B.
Instead of simply updating this data element without regard to
the fact that rl is referencing it (which might crash rl), ul
preserves B while generating an updated version thereof
(shown in FIG.lC as data element B') and inserting it into the
linked list. This may be done by ul acquiring an appropriate
lock, allocating new memory for B', copying the contents ofB
to B', modifying B' as needed, updating the pointer from A to
B so that it points to B', and releasing the lock. As an alterna-

The present invention relates to computer systems and
methods in which data resources are shared among concur
rent data consumers while preserving data integrity and con
sistency relative to each consumer. More particularly, the
invention concerns improvements to a mutual exclusion
mechanism known as "read-copy update," in which lock-free
data read operations run concurrently with data update opera-

10 tive to locking, other techniques such as non-blocking syn
chronization (NBS) or a designated update thread could be
used to serialize data updates. Data element B is partially
maintained in the linked list by preserving its pointer to ele
ment C. All subsequent (post update) readers that traverse the

tions.
2. Description of the Prior Art
By way of background, read -copy update is a mutual exclu

sion technique that permits shared data to be accessed for
reading without the use of locks, writes to shared memory,
memory barriers, atomic instructions, or other computation
ally expensive synchronization mechanisms, while still per
mitting the data to be updated (modify, delete, insert, etc.)
concurrently. The technique is well suited to multiprocessor
computing environments in which the number of read opera
tions (readers) accessing a shared data set is large in compari
son to the number of update operations (up daters), and
wherein the overhead cost of employing other mutual exclu
sion techniques (such as locks) for each read operation would

15 linked list, such as the reader r2, will see the effect of the
update operation by encountering B'. On the other hand, the
old reader rl will be unaffected because the original version
ofB and its pointer to C are retained. Although rl will now be
reading stale data, there are many cases where this can be

20 tolerated, such as when data elements track the state of com
ponents external to the computer system (e.g., network con
nectivity) and must tolerate old data because of communica
tion delays.

At some subsequent time following the update, rl will have
25 continued its traversal of the linked list and moved its refer-

be high. For example, a network routing table that is updated
at most once every few minutes but searched many thousands 30

of times per second is a case where read-side lock acquisition
would be quite burdensome.

The read-copy update technique implements data updates
in two phases. In the first (initial update) phase, the actual data
update is carried out in a mauner that temporarily preserves 35

two views of the data being updated. One view is the old
(pre-update) data state that is maintained for the benefit of
read operations that may have been referencing the data con
currently with the update. The other view is the new (post
update) data state that is available for the benefit of other read 40

operations that access the data following the update. These
other read operations will never see the stale data and so the
up dater does not need to be concerned with them. However,
the up dater does need to avoid prematurely removing the stale
data being referenced by the first group of read operations. 45

Thus, in the second (deferred update) phase, the old data state
is only removed following a "grace period" that is long
enough to ensure that the first group of read operations will no
longer maintain references to the pre-update data.

FIGS. lA-lD illustrate the use of read-copy update to 50

modifY a data element B in a group of data elements A, Band
C. The data elements A, B, and C are arranged in a singly
linked list that is traversed in acyclic fashion, with each ele
ment containing a pointer to a next element in the list (or a
NULL pointer for the last element) in addition to storing some 55

item of data. A global pointer (not shown) is assumed to point
to data element A, the first member of the list. Persons skilled
in the art will appreciate that the data elements A, Band C can
be implemented using any of a variety of conventional pro
gramming constructs, including but not limited to, data struc- 60

tures defined by C-language "struct" variables.

ence off of B. In addition, there will be a time at which no
other reader process is entitled to access B. It is at this point,
representing expiration of the grace period referred to above,
that ul can free B, as shown in FIG. lD.

FIGS. 2A-2C illustrate the use of read-copy update to
delete a data element B in a singly-linked list of data elements
A, B and C. As shown in FIG. 2A, a reader rl is assumed be
currently referencing B and an updaterul wishes to delete B.
As shown in FIG. 2B, the updaterul updates the pointer from
A to B so that A now points to C. The pointer from B to C is
retained. In this way, r2 is not disturbed but a subsequent
reader r2 sees the effect of the deletion. As shown in FIG. 2C,
rl will subsequently move its reference off ofB, allowing B to
be freed following expiration of the grace period.

In the context of the read-copy update mechanism, a grace
period represents the point at which all ruuning processes (or
threads within a process) having access to a data element
guarded by read-copy update have passed through a "quies
cent state" in which they can no longer maintain references to
the data element, assert locks thereon, or make any assump
tions about data element state. By convention, for operating
system kernel code paths, a context (process) switch, an idle
loop, and user mode execution all represent quiescent states
for any given CPU running non-preemptible code (as can
other operations that will not be listed here). In some read
copy update implementations adapted for preemptible read-
ers, all read operations that are outside of an RCU read-side
critical section are quiescent states.

In FIG. 3, four processes 0, 1, 2, and 3 ruuning on four
separate CPU s are shown to pass periodically through quies
cent states (represented by the double vertical bars). The
grace period (shown by the dotted vertical lines) encompasses
the time frame in which all four processes have passed
through one quiescent state. If the four processes 0, 1, 2, and
3 were reader processes traversing the linked lists of FIGS.
lA-lD or FIGS. 2A-2C, none of these processes having ref-
erence to the old data element B prior to the grace period
could maintain a reference thereto following the grace period.
All post grace period searches conducted by these processes

It is assumed that the data element list of FIGS. lA-lD is
traversed (without locking) by multiple concurrent readers
and occasionally updated by up daters that delete, insert or
modifY data elements in the list. In FIG. lA, the data element
B is being referenced by a reader rl, as shown by the vertical
arrow below the data element. In FIG. lB, an updater ul

65 would bypass B by following the links inserted by the up dater.
There are various methods that may be used to implement

a deferred data update following a grace period, including but

US 7,953,778 B2
3

not limited to the use of callback processing as described in
commonly assigned u.s. Pat. No. 5,442,758, entitled "Sys
temAnd Method For Achieving Reduced Overhead Mutual
Exclusion And Maintaining Coherency In A Multiprocessor
System Utilizing Execution History And Thread Monitor
ing." Another commonly used technique is to have up daters
block (wait) until a grace period has completed.

A number of variants ofread-copy update have been used
in different operating systems. However, all of these imple
mentations make at least one of the following assumptions:
1) Stale data is pennissible (for example, in read-copy

update-protected routing tables).

10

2) Readers search the aggregate data structure in an acyclic
manner, so that there is no possibility of a reading process
seeing two different versions of the same data element 15

during a single operation. This assumption also implies
that, for data elements having multiple entry points, a given
search starts with only one of these entry points.

3) There is no need for multiple data elements to be seen in a
consistent aggregate state. Consistency is important only 20

for a given data element (as, for example, the data struc
tures used in the Linux 2.6 kernel's read-copy update
protected System V IPC (InterProcess Communication)
mechanism).

4) If group consistency is important for a collection of data 25

elements, read-copy update must be used in a manner that
allows the group to be updated atomically so as to protect
group integrity. As used herein, the term "atomic" signifies
that the data update operation must complete with the
guarantee that no other process will see inconsistent ver- 30

sions of the group data elements. For example, in the Linux
2.6 kernel, the directory-cache is protected by read-copy
update, but per-entry locks are also used to ensure that
updates to these entries and their associated inodes are in a
coordinated consistent state when cache readers access the 35

entries. Another approach would be to make a copy of the
aggregate data structure (i.e., the entire collection of data
elements), update the new copy, and then link the new copy
in place of the old copy. However, this is extremely time
consuming for large groups, and is particularly inefficient 40

when only small changes are required.
Cyclic searches represent a situation where none of the

foregoing assumptions underlying the use of read-copy
update are in play. An example of a commonly used cyclic
search is the traversal of a group of data elements representing 45

a finite state machine. If these data elements change dynami
cally, but infrequently, in comparison to the number of read
traversals, then the use of read-copy update could be advan
tageous. However, it will be seen that:
1) Pennitting stale data could result in a reader seeing an 50

inconsistent, and possibly nonsensical, finite state
machine.

2) Traversing a finite state machine is in general an inherently
cyclic activity.

3) Each reader must see a finite state machine that is consis- 55

tent as a whole-consistency of a particular state is not
sufficient.

4
different generations of data element updates. The present
invention modifies the technique of the '030 publication to
support multiple updaters perfonning updates in parallel. In
particular, a new read-copy update technique is disclosed that
supports the level of data group consistency required in cyclic
searches and other processing environments where group
integrity must be preserved relative to each reader, while also
permitting parallel updates.

SUMMARY OF THE INVENTION

An advance in the art is obtained by a method, system and
computer program product for supporting concurrent updates
to a shared data element group while preserving group integ
rity on behalf of one or more readers that are concurrently
referencing group data elements without using locks or
atomic instructions. Two or more up daters may be invoked to
generate new group data elements. Each new data element
created by the same updater is assigned a new generation
number that is different than a global generation number
associated with the data element group and which allows a
reader of the data element group to determine whether the
new data element is a correct version for the reader. The new
generation numbers are different for each up dater and
assigned according to an order in which the updaters respec
tively begin update operations. The up daters may perfonn
update processing on the new data elements by (1) respec
tively establishing a first version link from each of the new
data elements to a prior version thereof having a different
generation number, (2) respectively establishing a second
version link to each of the new data elements from its prior
version, and (3) linking the new data elements into the data
element group so that the new data elements are reachable by
readers. The global generation number is updated so that
when all of the up daters have completed data element update
processing, the global generation number will correspond to
the new generation number that is associated with the last of
the up daters to begin update operations. After a grace period
has elapsed, the prior version, the first version link and the
second version link for each of the new data elements may be
freed.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the
invention will be apparent from the following more particular
description of example embodiments of the invention, as
illustrated in the accompanying Drawings, in which:

FIGS. lA-lD are diagranlillatic representations of a linked
list of data elements undergoing a data element replacement
according to a conventional read-copy update mechanism;

FIGS. 2A-2C are diagrammatic representations of a linked
list of data elements undergoing a data element deletion
according to a conventional read-copy update mechanism;

FIG.3 is a flow diagram illustrating a grace period in which
four processes pass through a quiescent state; 4) If the finite state machine is large, implementing atomic

data element group updates by group copying will be infea
sible.

FIG. 4 is a functional block diagram showing an example
60 multiprocessor computing system;

Commonly owned U.S. Patent Application Publication No.
2005/0198030, naming one of the applicants herein as the
sole inventor, addresses the foregoing situation by allowing
cyclic readers to see consistent views of multiple indepen
dently updated data elements. However, the disclosed tech
nique prohibits parallel updates because up daters are gated by
a single global generation counter used by readers to identify

FIG. 5 is a diagrammatic representation of a group of data
elements implemented as a cyclic graph that readers traverse
by way of cyclic searches;

FIG. 6 is a flow diagram showing a generalized prior art
65 method for updating a data element group;

FIG. 7 is a flow diagram showing a generalized prior art
method for reading a data element group;

US 7,953,778 B2
5

FIG. 8 is a flow diagram showing a generalized method for
supporting concurrent updates of a data element group in
accordance with the present disclosure;

FIGS. 9A-9F are diagrammatic representations of the data
element group of FIG. 5 during various stages of an update
operation in which elements A and C are updated in accor
dance with an example implementation of the disclosed tech
nique;

FIG. 10 is a block diagram showing example data variables
that may be used to support concurrent updates of a data
element group in accordance with the present disclosure;

FIG. 11 is a flow diagram illustrating an example imple
mentation of the method of FIG. 8 using data variables shown
in FIG. 10;

6
tion contexts will periodically perform updates on a set of
shared data 16 stored in the shared memory 8. For purposes of
illustration, it will be assumed that the plural processes con
currently referencing the shared data set 16 include data
updater operations ("up daters") 181 , 182 ... 18n and data
reader operations ("readers") 191 ... 19 n' respectively execut
ing on processors 42 ... 4n . As described by way of back
ground above, the updates performed by the data updaters
181 , 182 ... 18n can include modifYing elements of a linked

10 list, inserting new elements into the list, deleting elements
from the list, and many other types of operations. The read
operations 191 ... 19n will typically be performed far more
often than updates, insofar as this is one of the premises
underlying the use ofread-copy update.

FIG. 12 is a flow diagram showing an example method for 15

replacing a group data element in accordance with the present
disclosure;

It is additionally assumed that the shared data set 16 rep-
resents a group of data elements that must be updated atomi
cally as a group within a single update operation, so that
readers are presented with a consistent view of the data during
any given read operation. FIG. 5 illustrates an example of

FIGS. 13A and 13B collectively represent a flow diagram
showing an example method for deleting a group data ele
ment in accordance with the present disclosure;

FIG. 14 is a flow diagram showing an example method for
inserting a group data element in accordance with the present
disclosure;

FIG. 15 is a flow diagram showing an example method for
performing data element updates using pointer forwarding
entities in accordance with the present disclosure;

FIGS. 16A-16E are diagrammatic representations of a
group of data elements implemented as a circular list during
various stages of an update operation in which elements A and
C are interchanged using pointer forwarding entities in accor
dance with another example of the disclosed technique;

FIG. 17 is a flow diagram showing a first modification to
the processing of FIG. 11;

FIG. 18 is a flow diagram showing a second modification to
the processing of FIG. 11; and

FIG. 19 is a diagrammatic illustration showing media that
may be used to provide a computer program product for
implementing the technique disclosed herein.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Turning now to the figures, wherein like reference numer
als represent like elements in all of the several views, FIG. 4
illustrates an example computing environment in which the
present invention may be implemented. In particular, a sym
metrical multiprocessor (SMP) computing system 2 is shown
in which multiple processors 41 , 42 ... 4n are connected by
way of a common bus 6 to a shared memory 8. Respectively
associated with each processor 41 , 42 ... 4n is a conventional
cache memory 101 , 102 ... IOn and a cache controller 121 ,

122 ... 12n' A conventional memory controller 14 is associ
ated with the shared memory 8. The computing system 2 is
assumed to be under the management of a multitasking oper
ating system adapted for use in an SMP environment. In the
alternative, a single processor computing environment could
be used, as could a hardware multithreading environment, a
multi-core environment and a NUMA (Non-Uniform
Memory Access) environment, to name but a few. Further
more, multiple multitasking operating systems might all run
concurrently on the same hardware under the control of a
hypervisor, and some or all of these operating systems might
implement read-copy update (RCU) synchronization, includ
ing the fast path grace period detection technique described
herein, as could the hypervisor itself.

It is further assumed that update operations executed
within kernel or user mode processes, threads, or other execu-

20 such a data group in the form of a cyclic graph 20 comprising
a linked set of data elements A, B and C. As mentioned by way
of background above, these linked data elements can be con
stituted using any suitable programming construct, including
but not limited to C-language "struct" (data structure) vari-

25 abIes comprising one or more data fields and one or more
pointers to other elements in the data group. During a cyclic
search (read operation) involving the graph 20, a reader enters
the graph by following the global pointer to A. Depending on
the processing result generated at A, the reader may either

30 move to B and thence to C, or directly to C. From C, the reader
returns to A. It will be seen that if any of the data elements A,
B or C is modified or deleted using the conventional read
copy update mechanism, readers will be presented with an
inconsistency if they reencounter the data element or find that

35 it has been removed during the same operation. For example,
if the graph 20 is a state machine, the logic of a reader
encountering the updated data element may be thrown into
disarray, possibly causing the reader to take an erroneous
action or crash. An inconsistency problem could also occur if

40 a new data element is added while a read operation is in
progress.

In the '030 publication referred to above in the section
entitled "Background of the Invention," a method was dis
closed for maintaining data integrity while updating a shared

45 data element group such as the cyclic graph 20. FIG. 6 is
illustrative of this prior art technique. In an initialization step
30, a global generation number is established relative to the
data element group and each data element in the group is
assigned a copy of the global generation number at the time of

50 its creation. In steps 32 and 34, an up dater that wishes to
replace, delete or insert a group data element generates a new
data element, reads the current global generation number, and
sets the data element's generation number field to a value that
is different (e.g., one greater) than the current global genera-

55 tion number. If the updater is replacing a current data element,
the new data element will be a modified copy of the current
data element. If the up dater is deleting a current data element,
the new data element will be a copy of the current data
element with a "deleted" flag set. If the up dater is inserting a

60 new data element, the new data element is created from
scratch. In step 36, the up dater sets version links between the
new data element and its pre-update version (if such a version
exists). Each data element version maintains a set of two
version pointers, one being an old-version pointer to a previ-

65 ous version of the data element (if any) and the other being a
new-version pointer to a next version of the data element (if
any). A NULL old-version pointer is used for any data ele-

US 7,953,778 B2
7 8

engaged in update processing during the same time period,
i.e., from the time that update operations begin to the time that
the global generation number is manipulated to reflect an
update. If an up dater is replacing a current data element, its
new data element will be a modified copy of the correspond
ing current data element. If an up dater is deleting a current
data element, the new data element will be a copy of the
corresponding current data element with a "deleted" flag set.
If an up dater is inserting a new data element, the new data

ment having no previous version (i.e., the data element has
not been updated since the last grace period or is an insert). A
NULL new-version pointer is used for any data element hav
ing no next version (i.e., it is the most current version). In step
38, the updater changes any link pointers that point to the old
version of the data element to instead point to the new version,
and then updates the global generation number by setting it
equal to the generation number of the updated data element.
Additional read operation details are also described in con
nection with FIGS. 9-11 of the '030 publication. 10 element is created from scratch.

In step 54, each up dater sets a generation number field in its
new data element(s) to a value that is different (e.g., larger or
smaller) than the current global generation number associated
with the data element group as a whole. The new generation

The '030 publication also disclosed methods that may be
employed while searching (reading) a shared data element
group such as that shown by the cyclic graph 20. FIG. 7 is
illustrative of this prior art technique. In step 40, a reader
determines the present value of the global generation number
and assigns it to the search. In step 42, the reader traverses the
data element group following the links between data ele
ments. In step 44, as each data element is read the reader
compares the global generation number assigned to the
search with the data element's copy of the global generation
number to determine if the two generation numbers match
(indicating that the data element is valid for this reader). If the
data element's generation number does not match that of the
reader, then in step 46, the reader follows the data element's
version pointers to new and old versions of the data element,
as necessary, to find a version that has a matching generation
number, if any. Typically, the reader will choose the data
element having the largest generation number that is not
greater than the reader's generation number. Additional read
operation details are also described in connection with FIGS.
12A-12C of the '030 publication.

15 numbers correspond to the order in which each up dater begins
update operations. Thus, the first new generation number
could be one greater than the global generation number, the
second new generation number could be two greater than the
global generation number, and so on. As described in more

20 detail below, one way that the up daters can maintain their new
data elements in separate generations is by cooperatively
assigning themselves unique new generation numbers using a
global update sequencing number. In particular, each updater
can take a snapshot of the global update sequencing number

25 as it commences data update operations, then increment the
global value and use the incremented value as its new gen
eration number for new data elements.

In step 56, the updaters set version links between their new
data elements and pre-update versions thereof (if such ver-

As previously stated above in the section entitled "Back
ground of the Invention," the update method of FIG. 6 does
not support concurrent updates. For example, plural up daters
may occasionally perform updates to different data elements

30 sions exist). Each data element version maintains a set of two
version pointers, one being an old-version pointer to a previ
ous version of the data element (if any) and the other being a
new-version pointer to a next version of the data element (if
any). A NULL old-version pointer is used for any data ele-

35 ment having no previous version (i.e., the data element has
not been updated since the last grace period or is an insert). A
NULL new-version pointer used for any data element having
no next version (i.e., it is the most current version). In step 58,
the updaters change any link pointers that point to the old

at substantially the same time. Using the prior art technique of
FIG. 6, the global generation number used by readers to track
data element versions effectively gates the up daters insofar
only one up dater at a time is allowed to proceed through the
update cycle. Otherwise, the global generation number would
not accurately reflect each update. For example, ifthere were
"n" concurrent updaters, they might each read the same glo
bal generation number, set the generation number fields of
their respective data elements to "global generation number
+1," then update the global generation number to the same 45

value as the various update operations complete. Cyclic data
consistency would be lost because the global generation num
ber would not show that "n" updates occurred. Moreover, the
updated data elements would all have the same generation
number instead of"n" different generation numbers. Readers 50

enconntering the updated data elements would incorrectly
assume that they belong to the same update generation when

40 version of their data elements to instead point to the new

in fact they do not. Readers could thus see the cyclic data
group, such as the graph 20 of FIG. 5, in an incorrect state.

FIG. 8 illustrates a generalized method that may be 55

employed to maintain data integrity while performing con
current updates to a shared data element group such as the
cyclic graph 20. In step 50, each data element in the group will
be initially assigned a copy of the starting global generation
number. In step 52, plural updaters that wish to replace, delete 60

or insert a group data element commence update operations
substantially concurrently by each generating one or more
new data elements (such that there are plural new data ele
ments). These up daters may be referred to as concurrent
up daters even though they do not commence update opera- 65

tions at precisely the same time. In this case, the term "con
current up daters" means that two or more up daters are

versIOns.
The up daters will asynchronously complete the data ele

ment update processing of steps 56-58, and not necessarily in
the order in which they began update operations. In step 60,
one or more of the up daters updates the global generation
number (in one or more stages if necessary) until the final
value corresponds to the most recently issued new generation
number of this particular group of up daters. For example, if
the global generation number was initially 1 and there are 4
concurrent up daters (with respective new generation numbers
of2, 3, 4 and 5), the last new generation number would be 5.
This value would be ultimately assigned to the global genera
tion number so that the latter is also 5. In this way, the data
element updates performed by all updaters will be reflected in
the global generation number, allowing subsequent readers to
use the correct global generation number. This would not be
the case if each up dater simply set the global generation
number as it completed data element update processing with
out regard to other updaters. As stated, the up daters will not
necessarily finish update operations in the order in which they
started. Without updater cooperation, the updater with the
lowest new generation number of (e.g., 2) might finish last, in
which case the global generation number would be 2 (instead
of 5). It will be seen from the discussion of FIG. 7 above that
this could result in a reader using the wrong data element
version. As described in more detail below, the number of
times that the global generation number is incremented (each

US 7,953,778 B2
9

time representing an incrementation stage) depends on the
order in which the up daters complete their data element
update processing. If the updaters complete according to the
order of their new generation numbers, each up dater will
increment the global generation number by one generation
number. On the other hand, if the up daters complete in inverse
order, only the last up dater will increment the global genera
tionnumber, but will account for all of the other up daters that
preceded it by incrementing to the largest value in the
sequence of new generation numbers.

Turning now to FIGS. 9A-9E, an example update of the
cyclic graph 20 of FIG. 5 will now be described to illustrate
how the method of FIG. 8 can be implemented in a practical
application. In FIG. 9A, the cyclic graph 20 is shown with the
data elements A, Band C being in an initial state. The sub
scripts associated with each data element indicate generation
number. The global generation number is illustrated by the
circled number on the left-hand side of each figure. It is
assumed that the graph 20 is to be updated by two concurrent

10
will set the number to 3 as is required. As described in con
nection with step 60 of FIG. 8, the up daters cooperate so that
the final global generation number corresponds to the largest
new generation number, namely C3 ' s new generation number
of 3. Thus, even though the up dater handling C3 finishes
before the up dater handling A2, the final global generation
number will still be 3 rather than 2. An example of how this
cooperative updating can be implemented is described in
more detail below. Assuming no memory-barrier instructions

10 are used at this point, readers might see the global generation
number update and the global pointer update in any order. The
old/new-version pointers will direct the readers to the correct
data element version in either case. Although the use of

15 memory barriers could allow simplification of the search
process in some special cases, the foregoing methodology has
the advantage of generality. Note that second generation read
ers will still find B l' but will accept it as the current version
because B 1 has no new-version pointer.

up daters respectively replacing data elements A and C with 20 As shown in FIG. 9F, once a grace period has elapsed, old
data elements Al and C1 may be discarded, along with their
corresponding link pointers. The old/new-version pointers
for all remaining data elements are set to NULL (as neces
sary).

new versIOns.

An example of how the generation number processing of
FIGS. 8 and 9 A -9F may be performed by concurrent up daters
will now be described with reference to the data variables of
FIG. 10. FIG. 10 illustrates two global variables 70 and 72
used for updates, one set oflocal variables 74 also used for

In FIG. 9B, two replacement data elements A2 and C3 are
allocated, their corresponding fields are copied from Al and
C1 , respectively, link pointers extending to other data ele
ments are established (e.g.A2 to Bl and C3 ; C3 toA2), and the 25

old/new-version pointers of the old and new data element
versions are filled in. The arrows with the circle represent
old-version pointers, and the arrows with the diamond repre
sent new-version pointers. Version pointers having NULL
values are not shown. The subscripts of the new data elements 30 updates, one set oflocal variables 76 used for read operations,

and a further global variable 78 used for updates. A2 and C3 reflect the fact that A2 was created prior to C3 . In
accordance with step 54 of FIG. 8, the up daters responsible
for creating A2 and C3 cooperatively assign themselves
unique new generation numbers by keeping track of the last
assigned generation number. Note that any first generation
reader that enters the graph 20 at this point will proceed
unaware of the new data elements because the version num
bers of the data elements traversed will match the current
search generation number. Such readers will not attempt to
traverse the new-element pointers from Al and C1 to A2 and
C3 because there is no need to do so.

As shown in FIG. 9C, the next step is to execute any
required memory-barrier instructions (which may be neces
sary for CPUs with weak memory consistency models) and
then begin changing data element link pointers to point to the
new data elements and thus complete the linking of the new
data elements into the data element group. The first pointer
that can be changed is the one emanating from Bl (although
the pointers could be updated in any order), so that B 1 is now
linked to C3 . At this point, first generation readers will start
encountering C3 . However, according to the search method
outlined above with reference to FIG. 7, such readers will
note the generation number mismatch, and follow the old
version pointer from C3 to C1 .

The global variable 70 is referred to as the "update_started"
generation number. This variable is a global update sequenc
ing number used by up daters to coordinate the assigument of

35 new generation numbers to their new data elements (and to
themselves). The update_started generation number 70 is
atomically incremented by an up dater each time an update
operation is started. The global variable 72 is referred to as the
"update_complete" generation number. This variable repre-

40 sents the global generation number for a data element group
(such as the cyclic graph 20 of FIG. 5), and is atomically
modified as updates complete. In particular, assume there is a
group of"n" up daters that begin update operations immedi
ately following a previous global generation number update.

45 After all members of the up dater group have completed data
element update processing, the update_complete generation
number 72 will be set equal to the new generation number of
the last up dater of the group to begin update operations
(which will be the current value of the update_started genera-

50 tion number 70). It will be appreciated that the foregoing
variables 70 and 72 should be large enough that the genera
tion numbers can be assumed not to wrap, or value compari
sons must assume modular arithmetic techniques known to
persons skilled in the art.

The local variables 74 referred to as "newgen" represent
snapshots that each updater takes of the current value of the
update_started generation number 70. Up daters use their
respective newgen variables 74 to assign new generation
numbers to new data elements, and to coordinate updates of

As shown in FIG. 9D, the next pointer to be updated is the 55

graph's global pointer that previously pointed to Al (see FI G.
9C) and will now point to A2. Once the global pointer is
updated, first generation readers will start encountering both
A2 and C3 , and will follow the old-version pointers upon
noting the generation number mismatch. 60 the global generation number (i.e., the update_complete gen

eration number 72). FIG. 10 shows "n" newgen variables 74
respectively stored by updaters 181 , 182 ... 18n that are
assumed to be performing concurrent updates.

As shown in FIG. 9E, one or more of the up daters com
pletes the update by incrementing the global generationnum
ber. If the A2 up dater finishes ahead of the C3 up dater, the A2
up dater will increment the global generation number to 2 and
then the C3 up dater will increment the global generation num
ber to 3. If the C3 up dater finishes ahead of the A2 up dater,
only the latter will update the global generation number, but

The local variables 76 referred to as "curgen" represent
65 snapshots that each reader takes of the current value of the

update_complete generation number 72. Readers use their
respective curgen variables 76 to locate the correct versions of

US 7,953,778 B2
11

data elements in the data groups they read. FIG. 10 shows "n"
curgen variables 76 respectively stored by readers 191 ,

192 , .. 19n ·

The global variable 78 referred to as the "completed_up
date_tracker" is a data structure that tracks completed updat
ers in order to handle out-of-order completion. It stores a set
of new generation numbers that may not yet be used to update
the global generation number because there are other earlier
commencing up daters still waiting to complete. Only an
up dater whose new generation number is the only possible 10

next global generation number is authorized to update the
update_complete generation number 72. For example, if the
current value of the update_complete generation number 72 is
1, only an up dater whose new generation number is 2 may
update the global generation number. Any updaterwhose new 15

generation number does not represent the only possible next
global generation number must refrain from modifying the
update_complete generation number 72. Instead, such an
up dater atomically places its new generation number in the
completed_up date_tracker 78. When the update_complete 20

generation number 72 is subsequently updated by a valid
up dater, the completed_up date_tracker 78 is consulted to
determine the highest new generation number that can be
used to update the update _complete generation number 72. In
the example above, the up dater whose new generation num- 25

ber is 2 might consult the completed_up date_tracker 78 and
find that it contains the following sequence of new generation
numbers: 3-4-5. In that case, the up dater would set the new
update_complete generation number 72 equal to 5 (not 2),
then delete the new generation numbers 3, 4 and 5 from the 30

completed_up date_tracker 78. The completed_update_t
racker 78 can be implemented in a variety of ways, including
as a dense array that is indexed circularly. The elements of the
array could be integers that correspond to the new generation
numbers of up daters that have completed out of order. In that 35

case, the size of the array would limit the number of concur
rent updates.

FIG. 11 illustrates an example of how an individual up dater
may perform update processing using the variables 70-74 and
78 described above. The disclosed method requires that the 40

up dater use a suitable mutual exclusion mechanism when
accessing the global variables 70, 72 and 78, such as locking
or wait-free synchronization. In step 80, the up dater begins an
update operation by creating one or more new data group
elements per step 52 of FIG. 8. In step 82, the up dater deter- 45

mines its new generation number by atomically incrementing
the update_started generation number 70 and copying the
new value to the local newgen variable 74. In step 84, the
up dater performs data element update processing according
to steps 54-58 of FIG. 8. In step 86, the updater acquires 50

exclusive access to the completed_up date_tracker 78. This
may be handled by acquiring a lock or by using another
suitable synchronization mechanism such as non-blocking
synchronization, transactional memory, etc. In step 88, the
up dater checks the update_complete generation number 72 to 55

see if its value is one less than the up dater' s newgen variable
74. If true, the up dater assigns newgen to the update-complete
generation number 72 in step 90. Otherwise, the up dater adds
newgen to the completed_up date_tracker 78 in step 92. If step
90 is reached, the up dater implements step 94 by testing 60

whether the completed_up date_tracker 78 contains a
sequence of new generation numbers beginning one greater
than the current value of the update_complete generation
number 72. If true, the updater implements step 96 by assign
ing the largest value of this sequence to the update_complete 65

generation number 72 to serve as the global generation num
ber, then removes the sequence from the completed_up-

12
date_tracker 78. Following step 96, step 92, or a false result in
step 94, the updater releases the completed_up date_tracker
78 in step 98. Note that steps 88 and 90 could be eliminated if
desired. In that case, each up dater would automatically add its
newgen value to the completed_update_tracker 78 per step
92, then test in step 94 for the required newgen sequence. The
updater whose newgen value is one greater than the current
update_complete generation number 72 will be the updater
that executes step 96. Alternatively, updating of the update_
complete generation could be deferred until a threshold new
gen sequence has accumulated (e.g. a sequence of "n" con
secutive newgen values begiuning one higher than the current
update_complete generation number).

The following example illustrates how the update process
ing of FIG. 11 maintains the update_complete generation
number 72 in a valid state. Assume initially that updat
e_started=O, update_complete=O and completed_update_t
racker is empty []. Further assume that eight updaters 181 ,

182 , 183 , 184 , 185 , 186 , 187 and 188 begin update operations at
approximately the same time, and they all respectively imple
ment step 82 of FIG. 11 before any of them reach step 86. The
update_started generation number 70 will thus be incre
mented from its initial 0 value as follows:

181---->atomic update_started++ (update_started=l)
182 ---->atomic update_started++ (update_started=2)
183 ---->atomic update_started++ (update_started=3)
184 ---->atomic update_started++ (update_started=4)
18s---->atomic update_started++ (update_started=5)
186---->atomic update_started++ (update_started=6)
187 ---->atomic update_started++ (update_started=7)
188---->atomic update_started++ (update_started=8)

The newgen values for the up daters 181 , 182 , 183 , 184 , 185 ,

186 ,187 and 188 will be 1,2,3,4,5,6,7 and 8, respectively.
The update_complete generation number is still O.

Now assume that the up daters start implementing steps
86-96 of FIG. 11. If they do this in consecutive order accord
ing to when they began update operations and incremented
the update_started global generation number 70, then accord
ing to steps 88 and 90 of FIG. 11, the update_complete gen
eration number 72 will be incremented in eight successive
stages from 0 to 1 to 2 to 3 to 4 to 5 to 6 to 7 to 8. However, if
the up daters do not reach steps 86-96 of FIG. 11 in consecu
tive order, steps 88 and 92-96 comes into play to handle the
out-of-order processing. For example, assume that the updat
ers reach step 86 in the following order: 188 , 187 , 186 , 182 ,

183 , 184 , 181 and 18s- If the up daters simply assigned their
newgen value to the update_complete generation number 72,
the global generation number would not accurately reflect the
eight updaters. The last up dater 185 would set the update_
complete generation number 72 to 5. This would be incorrect
because the global generation number should actually be 8.
Steps 88 and 92-96 handle this situation gracefully, as follows
(again assuming the up daters reach step 86 of FIG. 11 in order
of: 188 ,187 , 186 , 182 , 183 , 184 , 181 and 185):

Up dater 188 finds that its newgen of8 is more than 1 greater
than update_complete in step 88, so it adds its newgen to the
update_tracker array in step 92 so that the latter is now [8],
then releases the completed_up date_tracker per step 98;

Up dater 187 finds that its newgen of7 is more than 1 greater
than update_complete in step 88, so it adds its newgen to the
update_tracker array in step 92 so that the latter is now [8, 7],
then releases the completed_up date_tracker per step 98;

Up dater 186 finds that its newgen of 6 is more than 1 greater
than update_complete in step 88, so it adds its newgen to the
update_tracker array in step 92 so that the latter is now [8, 7,
6], then releases the completed_update_tracker per step 98;

US 7,953,778 B2
13

Updater 182 finds that its newgen of2 is more than 1 greater
than update_complete in step 88, so it adds its newgen to the
update_tracker array in step 92 so that the latter is now [8, 7,
6,2], then releases the completed_up date_tracker per step 98;

Updater 183 finds that its newgen of3 is more than 1 greater
than update_complete in step 88, so it adds its newgen to the
update_tracker array in step 92 so that the latter is now [8, 7,
6, 3, 2], then releases the completed_up date_tracker per step
98;

14
sequence is found. For example, if the 8 lowest order bits of
the update_tracker bit mask were [111 00111], mask_array
[2]=111 would be the largest matching bit mask template
because it would match the three lowest-order bits. By virtue
of the way the update_tracker bit mask was defined, this
matching bit sequence begins with an index value that is one
greater than the current global generation number, and may
thus be used to update that number. The global generation
number would be incremented by 3 (the number of bits in the

Updater 184 finds that its newgen of 4 is more than 1 greater
than update_complete in step 88, so it adds its newgen to the
update_tracker array in step 92 so that the latter is now [8, 7,
6, 4, 3, 2], then releases the completed_update_tracker per
step 98;

10 sequence). The update_tracker bit mask will be shifted down
following a successful comparison by the number of bits in
the mask_array[i] that resulted in the match. In the example
above, the eight lowest order bits of the update_tracker array
would become [x x xIII 00], where x represents the values

Updater 181 finds that its newgen of 1 is 1 greater than
update_complete in step 88, so it sets update_complete to 1
per step 90. The up dater 181 then finds that step 94 is satisfied
because the completed_update_tracker array contains the
newgen sequence 2, 3, 4. The sequence begins with a newgen
value (e.g., 2) that is one greater than update_complete. Per
step 96, the up dater 181 sets update_complete to the largest
newgen in the sequence, namely 4. The up dater 181 removes
the sequence 2, 3, 4 from the completed_up date_tracker array

15 occupied by the three bits to the left of the eight lowest order
bits prior to the shift.

The use of a 64 bit array as the update_tracker variable 78
places an upper limit of 64 concurrent updates. In the (per
haps unlikely) event that 64 concurrent updates is too few,

so that the latter is now [8, 7, 6], then releases the complet
ed_up date_tracker per step 98;

20 then yet another approach would be to use an array of char
acters, but still treating each entry (i.e., each bit of the 8 bit
character) the same as each bit in the bit mask in the example
above. Step 94 of FIG. 11 might then be implemented to look
for consecutive character sequences in the update_tracker

25 character array as follows:
Updater 185 now finds that its newgen of 5 is 1 greater than

update_complete in step 88, so it sets update_complete to 5
per step 90. The up dater 185 then finds that step 94 is satisfied
because the completed_up date_tracker 78 contains the new
gen sequence 8, 7, 6. The sequence begins with a newgen 30

value (e.g., 6) that is one greater than update_complete. Per
step 96, the up dater 185 sets update_complete to the largest
newgen in the sequence, namely 8. The up dater 185 removes
the sequence 8, 7, 6 from the completed_up date_tracker array
so that the latter is now empty [], then releases the complet- 35

ed_up date_tracker per step 98.
It will be appreciated that various techniques may be used

to ensure that updaters see the contents of the completed_up
date_tracker data structure 78 in the correct order. One tech
nique would be to use a sorted array that is sorted so that the 40

newgen values therein are handled in sequence. Another way
would be use a completed_up date_tracker data structure that
tracks newgen for each up dater by position rather than value.
For example, a bit mask (e.g., a 64-bit mask) could be used in
which the low-order bit represents the sequence number that 45

is one greater than update_complete, the next bit two greater,
and so on. This can be thought of as a 64-element array, with
each element being a single bit. An updater could register
itself into the update_tracker bit mask per step 92 of FIG. 11
by setting the corresponding bit. The newgen sequence check 50

of step 94 of FIG. 11 could then be implemented by way ofa
binary search of the bit mask using an array of 64 different bit
mask templates, as follows:

i ~ 0;
/* Scan past a consecutive sequence in the update_tracker. */

while (update_tracker[i++])
continue;

/* Set update_complete to the current index value of the
sequence. * /

update_complete += i;
/* Delete the update_tracker elements that were part of the
sequence. * /

for (j ~ 0; i < sizeof(update_tracker) /
sizeof(update_tracker[O]); i++, j++)

update_trackerli] ~ update_tracker[i];
/* Zero out the new elements. * /

for (; j < sizeof(update_tracker) /
sizeof(update_tracker[O]); j++)

update_trackerli] ~ 0;

Again, the number of concurrent updates would be limited by
the size of the character array.

If there are several independent groups of data elements
using the technique described herein, they may keep separate
pairs of update_started and update_complete global genera
tion numbers 70 and 72, and separate completed_update_t
racker data structures 78. They may also share a single global
generation number. Whether shared or not, appropriate
mutual exclusion should be used when manipulating these
variables. It should also be noted that only a very small
amount of global state is required to synchronize an arbi
trarily large number of data elements, namely, the global

longmask_array[64]~{Oxl, Ox3, Ox7, ... };

A binary search with index "i" (where "i" represents a
particular bit mask template at the mask_array[i] index posi
tion) could be performed using a bitwise AND operation, as
follows:

55 variables 70, 72 and 78. Some implementations (e.g., those
for which the completed_update tracker 78 is a small bit
mask) should be able to take advantage of small-object non
blocking synchronization algorithms, or, alternatively, of

if ((update_tracker & mask_array[i])~mask_array[i])
{ ... };

This approach can be used to identify bit sequences repre
sented in the update_tracker bit mask that are mask_array[i]
elements long. Step 94 of FIG. 11 could implement an algo
rithm that starts from the lowest order bit in the update_t
racker bit mask and continues until the largest consecutive bit

60

either hardware or software transactional memory.
It will be seen from the foregoing discussion that the global

generation number associated with a group of data elements
subject to concurrent updates can be updated in coordinated
fashion without regard to the order in which the up daters
complete their data element update processing. Using the

65 techniques described herein, the global generation number
will be updated so that, when all of the up daters have com
pleted their data element update processing, the global gen-

US 7,953,778 B2
15

eration number will correspond to the new generation number
that is associated with the last of the up daters to begin update
operations. Advantageously, the updating of the global gen
eration number takes into account the up daters completing
their data element update processing in a different order than
the updaters began update operations. Using appropriate pro
cessing (FIG. 11 being but one example), the updating of the
global generation number can be perfonned in one or more
stages as groups of one or more of the updaters complete their
data element update processing. Each global generation num
ber update stage produces a global generation number that
corresponds to one of the new generation numbers that is the
last of a consecutive sequence of one or more new generation
numbers associated with up daters that have completed their
data element update processing, and wherein the first element
of the sequence represents the only possible next global gen
eration number.

Based on the foregoing, it is now possible to describe more
detailed set of example methods that may be used for different
types of data updates and for searches of a cyclic data group.
FIG. 12, for example, is a flow diagram illustrating the update
logic that may be used by to replace (modifY) a data element
in accordance with the present disclosure. Plural up daters
(such as two or more of the updaters 18u 182 , 183 ... 184 of
FIG. 4) are assumed to begin substantially concurrent updates
to plural data elements (with each up dater updating one or
more data elements). Initially, each updater will implement
some form of mutual exclusion to ensure data integrity during
its update operation, such as locking or wait-free synchroni
zation. Then the up daters respectively implement steps 100,
102, and 104 for each data element being replaced. In par
ticular, each updater allocates a replacement data element,
copies the corresponding fields from the old data element to
the new version, then obtains newgen (according to the tech
nique describe herein) and assigns it to the latter's generation
number field. In step 106, the updaters set the old-version
pointer in the replacement data element to point to the old data
element, and set the new-version pointer in the replacement
data element to NULL. If the new data element has a
"deleted" flag set (see below), this flag is cleared. In step 108,
the updaters execute appropriate memory-barrier instructions
if required by the underlying computer hardware. In step 110,
the new-version pointer of the old data element is set to
reference the replacement data element. In step 112, the
up daters change all link pointers that point to the old data
element to instead point to the replacement data element. Any
searches performed at this point will arrive at the replacement
data element, but will move to the old data element due to the
fact that the global generation number has not yet been
updated. In step 114, the up daters perfonn global generation
number update processing according to the technique
described herein. In step 116, the up daters cause the old data
element to be freed after a grace period elapses. This can be
done using the callback registration method of U.S. Pat. No.
5,727,209, referred to by way of background above, or by any
other suitable means.

FIGS. 13A and 14B collectively represent a flow diagram
illustrating the update logic that may be used to delete a data
element in accordance with the invention. Deleting a data
element in a data element group can be perfonned by creating
a replacement "dummy" data element corresponding to the
old data element to be deleted and setting a "deleted" flag in
the new version. Actual deletion then proceeds by replacing
the old (to-be-deleted) data element with the copy that has the
"deleted" flag set. As with the data element replacement
method described above, some form of mutual exclusion
should be used, such as locking or wait-free synchronization.

16
Again, plural concurrent up daters (such as two or more of

the up daters 181 , 182 , 183 ... 18n of FIG. 4) are assumed to
begin substantially concurrent updates to plural data elements
(with each up dater updating one or more data elements).
Initially, each up dater will implement some fonn of mutual
exclusion to ensure data integrity during its update operation,
such as locking or wait-free synchronization. Then the
updater respectively implement steps 120, 122, and 124 for
each data element being deleted. In particular, each updater

10 allocates a replacement data element, copies the correspond
ing fields from the old data element to the new version, then
obtains newgen (according to the technique describe herein)
and assigns it to the latter's generation-number field. In step

15 126, the up daters set the old-version pointer in the replace
ment data element to point to the old data element, and set the
new-version pointer in the replacement data element to
NULL. In step 128, the up daters change all link pointers that
point to the old data element to instead point to the replace-

20 ment data element. Any searches perfonned at this point will
arrive at the replacement data element, but will move to the
old data element due to the fact that the global generation
number has not yet been updated. In step 130, the up daters set
the "deleted" flag in the replacement data element. In step

25 132, the up daters execute appropriate memory-barrier
instructions if required by the underlying computer hardware.
In step 134, the updaters set the new-version pointer of the old
data element to reference the replacement data element. In
step 136, the up daters perform global generation number

30 update processing according to the technique described
herein. In step 138, the up daters cause the old data element to
be freed after a grace period elapses. In step 140, the up daters
adjust any link pointers referencing the replacement data
element (e.g., by setting them to NULL or pointing them to

35 the data element following the replacement data element. In
step 142, the up daters cause the replacement data element to
be freed after a grace period elapses.

Another way in which a data element group can be updated
is by way of insertion of a new data element. There are a

40 number of ways to handle insertion, depending on the situa
tion. In all cases, some fonn of mutual exclusion should be
used, such as locking or wait -free synchronization. FIG. 14 is
a flow diagram illustrating the update logic that may be used
to insert a data element in accordance with the invention when

45 the data element group is searched using keys. For this type of
search, when the reader finds a data element corresponding to
something that does not yet exist (from the reader's perspec
tive), it will simply act as if the search key did not match.
Again, plural concurrent updaters (such as two or more of the

50 updaters 181 , 182 , 183 ... 18n of FIG. 4) are assumed to begin
substantially concurrent updates to plural data elements (with
each updater updating one or more data elements). Then the
updaters respectively implement steps 150 and 152. In par
ticular, each up dater allocates and initializes a new data ele-

55 ment, including all of its pointers, then obtains newgen (ac
cording to the technique describe herein) and assigns it to the
latter's generation-number field. In step 154, the updaters set
both the old-version and new-version pointers in the new data
element to NULL. If the new data element has a "deleted" flag

60 set, this flag is cleared. In step 156, the updaters execute
appropriate memory-barrier instructions if required by the
underlying computer hardware. In step 158, the link pointers
needed to insert the new data element in the group are
updated, and the up daters perform global generation number

65 update processing according to the technique described
herein. Following a grace period, all readers will see the
newly inserted data element.

US 7,953,778 B2
17

Another way to perfonn insertions is to only insert new
data elements at NULL link pointers. The method shown in
FIG. 14 works in this case, but a current generation reader
must act as though a NULL pointer was encountered rather
than just skipping when a new data element without an old
version is encountered (see below).

FIG. 15 illustrates how updates can be perfonned using
pointer-forwarding entities. Again, plural concurrent updat-

18
data elements are not required because A and B are simply
going to be interchanged rather than updated. As shown in
FIG. 16B, the first step in the interchange process is to create
a new set of pointer-forwarding entities that arrange the list in
the new order ofB, A, C. Note that readers will not encounter
the new pointer-forwarding entities because the old pointer
forwarding entities still match the global generation number.

At this point, appropriate memory barrier instructions are
executed if required by the hardware to commit the contents ers (such as two or more of the up daters 181' 182 , 183 .. . 18n

of FIG. 4) are assumed to begin substantially concurrent
updates to plural data elements (with each updater updating
one or more data elements). Then the updaters respectively
implement steps 160 and 162. In particular, the each up dater
allocates and initializes a new data element, then obtains
newgen (according to the technique describe herein). In step
164, the up dater sets both the old and new version pointers in
the new data element to NULL. If the new data element has a
"deleted" flag set (see below), this flag is cleared. All pointer
forwarding entities that now need to point to the new data
element are replaced in the following manner. In step 166, the
up daters allocate a replacement pointer-forwarding entity. In
step 168, the up daters assign newgen to the new pointer
forwarding entity's generation-number field, set the old-ver
sion pointer to point to the old pointer-forwarding entity, and
set the new-version pointer to NULL.

10 of the new pointer-forwarding entities to memory. As shown
in FIG. 16C, all link pointers from the data elements A, Band
C may now be updated to point to the new versions of the
pointer-forwarding entities. Readers will thus encounter the
new pointer-forwarding entities. Note, however, that first

15 generation readers will still follow the old-version pointers
back to the old pointer-forwarding entities due to version
number mismatch.

As shown in FIG. 16D, the global generation number is
updated. Assuming no memory barrier instructions are

20 executed at this point, readers may see the pointer and global
generation number updates in any order. However, readers
will follow the old/new version pointers in the pointer-for
warding entities as needed based on the global generation

25

number snapshot assigned to the search (curgen).
As shown in FIG. 16E, after a grace period elapses, the old

pointer-forwarding entities may be freed and the old-version
and new-version pointers are NULLed.

Searching data groups that have been updated by concur
rent up daters according to the technique described herein

In step 170, the up daters execute appropriate memory
barrier instructions if required by the underlying computer
hardware. In step 172, the updaters fills in the new-version
pointer in the old pointer forwarding entity to point to the new
pointer forwarding entity. In step 174, the up daters change all
link pointers that point to the old pointer forwarding entity to
instead point to the new pointer forwarding entity. Any
searches performed at this point will arrive at the new pointer
forwarding entity, but will move to the old pointer forwarding
entity due to the fact that the global generation number has not
yet been updated. In step 176, the updaters perfonn global
generation number update processing according to the tech
nique described herein. In step 178, the updaters cause the old
pointer forwarding entities to be freed after a grace period
elapses.

30 may be perfonned using the generalized prior art search
method set forth in FIG. 7. As previously stated, this search
method is disclosed in the '030 publication referred to above
in the section entitled "Background of the Invention." In
particular, the prior art search method of FIG. 7 corresponds

35 to the search method disclosed in FIG. 7 of the '030 publica
tion. As also stated, the '030 publication discloses additional
search details in FIGS. 12A-12C. As disclosed in FIG. 7
herein, readers must determine the current global generation
number and assign it to the search. If the variables of FIG. 10

40 are in use, a reader could snapshot the current value of the
update_complete generation number 72 and store it in the
curgen local variable 76. One aspect of such searching is that
readers may be required to implement memory barriers after

Turning now to FIGS. 16A-16E, the use of pointer for
warding entities is presented in the context of a circular linked
list 180. The linked list 180 comprises three data elements A,
Band C in that order. There is also a global list head pointer
forwarding entity P(h) that points to data element A, and three 45

additional pointer forwarding entities peA), PCB) and P(C)
respectively pointing from data elements A, Band C to data
elements B, C and A. It is assumed that data elements A and
B are to be interchanged in the list 180. Although this opera
tion would typically be implemented by only one updater, its 50

description will aid in the understanding of point forwarding
entities, allowing them to be used when plural concurrent
up daters are present. One way to interchange data elements A
and B would be to allocate new copies of A, B, and C, then
update their pointers and version number, proceeding as one 55

would for a normal atomic replacement of these three ele
ments. However, it is sometimes desirable to switch the two
elements without creating new copies. Pointer-forwarding
entities allow an updater to accomplish the goal, and the
present example thus illustrates a further benefit of the 60

pointer-forwarding approach.
FIG. 16A shows the initial state of the list 180, with the

subscripts representing generation numbers, and the circled
number on the left-hand side of the figure representing the
global generation number. To exchange data elements A and 65

B, the generalized method of FIG. 15 can be used. Note,
however, that steps 160-164 directed to the creation of new

acquiring curgen (in case the global generation number on
which curgen is based was incremented out of order before
the corresponding data element updates have completed).
One situation where a reader can omit such memory barriers
is if the reader has done a prior search since the last update,
such that the global generation number has not changed.

An alternative technique may be employed on the updater
side that also allows readers to omit the aforementioned
memory barriers. This technique forces up daters to wait for a
grace period to elapse before modifYing the update_complete
generation number 72. This will ensure that all updates that
triggered the global generation number incrementation have
completed and the global generation number is therefore safe
to use as the curgen value. FIG. 17 illustrates a first example
version of the technique. It begins in step 190, which corre
sponds to step 86 of FIG. 11 wherein an up dater uses an
appropriate technique to acquire exclusive access to the com
pleted_update_trackerdata structure 78 (see FIG. 10). In step
192, the up dater adds its newgen to the completed_update_t
racker (by value or position), then tests in step 194 whether
the completed_update_tracker contains a sequence of one or
more newgen values beginning one greater than the value of
the update_complete generation number. If the sequence is
present, the up dater waits for a grace period to elapse in step

US 7,953,778 B2
19

196 (thereby obviating the need for reader memory barriers).
Following a grace period, the up dater implements step 198 by
setting update_complete equal to the largest newgen in the
sequence, then clearing the sequence from the completed_up
date_tracker. Following step 198, or if a newgen sequence is
not found in step 194, the updater releases the completed_up
date_tracker in step 200.

Note that the foregoing approach requires that the synchro
nization scheme for the completed_up date_tracker permit
blocking. In addition, the fact that a grace period must elapse 10

while the completed_update_tracker is being exclusively
accessed by a single up dater limits the update rate. On way
that this situation could be alleviated would be to aggregate
some number of sequential newgen values in the complet- 15

ed_up date_tracker. Thus, the algorithm could be modified to
allow a newgen sequence of some specified length to accu
mulate before an up dater is allowed to perform the grace
period processing and update the global generation number.

FIG. 18 illustrates an alternative technique that also avoids 20

the above-described issue. FIG. 18 begins in step 210, which
corresponds to step 86 of FIG. 11 wherein an updater uses an
appropriate technique to acquire exclusive access to the com
pleted_update_trackerdata structure 78 (see FIG. 10). In step
212, the up dater adds its newgen to the completed_update_t- 25

racker, then tests in step 214 whether the completed_up
date_tracker contains a sequence of one or more newgen
values beginning one greater than the value of the update_
complete generation number. If the newgen sequence is
present, the up dater in step 216 copies the largest newgen in 30

the sequence to a local variable, which may be referred to as
"nextgen," then removes the newgen sequence from the com
pleted_update_tracker. The updater releases the complet
ed_up date_tracker in step 218. At this point, no subsequent
up dater will enter this code because there cannot possibly be 35

a consecutive sequence of newgen values beginning with one
greater than the value of the update-complete generation
number until the current up dater finishes its update. In step
220, the up dater waits for a grace period to elapse (again,
obviating the need for reader memory barriers). Following a 40

grace period, the up dater implements step 222 by again
acquiring exclusive access to the comleted_update_tracker.
In step 224, the up dater sets update_complete equal to the
nextgen. Following step 224, or if a newgen sequence is not
found in step 214, the up dater releases the completed_up- 45

date_tracker in step 226.
Note that the approach of FIG. 18 will delay visibility of

updates for a grace period, but will permit a large number of
updates to proceed in parallel, limited only by the capacity of
the completed_update_tracker. Up daters must of course 50

examine the most recent version of the data element group
being updated (e.g., the graph 20 of FIG. 5) when they are
searching for data elements to update (and are therefore
behaving as readers). Thus, up daters should always execute
memory barriers when searching the data element group, 55

namely, after referencing the current update_started genera
tion number 70 (to calculate its newgen value 74) and before
traversing the data element group. This is because when an
up dater is searching for a data element to update, it must use
a version number equal to the update_started generationnum- 60

ber it saw before doing its increment (i.e., newgen -1). With
out a memory barrier, the up dater would be vulnerable to out
of order execution of a data element update operation by
another up dater before that updater increments the updat
e_started generation number. The up dater must also uncon- 65

ditionally execute memory barriers after acquiring curgen
during searching.

20
While various embodiments of the invention have been

described, it should be apparent that many variations and
alternative embodiments could be implemented in accor
dance with the invention. For example, it will be appreciated
that the foregoing concepts may be variously embodied in any
of a data processing system, a machine implemented method,
and a computer program product in which programming logic
is provided by one or more machine-useable media for use in
controlling a data processing system to perform the required
functions. Exemplary machine-useable media for providing
such programming logic are shown by reference numeral 300
in FIG. 19. The media 300 are shown as being portable optical
storage disks of the type that are conventionally used for
commercial software sales, such as compact disk-read only
memory (CD-ROM) disks, compact disk-read/write (CD-RI
W) disks, and digital versatile disks (DVDs). Such media can
store the programming logic of the invention, either alone or
in conjunction with another software product that incorpo
rates the required functionality, such as an operating system.
The programming logic could also be provided by portable
magnetic media (such as floppy disks, flash memory sticks,
etc.), or magnetic media combined with drive systems (e.g.
disk drives), or media incorporated in data processing plat
forms, such as random access memory (RAM), read-only
memory (ROM) or other semiconductor or solid state
memory. More broadly, the media could comprise any elec
tronic, magnetic, optical, electromagnetic, infrared, semicon
ductor system or apparatus or device, transmission or propa
gation medium (such as a network), or other entity that can
contain, store, communicate, propagate or transport the pro
gramming logic for use by or in connection with a data pro
cessing system, computer or other instruction execution sys
tem, apparatus or device.

It is understood, therefore, that the invention is not to be in
any way limited except in accordance with the spirit of the
appended claims and their equivalents.

What is claimed is:
1. A method for supporting concurrent updates to a shared

data element group while preserving group integrity on
behalf of one or more readers that are concurrently referenc
ing group data elements without using locks or atomic
instructions, comprising:

invoking two or more concurrent updaters to generate new
group data elements;

assigning each new data element created by the same
up dater a new generation number that is different than a
global generation number associated with said data ele
ment group and which allows a reader of said data ele
ment group to determine whether said new data element
is a correct version for said reader;

said new generation numbers being different for each
up dater and being assigned according to an order in
which said up daters respectively begin update opera
tions;

performing data element update processing by:
respectively establishing a first version link that links each

of said new data elements to a prior version thereof
having a different generation number;

respectively establishing a second version link that links
each of said new data elements from its prior version;
and

respectively establishing group links that link said new
data elements into said data element group so that said
new data elements are reachable by readers;

updating said global generation number associated with
said data element group so that when all of said up daters
have completed said data element update processing,

US 7,953,778 B2
21

said global generation number will correspond to said
new generation number that is associated with the last of
said up daters to begin update operations; and

respectively freeing said prior version, said first version
link and said second version link for each of said new
data elements following a grace period.

2. The method of claim 1, wherein said updating of said
global generation number takes into account said up daters
completing said data element update processing in a different
order than said updaters begin update operations. 10

3. The method of claim 1, wherein said updating of said
global generation number is performed in one or more stages
as groups of one or more of said up daters complete said data
element update processing.

4. The method of claim 3, wherein each global generation
number update stage produces a global generation number
that corresponds to one of said new generation numbers that

15

is the last of a consecutive sequence of one or more new
generation numbers associated with up daters that have com- 20

pleted said data element update processing, and wherein the
first element of said sequence represents the only possible
next global generation number.

5. The method of claim 1, wherein:
said updaters cooperatively assign themselves said new 25

generation numbers by maintaining a global update
sequencing number that is incremented by each updater
as it commences update operations and assigns itself
said new generation number;

an updater updates said global generation number if said 30

new generation number for said up dater' s new data ele
ment represents the only possible next global generation
number;

an up dater adds said new generation number for said updat
er's new data element to a set of stored new generation 35

numbers if said updater's new generation number does
not represent the only possible next global generation
number; and

an updater updates said global generation number if said
set of new generation numbers contains a sequence of 40

new generation numbers that begins with the only pos
sible next global generation number, in which case the
last new generation number of said sequence is assigned
to be said global generation number and said sequence is
removed from said set of new generation numbers.

6. The method of claim 1, wherein said method further
includes waiting for a grace period to elapse before updating
said global generation number so that readers of said data
element group do not need to execute memory barrier instruc
tions prior to reading.

7. A system for supporting concurrent updates to a shared
data element group while preserving group integrity on
behalf of one or more readers that are concurrently referenc
ing group data elements without using locks or atomic
instructions, comprising:

one or more processors;

45

50

55

a memory coupled to said one or more processors, said
memory including a computer useable medium tangibly
embodying at least one program of instructions execut
able by said processor to perfonn operations, compris- 60

ing:
invoking two or more concurrent updaters to generate new

group data elements;
assigning each new data element created by the same

updater a new generation number that is different than a 65

global generation number associated with said data ele
ment group and which allows a reader of said data ele-

22
ment group to detennine whether said new data element
is a correct version for said reader;

said new generation numbers being different for each
up dater and being assigned according to an order in
which said up daters respectively begin update opera
tions;

performing data element update processing by:
respectively establishing a first version link that links each

of said new data elements to a prior version thereof
having a different generation number;

respectively establishing a second version link that links
each of said new data elements from its prior version;
and

respectively establish group links that link said new data
elements into said data element group so that said new
data elements are reachable by readers;

updating said global generation number associated with
said data element group so that when all of said up daters
have completed said data element update processing,
said global generation number will correspond to said
new generation number that is associated with the last of
said up daters to begin update operations; and

respectively freeing said prior version, said first version
link and said second version link for each of said new
data elements following a grace period.

S. The system of claim 7, wherein said updating of said
global generation number takes into account said up daters
completing said data element update processing in a different
order than said up daters begin update operations.

9. The system of claim 7, wherein said updating of said
global generation number is performed in one or more stages
as groups of one or more of said updaters complete said data
element update processing.

10. The system of claim 9, wherein each global generation
number update stage produces a global generation number
that corresponds to one of said new generation numbers that
is the last of a consecutive sequence of one or more new
generation numbers associated with up daters that have com
pleted said data element update processing, and wherein the
first element of said sequence represents the only possible
next global generation number.

11. The system of claim 7, wherein:
said up daters cooperatively assign themselves said new

generation numbers by maintaining a global update
sequencing number that is incremented by each updater
as it commences update operations and assigns itself
said new generation number;

an updater updates said global generation number if said
new generation number for said up dater' s new data ele
ment represents the only possible next global generation
number;

an up dater adds said new generation number for said updat
er's new data element to a set of stored new generation
numbers if said updater's new generation number does
not represent the only possible next global generation
number; and

an updater updates said global generation number if said
set of new generation numbers contains a sequence of
new generation numbers that begins with the only pos
sible next global generation number, in which case the
last new generation number of said sequence is assigned
to be said global generation number and said sequence is
removed from said set of new generation numbers.

12. The system of claim 7, wherein said method further
includes waiting for a grace period to elapse before updating

US 7,953,778 B2
23

said global generation number so that readers of said data
element group do not need to execute memory barrier instruc
tions prior to reading.

13. A computer program product, comprising:
one or more machine-useable media;
logic provided by said one or more media for programming

a data processing platform to support concurrent updates
to a shared data element group while preserving group
integrity on behalf of one or more readers that are con
currently referencing group data elements without using 10

locks or atomic instructions, as by:
invoking two or more concurrent updaters to generate new

group data elements;

24
an updater updates said global generation number if said

new generation number for said up dater' s new data ele
ment represents the only possible next global generation
number;

an up dater adds said new generation number for said updat
er's new data element to a set of stored new generation
numbers if said updater's new generation number does
not represent the only possible next global generation
number; and

an updater updates said global generation number if said
set of new generation numbers contains a sequence of
new generation numbers that begins with the only pos
sible next global generation number, in which case the
last new generation number of said sequence is assigned
to be said global generation number and said sequence is
removed from said set of new generation numbers.

assigning each new data element created by the same 15

updater a new generation number that is different than a
global generation number associated with said data ele
ment group and which allows a reader of said data ele
ment group to determine whether said new data element

18. The computer program product of claim 13, wherein
said method further includes waiting for a grace period to

20 elapse before updating said global generation number so that
readers of said data element group do not need to execute
memory barrier instructions prior to reading.

is a correct version for said reader;
said new generation numbers being different for each

updater and being assigned according to an order in
which said updaters respectively begin update opera
tions;

performing data element update processing by:
respectively establishing a first version link that links each

of said new data elements to a prior version thereof
having a different generation number;

19. A method for supporting concurrent updates to a shared
data element group while preserving group integrity on

25 behalf of one or more readers that are concurrently referenc
ing group data elements without using locks or atomic

respectively establishing a second version link that links
each of said new data elements from its prior version; 30

and
respectively establishing group links that link said new

data elements into said data element group so that said
new data elements are reachable by readers;

35
updating said global generation number associated with

said data element group so that when all of said up daters
have completed said data element update processing,
said global generation number will correspond to said
new generation number that is associated with the last of 40

said up daters to begin update operations; and
respectively freeing said prior version, said first version

link and said second version link for each of said new
data elements following a grace period.

14. The computer program product of claim 13, wherein 45

said updating of said global generation number takes into
account said up daters completing said data element update
processing in a different order than said up daters begin update
operations.

15. The computer program product of claim 13, wherein 50

said updating of said global generation number is performed
in one or more stages as groups of one or more of said
up daters complete said data element update processing.

16. The computer program product of claim 15, wherein
each global generation number update stage produces a glo- 55

bal generation number that corresponds to one of said new
generation numbers that is the last of a consecutive sequence
of one or more new generation numbers associated with
up daters that have completed said data element update pro
cessing, and wherein the first element of said sequence rep- 60

resents the only possible next global generation number.
17. The computer program product of claim 13, wherein:
said updaters cooperatively assign themselves said new

generation numbers by maintaining a global update
sequencing number that is incremented by each updater 65

as it commences update operations and assigns itself
said new generation number;

instructions, comprising:
invoking two or more concurrent updaters to generate new

group data elements;
assigning each new data element created by the same

up dater a new generation number that is different than a
global generation number associated with said data ele
ment group and which allows a reader of said data ele
ment group to determine whether said new data element
is a correct version for said reader;

said new generation numbers being different for each
up dater and being assigned according to an order in
which said up daters respectively begin update opera
tions;

performing data element update processing by:
respectively establishing a first version link that links each

of said new data elements to a prior version thereof
having a different generation number;

respectively establishing a second version link that links
each of said new data elements from its prior version;
and

respectively establishing group links that link said new
data elements into said data element group so that said
new data elements are reachable by readers;

updating said global generation number associated with
said data element group so that when all of said up daters
have completed said data element update processing,
said global generation number will correspond to said
new generation number that is associated with the last of
said up daters to begin update operations;

said updating of said global generation number being per
formed using a data structure that tracks up daters that
have completed said data element update operations out
of-order;

said updating of said global generation number being fur
ther performed by setting said global generation number
one or more times to correspond to the largest of a
sequence of said new generation numbers that are rep
resented by value or by position in said data structure,
and which sequence begins with a new generation num
ber that is the only possible next global generation num
ber; and

US 7,953,778 B2
25

respectively freeing said prior version, said first version
link and said second version link for each of said new
data elements following a grace period.

20. The method of claim 19, wherein said updating of said
global generation number is perfonned in a manner that
allows readers of said data element group to search using a

26
snapshot of said global generation number without imple
menting a memory barrier to ensure that said global genera
tion number is valid.

* * * * *

