
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

3-2011 

Generalized Construction of Scalable Concurrent Generalized Construction of Scalable Concurrent 

Data Structures via Relativistic Programming Data Structures via Relativistic Programming 

Josh Triplett 
Portland State University 

Paul E. McKenney 

Philip W. Howard 

Jonathan Walpole 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Computer and Systems Architecture Commons, and the Systems Architecture Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Triplett, J., Howard, P. W., McKenney, P. E., & Walpole, J. (2011). Generalized construction of scalable 
concurrent data structures via relativistic programming. Tech. Rep. 14, Portland State University. 

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if 
we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/9
mailto:pdxscholar@pdx.edu


Generalized Construction of Scalable Concurrent Data Structures

via Relativistic Programming

Pre-Publication Draft

Josh Triplett
Portland State University
josh@joshtriplett.org

Philip W. Howard
Portland State University

pwh@cs.pdx.edu

Paul E. McKenney
IBM Linux Technology Center
paulmck@linux.vnet.ibm.com

Jonathan Walpole
Portland State University
walpole@cs.pdx.edu

Abstract

We present relativistic programming, a concurrent
programming model based on shared addressing,
which supports efficient, scalable operation on ei-
ther uniform shared-memory or distributed shared-
memory systems. Relativistic programming pro-
vides a strong causal ordering property, allowing a
series of read operations to appear as an atomic
transaction that occurs entirely between two or-
dered write operations. This preserves the sim-
ple immutable-memory programming model avail-
able via mutual exclusion or transactional mem-
ory. Furthermore, relativistic programming provides
joint-access parallelism, allowing readers to run con-
currently with a writer on the same data.

We demonstrate a generalized construction tech-
nique for concurrent data structures based on rela-
tivistic programming, taking into account the nat-
ural orderings provided by reader traversals and
writer program order. Our construction technique
specifies the precise placement of memory barriers
and synchronization operations. To demonstrate our
generalized approach, we reconstruct the algorithms
for existing relativistic data structures, replacing the
algorithm-specific reasoning with our systematic and
rigorous construction. Benchmarks of the resulting
relativistic read algorithms demonstrate high per-
formance and linear scalability: relativistic resizable
hash-tables demonstrate 56% better lookup perfor-
mance than the current state of the art in Linux, and
relativistic red-black trees show 2.5x better lookup
performance than transactional memory.

1 Introduction

Two common approaches exist for the construction
of concurrent programs. The shared memory ap-
proach assumes a single underlying memory resource
available to all concurrent processes, and relies on
synchronization between these processes to main-
tain the consistency of data in memory. Distributed
approaches avoid requiring a single shared memory,
opting for local memories available to a subset of
processes, and message passing to communicate be-
tween processes.

For shared memory synchronization, mutual ex-
clusion techniques remain by far the most com-
mon. These techniques provide coherent access to
shared memory by reducing concurrency and serial-
izing access. Partitioning shared structures allows
mutual exclusion to become more fine-grained, al-
lowing disjoint-access parallelism: accesses to dis-
joint locations may proceed concurrently.

Concurrent programming via mutual exclusion in-
troduces a number of potential correctness problems,
such as deadlock and priority inversion. These prob-
lems have seen extensive study, and well-known solu-
tions exist to avoid or mitigate them. The solutions
establish a set of construction rules for practitioners
to follow; for example, to avoid deadlock, concur-
rent algorithms establish a total order on simulta-
neously acquired locks. Despite these well-known
solutions, algorithms based on mutual exclusion can
never qualify as lock-free or wait-free.

Alternative approaches to shared-memory syn-
chronization can avoid these problems, and pro-
vide lock-free and wait-free operation. Transactional
memory provides a high degree of disjoint-access
parallelism, equivalent to fine-grained locking, while

1



avoiding the well-known problems of locking.

However, approaches based on shared memory
tend to rely on strong memory consistency models.
These models make concurrent programs far easier
to write, but incur high communication costs that
limit scalability. [1, 3, 13]

By contrast, distributed techniques can quite ef-
fectively utilize available processing power on a sys-
tem without shared memory, avoiding the scalabil-
ity limitations of coherent shared memory. Even
modern shared-memory multiprocessor systems in-
creasingly exhibit properties of distributed systems;
projects such as Corey [7], fos [38], and the Bar-
relfish Multikernel [5] have demonstrated the effec-
tiveness of distributed techniques on systems that
support shared memory. Efficient distributed algo-
rithms typically require partitioning, dividing data
into separate partitions and using a separate process
(or a separate system) to operate on each partition;
this approach provides excellent disjoint-access par-
allelism. Many efficient shared-memory algorithms
use partitioning for the same reason.

A large gulf remains between the shared-memory
and distributed approaches. Despite their equiva-
lence in expressive power [39], in practice code writ-
ten for one model requires extensive modifications to
perform well with the other. Most code written for
existing operating systems depends on shared mem-
ory; programs designed for distributed operation
typically consist of a collection of processes, each of
which runs on a system using the shared memory
abstraction. Furthermore, high-performance dis-
tributed systems running in a shared memory en-
vironment tend to implement message passing via
shared memory, to take advantage of this highly op-
timized communication channel.

The end-to-end principle [30] argues that we
should avoid implementing costly functionality in an
abstraction layer that only a subset of higher-level
systems built on that layer will benefit from, since all
systems built on that layer must pay the cost. Forc-
ing processes on a shared-memory system to com-
municate via message passing, and implementing the
message-passing system on shared memory for effi-
ciency, violates the end-to-end principle. Any pro-
grams which could directly run on shared memory
can run on a message-passing system, but they will
pay an unnecessary additional cost for the abstrac-
tion. Conversely, forcing a distributed system to im-
plement the abstraction of coherent shared memory
also violates the end-to-end principle; current par-
allel hardware finds itself in this position, as it has
many of the architectural and performance charac-
teristics of a distributed system but must continue

to support a the shared-memory abstraction.

Ideally, a model for concurrent programming
should avoid introducing unnecessarily costly ab-
stractions, but should still support straightforward
algorithms for concurrent programs. This model
should provide the full potential scalability of dis-
tributed operation, but must still run efficiently
on existing shared-memory hardware. We want
to leverage the large existing codebase of shared-
memory concurrent software, without requiring ex-
tensive modification. Finally, we wish to go beyond
the limits of disjoint-access parallelism, and strive
for joint-access parallelism, allowing readers to run
concurrently with a writer on the same data.

To these ends, we propose relativistic program-
ming, a distributed model for concurrent program-
ming based on shared addressing, which does not re-
quire either coherent shared memory or explicit mes-
sage passing. Relativistic programming provides full
joint-access parallelism between readers and writers:
any number of readers may simultaneously access
the same data, together with a writer concurrently
modifying that data. Furthermore, relativistic pro-
gramming provides an ordering property that makes
readers appear transactional, as though they occur
at a single specific time between two ordered write
operations.

We use the term relativistic programming by anal-
ogy with relativity: independent observers may ob-
serve unrelated events in different orders, but must
agree on the order of causally related events.

This technique builds on an extensive body of
previous research on scalable concurrent data struc-
tures, with particular focus on practical implementa-
tions widely adopted within the Linux kernel. This
previous research utilized the same techniques pre-
sented here, but without a model for correctness or
a generalized technique for construction. Previous
work used ad-hoc reasoning to establish ordering re-
quirements for operations, and the implementation
of those ordering requirements in a given system.
The relativistic programming model we present here
systematizes and generalizes those techniques.

In section 2, we outline the minimal level of func-
tionality we assume from the underlying shared-
addressing system, and then construct our relativis-
tic programming abstraction on top of that base-
line, defining the properties we guarantee and the
mechanisms by which we can guarantee those prop-
erties. We then propose in section 3 a set of
rules for the construction of relativistic data struc-
tures. To demonstrate the effectiveness of these
rules, we use them to reconstruct algorithms for
existing data structures based on preliminary rel-

2



ativistic programming techniques, and compare the
resulting algorithms with the originals; these recon-
structions and comparisons appear in section 4.

We emphasize practical results, implemented on
real systems and running on real hardware. Thus,
in section 5, we present a specific, high-performance
implementation of relativistic programming, based
on primitives available on shared-memory systems.
In section 6, we present performance results for our
relativistic algorithms based on this implementation.

2 The Relativistic
Programming Model

By presenting a concurrent programming model
based on shared addressing, we necessarily invite
comparisons to shared memory consistency mod-
els. We recognize the central role of a memory
consistency model in reasoning about any concur-
rent program or programming methodology based
on shared memory, as argued by Adve and Boehm
[1]; their work showed that the choice of memory
model determines fundamental properties of a con-
current programming environment, and makes a fun-
damental tradeoff between scalability and ease of
programming. Concurrent hardware and software
can scale most effectively with a weaker memory con-
sistency model, while a stronger memory consistency
model allows greater simplicity of implementation.
[1, 3, 13]

In basing relativistic programming on shared ad-
dressing, we apply the end-to-end principle: we spec-
ify the minimal behavior expected from the under-
lying system, and then specify consistency proper-
ties as features provided by the programming model
rather than demands placed on the target system.
We then rely on the generalized construction tech-
nique for relativistic algorithms to separate and au-
tomate the task of enforcing those properties from
the task of designing algorithms relying on those
properties. This allows relativistic algorithms to as-
sume the consistency properties we guarantee with-
out requiring that the underlying system provide
those properties for all programs.

By shared addressing, we mean that all processes
agree on a set of addresses, which refer to locations
holding arbitrary values of a specific fixed word size.
Two different processes must assign the same mean-
ing to the same address. However, an address does
not necessarily refer to a single canonical backing
storage for values, as in a shared-memory system.
Rather, an address may refer to a copy of that loca-
tion in memory local to the process making the ref-

erence, which may represent a cache of some more
authoritative location, or an authoritative replica for
which no master location exists.

Given an address, a process may perform a write
or a read operation. Writing an address stores a
new value to the writing process’s storage location
for that address. Reading an address returns the
corresponding value according to the reading pro-
cess’s storage location for that address. We require
that the value returned by a read must precisely
match a value written by a previous write, and not
an arbitrary value or a bitwise combination of pre-
viously written values. While synchronization algo-
rithms without this requirement do exist, notably
Lamport’s bakery algorithm for mutual exclusion
[16], supporting joint-access parallelism without this
property would prove far more difficult, and exist-
ing systems all guarantee this property, at least for
word-sized word-aligned operations.

We require a form of eventual consistency for
all local storage: eventually all written values be-
come accessible to all potentially interested readers
[33, 37]. In particular, we assume a stronger form
of eventual consistency, in which writes continue to
propagate while writers continue to perform new
writes. Multiple writes to the same address must
still result in a single value eventually propagating
to all readers, though determining the winning write
requires synchronization between writers. Limiting
the duration of “eventually”, or controlling the or-
der of read and write operations, requires explicit
constraints; we introduce the necessary constraints
and their semantics as part of our model.

The relativistic programming model enforces a
causality property: a reader which reads two dif-
ferent addresses will not observe results inconsistent
with the order of writes to those addresses. We will
formally define this ordering property and the ex-
plicit ordering constraints required to achieve it in
the remainder of this section; section 3 defines the
construction technique which specifies the necessary
placement of these ordering constraints.

We define readers and writers as consisting of a
series of memory operations, R1, R2, . . . , Rm and
W1,W2, . . . ,Wn respectively.1 A process in turn
consists of a series of read or write operations, each
of which begins at a given delineated point, performs
its series of memory operations, and ends at a sub-
sequent point. Note in particular that we define a
single reader or writer as consisting of the set of

1Formal notations exist for memory models and consis-
tency properties [4, 2]. We introduce a minimal notation here
for greater clarity in subsequent definitions, without attempt-
ing to write the definitions in pure mathematical notation.

3



memory operations needed to implement a single op-
eration on the abstract data type, such as an insert
or delete; a reader or writer does not extend for the
lifetime of a process.

Each read or write operation occurs at a specific
address. As previously defined, a read at a given ad-
dress returns a value written by some previous write
to the same address. Given a read Ri at the same
address as a write Wj , we say that Ri observes Wj if
Ri returns the value written by Wj . (We refer specif-
ically to the value written by Wj , distinct from any
other equivalent value, to avoid the ABA problem.)
Otherwise, we say that Ri fails to observe Wj .

Readers have a natural ordering of memory op-
erations, as defined by their program order. That
program order arises from the traversal order of the
shared data structure accessed by the reader; for in-
stance, walking a list from head to tail, or a tree from
the root to a leaf. Writers imply a natural ordering
as well, based on their own program order; writers
may choose to relax the ordering requirements be-
tween two writes, defining a partial order. Without
further constraints, however, those orderings remain
entirely local to the individual readers and writers.

Given two reads Ri and Rj performed by a single
reader, we say that Ri ≺ Rj if Ri occurs before Rj

in the reader’s program order. Similarly, given two
writes Wi and Wj performed by a single writer, we
say that Wi ≺ Wj if Wi occurs before Wj in the
writer’s desired partial order. These orderings hold
transitively: if Ri ≺ Rj and Rj ≺ Rk then Ri ≺ Rk,
and the analogous law holds for writers.

We can now define the precise ordering property
we desire for relativistic programming. Given a
reader performing two reads Ri and Rj , and a writer
performing two writes Wk and Wl at the same ad-
dresses as Ri and Rj respectively, if Wk ≺Wl, then
we do not allow the case where Ri fails to observe
Wk but Rj observes Wl. (Note in particular that
we require this property regardless of the ordering
of Ri and Rj within the reader.) This case would
allow the reader to observe a result inconsistent with
the writer’s desired order. By avoiding this case, we
ensure that the reader observes a state of memory
consistent with a single point in the writer’s order.

This property avoids the need to analyze complex
interactions between multiple read and write oper-
ations. Instead, a reader appears to execute atomi-
cally between two ordered writes of the writer: the
reader can observe some prefix of the writes per-
formed by the writer, and cannot observe the re-
maining writes. The writer thus need only con-
sider the state of memory (and the semantics of data
structures in memory) after each write it performs,

rather than every possible interleaving of read and
write operations. In the case where the writer uses
program order rather than some looser partial order,
this makes the number of states to consider linear in
the number of write operations, rather than expo-
nential as in the case without this ordering property.

The property we have specified provides a stronger
consistency model than PRAM consistency [17], as
it enforces the ordering of writes from a single writer.
If causally-related writers enforce ordering between
their causally-related writes just as they do between
writes within the same writer, then the property we
have specified also provides a stronger consistency
model than causal consistency [2]. Both PRAM con-
sistency and causal consistency only require that
a series of reads performed by a reader observe
an ordered series of writes in a manner that does
not regress: each read can observe strictly more
writes than the previous read. Our consistency prop-
erty eliminates the interleaving entirely, requiring all
reads within a reader to observe the same prefix of
writes performed by a writer. This creates a form of
transaction for the reader, making its reads appear
atomic with respect to the write ordering.

The underlying shared-addressing model does not
ensure the ordering property we have defined. To en-
force that property, we require explicit ordering con-
straints in readers and writers, expressed in the form
of barrier operations; these operations promote cer-
tain local ordering properties within a process into
global ordering properties across processes. We re-
quire three kinds of barriers: read barriers, write
barriers, and wait-for-current-readers barriers.

A read barrier enforces a causal property between
the preceding reads and the subsequent reads. Given
a reader performing reads Ri and Rj , and a read bar-
rier RB such that Ri ≺ RB ≺ Rj , if Ri observes a
write Wk at the same address as Ri, then the read Rj

will not fail to observe any write ordered before Wk.
(However, see section 5 and the definition of these
barriers on real hardware for why this requirement
need not imply an expensive hardware barrier.)

A write barrier enforces a causal property between
the preceding writes and the subsequent writes.
Given a writer performing writes Wi and Wj , and
a write barrier WB such that Wi ≺ WB ≺ Wj ,
if a reader performs read operations Rk and Rl at
the same addresses as Wi and Wj respectively, and
Rl ≺ Rk, then if Rl observes Wj , Rk will observe Wi.
In other words, if the earlier read observes the later
write, the later read will observe the earlier write.

Notice that the definitions of read and write bar-
riers interact. The definition of a read barrier uses
the partial order of writes as defined by writers, and

4



the the definition of a write barrier uses the order of
reads as defined by readers.

A wait-for-current-readers barrier enforces order-
ing between write operations and an entire reader.
Given a writer performing writes Wi and Wj , and
a wait-for-current-readers barrier B such that Wi ≺
B ≺ Wj , if any read operation Rk at the same ad-
dress as Wi fails to observe Wi, no other read oper-
ation in the same reader as Rk may observe Wj .

3 Generalized Construction
Technique

Having defined the underlying shared-addressing
model, the desired ordering property of relativistic
programming, and the barrier operations we can use
to enforce that ordering property, we now present
our generalized construction technique for relativis-
tic data structure algorithms.

Our ordering property allows us to separate the
construction of relativistic algorithms into three
components: the construction of reader and writer
algorithms based on our desired memory model, the
placement of barriers to properly enforce that mem-
ory model, and the synchronization between writers.

Relativistic data-structure write algorithms re-
quire some adaptation from the normal assumptions
of sequential algorithms. While a relativistic writer
need not cope with arbitrarily interleaved readers,
it must not block readers at any time, and thus it
must assume that readers may run to completion
between any pair of ordered writes. Therefore, each
write performed by a relativistic writer must leave
the data structure in a consistent state for readers
(though not necessarily for other writers, depending
on writer synchronization).

Since the shared-addressing model allows a writer
to assume that a single write operation will appear
atomic to readers, a relativistic writer may manip-
ulate pointers within a data structure and assume
that readers will see either the old or new pointer
value. If a writer needs to modify a larger value
atomically, it may do so by constructing a new value
(including any outbound pointers), and then atom-
ically changing the pointer to that node.

Since the relativistic programming model makes
readers appear to run to completion between two
ordered write operations, without interleaving with
concurrent writers, relativistic data-structure read
algorithms need not differ from the sequential algo-
rithms usable with mutual exclusion or transactions.

Given appropriate reader and writer algorithms
based on the relativistic programming model, we can

mechanically insert barriers to construct algorithms
designed to run natively on the weakly ordered sys-
tem memory model. The read barriers prove sim-
plest: any pair of read operations within a reader
must have a read barrier between them to enforce
that ordering. (Again, see section 5 for why this
requirement need not imply an expensive hardware
barrier.)

To determine where to insert barriers in a rel-
ativistic writer, consider a writer which performs
writes Wi and Wj , with Wi ≺ Wj . Per our order-
ing requirement, we must prevent the case where a
reader performs a read Rk that fails to observe Wi

and a read Rl that observes Wj . We consider three
independent cases:

1. If no reader exists that performs reads Rk and
Rl at the same addresses as Wi and Wj , respec-
tively, then no reader may violate the ordering
constraint. Thus, the writer need not perform
any barrier operation.

2. If readers perform reads Rk and Rl such that
Rl ≺ Rk, then the writer need only execute a
write barrier between its writes. Per our defini-
tion of a write barrier, if Rl observes Wj , then
Rk will observe Wi.

3. If any reader performs reads Rk and Rl such
that Rk ≺ Rl, a write barrier does not suffice.
However, a wait-for-current-readers barrier will
ensure the desired ordering. Per our definition
of a wait-for-current-readers barrier, if Rk fails
to observe Wi, then no read operation in the
same reader, including Rl, can observe Wj .

These cases cover the most general scenario of
reads and writes to arbitrary memory addresses. In
the case of a shared data structure, the three cases
have natural interpretations based on the reader
traversal order in the data structure. If a writer per-
forms writes in independent parts of the data struc-
ture, not reachable in the same reader traversal, the
writer need not execute any barrier between those
writes. If a writer performs writes in the reverse of
the order that readers traverse the data structure,
the writer need only execute a write barrier between
those writes. If a writer performs writes in the same
order that a reader traverses the data structure, the
writer must wait for current readers between those
writes.

Note that if a single reader reads the same ad-
dress multiple times, none of the ordering barriers
can prevent that reader from potentially seeing dif-
ferent values for each such read. For the purposes

5



of our construction technique, we limit ourselves
to data structures with acyclic read traversals. In
practice, this does not significantly restrict the set
of data structures usable with relativistic program-
ming; note in particular that it does not prohibit
cyclic accesses used by writers only, such as previous
pointers in a doubly-linked list or parent pointers in
a tree. Shared cyclic data structures prove difficult
to handle via fine-grained locking as well. In section
7, we reference some approaches to handling cyclic
data structures and traversals.

Relativistic programming does not define a spe-
cific method of synchronization between writers.
In the simplest case, writers may synchronize via
coarse-grained locking; if writes occur sufficiently
infrequently compared to reads, this may suffice.
To improve concurrency, writers may opt for fine-
grained locking instead, partitioning the data struc-
ture into independent pieces and applying a lock to
each. Typically, these pieces will remain indepen-
dent for readers as well, making any ordering con-
cerns between writers moot; however, if readers may
potentially read addresses written simultaneously by
multiple writers, and the ordering of those write op-
erations matters, the writers must arrange an appro-
priate barrier between their write operations.

As an alternative approach for allowing write con-
currency, writers may use a software transactional
memory (STM) system to perform writes. Howard
[15] demonstrated a system combining relativistic
programming with STM, such that relativistic read-
ers can exist outside the transactional system while
still preserving the isolation guarantees of the trans-
actional system for writers. This preserves the low
overhead scalable performance of the readers while
also allowing for scalable writers within the limita-
tions of the STM system.

As previously suggested in section 2, writers may
choose to ignore some write ordering constraints that
their program order would otherwise imply, if the or-
der of those write operations does not actually mat-
ter to readers; for instance, a writer initializing a
structure before publishing it need not order indi-
vidual writes in the initialization. The rules for the
placement of barriers still hold, but requirements to
place barriers between two write operations with an
ordering relationship no longer specify an exact loca-
tion in program order. Instead, the writer need only
place barriers to satisfy all the ordering constraints.
Note that a wait-for-current-readers barrier satisfies
a requirement for a write barrier. Finding a correct
barrier placement will always prove trivial; future
work will present an algorithm for the optimization
of finding a minimal barrier placement for partially

ordered writes.

4 Reconstructing Relativistic
Algorithms

To demonstrate our construction technique for rela-
tivistic algorithms, we will revisit the algorithms pre-
viously presented in published papers on relativis-
tic data structures. Ignoring the prior placement of
barriers in these algorithms, we will apply the sys-
tematic construction presented in section 3 to place
appropriate barriers. We will then compare the re-
sulting algorithms and systematic reasoning with the
original algorithms and the algorithm-specific rea-
soning required in the original papers.

4.1 Linked Lists

We begin with one of the simplest data structures
commonly used with relativistic programming tech-
niques: linked lists. [25] Linked-list readers have
precisely one operation: traversing the list from the
head to the end via the next pointers of each node,
possibly stopping after encountering a node meeting
some criteria. This algorithm defines the traversal
order a writer must take into account when placing
barriers.

The most common writer operations consist of in-
sertion and deletion of an individual list node. In-
sertion of a node involves allocating and initializ-
ing that node (including its next pointer), and then
publishing that node to readers by pointing some
existing node’s next pointer (or the head pointer) to
that node. The writer must ensure that the initial-
ization of the node occurs before the pointer manip-
ulation that makes the node accessible to readers.
Since readers read the pointer first, and then the
node, these writes occur in reverse traversal order,
and therefore the writer only needs a write barrier.
This result agrees with the established algorithm for
relativistic linked-list insertion.

Removing a node from a linked list also consists
of two write operations: routing the list pointers
around the node to make it inaccessible to all fu-
ture readers, and reclaiming the memory associated
with the node. These operations occur in traver-
sal order, and thus writers must execute a wait-for-
current-readers barrier after making the node inac-
cessible but before reclaiming the memory. This bar-
rier placement agrees with the established algorithm
for relativistic linked-list removal.

6



4.2 Hash Table Resize

Triplett [36] proposed an extension to relativistic
hash tables to support resizing the table while al-
lowing concurrent readers. These resizable hash ta-
bles supported both shrink and grow operations, in
addition to the usual hash-table lookup operation.
We analyze both the shrink and the grow algorithms
here.

To support resizing, the algorithms refer to a hash
table via a pointer to a structure, which includes
both the hash buckets and the table size. Both re-
size algorithms allocate a new table structure, and
later change the table pointer to point to the new
structure.

Ignoring the originally specified barriers, the algo-
rithm to shrink a hash table performs the following
write operations:

1. Allocate the smaller hash table.

2. Link each bucket in the new table to the first
bucket in the old table that contains entries
which will hash to the new bucket.

3. Link the end of each such bucket to the begin-
ning of the next such bucket; each new bucket
will thus chain through as many old buckets as
the resize factor.

4. Set the table size.

5. Point the table pointer to the new table.

6. Reclaim the old hash table.

Steps 1, 2, and 4 initialize a structure readers can-
not observe yet. The writes in step 3 have no or-
dering requirements. Step 5 makes this structure
accessible, making it a write in reverse traversal or-
der, and requiring a write barrier. Step 6 performs
a write in traversal order, necessitating a wait-for-
current-readers barrier before reclamation. The re-
sulting shrink algorithm with barriers matches the
algorithm documented by the original paper.

Again ignoring existing barriers, the algorithm to
expand a hash table performs the following opera-
tions:

1. Allocate the larger hash table.

2. Link each new bucket to the first node in the
corresponding old bucket that hashes to the new
bucket. This results in a valid hash table, with
sets of new buckets zipped together into one list.

3. Set the table size.

4. Publish the new table pointer.

5. Loop through the buckets of the old table

(a) Advance the pointer for that old bucket
until it reaches a node that doesn’t hash
to the same bucket as the previous node.
Call the previous node p.

(b) Find the subsequent node which hashes to
the same bucket as p, or NULL if no such
node exists.

(c) Link p to that subsequent node, bypassing
nodes which do not hash to p’s bucket.

6. If any changes occurred in this pass, repeat the
loop in step 5.

7. Reclaim the old hash table.

Steps 1, 2, and 3 initialize a structure published
in step 4; as before this requires a write barrier be-
fore the publish step. Step 4 must occur before step
5; these writes occur in traversal order, requiring a
wait-for-current-readers after step 4. One iteration
of the loop in step 5 has no internal ordering require-
ments, but each iteration for a given old bucket must
complete before the next iteration for that bucket.
The iterations occur in traversal order, requiring a
wait-for-current-readers barrier between each pass.
(Each pass operates on many old buckets, but one
wait-for-current-readers barrier suffices to separate
that pass from the previous.) Since the algorithm
uses the old table for temporary storage, the recla-
mation in step 7 cannot occur until after all passes
have completed; one final wait-for-current-readers
barrier guarantees this ordering. The resulting ex-
pand algorithm with barriers matches the algorithm
documented by the original paper.

4.3 Red-Black Trees

Howard [14] proposed a relativistic implementation
of red-black trees. These red-black trees store sorted
key-value pairs, and support various operations, of
which we will consider the lookup, insert, and delete
operations.

Readers perform lookups to find the value associ-
ated with a given key. A lookup always begins at the
root of the tree and progresses toward a leaf. This
order defines the natural traversal order for readers,
which writers may use to determine the appropriate
barriers between write operations.

Writers may perform insert operations to add a
given key-value pair, and delete operations to re-
move the value associated with a given key. In gen-
eral, following an insert or delete, the tree may re-
quire rebalancing to preserve the partial balancing
property of red-black trees. Rebalancing consists of
a series of tree rotations. Thus, we consider the write
algorithms required for insert and delete, as well as

7



F

B

A E

C

D

Figure 1: Tree before deletion of node B

for the rotations required to restore a tree to its bal-
anced state.

Inserts always take place at the leaves. Thus, in-
serting a new node requires only two writes: allocat-
ing and initializing the node, and changing a child
pointer in a leaf node to point to the new node.
These writes occur in reverse-traversal order, so the
writer need only execute a write barrier between
them. This barrier placement matches the insert
algorithm presented by Howard.

Deletion potentially involves more complexity, de-
pending on the position of the deleted node. Delet-
ing a leaf node only requires changing a single child
pointer and then reclaiming the node’s memory;
since these writes occur in reader traversal order,
the writer must execute a wait-for-current-readers
barrier between them. However, deleting an inter-
nal node requires additional steps. Consider the tree
shown in figure 1, in which we want to delete the
internal node B. Howard’s algorithm does so by re-
placing B with a copy of C, the left-most node on
the right branch of B. This eliminates node B, and
leaves the original leaf node C, which we can then
unlink and delete using the procedure for leaf nodes.

The algorithm performs the following write oper-
ations:

1. Create and initialize a copy of node C, with the
same key/value pair as C, and the color and
pointers (parent, left, and right) of node B.

2. Link the copy of C into the tree in place of node
B, by updating the left pointer of node F

3. Delete the original node C from the tree, by
replacing the left pointer of node E.

4. Reclaim the memory of nodes B and C.

The individual writes required to accomplish
step 1 can occur in any order, because readers can
not yet reach the new node. Steps 1 and 2 occur in
reverse traversal order, requiring a write barrier be-
tween them. Steps 2 and 3 occur in traversal order,

C

A

1 B

2 3

4

⇒ B

A

1 2

C

3 4

Figure 2: Subtree before and after a double rotation
of nodes A, B, and C.

so the algorithm must execute a wait-for-current-
readers barrier between them; otherwise, a reader
could miss both copies of node C. Finally, steps 3
and 4 occur in traversal order, requiring a second
wait-for-current-readers barrier between them. The
resulting algorithm with barriers included matches
the algorithm originally defined by Howard.

Rebalancing the tree following an insert or delete
may require recoloring some nodes. Since readers
never observe the color of the nodes, recoloring need
not take readers into account, and need not execute
any barriers. Rebalancing may also require restruc-
turing the tree using a rotation or double rotation
operation. We examine the double rotation here; an
analogous procedure holds for other rotations.

Consider the subtree shown in figure 2. The dou-
ble rotation can occur in one of two ways: by placing
a copy of node B above nodes A and C, or by placing
copies of nodes A and C below node B. To deter-
mine the optimal alternative, notice that moving a
node involves copying the original node to the new
location and removing the original. The writer must
preserve the order of these two steps, to prevent any
reader from missing both the original and the copy.
If the new location occurs after the old in traversal
order, the writer can order them with a write bar-
rier rather than the more expensive wait-for-current-
readers barrier. Moving nodes A and C below node
B produces this result. Even though this alterna-
tive copies two nodes rather than one, benchmarks
have demonstrated that this method performs better
than moving B by avoiding the additional wait-for-
current-readers barrier. Thus, the double rotation
proceeds as follows:

1. Allocate a copy of A, with children 1 and 2.

2. Allocate a copy of C, with children 3 and 4.

3. Set B’s left child to the copy of A.

4. Set B’s right child to the copy of C.

8



5. Remove the original node A and node C by
pointing the parent of the original C to B.

6. Reclaim the unlinked nodes.

This algorithm presents an example of a writer
that requires only partial ordering. Steps 1 and 2
have no ordering requirements, because the nodes
have not yet become visible to readers. Steps 3 and
4 also have no ordering requirements between them.
However, steps 3 and 4 must both occur after steps 1
and 2; since in both cases the writes occur in reverse
traversal order, a write barrier suffices. The write in
5 occurs in reverse-traversal order from the writes in
steps 3 and 4, requiring a second write barrier before
step 5. Finally, as always, the writer must wait for
current readers before reclaiming the unlinked nodes
in step 6. The resulting algorithm, including barrier
placement, matches the original algorithm as defined
by Howard.

Note that both the deletion and rotation algo-
rithms insert copies of nodes into the tree, and read-
ers may potentially observe both the original and
the copy. If the RBTree represents a set or a map,
a lookup will simply return the first value found, so
this temporary duplication does not present a prob-
lem. If the RBTree represents a multiset, multimap,
or some other abstract data type that may have mul-
tiple values associated with the same key, this tem-
porary duplication changes the semantics of the data
structure; such a structure would need to use a dif-
ferent set of algorithms.

5 Implementation

In section 2, we defined the ordering property for rel-
ativistic programming, and a set of barriers we can
use to enforce those properties on top of the under-
lying shared-addressing system. To implement the
relativistic programming model and relativistic algo-
rithms using it on real hardware, we must implement
the barrier operations in terms of those available
on that hardware. We present here an implementa-
tion of relativistic programming via shared memory,
without assumptions about consistency. (Section 8
outlines a preliminary alternative formulation based
on message passing.)

On a shared-memory multiprocessor system, the
local memories or replicas we described correspond
to the caching layers present between processors and
system memory. Various multiprocessor systems
implement differing coherence protocols to main-
tain some consistency property between processors,
though none implement the precise ordering prop-
erty we specified for relativistic programming. These

caching layers, as well as other properties of the ar-
chitecture, potentially allow reordering of memory
accesses in violation of the relativistic ordering prop-
erty. In particular, writes may remain in a writer’s
store buffer or cache before reaching memory, and
reads may return data from a reader’s cache with-
out refreshing that cache from memory. All such
caching may have different durations for different
memory addresses, leading to potential reordering
of writes as observed by readers. [12]

In this model, we can describe the behavior of a
read or write barrier as forcing preceding operations
to interact with memory before subsequent opera-
tions. (In practice, a barrier may instead force an
operation to become visible to other processors by
way of a cache coherence protocol without necessar-
ily forcing it to reach memory.)

Thus, a read barrier forces any read operations fol-
lowing the barrier to obtain values from memory at
least as up to date as those returned by reads prior
to the barrier, with respect to each writer. A read
barrier does not, however, interact with the caching
layers of processors other than the one executing
the barrier. This matches the semantics of various
common read memory barrier instructions provided
by current processors, as well as portable abstrac-
tions such as the smp_rmb function in the Linux ker-
nel or the _read ordering operations provided by
libatomic-ops.

In the most general case, a reader performing a
series of unrelated independent reads would need to
execute a read barrier operation between each pair
of reads. However, in practice, readers typically per-
form a series of related reads to traverse some data
structure in shared memory. In particular, readers
often perform dependent read operations, in which
subsequent reads depend on the results of previous
reads. For instance, reading a pointer and subse-
quently dereferencing that pointer constitutes a de-
pendent read. All current processors used in shared-
memory multiprocessor systems automatically pre-
serve the ordering of dependent reads without any
explicit barrier. Thus, a reader performing a data
structure traversal that consists entirely of depen-
dent reads need not execute any expensive hardware
memory barrier instructions.

As a notable exception, the DEC Alpha proces-
sor did not order dependent reads; concurrent al-
gorithms which require portability to Alpha must
use an explicit barrier between dependent reads. [9]
The Linux kernel provides an smp_read_barrier_-

depends operation with precisely these semantics,
which uses an appropriate barrier on Alpha and com-
piles to nothing on all other architectures. Linux

9



also provides a function for the common case of
dereferencing a pointer as a dependent read (hav-
ing previously read the pointer value itself), and this
function includes the necessary barrier implicitly.

For writers, a write barrier follows the same model
of bypassing caching layers between the writer and
memory. Executing a write barrier does not nec-
essarily guarantee that preceding write operations
have reached memory; however, it does guaran-
tee that subsequent write operations will not reach
memory any sooner than preceding write operations.
This matches the semantics of common write mem-
ory barrier instructions provided by current proces-
sors, as well as portable abstractions such as the
smp_wmb function in the Linux kernel or the _write

ordering operations provided by libatomic-ops.

In addition to the reordering possible in hardware,
compilers and language runtimes may also reorder
operations, either directly or by providing another
layer of caching behavior. For instance, a compiler
may read a value from memory into a processor reg-
ister, and reuse that register for a subsequent read
from the same address without re-reading memory,
unless explicitly instructed to do otherwise. [6, 12]

To address any reordering provided by the com-
piler or language runtime, we make use of built-in
ordering primitives. For example, the C language
provides the volatile keyword, which prohibits
the compiler from caching the value of a variable.
The GCC compiler additionally provides a “mem-
ory clobber” constraint which forces the compiler to
invalidate all cached references it holds and re-fetch
values from memory. All of the barrier implementa-
tions we have defined must additionally make use of
such primitives to ensure that the compiler does no
more reordering than the underlying hardware.

To implement the wait-for-current-readers bar-
rier, we require a mechanism that allows writers to
wait for current readers to complete, ideally with-
out incurring synchronization costs in readers. For
that purpose, we turn to Read-Copy Update (RCU).
[18, 25] RCU provides lightweight processor-local op-
erations processes can use to mark the start and end
of a reader, and a synchronize_rcu operation which
blocks waiting for all currently running readers to
finish. Existing applications of RCU have used this
wait-for-current-readers operation primarily to im-
plement safe memory reclamation; writers may re-
move elements from a data structure, making them
inaccessible to current readers, and defer garbage
collection until all existing readers have finished.

RCU provides joint-access parallelism, allowing
readers to run concurrently with writers. Many
algorithms exist for scalable data structures based

on RCU, including linked lists [18, 11], hash ta-
bles [24, 35, 36, 19], balanced trees [14], radix trees,
and various other data structures [26]. Because the
RCU read-side primitives avoid expensive synchro-
nization operations, applications of RCU produce
consistently excellent performance and scalability
for readers. [24, 28, 34]

The Linux kernel includes several implementa-
tions of RCU, which have encouraged growing adop-
tion by kernel developers, with the current Linux
2.6.38 kernel including over 5000 calls to the RCU
API [23]. In addition, URCU provides a portable
userspace implementation of RCU. [8]

We can use the RCU synchronize_rcu prim-
itive to implement the wait-for-current-readers
barrier we require for relativistic programming.
synchronize_rcu provides the semantics we re-
quire: if a writer executes a synchronize_-

rcu between two writes, any reader which fails
to observe the earlier write will complete before
synchronize_rcu completes, and therefore cannot
observe the writes after the synchronize_rcu. RCU
preserves our scalable readers by not adding any ex-
pensive synchronization primitives to those readers;
RCU’s read-side delineation incurs little to no cost.

RCU additionally provides an asynchronous
mechanism, call_rcu, to wait for current readers
and execute a callback when they have all com-
pleted. Implementations of relativistic algorithms
could choose to use this primitive as an alternative
to synchronize_rcu, splitting the write operations
that must occur after the wait-for-current-readers
barrier into a callback invoked by call_rcu.

Note that implementations of the wait-for-
current-readers primitive based on RCU will wait
for all current readers to complete before perform-
ing subsequent write operations. The alternative
message-passing formulation outlined in section 8 in-
stead performs subsequent write operations immedi-
ately; current readers ignore those writes, and new
readers can see those writes immediately, without
waiting for all other reader processes to complete.

6 Performance Results

Given a concrete implementation of our relativistic
programming model, we wish to evaluate the scal-
ability and performance of algorithms designed and
implemented via this model. To this end, we imple-
mented the reconstructed hash-table resize and red-
black tree algorithms from sections 4.2 and 4.3, to
compare them to other algorithms for the same data
structures. (The linked-list algorithm from section

10



1 2 4 8 16
0

50

100

150

200

RP

DDDS

Reader threads

L
o
o
k
u

p
s/

se
co

n
d

(m
il

li
on

s)

Figure 3: Lookups/second by number of reader
threads for the relativistic hash-table resize algo-
rithm versus the optimistic DDDS hash-table resize
algorithm. The hash table size resized continuously
between 8192 and 16384 buckets, in both cases con-
taining a fixed 65536 entries.

4.1 has already gone through extensive demonstra-
tions of its scalability and performance via previous
research on RCU-based linked lists.)

To evaluate the hash-table resize algorithm,
we present results from the rcuhashbash-resize

benchmark. [36] This benchmark uses the RCU im-
plementation in the Linux kernel. It runs a config-
urable number of threads performing lookups on a
hash table, along with a single thread continuously
resizing that hash table. We compared the lookup
performance of the relativistic resize implementa-
tion to the two other implementations available in
rcuhashbash-resize: a baseline implementation
based on reader-writer locking, and Nick Piggin’s
dynamic dynamic data structures (DDDS) [27], the
current best-known method available for the Linux
kernel. (DDDS uses an optimistic approach, copy-
ing from a primary to a secondary hash table, and
forcing lookups to check the secondary table if the
primary lookup fails due to a conflict with a writer.)

Figure 3 shows the results. (The graph omits the
results from the implementation using reader-writer
locks due to limits of scale; reader-writer locking
maxed out at under 1.3 million lookups/second on
16 CPUs, a factor of 126 slower than the relativis-
tic implementation.) In the presence of concurrent
resizes, the relativistic resize algorithm achieves far
better scalability than the implementation based on
reader-writer locking. Furthermore, though DDDS
scales reasonably well, the relativistic algorithm pro-
vides better performance.

Figures 4 and 5 present performance results for
the red-black tree implementation. Figure 4 presents

1 2 4 8 16
0

20

40

60

80

100 nosync
RP

rwlock
lock

SwissTM

Reader threads

L
o
ok

u
p

s/
se

co
n

d
(m

il
li

o
n

s)

Figure 4: Lookups/second by number of reader
threads in the absence of writers, for the relativistic
red-black tree algorithm (RP), a synchronization-
free baseline (nosync), locks, reader-writer locks,
and SwissTM [10] transactional memory.

1 2 4 8 16
0

20

40

60 RP

rwlock
lock

SwissTM

Reader threads

L
o
ok

u
p

s/
se

co
n

d
(m

il
li

on
s)

Figure 5: Lookups/second for 1–15 reader threads in
the presence of a writer thread, for the relativistic
red-black tree algorithm (RP), locks, reader-writer
locks, and SwissTM [10] transactional memory.

lookup performance for 1–16 reader threads in the
absence of a writer. Figure 5 presents lookup per-
formance for 1–15 reader threads in the presence of
a writer thread.

With and without a concurrent writer, the rela-
tivistic red-black trees produce significantly better
results than an implementation based on SwissTM
[10] transactional memory, and both surpass the
complete lack of scalability exhibited by the lock-
ing techniques. In the no-writer case, we present a
variation with no synchronization at all as a theo-
retical limit; the relativistic implemenation remains
very close to this bound even for 16 CPUs.

11



7 Related Work

An early use of writer synchronization to avoid read
barriers comes from work by McKenney, introducing
a stronger write memory barrier that forced a bar-
rier on all processors via inter-processor interrupts
[20]; this avoids the overhead of a read barrier in the
common case, with no writers running. McKenney
later made specific use of the RCU wait-for-current-
readers operation to implement a more efficient write
barrier with batching, as part of the implementation
of Sleepable Read-Copy Update (SRCU) [21].

Much transactional memory research has inves-
tigated invisible reads, a technique allowing read-
ers to maintain consistency while not incurring the
overhead of maintaining globally visible transaction
metadata. The relativistic programming model in-
herently allows invisible reads, and readers incur
minimal overhead. Relativistic programming pro-
vides a transaction-like consistency model for read-
ers, though readers may run between ordered writes
rather than only between entire write transactions.

TxLinux [29] demonstrated a transactional mem-
ory system integrated in the Linux kernel. Their
work explored interactions between transactional
memory and other forms of synchronization, includ-
ing mutual exclusion and RCU. TxOS [28] presented
a similar case study for a transactional system-call
interface between the Linux kernel and userspace,
the implementation of which built heavily on RCU.

The relativistic programming model we have doc-
umented focuses on improving scalability for readers
by allowing joint-access parallelism for readers and a
single writer at a time. Alternative approaches exist
to allow joint-access parallelism for multiple writers,
based on data partitioning and replication. These
approaches require readers to perform extra steps,
but allow writers to run concurrently using only lo-
cal replicas.

Shapiro, Preguiça, Baquero, and Zawirski [32]
proposed an approach for scalable replicated data
types based on commutative operations. Their
methodology supports joint-access parallelism for
writers, reconciling replicas by relying on the com-
mutativity of operations to guarantee an identical
result for a set of operations regardless of order-
ing. The data structures they propose would also
prove amenable to our current relativistic program-
ming model, and an adaptation of their methodology
could potentially add support for concurrent writers.

Our construction technique for relativistic data
structures requires readers to perform only acyclic
traversals of data structures. This requirement pro-
hibits a small but significant set of algorithms, most

notably those involving general graph traversal; such
algorithms also prove exceedingly difficult for fine-
grained locking. Some research exists suggesting
approaches for the use of Read-Copy Update on
cyclic data structures, including graphs, with addi-
tional reader overhead required to maintain consis-
tency. [22] Adaptation of this research to relativistic
programming could extend the relativistic ordering
property to cyclic data structures.

“Laws of Order” [3] documents a set of inter-
locked properties for concurrent algorithms, and
proves that any algorithm with all those properties
must necessarily rely on expensive synchronization
instructions. These properties include “strong non-
commutativity”: multiple operations whose results
both depend on their relative ordering. Relativis-
tic readers, however, cannot execute strongly non-
commutative operations—a relativistic reader can-
not affect the results of a write, regardless of order-
ing. This allows relativistic readers to avoid expen-
sive synchronization without contradicting the re-
sults shown in “Laws of Order”.

8 Future Work

As previously discussed, the relativistic program-
ming model we have presented focuses primarily on
reducing the cost of readers and allowing them to
run concurrently. This model pushes expensive syn-
chronization into the writer to avoid placing any in
the reader. Many workloads depend most heavily
on read performance, but write-centric workloads
exist as well, and will not necessarily perform op-
timally with this approach to relativistic program-
ming. Write-centric alternatives based on partition-
ing do not currently have a well-defined ordering
property analogous to that presented in section 2.
Furthermore, no generalized construction technique
exists to support building the write and read algo-
rithms. Our future work will examine write-centric
relativistic programming with the same rigor we
have applied to read-centric approaches.

The implementation in section 5 mapped the bar-
rier primitives we specified for relativistic program-
ming to typical memory barriers available on shared-
memory processor hardware, as abstracted by sys-
tems such as the Linux kernel. We plan to perform
more extensive analysis of the interactions between
the relativistic programming semantics and the se-
mantics of specific processor hardware, such as those
specified by the x86-TSO model [31].

The relativistic programming implementation
documented in section 5 uses shared memory. We

12



also have a preliminary algorithm for relativistic
programming based on distributed message-passing.
This approach removes the need for the writer to
wait for all readers to finish before performing a
write that existing readers should not see yet. In-
stead, writers may perform writes immediately, and
supply messages which inform current readers to ig-
nore new writes to a data structure until they com-
plete their current read. As a result, rather than
waiting for all current readers to finish before allow-
ing any reader to observe the write, this approach
allows each new reader to see the write as soon as
possible. Future research will explore this alterna-
tive implementation thoroughly, and compare it to
other systems based on message-passing.

9 Conclusion

Concurrent programming faces a harsh tradeoff be-
tween scalability and ease of implementation, exem-
plified by the wide range of consistency models for
shared data. Even the most scalable models struggle
to go beyond disjoint-access parallelism. We pre-
sented relativistic programming, a model for con-
current programming based on shared-addressing,
which does not require message-passing or coherent
shared memory. Our model supports joint-access
parallelism, allowing readers to run concurrently
with a writer on the same data.

We defined the key ordering property for this
model, which provides a transactional behavior for
reads, allowing them to appear atomic with respect
to concurrent write operations. We presented a gen-
eralized construction technique for relativistic data
structure algorithms, and demonstrated its appli-
cation and performance. We have shown that the
relativistic programming model provides excellent
scalability, while maintaining an easier program-
ming model. We believe these results will allow
more widespread adoption of relativistic program-
ming techniques as a means for building scalable
data structures, and support future research on con-
current programming models which allow both ease
of programming and scalability.

References

[1] Adve, S. V., and Boehm, H.-J. Memory
models: a case for rethinking parallel languages
and hardware. Communications of the ACM 53
(August 2010), 90–101.

[2] Ahamad, M., Neiger, G., Burns, J.,
Kohli, P., and Hutto, P. Causal memory:

definitions, implementation, and programming.
Distributed Computing 9 (1995), 37–49.

[3] Attiya, H., Guerraoui, R., Hendler, D.,
Kuznetsov, P., Michael, M. M., and
Vechev, M. Laws of order: Expensive syn-
chronization in concurrent algorithms cannot
be eliminated. In Proceedings of the 38th an-
nual ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages (2011),
POPL 2011.

[4] Batty, M., Owens, S., Sarkar, S.,
Sewell, P., and Weber, T. Mathematiz-
ing C++ concurrency. In Proceedings of the
38th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of Programming Languages
(2011), POPL 2011, pp. 55–66.

[5] Baumann, A., Barham, P., Dagand, P.-E.,
Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., and Singhania, A. The
multikernel: a new OS architecture for scalable
multicore systems. In Proceedings of the 22nd

ACM SIGOPS Symposium on Operating Sys-
tems Principles (2009), SOSP 2009, pp. 29–44.

[6] Boehm, H.-J. Threads cannot be imple-
mented as a library. In Proceedings of the 2005
ACM SIGPLAN conference on Programming
language design and implementation (2005),
PLDI 2005, pp. 261–268.

[7] Boyd-Wickizer, S., Chen, H., Chen, R.,
Mao, Y., Kaashoek, F., Morris, R.,
Pesterev, A., Stein, L., Wu, M., Dai, Y.,
Zhang, Y., and Zhang, Z. Corey: An oper-
ating system for many cores. In 8th USENIX
Symposium on Operating System Design and
Implementation (2008), OSDI 2008, pp. 1–16.

[8] Desnoyers, M. Low-Impact Operating Sys-
tem Tracing. PhD thesis, École Polytechnique
Montréal, 2009.

[9] Digital Equipment Corporation. Shared
Memory, Threads, Interprocess Communica-
tion. http://h71000.www7.hp.com/wizard/

wiz_2637.html, August 2001.

[10] Dragojevic, A., Felber, P., Gramoli, V.,
and Guerraoui, R. Why STM can be more
than a research toy. Communications of the
ACM (2011).

[11] Hart, T. E., McKenney, P. E., Brown,
A. D., and Walpole, J. Performance of
memory reclamation for lockless synchroniza-
tion. Journal of Parallel and Distributed Com-
puting 67, 12 (2007), 1270–1285.

13



[12] Herlihy, M., and Shavit, N. The Art of
Multiprocessor Programming. Morgan Kauf-
mann, 2008.

[13] Herlihy, M., Shavit, N., and Waarts,
O. Linearizable counting networks. Distributed
Computing 9 (1996), 193–203.

[14] Howard, P. W., and Walpole, J. Relativis-
tic red-black trees. Tech. Rep. 10-06, Portland
State University, 2010.

[15] Howard, P. W., and Walpole, J. A rela-
tivistic enhancement to software transactional
memory. In 3rd USENIX Workshop on Hot
Topics in Parallelism (HotPar 2011) (2011).

[16] Lamport, L. A new solution of dijkstra’s con-
current programming problem. Communica-
tions of the ACM 17 (August 1974), 453–455.

[17] Lipton, R. J., and Sandberg, J. S. PRAM:
A scalable shared memory. Tech. Rep. 180-88,
Princeton University, 1988.

[18] McKenney, P. E. Exploiting Deferred De-
struction: An Analysis of Read-Copy-Update
Techniques in Operating System Kernels. PhD
thesis, OGI School of Science and Engineering
at Oregon Health and Sciences University, 2004.

[19] McKenney, P. E. RCU vs. locking per-
formance on different CPUs. In linux.conf.au
(Adelaide, Australia, January 2004).

[20] McKenney, P. E. Software implementation
of synchronous memory barriers. US Patent
6996812, February 2006.

[21] Mckenney, P. E. Sleepable read-copy up-
date. Linux Weekly News. http://lwn.net/

Articles/202847/, 2008.

[22] McKenney, P. E. Efficient support of consis-
tent cyclic search with read-copy-update. US
Patent 7814082, October 2010.

[23] McKenney, P. E. RCU Linux us-
age. http://www.rdrop.com/users/paulmck/
RCU/linuxusage.html, March 2011.

[24] McKenney, P. E., Sarma, D., and Soni,
M. Scaling dcache with RCU. Linux Journal
1, 118 (January 2004), 38–46.

[25] McKenney, P. E., and Slingwine, J. D.
Read-copy update: Using execution history to
solve concurrency problems. In Parallel and
Distributed Computing and Systems (October
1998), pp. 509–518.

[26] Olsson, R., and Nilsson, S. TRASH: A
dynamic LC-trie and hash data structure. In
Workshop on High Performance Switching and
Routing (May 2007), HPSR 2007.

[27] Piggin, N. ddds: ”dynamic dynamic data
structure” algorithm, for adaptive dcache
hash table sizing. Linux kernel mailing
list. http://news.gmane.org/find-root.

php?message_id=<20081007064834.GA5959@

wotan.suse.de>, October 2008.

[28] Porter, D. E., Hofmann, O. S., Ross-
bach, C. J., Benn, A., and Witchel, E.
Operating system transactions. In Proceedings
of the twenty-second ACM SIGOPS Symposium
on Operating Systems Principles (2009), SOSP
2009, pp. 161–176.

[29] Rossbach, C. J., Hofmann, O. S., Porter,
D. E., Ramadan, H. E., Aditya, B., and
Witchel, E. TxLinux: using and manag-
ing hardware transactional memory in an op-
erating system. In Proceedings of the 21st

ACM SIGOPS Symposium on Operating Sys-
tems Principles (2007), SOSP 2007, pp. 87–102.

[30] Saltzer, J. H., Reed, D. P., and Clark,
D. D. End-to-end arguments in system de-
sign. ACM Transactions on Computer Systems
2 (November 1984), 277–288.

[31] Sewell, P., Sarkar, S., Owens, S.,
Nardelli, F. Z., and Myreen, M. O.
x86-TSO: a rigorous and usable programmer’s
model for x86 multiprocessors. Communica-
tions of the ACM 53 (July 2010), 89–97.

[32] Shapiro, M., Preguiça, N., Baquero, C.,
and Zawirski, M. A comprehensive study
of convergent and commutative replicated data
types. Tech. Rep. RR-7506, INRIA, January
2011.

[33] Terry, D. B., Theimer, M. M., Petersen,
K., Demers, A. J., Spreitzer, M. J., and
Hauser, C. H. Managing update conflicts in
Bayou, a weakly connected replicated storage
system. In Proceedings of the fifteenth ACM
Symposium on Operating Systems Principles
(1995), SOSP 1995, pp. 172–182.

[34] Torvalds, L. Linux 2.6.38-rc1. Linux
Weekly News. https://lwn.net/Articles/

423623/, January 2011.

[35] Triplett, J., McKenney, P. E., and
Walpole, J. Scalable concurrent hash tables
via relativistic programming. ACM Operating
Systems Review 44, 3 (July 2010).

14



[36] Triplett, J., McKenney, P. E., and
Walpole, J. Resizable, scalable, concurrent
hash tables. In USENIX Annual Technical Con-
ference (2011).

[37] Vogels, W. Eventually consistent. Communi-
cations of the ACM 52 (January 2009), 40–44.

[38] Wentzlaff, D., and Agarwal, A. Factored
operating systems (fos): the case for a scalable
operating system for multicores. SIGOPS Op-
erating Systems Review 43 (April 2009), 76–85.

[39] Young, M., Tevanian, A., Rashid, R.,
Golub, D., Eppinger, J., Chew, J.,
Bolosky, W., Black, D., and Baron, R.
The duality of memory and communication in
the implementation of a multiprocessor operat-
ing system. In Proceedings of the 11th ACM
Symposium on Operating Systems Principles
(1987), SOSP 1987, pp. 63–76.

15


	Generalized Construction of Scalable Concurrent Data Structures via Relativistic Programming
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1388777584.pdf.8S7jc

