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Gaussian Light Beams in Inhomogeneous Media

Lee W. Casperson

Vector wave solutions are obtained for the propagation of beams of light in media having slow spatial
variations of the gain, loss, or index of refraction. The formalism developed here is applicable to a wide
range of problems, and an example considered in detail is the propagation of off-axis beams in lenslike
laser materials and optical waveguides. A procedure is also described for the diagnosis of localized di-
electric inhomogeneities such as plasmas by means of Gaussian laser beams.

1. Introduction

The output beam modes of most conventional la-
sers can be simply described in terms of Hermite-
Gaussian1 or Laguerre-Gaussian2 functions. There-
fore, for applications involving the propagation of
laser beams it is important to understand what ef-
fects various media and optical systems will have on
such Gaussian beams. The purpose of this work is
to examine the propagation of Gaussian beams in
media having slow spatial variations of the gain and
index of refraction. It is assumed here that the vari-
ations are sufficiently slow in the vicinity of the
beam that the complex propagation constant can be
expanded keeping only the constant, linear, and
quadratic terms. If this condition is satisfied, a pro-
pagating beam will remain Guassian even though its
spot size, phase front curvature, amplitude, phase,
and direction of. propagation are significantly altered
by the inhomogeneous medium.

Slow variations of the propagation constant occur
very commonly in practice and they may be either
intentional or unavoidable. For example, in gas la-
sers there may be spatial profiles due to the free
electrons3 or the gain4' 5 and dispersions of the laser
transition or a neighboring transition.7 In cw solid
lasers index profiles due to thermal effects are com-
mon.8 Lenslike media have also been proposed as a
means for propagating information-bearing light
beams over long distances,9 -12 and the recently de-
veloped SELFOC lenslike optical waveguides have
been designed for this purpose.13 Such profiles may
also occur naturally in the atmosphere and affect the
long-distance propagation of beams. Most treat-
ments related to this subject are specialized in na-
ture and begin with either the ray equation or the
scalar wave equation. Here we develop a general
wave equation formalism and obtain the components

The author is with the School of Engineering and Applied
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of the vector waves. The validity of the ray equa-
tion in treating beam propagation is also considered.

In Sec. II the wave equation is reduced to a much
simpler set of ordinary differential equations govern-
ing all the parameters of a Gaussian beam in an
inhomogeneous material, and in the following sec-
tions solutions of these equations are obtained for
several situations of practical interest. The problem
of off-axis beams in complex lenslike media is dis-
cussed in Sec. III and it is shown that gain or loss
profiles strongly affect the stability of long-distance
beam propagation. Section IV contains a detailed
solution for steady-state higher order beam propaga-
tion. In Sec. V a procedure is developed for diag-
nosing localized inhomogeneous refracting and ab-
sorbing media such as plasmas by means of Gaussian
laser beams.

I1. Derivation of Beam Equations
A Gaussian beam can be completely characterized

by a small number of parameters that describe the
size, location, and phase properties of the beam. In
this section the basic equations governing these pa-
rameters are derived using conventional beam nota-
tion. The starting point for this derivation is Max-
well's equations, which for harmonically varying
fields in an isotropic medium may be written

V X E =-iwH, V ( H = iEB,

where the permittivity has an imaginary part to ac-
count for conductivity and the out-of-phase compo-
nent of the polarization. These equations may be
combined to yield the wave equation for the electric
field

V X V X E- 2 E=(V/) X V X E. (2)

For the Cartesian field components Eq. (2) becomes

V2 + w2ggE =-V[(Ve/e>E]-(V/g) x V x E,
(3)
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where Gauss' law for a neutral medium V E = 0
has been used. Equation (3) is really three coupled
scalar equations governing the components of the
electric field.

For nearly plane waves in a weakly inhomogeneous
medium the longitudinal electric field component is
much smaller than the transverse components.
From Eq. (3) it follows that if the changes in and
A per wavelength are small, for the dominant
transverse components the right-hand side of the
equation is negligible. The simplified wave equation
is

V2 E + k2 E = O, (4)

where the wavenumber k = w(g1)'/ 2 has been intro-
duced. An identical equation is also obtained for
the transverse components of the magnetic field. It
is not generally true, as is sometimes implied, that
Eq. (4) holds also for the weak longitudinal fields in
this approximation (small change in and per
wavelength).'4 However, the longitudinal fields can
be determined directly from the transverse compo-
nents by means of Eq. (1) and an example is consid-
ered in Sec. IV.

We now assume specifically that the beam is po-
larized in the x direction and is propagating more or
less parallel to the z axis, so that solutions of Eq. (4)
will describe the x component of the electric field. If
k2 has at most a quadratic x and y dependence in
the vicinity of the beam, one can write

k2 (x,y,z) = ko(z)[ko(z) - klx (z)x - k(z)y
- k(z)x 2 - 2ky(z)xy - k2 (z)y2]. (5)

This is the most general second-degree profile possi-
ble and includes most of the situations encountered
in practice. The wavenumber k is complex to in-
clude profiles of the gain or loss. For a wave propa-
gating in the z direction a useful substitution is

E_ = G(x, y, z) exp[-ifko(z)dz]. (6)

Then Eq. (4) reduces to

(62G/ 2) +( 62G/ y2 )- 2ik,(6G/bz) - i(dk0/dz)G
- k(k 1~x + klyy + k 2 + 2kyxy + k2 yy

2)G = 0, (7)

where G is assumed to vary so slowly with z that its
second derivative can be neglected.

The general astigmatic form for a Gaussian beam
can be written

G(x,y,z) = exp - i[Q(z)x 2/2] + Q(z)xy
+ [QY(z)y2/2] + S(z)x + S(z)y + P(z)}. (8)

The size of the beam and the curvature of the phase
fronts are governed by the complex beam parameters
Qx, Qxy, and Qy. It will .be shown that the location
of the beam depends on the complex displacement
parameters Sx and Sy. The phase and amplitude of
the beam are governed by the complex phase param-
eter P. Other beam configurations can be expanded
in terms of these fundamental astigmatic Gaussian
beam modes. If Eq. (8) is substituted into Eq. (7),

one finds by equating equal powers of x, y, and xy
that the beam parameters are governed by the fol-
lowing equations:

Q + Q + k(dQ./dz) + kk2X = 0,
QY2 + Q 2 + k(dQyldz) + kk 2y = ,

(9)

(10)

(Qx + Qy)Qxy + k(dQxy /dz) + kokxy = 0, (11)
QxSx + QxyS + ko(dSxIdz) + (kok1x)12 = 0, (12)
QySy + QxySx + k(dS y/ dz) + (kk 1y)/2= 0, (13)

(dP/dz) =-i[(Qx + Qy)/2k1
-[(SX 2 + S )/2kj1- (i'/2k.)(dkoldz). (14)

Thus the wave equation is reduced to a set of ordi-
nary differential equations.

The procedure for determining the propagation of
a Gaussian beam in a slowly varying inhomogeneous
medium involves expanding k in the vicinity of the
beam to second order in a Taylor series to obtain the
appropriate coefficients ko(z), klx(z), kiy(z), k2 x(z),
k2y(z), and ky(z) while simultaneously solving Eqs.
(9)-(14). This procedure is difficult in general, but
numerical solutions are always possible. However, in
many situations of practical interest it is valid to as-
sume that the term k(z) in the propagation con-
stant is equal to zero. This is simply the requirement
that the symmetry axes of the quadratic approxima-
tion to the medium remain parallel to the x and y
axes of the coordinate system. Furthermore, if the
symmetry axes of the astigmatic beam are also ini-
tially parallel to the x and y axes [Qxy(O) = 0],
QxY(z) = 0 according to Eq. (11). Thus Eqs. (9)-
(14) reduce to the much simpler set

QX2 + ko(dQ. /dz) + kok2x = 0,

Qy2 + k,(dQy/ldz) + kOk2y = 0,

QxSx + k(dSxldz) + (kok1x)/2 = 0,

QySy + k(dSy / dz) + (kok1y)/2 = 0,

(dP/dz) =-i[(Qx + Q)/(2k,)]
- [(SX2 + S 2)/(2k0 )] - (i 2k0)(dko dz),

(15)

(16)

(17)

(18)

(19)

and the Gaussian beam has the form
G(x, y, z) = exp

- i(Qx2/2 + Qyy2/2 + Sxx + Syy + P). (20)

The complex parameters Qx and Qy describe the
transverse properties of the beam. It is conventional
to introduce the complex beam radius q = ko/Q,
which has the form

1/q = Q/ko = (1/R) - i[Xm/(7rw)], (21)

where R is the radius of curvature of the spherical
phase fronts regarded as positive when the center of
curvature is behind the phase front, w is the /e spot
size, and Xm is the wavelength in the medium. If
the beam parameters are separated into their real
and imaginary parts according to the form Qx = Qxr
+ iQxi, Sx = Sxr + iSxi, P = Pr + iPi, etc., Eq. (20)
can be factored as
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G = exp{-i[Qr(x - d) + Q2y - dyp)

_ Qxrdxp _ Qyrdyp. + p]
2 2 J

+ ['(X -dxa) + Q29i( - d )

Qxidxa 2 _Qyidya 
2 T (2

2 2 + P} (22)

where dxa = -Sxi/Qxi is the displacement in the x
direction of the center of the amplitude distribution
and dp = Sxr/Qxr is the displacement in the x
direction of the center of the phase fronts. The loca-
tion of the beam with respect to the z axis is thus
determined by the real numbers dxa and dya. Ana-
lytic solutions of the beam- equations and their inter-
pretation are included in the following sections.

III. Solutions of Beam Equations

We have shown that the propagation of a Gaussian
beam in a slowly varying inhomogeneous medium is
determined entirely by the evolution of the complex
parameters Q, S, and P. In this section solutions of
Eqs. (15)-(19), which govern these parameters, are
discussed for several situations of practical interest.
It is assumed here that ho, kX, kly, k2X, and k2y are
known constants. In Sec. V an example is consid-
ered in which these parameters are functions of z.

Equations (15) and (16) are Ricatti equations and
the solutions for Qx can be written in the form5

QX(z)

ko

-(kX / k)"/ 2 sin[(k2 x/k)1 /2Z] + [Q.(0)/ k0]cos[(k2x/ k0)1/2z]

cos[(k.,,/k,)' 2z] + [Qx(0)/kj](k,/k 2 Y)12 sin[(k2 x/ko)'2z]
(23)

with a similar result for Qy(z). For a uniform medi-
um (k2 = 0) Eq. (23) simplifies to qx(z) = q(0) +
z. The solution of Eqs. (17)-(19) is simplified con-
siderably by using Eqs. (15) and (16) and introduc-
ing the new parameters S = Sx - kQx/(2k 2 x),
Sy = Sy - kyQy/(2k 2 y), and P' = P - kxSxl
(2k2 x) - kySy/(2k 2 y) + klx2 Qx/(8k2 x2 ) + kly2QY/
(8k2y2) - klx2z/(8k2x) - kly2z/(8k2 y). With these
substitutions the equations become

(dSx'/dz) + (QxSx'/ko) = 0, (24)

(dS,'/dz) + (QS /k,) = 0, (25)

(dP'/dz) =-i[(Q + Qy)/(2ko)]
- [(Sx'2 + S 2)/(2ko)1. (26).

Using Eqs. (23) and (24), the solution for S.' is

SX'(z) = S(O) /
Icos[(k2 x/k,)"/2 z] + [Qx(0)/kj(kk 2 x)1 1 2 sin[(k2 x/kO)1 2Z]}

(27)

with a similar result for S'(z). Using Eqs. (23),
(26), and (27), P' is found to be

P'(z) - P'(0) = - (i/2) In cos[(k2 k,)112z]

+ [Qx(0)/kj(k,/k2 )1 /2 sin[(k2./k 0)1/2z]j
- (i/2) In cos[(k2,/k 0 )"2 z]

+ [Q(0)/k 0](k,/k2 ,)"/2 sin[(k2,/k)" 2z]}

k[S.0 )]

2k,

x (k.1kX)' sin[(k.,/kO~ /2 zI

cos[(k2 ./k) 112z] + [Q,(0)/k (k,/k 2 ) 1/2 sin[(k2 z/ko)12z1
[S ,(O)]2

2k,

X ~~~(ko/k2y)112 sin[(k2,/k J~/2Z]

cos[(k2y/k 0)"/2z] + [Q,(O)/kj](klk 2 ,)"/2 sin[(k2 y/ko) 2z1
(28)

We thus have explicit expressions for the evolution of
the parameters of a Gaussian beam in a medium
with independent linear and quadratic profiles of the
gain and refractive index. Some consequences of
these solutions are discussed in the following para-
graphs.

The parameter Qx is considered first. Since in
general both ko and k2x may be complex, Eq. (23)
represents a damped (or growing) nonsinusoidal
oscillatory behavior, which may be characterized by
a period px and a damping length lx given by

P = r[Re(k2 . / ko) 1 2
]-l 1Jx = [2Im(k 2x/ko)/ 2]' (29)

From Eqs. (21) and (23) one finds that the limiting
value of the complex beam radius at large distances
is

llqx(-) = 1F (k2./k)"12 = 1/RX(O) - i[X./(7rWX2(-)A
(30)

where the upper sign must be used if Im(k2 x/kO)'/2
> 0 and the lower sign must be used if Im(k2x/ko)"/2
< 0. This steady-state solution can also be obtained
directly from Eq. (15) by setting the derivative term
equal to zero, but then one has no information about
the choice of sign or the stability of the result. In a
practical waveguiding problem it is also necessary
that the steady-state solution represent a confined
beam (real spot size). Equation (30) implies that
this confinement condition is Re + (k2x/ko)"/2 > 0,
or with our sign conventions

(31)

We now separate the propagation constant into its
real and imaginary parts according to k = + ia.
Then if the gain per wavelength is small ( > ao),
stability is assured by a2x > 0. Thus at distances
large compared to x the spot size and phase front
curvature approach the values implied by Eq. (30) as
long as a2x > 0. This result has been verified in
high gain xenon lasers.5' 6 In the limit of distances
short compared to lx or when there is no gain profile
(lx a ) the beam parameter may oscillate without
damping.

Figure 1 gives plots of the spot size in units of 21/2

(0of2x) -1/4 vs the normalized distance z' = (2x/
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(k2./ko)"/ 2 ]-'. If the gain profile is weak as in Fig.
1(a), the damping length is approximately Ix 
(02x/0)-1/ 2(f32x/a2x). On the other hand, it is also
apparent that a negative gain profile (a2x < 0) can
rapidly lead to deterioration of the beam mode.

The behavior of the parameter Sx is in many re-
spects similar to that of Qx, and S also exhibits
damped or growing nonsinusoidal oscillations. In
the limit of large distances (z > 1x) it follows from
Eq. (27) that for a positive gain profile (a2X > 0) in a
focusing medium (2X > 0) Sx approaches

S.(-) = - i[(kjx/2)(k0/k2 J)"12]. (32)

The oscillation period is 2 px, where Px is given in Eq.
(29). Using Eq. (32) with Eq. (30) one finds that
the displacement of the amplitude center of the
beam dxa and the displacement of the center of cur-
vature dxp approach the limits

Fig. 1. Axial Gaussian beam in a complex lenslike medium
showing the normalized spot size w' = 2-1 /2 (fof2x)"/4w vs the
normalized distance z' = (2x/0o)1/

2
z for (a) a2X./2x = 0.1, (b)

a2x/02x = 0, and (c) a2x//2x = -0.1. The dashed line in (c)
marks the distance at which the spot size becomes infinite.

4

2

(b) 0

-2
-4

4

2

(c) 0

-2

-4

I I

4 1 6

_ II

10 ,

Fig. 2. Off-axis beam in a lenslike medium showing the normal-
ized beam displacement in the x direction vs z' for (a) a2x//2x =

0.1, (b) a2x/02x = 0, and (c) a2X/02X = -0.1.

io)"/2 z for various values of a2x/132x. From these
plots it is apparent that even when the gain profile is
very weak compared to the index profile (a2x << 2x),
still the gain can strongly affect the spot size of a
propagating beam. Thus a gain profile in a wave-
guiding medium can serve to stabilize a beam as well
as increasing its amplitude. To be useful in this
function the medium must be longer than Ix = [2Im-

d ( ) I [-jk ( k )1/2]/dxa (a) = - Im [2 k,, I/.
- _ 1 Re(kxk2 ["/2).

2 Rek2x

d p( ) - Re[:! ix(ko )/2]/

__ 1 Im(kjxk 2 7"1/2)
2 imk2x

(33)

(34)

where the approximation has been made that the
gain per wavelength is small (o »> ao). In the op-
posite limit of distances short compared to lx or when
a2x = 0, the parameters dxa(z) and dxp(z) may oscil-
late without damping.

Figure 2 gives plots of the beam displacement as a
function of z' = (2x//o)'/ 2z for various values of
0a2x/0 2 X with klx = 0. Except for the initial dis-
placement of four units the input conditions for
these plots are the same as for those in Fig. 1. It is
evident from the figure that even a very weak nega-
tive gain profile (22x < 02x) may make the wave-
guide extremely unstable.

Figure 3 gives a plot of an off-axis beam in the
limit that gain focusing is dominant (a2x >» 12xl).
Evidently for a positive gain profile the beam dis-
placement again rapidly decays to zero. These
damped focusing effects are very important in high
gain lasers. In such lasers the output properties
should be relatively insensitive to mirror alignment,
and this has been observed experimentally in our
studies of' xenon lasers at 3.51 . These results
should also be a useful for long-distance beam guid-
ing, since the introduction of a medium with a gain
or loss profile having a2x > 0 can compensate for any
instabilities resulting from irregularities in the wave-
guiding medium. On the other hand, one can show
that a gain profile tends to discriminate against the
higher order Hermite-Gaussian or Laguerre-Gaussian
modes, so any image information carried by the
beam would be lost.

The results for the beam displacement simplify
greatly in the limit that the propagation constant is

October 1973 / Vol. 12, No. 10 / APPLIED OPTICS 2437
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Adz"~~~~~~~~~~~~~Z
|-2

Fig. 3. Normalized beam displacement d'xa =
2

-
3 /4 (a2x#o)1/4dxa and spot size vs z" = (a2X/2flo)1/2z for a gain-

focused beam. Dashed lines are asymptotic limits. For a2x <0

reverse direction of propagation.

real. This limit is important because most gas lens-
es and other waveguiding media are assumed to have
a real index profile. Heuristic arguments suggest
that for a medium of this type the center of a Gauss-
ian beam should propagate along a trajectory that is
a solution of the paraxial ray equation.' 2 Using the
formalism developed here, this result can be rigor-
ously derived. In particular it follows in a straight-
forward way from Eqs. (15) and (17) that for real k
the beam displacement dxa = -Sxi/Qxi is governed
by

(d/ dz)k,(dd xdz) = - (kx 2) - (k2xdxa) (35)

In terms of the refractive index n = no - 1/2nlxdxa -
1/2nlydya - 1/2n2xdxa2

- /l2n2ydya
2 this result becomes

(Id1/dz)nO(ddxa,/dz) = (-nix/2)
- n2xdxa = (bn1/bdxa)- (36)

The vector displacement dia = xdxa + iydya is gv-
erned by

(d/dz)no(dda/dz) = n, (37)

which is exactly the paraxial ray equation. Using
the SELFOC fibers it has been verified experimen-
tally that off-axis Gaussian beams in real lenslike
media indeed propagate along ray trajectories.15 An
important consequence of this result is that in opti-
cal systems containing real quadratic lenslike media
the same 2 x 2 matrices that govern the evolution of
the transverse beam properties according to the
"ABCD law"4 also govern the raylike propagation of
the beam center.

If the refractive index is independent of z, Eq. (36)
reduces to

(d2/dZ2 )dxa + (n2xdxa /no) = -n1x/2no. (38)

This is a linear second-order equation having the
general solution

dx,(z) = [dxa(O) + (nlx/2n 2x)] cos[(n2 x/n,) 1 2z]

+ d'(0)(n 0 /n 2x)" 2 sin[(n2 x/no)/ 2z] - (n1x/2n2 x), (39)

where dxa(0) and dxa'(0) are, respectively, the initial
beam displacement and slope. Thus, the beam cen-
ter oscillates sinusoidally about the limiting dis-
placement dxa(o) = -nlx/2n2x of Eq. (33) indepen-
dent of the beam dimensions. If n = 0, this result
simplifies to
d,0 (z) = dxa(0) cos[(n2 . / no)1 /

2z]
+ d(0)(nol/n 2 x)/ 2 sin[(n2 ./n 0)

2z]. (40)

In a defocusing lenslike medium with n2. < 0 similar
expressions are obtained in terms of hyperbolic sine
and cosine functions. If instead n2X = 0, the trajec-
tory is the parabola

dx = dxa(0) + dxa'(O)z - [nix/(4no)]Z2. (41)

The behavior of the parameter P is similar to that
of Q and S. The phase too exhibits a damped
oscillatory behavior. It follows from Eq. (28) that
for distances that are large compared to Ix and ly the
phase develops according to

P(z) = (k1
2 z/8k2 .) + (k 1

2z/8k 2,)

+2 + (k2 ,/ko) 2 z. (42)

Thus the presence of linear or quadratic variations of
the propagation constant may affect both the phase
velocity and the gain of a steady-state confined
beam. For distances that are short compared to x
and ly or when a2 = 2y = 0, the complex phase of
the beam oscillates without damping, and the de-
tailed behavior follows from Eq. (28).

In summary, we have described in this section
general solutions of the equations governing the pa-
rameters Q, S, and P of a Gaussian beam in a lens-
like medium having linear and quadratic variations
of the complex propagation constant. It was shown
that all the properties of the beam including the size,
location, and phase damp toward a steady-state be-
havior if a2x, a2y > 0. In the special case that there
is no gain or loss profile, the beam oscillates without
damping and the displacement of the beam is gov-
erned by the paraxial ray equation. If a2x, 2y < 0,
the propagation is extremely unstable.

IV. Axial Beams in Focusing Media

In the preceding discussion it has been assumed
that the center of the Gaussian beam is in general
not coincident with the z axis. Here we restrict at-
tention to axial beams in quadratic lenslike media
(kl, = kly = 0). With these restrictions the mathe-
matics simplifies and it becomes straightforward to
treat higher order modes. An example is also given
of the calculation of the weak z components of the
fields.

We look first for the cylindrical field components
of a set of beam modes. The starting point is the
general wave equation given in Eq. (2). If the v X
V x operator is expanded in cylindrical coordinates,
one finds that this wave equation can be written
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V, 2i + k2 = 1/r2fir[Er + 2(bE/6,q)j

+ ,,[E,, -2(bE,/b0)]}
- [(e/e)KE] - (Vu/,) X V X E, (43)

where we are defining V,2 as the Laplacian operator in
cylindrical coordinates operating on each of the cy-
lindrical components of E. This equation differs
from Eq. (3) for the Cartesian field components in
the coupling term on the right-hand side involving
Er and Ed.

As indicated previously, the gradient terms in the
wave equations for the transverse field components
may be neglected if the changes in E andM per wave-
length are small. Accordingly, we obtain from Eq.
(43) the two coupled equations for Er and Eo

Vc2Er + k2E, = 1/r2[E + 2(bEq/b60)1, (44)

V,2E0 + k2E, = l/r2[E, - 2(bEr/b0)] (45)

These equations are solved if the field components
are related to a scalar function T* by the relations

Er = f iT,(r, z) exp(-inO),
E, = - T(r, z) exp(-in), (46)

where TF is any solution of

(Q2T/br2) + (1/ r)(bT/br) - [(n T 1)2 /r21T
+ ( 2 T,/CZ2) + k2 T, = 0. (47)

These modes have helical phase fronts and are either
left-hand or right-hand polarized depending on
whether the upper or lower signs are chosen in Eqs.
(46) and (47). Alternatively one could choose Er =
F iT' exp(in4), E@, = T* exp(ino) or for nonrotating po-
larization Er = TF sinn, E>. = - T* cosnt. For all
of these descriptions of the fields the scalar function
TB is governed by Eq. (47).

Besides the choice of polarization, Eq. (47) also
admits of complex z-dependent k and is thus the cy-
lindrical-component analog of Eq. (4), the Cart-
esian-component scalar wave equation. An indirect-
ly derived special case of this result is given as Eq.
(33) of Ref. 16. General solutions of Eq. (47) may be
obtained as in Sec. II. For quadratic lenslike media
governed by k2(rz) = o (z)[ko(z) - 2(z)r2] the sub-
stitution

T = UF(rz) exp[-ifko(z)dz] (48)
reduces Eq. (47) to

c r) + (100(uwlbr) -[(n IF12r]U

- i(dko/dz)U, - 2ik,(bU,/6z) - kok2r2U, = 0, (49)

where U:F has been assumed to vary so slowly with z
that its second derivative can be neglected. The
steady-state beam modes in a medium with constant
real k are considered here. For this case one finds
by substitution that the solutions of Eq. (49) are

U, = (2r2 /w2) 'Fl)/2Lmn n'(2r2/ W2) exp(-r 2 / w2)

x exp[i(2m + 1 + n F 1)(k2 /k )/ 2z], (50)

where w = 2 2 (kok 2 )-"/4 is the steady-state Gauss-
ian spot size of Eq. (30) and Lm~n*L are the general-

ized Laguerre polynomials. The integer m may take
on any value m = 0, 1, 2, . . . and for n = 0 the lower
sign must be chosen.

As indicated in Sec. II the remaining field compo-
nents can be found from the transverse components
of the electric field by means of Maxwell's equations.
If Eqs. (1) are applied to Eqs. (46) and (48), one
finds that the transverse components of the magnetic
field are given approximately by

Hr = (E//u)"L2Tw exp(-in4),
H, = =F i(e/,u)1"2T, exp(-in). (51)

and the longitudinal fields are

E,= 1/ko1(bT,/br) + [(1 F n)/r]T}I exp(-inO),
Hz =- i/@w(bT,/br) + [(1 F n)/r]T:} exp(-ink).

(52)

Using Eq. (50) and the recursion relations for the
Laguerre polynomials it follows that the factor ap-
pearing in Eqs. (52) has the value

(bT,/b)r) + [(1 n)/r]T:F = 1/rl[2m + (n + 1)
X (1 F 1) - (2r2/2)Lm n (2r2/w2) - 2(m + n F 1)

X Lm ln '(2r2/ W2)I (2r2/w2)(n 1)/2 exp(-r2 /W2)

X exp(-ikoz) exp[i(2m + 1 + n T 1)(k2 /ko)"/2 z]. (53)

When m = 0, the polynomial Lm_Lnc l must be set
equal to zero in this result. This form for the z com-
ponents of the fields can also be obtained directly
from the z component of Eq. (43) using Eqs. (1) pro-
vided that the gradient terms are not neglected. As
indicated previously these coupling terms are not
negligible when considering the weaker longitudinal
field components.

From a comparison of Eqs. (46) and (52) one finds
that for low order modes the longitudinal fields are
smaller than the transverse fields by a factor of
roughly kor how = (2ko)"2 (ko/k2)'/4 . In typical
applications involving optical lasers o 107 m-
and w 10-3 m, so that the longitudinal fields are
smaller by a factor of 104. For such situations the
waveguided beams may for all practical purposes be
regarded as TEM modes. It should be noted that
the presence of longitudinal field components is not
a characteristic feature of waveguided beams. It is
clear from the derivation that such components will
be present with all beams of finite transverse extent,
even if they are propagating in free space.

Similar derivations can be readily performed to
obtain the Cartesian field components of a set of
higher order axial beam modes. The analysis is sim-
pler than for the previous case, and the x and y field
components are governed by Eq. (4). The Laplacian
operator may be conveniently expressed in Cartesian
or cylindrical coordinates and the remaining field
components may be found from Eqs. (1). The Her-
mite-Gaussian and Laguerre-Gaussian solutions of
the scalar wave equation for this case are known.'7
We conclude this section by observing that the
wave equation is the appropriate starting point for
all problems involving the propagation of light
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beams in media with slow spatial variations of
propagation constant, and the techniques outli
here apply in principle even if the beam parame
and medium properties are not constant.

V. Thin-Medium Approximation
An important application of the formalism gove

ing the interaction of an inhomogeneous med:
and a Gaussian light beam is the probing of a m
um with a laser beam. We consider here the sil
tion in which the beam diameter is small compE
to the scale of the inhomogeneities so that I
(15)-(19) will apply. It is also assumed that
over-all dimensions of the medium are so small I
the parameters Q, S, and P of the beam change 
slightly as the beam propagates through the m
um. The results will be applicable, for example
plasma diagnosis where the strength of the liE
plasma interaction can be controlled by pr(
choice of the laser frequency relative to the pla!
frequency. It has been shown experimentally I
significant deflection of a light beam is readily
tained in pulsed'8 and cw'9 plasmas. The exam
considered here concern first the focusing and t
the deflection of a beam caused by an axially s:
metric plasma.

If ho is nearly constant in the inhomogeneous
dium, Eq. (15) can be written

(d/dz),(1/q,) = - (1/q)2 - (k,/k 0).

Therefore, the change in the beam parameter
passing through the medium (besides that du(
free space diffraction) is

A(1/q) = -f(k2 /ko)dz.

where the integration extends across the medi
Thus, the medium acts like a thin lens of com
focal length [(k 2 x/ko)dz]-'.

We assume now that the medium has a cylindi
geometry as shown schematically in Fig. 4. '
configuration would apply to arc plasmas und,
variety of conditions. Comparing the wavenun
in the vicinity of the beam k = ho - /2k.x(x-x(
'/2 k2x(x-xo) 2 with a Taylor expansion, Eq. (55)
be written

A(I) = oJ8 1f o~xa) Idz,

where xo is the distance of the beam from the axis of
the cylindrical medium. Since the plasma has cy-
lindrical symmetry, the complex wavenumber can
be expressed as a function of the coordinate r = (X2

+ 2 )1/ 2 . Thus, Eq. (56) becomes

, I_ = 1 f [{x22k + X2okd
&0Lx)2 T,) :, ~b2 +C tr r3)~r X"d

-o~xo{[ r + r22)C Fx0 dr .(57)

If the plasma properties were known, this result
would yield immediately the transmission character-
istics of a Gaussian laser beam. On the other hand,

Eq. (57) could in principle be inverted so that the
unknown function k(r) could be obtained from the
experimentally determined function A [q(xo)]-'.
Thus we have a procedure by means of which k(r)
for a cylindrical medium can be determined from
measurements of the focusing or defocusing of a
Gaussian beam. In practice a numerical analysis
would be required. For a plasma a knowledge of the
complex wavenumber yields information about the
electron density and temperature.

It turns out that information about the properties
of a localized medium can be obtained in a more
straightforward way from a consideration of the
beam deflection. We consider here only the case of
a lossless medium, so that the beam displacement is
governed by Eq. (38). Using the previous approxi-
mation that the beam is displaced negligibly in
crossing the medium (dxa ~ 0), Eq. (38) reduces to

dO(x0,z)/dz =-(njx/2no), (58)

where the angle 0 = ddxa/dz is defined in Fig. 4. In-
tegrating across the medium yields the total deflec-
tion angle

0(X0 ) = - n n xdz = n I dz. (59)

me- The deflection angle can be determined experimen-
tally and is assumed here to be known. Using the

(54) cylindrical symmetry Eq. (59) can be written

0(xO) = xofx I dn 2x0 fX(dn/dr)drnJ -r-dz = nXIr r no Jx0(r2 - 212
(60)

This result is much simpler than Eq. (57). In fact
(55) Eq. (60) can be put in the form of Abel's integral
um. equation, and thus it can be inverted explicitly.

m- The result is2 0

0(x0 )dx0n(r) = -J (xn 2- 61))o

Hence, the radial profile of the refractive index may
be readily determined by measuring the deflection of
a laser beam as it is scanned across a plasma and
substituting the results in Eq. (61). This integration
may be performed analytically for a wide range of
functions (xo), and in any case numerical integra-

(56)

Fig. 4. Schematic drawing of a typical experiment involving the
interaction of a Gaussian laser beam and a cylindrical plasma.
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tion is always possible. In a previous ray treatment
of the scattering of light from cylindrical plasmas
with real refractive index it was assumed that the
rays could be deflected through large angles.2 ' With
that analysis an explicit formula for the refractive
index (electron density) could not be obtained. In
practical plasma situations using lasers deflection
angles are small except with far-infrared and submil-
limeter radiation,22 so the present formalism almost
always applies.

In summary, the methods of this section may be
applied in any situation involving the propagation of
Gaussian light beams through localized inhomo-
geneous media having slow variations of the loss or
refractive index. The examples discussed have dealt
with the important problem of diagnosis of cylindri-
cal plasmas.

VI. Conclusion

In this work we have developed a general formal-
ism for treating the propagation of Gaussian beams
of light in complex inhomogeneous media. The re-
sults are useful because the output of most lasers is
in the form of Gaussian beams and in many practical
types of media such beams remain Gaussian in spite
of changes of amplitude, direction, and phase. A set
of first-order ordinary differential equations have
been derived that govern all the properties of these
beams. The equations have been solved exactly for
the propagation of general off-axis modes in lenslike
media, and the same methods are applicable to high-
er order Laguerre-Gaussian and Hermite-Gaussian
beams. The results also lead to a straightforward
procedure for the diagnosis of localized inhomo-
geneous media using laser beams. The problems
that have been discussed concerning stable and un-
stable lenslike waveguides and cylindrical plasmas
are important representative examples of the useful-
ness of these methods.
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