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Glaciers of the McMurdo Dry Valleys: 

Terrestrial analog for Martian polar sublimation 

 

Karen J. Lewis, Andrew G. Fountain, Jeffery S. Kargel, Doug MacAyeal 
 

Abstract:  The surfaces of the Martian north and south polar residual caps are marked by unusual 

ice features: dark spiralesque troughs up to 1 km deep, 10 km wide and 300 km long appear on both 

ice caps, and circular pits that make up the “swiss-cheese” terrain appear on the south polar cap.  

Both types of features are of interest to researchers as a potential means of understanding ice 

composition and flow rates. 

Some glaciers of the McMurdo Dry Valleys have surface features unknown elsewhere on 

terrestrial glaciers, including canyons over 6 km long, 100 m wide, and tens of meters deep, and 

basins up to 100 m across.  High sublimation, dust accumulation, and very little melting, is key to 

their origin.  These processes and ice landforms are suggested as terrestrial analogs for the 

sublimation behavior of Martian icecaps, where dust accumulation and sublimation are significant, 

but surface melting is absent.  

We have developed a solar radiation model of canyon formation and have applied it to the 

Martian polar caps.  The modeled processes do well to describe direct and reflected radiation within 

V-grooves, a process that may be significant in the development of the spiral troughs and swiss 

cheese terrain.  The model fails to reproduce the low observed slopes of the Martian troughs.  The 

grooves are too shallow, with opening angles ~165o, compared to model predictions of ~90 o. The 

reason for the failure may be that we have not included creep closure, which should flatten their 

slopes. 
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1 Introduction 

The obvious summer features on the residual polar caps of Mars are dark spiralesque 

markings (Fig. 1).  These markings are dust-mantled troughs developed in the ice.  Troughs are up to 

a kilometer deep and 10 kilometers wide; in the southern polar cap some are 150 km long, and in the 

northern polar cap up to 300 kilometers long.  Seen at high resolution, the trough walls (especially 

the equator-facing wall) are step-like outcrops of quasi-horizontal strata or layers of alternating clean 

ice and dusty ice or ice-bonded dust layers. Exposure of stratification clearly indicates that these 

canyons have been eroded.  Evidence points to deeper erosion of the canyons near the edges of the 

polar caps (Ivanov and Muhleman, 2000b). 

There is much discussion, but no consensus, concerning the origin of Martian polar troughs.  

Several current theories are being explored. The first is that the troughs originate near the edges of 

the polar deposits and migrate toward the pole by preferential sublimation of ice from the steep, 

equator-facing side and accumulation on the pole-facing side, as shown in Fig. 2 (Howard, 1978; 

Howard et al., 1982; Fisher, 1993). Ivanov and Muhleman (2000a) used a sublimation model with no 

flow to reproduce, relatively successfully, the general shape of the troughs over a time span of 3 to 

16 million years. The key was to provide an initial albedo contrast on the icecap surface. Fisher 

(1993, 2000) combines the idea of trough migration with icecap flow outward from the center; 

troughs migrate toward the center of the ice dome while ice flows outward from the center until the 

two rates are balanced. This model suggests that the spiral pattern of troughs and valleys results from 

the non-symmetric distribution of the ice flow centers and associated velocity fields around the pole.  

In addition, there have been a number of recent attempts to reproduce the troughs through 

sublimation and accumulation modeling. Some models which incorporate flow, (e.g. Hvidberg, 

2000; Larsen, 2000) tend to have trouble keeping the troughs open over time, possibly due to the ice 
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rheology used for modeling. There has also been some exploration of the role of eolian erosion in 

maintaining the troughs (Howard, 2000). 

The structural geology, geomorphology, and ice processes of individual, specific troughs are 

relatively unexplored. There are few published mechanisms for their initiation, and estimates of 

growth rates are sparse and generally only from rough parameterizations of accumulation and 

sublimation rates (Ivanov and Muhleman, 2000b). Existing theories for trough behavior are limited.  

Current theories require the troughs to be relatively recent developments, or else some as yet 

unexplored mechanism is required for control of their growth or for trough removal from the ice 

caps. None of the proposed models work as steady-state solutions where the current trough 

configuration is one stage in an ongoing process. Instead, the troughs need to be relative newcomers 

on the scene, either developed at the ice cap edge and in the process of growing inward, or recently 

etched into the surface via sublimation. 

The goal of this paper is to use the basins and canyons found on the Canada and Taylor 

glaciers in the McMurdo Dry Valleys, Antarctica, as terrestrial analogs for understanding the spiral 

troughs of the Martian north polar cap and the swiss-cheese terrain of the Martian south polar cap. In 

the dry valleys, basins and canyons are formed within the ablation zones of many of the glaciers as 

initially small features that grow as they are carried to the glacier margin by ice flow. We propose a 

similar evolution on Mars starting high up on the icecap. We hypothesize that growth of the spiral 

troughs seen on the Martian north polar cap is initiated by locally enhanced sublimation via a 

perturbation in surface slope and aspect or through heterogeneous albedo due to windblown dust or 

grain annealing. Evidence both for small trough features and for dust deposits near the centers of the 

icecaps can be seen in the Mars Orbiter Camera (MOC) imagery and Mars Orbiting Laser Altimeter 

(MOLA) data (Howard, 2000). Once established, the features would grow via enhanced sublimation 
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rates on their steep, equator-facing sides, a mechanism similar to that proposed in the existing 

Martian scarps models and similar to the behavior of dry valleys basins and canyons.  In support of 

this hypothesis, we present a comparison of the dry valley and Martian ice cap environment, a 

discussion of the morphology and development of canyons in the dry valleys, and a discussion of the 

Martian features. 

Our hypothesis assumes that sublimation associated with enhanced solar absorption is the 

principal means by which grooves are excavated and maintained against closure by ice inflow. To 

examine this assumption a simple V-groove model, developed by Pfeffer and Bretherton (1987) to 

model radiation absorption within crevasses, is applied to grooves on the Martian north polar 

residual cap. The model calculates both incident and reflected shortwave radiation within a 

simplified V-groove for a specified solar azimuth. Results from this work will contribute to 

determining ice composition, since groove stability requires that sublimation roughly balances ice 

inflow. Knowledge of the composition of the Martian polar caps will help determine the history of 

volatile substances (water and carbon dioxide) in the Martian atmosphere and on the Martian 

surface. 

In addition to the trough features seen on both Martian ice caps, MOC has recently returned 

images of strange features on the south polar residual cap that have been termed the “swiss cheese” 

terrain (Fig. 3) (Malin and Edgett 2001, Malin et al. 2001). Byrne and Ingersoll (2000) have 

attributed the origin of this terrain to ablation via sublimation of CO2 ice. The circularity of pits 

probably is a result of sublimation at high southern latitude where solar elevation is nearly constant 

throughout the day and, therefore, ablation on the walls of depressions is roughly radially symmetric. 

The formation of the swiss-cheese pits takes place on century time scales, the same time scales as 

formation of canyons and basins in Antarctic ice glaciers.  Significant interannual changes have been 
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observed (Malin et al. 2001).  The morphologies present within the swiss-cheese terrains are quite 

varied and point out the possibility that they consist of layers of multiple ices (H2O, CO2, and CO2 

clathrate are all likely).  Less volatile ice layers—water ice perhaps—may form mesa tops and hole 

bottoms, with more volatile ice layers in between which can rapidly ablate outward from an initial 

point, as is postulated in Thomas et al., 2000. 

As with the polar troughs, further insight into the working of these features can be gleaned 

from comparison with the basins seen on dry valley glaciers. We propose that these features are the 

result of sublimation of the surface in the absence of effective wind removal of debris. Sheltered 

conditions within the basins may aid retention of debris, as seen in the dry valley basins.  The first 

areas of the swiss-cheese terrain to become free of winter dry-ice snows—leaving dusty, annealed 

layers of dry ice behind—are scarps, as expected.  The snow-free scarps should have a large effect 

on the local radiative environment, as may be evidenced by the moats commonly seen fringing the 

foot of most scarps, though other possible explanations for the moats have also been put forward 

(Thomas et al., 2000). 

 

2 The physical environment: Antarctic dry valleys vs. Martian polar regions 

Though very different environments, there are enough critical similarities between the 

Antarctic dry valleys and the Martian polar regions to allow for fruitful comparison between the 

two.  Both are cold, dry regions where energy for ablation is limited, accumulation and 

sublimation rates are relatively small, and ice flow speeds are low.  In these regions, strange 

topography can be etched into ice surfaces as a result of dominance of sublimation and 

differential ablation rates.  
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Table 1 presents a number of physical environmental parameters for both regions.  With the 

exception of accumulation and ablation of CO2 ice, which doesn’t exist under ambient surface 

conditions on earth, polar processes on Mars occur more slowly than on Earth.  Atmospheric 

pressure and water vapor pressure are several orders of magnitude smaller; accumulation and 

ablation rates for water ice are several orders of magnitude smaller; the ice is much colder, resulting 

in a much smaller range of probable flow speeds.  Gravity is about a third that of earth and solar 

radiation a little less than half that of earth.  Length of day and obliquity are among the few physical 

parameters that are nearly equal.  However, the ratios of accumulation vs. sublimation for water ice 

are similar; sublimation is up to one order of magnitude greater than accumulation.  Similarly, the 

ratio of accumulation to flow speed is about 102 and of sublimation to flow speed is about 101 to 102 

(see Table 1).  This similarity may be part of the key to understanding why large roughness features 

form both in the McMurdo Dry Valleys and on Mars in spite of environmental differences. 

Controls on the rate of sublimation are somewhat different on Earth and Mars.  In the Earth 

atmosphere sublimation is predominantly a function of the vapor pressure difference between the 

surface and the air, and of the speed of turbulent dispersion of the air. Consequently, equations for 

sublimation incorporate the vapor pressure gradient, wind speed, as a measure of turbulence, and 

buoyancy effects. The latent energy flux, QE, for earth conditions can be written as: 
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which wind speed and vapor pressure are measured, ρi is the ice density, P is atmospheric pressure, 

z
e

∂
∂ is the gradient of atmospheric vapor pressure with height, and Ls is the latent heat of sublimation 

(Paterson, 1994). u* is written as: 
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where u is the average wind speed, and zo is the surface roughness parameter. Since sublimation on 

Earth is driven by vapor pressure gradients and wind, only in extreme conditions will sublimation be 

limited by energy availability. (Sublimation cools the surface until the change in vapor pressure 

gradient reduces sublimation rates to match energy availability.) This type of energy limitation of 

sublimation does not occur in the dry valleys during the summer. Consequently, for our purposes 

here sublimation on Earth can be considered to be entirely forced by wind and vapor pressure 

gradients. 

For Mars, due to the low atmospheric pressure (<20 mbar), the dominant process controlling 

water vapor flux is natural convection. Water vapor is more buoyant in the Martian CO2 atmosphere 

than it is on earth (Toon et al., 1980). At the same time, forced convection via wind and vapor 

pressure gradients plays a relatively small role. For Martian conditions the vapor flux is written with 

two equations (Toon et al., 1980), the first for turbulent transfer as a result of winds, and the second 

for turbulent transfer as a result of natural convection: 
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In these equations ρw is the water vapor density, D is a diffusion coefficient for H2O in a CO2 

atmosphere, P is atmospheric pressure, 
P
ρ∆

 relates water vapor pressure to atmospheric pressure, g 

is gravity, and ν is the viscosity of CO2. Values for the constants can be found in Toon et al. (1980). 
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These equations are very similar to the sublimation equations used by others (e.g. Ingersoll, 1970; 

Haberle and Jakosky, 1990). Of these two terms, QE2 generally dominates over QE1. This means the 

primary control on sublimation lies in QE2 in the 
ρ
ρ∆  term, which is governed by surface 

temperature. Surface temperature is governed primarily by energy absorption. Thus Martian 

sublimation is driven primarily by energy absorption at the surface, which implies that slope, aspect 

and albedo enhancement of energy absorption will directly increase ablation. 

An important similarity between the dry valley glaciers and the Martian polar caps is that 

both regions are energy limited. In the dry valleys, temperatures are typically below freezing and 

much of the ablation is due to sublimation resulting from the persistent high winds, which greatly 

reduces or eliminates energy available for melt (Lewis et al., 1998). Therefore, if energy absorption 

is enhanced on a surface, for example via slope, aspect or albedo, that energy will be primarily 

converted to melt and the surface will experience significantly more ablation. For the same amount 

of energy, melt is about 10 times more efficient than sublimation at removing ice, so only a small 

amount of “extra” energy devoted to melt is needed to make a large impact on local ablation.  

On the Martian polar caps, energy availability limits sublimation much as energy availability 

limits melt in the dry valleys. Temperatures do not reach the melting point on the Martian polar caps.  

The altitude of the south polar cap is such that barometric pressure is less than the triple-point 

pressure, so even with a remarkable and unlikely coincidence of conditions that could allow the 

melting point to be attained, the ice would first sublimate.  Local slope, aspect and albedo do have 

dramatic effects enhancing local sublimation rates on the Martian polar caps much the same as they 

allow increase melt in the dry valleys. When coupled with the longer time scales over which features 

form on Mars, enhancements in sublimation are enough to form sublimation pits or canyons. On 

Earth, it is the factor of 10 difference between melt and sublimation that allows canyon and pit 
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formation. Through increased melt, the dry valleys channels on Taylor Glacier, which are roughly 10 

m x 100 m x 1 km in size, form in about 1000 years (see section 3). On Mars, features 1 km x 10 km 

x 100 km may form over an estimated time span of 5 x 107 years (assumes ice flow of 10-2 m/year 

for a distance of 500 km, the radius of the ice cap). So, we have a factor of 5 x 104 more time on 

Mars to form features 100 times larger. This implies that processes can be up to 500 times slower on 

Mars than on Earth and still produce troughs of the sizes seen in the residual polar caps. 

 

3 Glacier surface morphology in the McMurdo Dry Valleys, Antarctica 

The basins and canyons found on the dry valley glaciers appear to form as a result of three 

principal environmental factors.  (1) The glaciers are frozen to their beds and move comparatively 

slowly. Features in the ablation zone of the glaciers have hundreds to thousands of years to develop.   

(2) The environment is dry and windy and deposits of dust and sand (either through eolian processes, 

medial moraines, or rock avalanches) are ubiquitous on the glaciers (0.5-1 g/m2/year). The debris 

melts into the ice, if only a short distance. Generally meltwater is absent or insufficient to wash the 

sand and dust off the glacier. (3) The environment is energy poor. Temperatures are typically below 

freezing and there is relatively little incoming energy, about 40 Wm-2 on average over the summer 

season (Lewis et al, 1998). The low levels of available energy, coupled with the cold, windy 

conditions, results in very little melt on the glacier surfaces. What little energy is available goes 

primarily to sublimation. As a result, small changes in energy receipt on the glacier surface as a 

result of albedo, slope, and aspect greatly affect melt production (Lewis et al., 1998). 

The basins on the dry valley glaciers appear to nucleate around debris. Isolated patches of 

debris form ~30 cm deep cylindrical holes, “cryoconite holes”, in the glacier surface (Mueller et al., 

2001; Wharton et al., 1985). These holes vary in radius from a few centimeters to over a meter. At 
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small radii the holes retain an ice cover and appear to grow very slowly. At radii > 0.5 m the holes 

begin to lose their ice covers. At this point, if debris and meltwater within the holes can drain, the 

holes can rapidly deepen and widen (up to ~0.50 m per summer in both depth and width – Lewis, 

2002). In the process, the holes take on an asymmetric geometry. The pole-facing wall develops into 

a shallow pole-facing slope due to shading while the equator-facing wall remains vertical and melts 

back relatively rapidly (Fig. 4). A similar process applies to the long channels or canyons, such as on 

Taylor Glacier, but the source of debris is medial moraines that originate at the confluences of the 

glacier tributaries (Fig. 5). Basin and valley formation therefore requires both the initial presence of 

debris and the removal of debris and meltwater when the feature reaches a critical size, and results in 

a feature geometry that enhances solar radiation absorption in some locations and reduces solar 

absorption in others. 

The Taylor Glacier canyons (Fig. 5 and Fig. 6, right-hand image) appear to start about 3 km 

from the glacier terminus as approximately 1 m deep grooves. These grooves, initiated by medial 

moraine debris, grow as they are carried down-glacier by ice flow. Ice speed is 4 to 7 m/year, so the 

3 km distance from the point of canyon initiation to the glacier terminus represents 400 to 750 years 

of evolution. At the terminus, the grooves have become 10 to 20 m deep chasms in the glacier 

surface, formed by differential ablation rates and modified by water flowing within the canyon. The 

canyon width initially varies, with wide pool-like features separated by relatively narrow passages. 

At some point, these features vanish and the width to depth reaches a nearly constant value. 

The Canada Glacier basins are more randomly distributed than the canyons on Taylor Glacier 

because they nucleate around debris patches (Lewis, 2002). Due to their more random distribution, 

the basins seem to function more as isolated features, each growing at its own rate. Timescales for 
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basin growth on Canada Glacier are 400 to 3000 years (ice flow rates of 1 to 8 m/year over a 

distance of up to 3 km). 

 

4 Martian icecaps – their climate and behavior 

Current consensus is that the composition of the Mars north polar residual cap is water ice, 

with only a seasonal CO2 frost that completely sublimates during the summer (Clifford et al., 2000).   

However, there are alternate possibilities that would include CO2 clathrate and/or dry-ice at depth 

(Mellon 1996, Ross and Kargel 1998, Kargel and Lunine 1998, Kargel et al. 2000). The composition 

of the south polar cap is less well understood, but accumulating evidence points toward a form of 

CO2/H2O clathrate or some layering of CO2, H2O and CO2 clathrate ices (Jakosky et al., 1995; 

Kargel and Lunine 1998; Thomas et al., 2000). On both caps, air and surface temperatures, at the 

current obliquity, do not reach, or come close to attaining, the melting point of H2O. Winter 

temperatures on both caps drop to 148 K, allowing the deposition of CO2 frost. Summer high 

temperatures for the northern cap and outlying southern polar layered deposits are about 205 K 

(Kieffer et al., 1976, 1992, Jakosky et al. 2000), resulting in the sublimation of the winter 

accumulation of CO2 frost as well as some portion of the water ice of the cap. This has been seen in 

the Mars Atmospheric Water Detection (MAWD) data (Farmer et al., 1979) which shows enhanced 

water vapor over the north pole in summer. On the south polar cap, summer temperatures do not 

always rise measurably above the dry-ice frost point (about 148 K), so that carbon dioxide frost, 

deposited during the fall and winter, may not completely sublimate during the summer season 

(Kieffer 1979; Jakosky and Haberle, 1992). The distinct morphologies of the two polar caps also 

support a different surface ice composition.  Since temperatures stay well below the melting point 

for both caps, ablation will only occur via sublimation and wind erosion. Since sublimation increases 



 12

with temperature (Jakosky et al., 1993; Ivanov and Muhleman, 2000a), ice slopes that face the sun or 

are dust covered will warm and sublimate faster. This results in the formation of accentuated slopes 

or depressions that receive yet more energy, leading to a positive feedback. 

Sublimation is not the only process controlling trough geometry. Because the ice cap is so 

thick, and because the troughs are so deep, trough location and shape will be affected by ice 

thickness and rheology and trough closure by ice flow will probably be significant. The north polar 

cap rises approximately 3 km over the surrounding terrain. Zuber et al. (1998) calculated an icecap 

thickness of roughly 3.5 to 4 km. For the southern ice cap Schenk and Moore (2000) estimate the 

south polar cap to be a broad convex dome approximately 500 km in diameter with a maximum 

height of 3 km above the surrounding plains. 

Such thick ice will flow (Budd 1986, Greve 2000). If the caps were at the measured surface 

temperatures throughout they would flow very slowly, but the ice is probably warmer at depth due to 

geothermal heating. Larsen and Dahl-Jensen (2000) calculate that the basal temperature of the 

Martian north polar cap may be similar to that of terrestrial ice caps, i.e., close to the freezing point, 

implying that flow speed will be governed primarily by deformation at the base and may be roughly 

the same as terrestrial ice caps of similar dimensions. Flow closure of the troughs, however, would 

be slower than terrestrial conditions since the near-surface ice in the cap will be closer to mean 

annual temperatures. 

Flow on the south polar cap is more difficult to assess since ice composition is still unknown. 

Pure CO2 ice is significantly softer than water ice, which, combined with the overall cap geometry, 

suggests that the south polar cap cannot be pure CO2 (Nye, 2000). H2O-CO2 clathrate, however, is 

much stiffer than pure water ice (Durham et al., 2000). At south polar thickness and temperatures, a 

pure clathrate ice cap might flow so slowly as to be virtually immobile. Consequently, understanding 
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the role of flow closure in the overall geometry of the south polar troughs will require significantly 

more study. 

 

5 Proposed evolution of the Martian north polar troughs 

The troughs cutting the north polar residual cap (Fig. 8) vary greatly in depth. The shallowest 

troughs measured are about 100 m deep; the deepest troughs are about 1 km deep, cutting through 

the polar cap almost to the level of the surrounding plains. The troughs strike about 20 degrees north 

of west (Howard, 2000), which gives them their distinctive spiral look, and are steeper on the 

equator-facing walls than on their pole-facing walls (Ivanov and Muhleman, 2000b). Equator-facing 

walls range from 1 to 10 degrees slope; pole-facing walls range from less than a degree to about 6 

degrees slope. In general, wall slope seems to increase with wall height, so that the deepest grooves 

also have the steepest sides (Ivanov and Muhleman, 2000b). Similarly, on the south polar residual 

cap troughs range in depth from about 100 m to over 800 m, with equator-facing walls ranging from 

1 to 9 degrees slope and pole-facing walls ranging from less than 1 to nearly 4 degrees slope (Ivanov 

and Muhleman, 2000b).  

Assuming the Martian ice cap troughs result from a series of events similar to those giving 

rise to the basins and canyons on the dry valley glaciers, we believe that the Martian troughs are 

primarily radiation generated and maintained features. They are initiated high on the ice caps by 

some combination of small-scale surface roughness and dust. The small-scale roughness may be 

snow dunes (Howard, 2000) or something akin to the “cottage-cheese” terrain photographed by 

MOC. This terrain is characterized by pitting of relatively regular width, varied length and 

connectivity, and depths of about two to several meters, and seems to cover most of the north-polar 

residual cap (Thomas et al., 2000; Malin and Edgett 2000, Malin et al. 2001). Either pitting or snow 
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dunes will serve to trap dust, thereby lowering surface albedo and increasing energy receipt. Dune 

and pit geometry will also affect energy receipt as local slope and aspect increase or decrease 

incident radiation.   

As ice on the sides and floor of the dunes and pits sublimates, dust frozen into the ice will be 

freed. Accumulation of a thin layer of dust will increase ablation until the layer thickens and begins 

to insulate the ice.  In a similar manner, ablation in the basins and canyons of the dry valley glaciers 

increases for thin debris cover and greatly decreases when the cover thickens sufficiently to insulate 

the ice. In the dry valleys, flowing water removes the debris from the ablation features. Current 

estimates of dust content of the Martian ice range from 50% to less than 1% by volume (Clifford et 

al., 2000). This is sufficient to reduce the albedo and increase sublimation in the early stages of 

feature formation. However, sublimation of 1-10 m of ice will release ample dust to build up an 

insulating layer.  Larger features will only form on the Martian residual caps in areas where wind 

transport can evacuate the excess dust. The wind will also aid in linking small basins and 

depressions into elongate features much as water links basins into canyons on Taylor Glacier. This 

suggests that mature Martian troughs form in geometries that optimize both radiation receipt and 

wind transport. This conclusion is supported by Howard (2000), who notes that the troughs strike at 

an angle 20 degrees north of west, intermediate between the direction of greatest radiational loading 

and an orientation normal to the katabatic wind flow.  

The need for wind removal of the dust freed by ice sublimation may also explain the trough 

spacing on the ice caps. The troughs appear to be spaced fairly regularly at 20 to 70 km intervals. 

The ice between troughs forms a gentle bulge with a divide roughly halfway between, as can be seen 

in MOLA data. We hypothesize that this is due to some channeling of the katabatic winds as they 

flow off the ice cap, possibly dictated in part by polar atmospheric waves. If the natural modes of the 
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wind form some quasi-equally spaced banding, this in turn would favor dust deposition in or 

removal from roughness features at the center of those bands, leading to both faster development of 

roughness features in those regions and the linkage of those features downwind. This would further 

channel the wind leading to a positive feedback loop and fairly regularly spaced mature troughs. 

Once initiated, the troughs will probably collect more debris on their floors than on their 

walls, leading to faster downward growth than lateral growth. As a result, the walls will steepen over 

time as the trough becomes deeper. This is supported by Ivanov and Muhleman’s measurements that 

indicate deeper troughs have steeper walls (Ivanov and Muhleman, 2000a). Exposed dust banding in 

the equator-facing trough walls, seen in MOC imagery, indicates that the equator-facing walls 

experience net ablation. The pole-facing walls receive less radiation than the equator-facing walls as 

a result of their slope and aspect and will therefore be cooler. Sublimation on the pole-facing walls 

will be lower or non-existent. MOC imagery suggests the pole-facing walls may experience net 

accumulation since the debris banding in the ice seen on the equator-facing walls is not always 

visible on pole-facing walls. 

 

6 Radiation receipt within the Martian north polar troughs – Why so shallow? 

The enhancement of solar absorption derived from V-groove geometry results from a 

geometrical “greenhouse” effect that stems from two physical principles. First, when the solar zenith 

angle is large, common at polar latitudes, an inclined surface oriented toward the equator gathers 

more sunlight. Therefore, equator-facing slopes on terrestrial and Martian ice surfaces alike become 

steeper than opposing faces, which are shadowed, because they receive more energy and therefore 

have higher ablation rates. Second, outgoing reflected light from natural snow and ice surfaces can 

be treated as diffuse and varies with the cosine of the incidence angle of the incoming beam. A 
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portion of the diffuse reflected energy is directed toward the opposing wall where it is reflected 

again. The multiplicity of reflections associated with the diffuse radiation leads to greater absorption 

because some fraction of the incident energy is absorbed with each reflection (Fig. 8). 

The radiative regime of an idealized Martian trough with perfect “V” geometry is computed 

following Pfeffer and Bretherton’s (1987) work on crevasses on terrestrial glaciers acting as solar 

radiation traps. We chose parameters to represent typical valleys on the Martian northern ice sheet 

(Table 2), which are derived from a visual analysis of the MOLA transects and valley profiles. We 

ignored secondary effects such an angular heterogeneity in the absorptivity of an icy surface and the 

effects of “far field” topographic patterns, such as the general slope of the ice sheet and the effects of 

distant ice structures that may cast shadows or radiate energy on points within the groove. Nor is 

small-scale roughness on the sides of the groove, such as the “ stair-step” topography found in the 

dry valleys, considered, though there is some evidence in the MOC imagery that stair-step 

topography may occur within the Martian grooves.  

As illustrated in Fig. 8, variables x and y are non-dimensional coordinates that describe 

distance along each of the two walls from an origin at the bottom of the “V”. The y-coordinate is 

associated with the wall that faces the sun, the equator-facing wall of the groove. The coordinate 

axes are separated by the angle γ , the V-groove opening angle. Thus the coordinate axes are not 

Cartesian.  The variable Ψ is the angle between the direct solar beam and the line that bisects γ . The 

angle Ψ is related to the solar zenith angle, which depends on the time of year and time of day, as 

well as other long-term variables such as the planet's obliquity. Ψ also depends on the inclination of 

the V-groove's line of symmetry from the vertical. For typical grooves on the ice sheets of Mars, the 

equator-facing wall is steeper than the opposing wall by about a factor of 2 and ranges in slope from 

4 to 10 degrees. Thus the line of symmetry is typically inclined toward the equator by 1 to 4 degrees. 
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7 Results and discussion 

Fig. 9 shows the results for a typical Martian groove, where γ ~ 165o (the equator-facing wall 

is at a 10 degree slope, the pole-facing wall at a 5 degree slope) and where englacial and surficial 

debris causes the reflectivity to be much reduced (we use ρ = 0.3 on the equatorial-facing wall and 

ρ = 0.4 on the poleward-facing wall). The calculation displayed in Fig. 9 represents the 

circumstances encountered at 80o N at noon on the summer solstice (for a groove that extends east to 

west). 

The most important result, shown in Fig. 9, is that energy absorption on the sun-facing wall 

is significantly enhanced over the energy absorption on a flat, horizontal surface. The sun-facing 

wall, because it is inclined toward the incoming solar beam, absorbs about 140% of the energy that a 

flat, horizontal surface would absorb. The enhancement of incoming energy is analogous to that 

observed for the basins and canyons on the Antarctic dry valleys glaciers. Reflected radiation 

accounts for 2% of the total absorbed radiation. The sun-opposing wall absorbs about 80% of that on 

a flat, horizontal surface. On the sun-facing wall reflected radiation accounts for less than 1% of the 

total.  

The low values for reflected radiation imply that the large opening angles of the Martian 

grooves don't allow the groove walls to “ see” each other. This implies that re-radiated longwave 

radiation absorption will also be low. These results show that a relatively simple parameterization of 

incoming radiation can be used for the grooves, such as the straight cosine dependence of Ivanov 

and Muhleman (2000a) Equation 6. Omitting multiple reflections only incurs an error of about 2% in 

the radiation calculations. 

The radiation regime is computed for γ  = 60o, the approximate opening angle of the Taylor 

Glacier canyons (the equator-facing wall is vertical, the pole-facing wall is at 30 degrees), to show 
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the sensitivity to groove opening angle (Fig. 10). At this opening angle, the pole-facing wall and the 

lower portion of the equator-facing wall are both shadowed. The lower portion of the equator-facing 

wall absorbs up to 20 Wm-2 of shortwave radiation because of reflection off the pole-facing wall. 

The pole-facing wall receives up to 100 Wm-2 from reflection off the equator-facing wall. 

Comparison with Fig. 9 shows that as γ  is reduced the overall efficiency of the groove in capturing 

solar radiation becomes greater relative to that of a flat, horizontal surface. The incident radiation on 

the equator-facing wall is strongly enhanced because the wall more directly faces into the sun, and 

the reflected radiation component of the total absorbed radiation is large due to the narrow opening 

angle of the groove. 

The variation of absorption with opening angle prompts us to speculate on the possible time-

evolution of Martian grooves. In model runs for grooves with γ  < ~60 o, the energy is strongly 

concentrated near the top of the groove. If allowed to generate ablation through sublimation, this 

energy concentration will cause the groove to widen near its top, and thus cause γ  to increase. In 

model runs with γ  > ~90o, the radiation absorbed by the two walls becomes more or less uniform 

over the length of the walls, as is the case displayed in Fig. 9. Further sublimation is then expected to 

enlarge the groove, maintaining its depth to width ratio, and tilt its axis of symmetry toward the sun. 

Thus, an opening angle of ~90o or more appears to be “optimum” in the sense that once it is 

achieved, the groove will both deepen and widen while maintaining a constant shape (i.e., a constant 

γ ). 

However, if γ ~90o is “optimum”, why do the troughs on the Martian residual caps have 

opening angles of 165o? On Taylor Glacier the canyons can be characterized as grooves with an 

opening angle of 60 to 90o. In particular, the pole-facing walls slope quite consistently 30 to 35o, an 

angle that serves to minimize the incoming direct solar beam. This is clearly not the case on the 
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Martian icecaps where the pole-facing walls slope at angles of 1 to 6o. Similarly, the slopes seen on 

the equator-facing walls do not maximize incoming radiation, unlike in the dry valleys of Antarctica 

where equator-facing slopes are near vertical. This suggests that on Mars some mechanism, such as 

closure by flow, is at work to keep the slopes relatively shallow. If so, quantifying radiation receipt 

and sublimation within the troughs may allow us to estimate ice flow rates. 

 

8 Some speculations on the origin of the “Swiss cheese” terrain 

Thomas et al. (2000), Byrne and Ingersoll (2000), Malin and Edgett (2000) and Malin et al. 

(2001) attribute the basins in the south polar “swiss-cheese” terrain to sublimation. This would 

explain their circular shape, steep walls, and the appearance in MOC imagery that they grow 

outward from an initial point, pass through a stage where they overlap in places and leave oddly 

shaped mesas in others, and ultimately leave behind a new surface, flattened at the level of the basin 

floors. However, if sublimation and high latitude were the only factors required for basin growth, we 

should also see swiss-cheese terrain on the north polar cap. Since we do not, their presence only on 

the south polar residual cap must relate to the physical differences between the caps.  Probably this 

difference relates to the presence of dry-ice in the south polar cap and not in the north. 

We propose that the flat floors of the basins and the fact that they appear to grow together 

only through radial growth is indicative of both an environment where wind transport of debris is 

low and/or where basin formation is rapid. As a result, we believe the basins indicate that the ice in 

the region where they are found is CO2 ice, a medium that can rapidly ablate under south polar 

residual cap summer conditions.  

The swiss-cheese terrain is visually similar to the topography of Canada Glacier where the 

basins are fairly randomly distributed (Fig. 4).  Unlike the canyons seen on Taylor Glacier, which 
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are initiated by albedo differences resulting from the presence of medial moraines and therefore form 

features in linear arrays that are subsequently linked by water transport of debris, the Canada Glacier 

basins have no underlying linking mechanism.  Similarly, we believe that unlike the Martian 

troughs, which we have proposed require wind removal of debris, both to prevent lag deposits from 

insulating the ice and preventing ablation and to link smaller features into elongated grooves, the 

Martian swiss-cheese basins, require fast growth or limited wind influence to explain why they are 

not linked into trough features. 

If the swiss-cheese basins form in CO2 ice, the basins walls could potentially ablate back on 

the order of a meter over the course of the summer (1-2 m of CO2 frost sublimates off the south polar 

cap during the summer). Erosional widening of pits has been observed at the predicted rates (Malin 

et al. 2001), adding further support to inferences that these terrains are made of dry ice.  Sublimation 

rates on the near-vertical walls of the swiss-cheese basins and on deposits at the foot of the scarps 

should be higher than sublimation from horizontal surfaces because near-vertical walls will capture 

more radiation, as discussed for the north polar cap in section 6. The debris contained in this ice 

would be deposited at the base of the wall, which could further enhance sublimation rates, thus 

creating moats, as observed near some scarps. However, this does not explain why fields of basins 

appear to maintain a relatively consistent depth. In the dry valleys, neighboring basins can be very 

different depths. This suggests that the depths of the Martian basins are controlled by an external 

mechanism such a change in ice composition.  

 

9 Conclusions 

The dry valley glaciers in Antarctica appear to serve as a useful analogue for the Martian 

polar caps. Study of the basins and canyons seen on many dry valleys glacier provide us with insight 
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into the sequence of events necessary for the initiation and growth of large-scale features. Studying 

the dry valley glaciers also highlights the general processes required to maintain such features once 

they have formed. In particular, such comparison highlights the requirement of some mechanism to 

remove debris from the ice surface. Without such a mechanism, the debris can rapidly accumulate 

and insulate the ice from further sublimation. This implies that on Mars, there must be eolian 

removal of dust freed by sublimation from trough walls, which in turn indicates that the troughs are 

the result of some radiation and wind interaction. 

Using the Pfeffer and Bretherton (1987) V-groove radiation model, adapted for Mars, our 

results indicate that, though the grooves on Martian ice sheets have a very large opening angle, there 

is still a significant increase in radiation absorption of the equator-facing wall. What is surprising, 

however, is that the large-scale grooves on the ice sheets have opening angles that are too wide to 

optimize solar absorption. We speculate that the reason for this inefficiency is that groove closure by 

ice flow overpowers solar-energy driven sublimation. This suggests that further work aimed at 

quantifying the energy absorption and sublimation within the grooves may allow us to estimate ice 

flow rates involved in the flow closure of the grooves, a topic we hope to address in future work. 

Comparison of the Canada Glacier basins and the Martian south polar “swiss-cheese” terrain 

suggests that sublimation could be responsible for excavating the circular depressions seen. We 

believe the random distribution of the swiss-cheese basins indicates that wind removal of debris does 

not play a role in their development. We further suggest that this indicates that the basins form 

rapidly, perhaps indicating that the ice in which they are found is CO2 ice. However, the consistent 

depth of basins over large areas indicates some mechanism of depth control such as a layer of 

“harder,” less volatile H2O or CO2 clathrate ice. 
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Figure 1: Mars Orbiter Camera (MOC) image of the Martian north (left image) and south (right 
image) polar regions during their respective summers. The central white area in each image is the 
residual cap. The north polar residual cap is roughly 1100 kilometers across and is cut by dark, 
spiral troughs; the south polar residual cap about 420 km across. MGS MOC Release No. 
MOC2-231, 22 May 2000 (left image); MGS MOC Release No. MOC2-225, 27 April 2000 
(right image);]. Image Credit (these and other MOC images): NASA/JPL/Malin Space Science 
Systems. MOC images were obtained through the Malin Space Science Systems (MSSS) 
website, http://www.msss.com/moc_gallery/. 
 
Figure 2: Cartoon representation of sublimation and accumulation on a scarp on the Martian 
icecap from Fisher, 1993. 
 
Figure 3: Martian south polar residual cap "Swiss Cheese" terrain. MGS MOC Release No. 
MOC2-211, 8 March 2000. Image is illuminated by sunlight from the upper left. This image 
shows an upper layer of the Martian south polar residual cap that has been eroded, leaving flat-
topped mesas into which are set circular depressions. The tallest mesas shown here stand about 4 
meters high. Terrain such as this is found only on the south polar residual cap, leading to 
speculation that these landforms may result from the carbon dioxide ice thought to be common in 
the south polar region. The image covers an area 3 x 9 km near 85.6°S, 74.4°W at a resolution of 
7.3 meters per pixel. This picture was taken during early southern spring on August 3, 1999. 
 
Figure 4: Aerial photographs of the lower Canada Glacier.  Top photo shows oblique view of 
several of the roughly circular basins.  Photo is taken looking southwest; the asymmetry of the 
equator facing vertical wall and pole-facing, shallow slope can be seen. Bottom photo shows 
larger section of the glacier toe – the circular basins can be seen best in the lower right section of 
the image. 
 
Figure 5: Lower Taylor Glacier, Taylor Valley, Antarctica. This image shows how the canyons 
at the glacier toe appear to be a continuation of banding in the ice seen far up-glacier. The 
section of glacier shown here is approximately 6 km long. North is toward the top of the image. 
 
Figure 6: Canada and Taylor Glaciers, Taylor Valley, Antarctica. The large roughness features 
can be seen on the lower reaches of the glaciers. For scale, both glaciers are approximately 3 km 
wide. 
 
Figure 7: Cross section profiles of troughs on the Martian north polar cap, derived from Mars 
orbiting laser altimeter (MOLA) data. Troughs of this nature are pervasive on the polar caps of 
both hemispheres. Note the scale shown here is exaggerated; the troughs are very shallow, with 
opening angles of up to 165o. Generally the equator-facing wall is twice as steep as the opposing 
wall, Fig. D being the most characteristic example. 
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Figure 8: Idealized V-groove geometry used in the analysis. The x- and y-coordinates refer to 
non-dimensional distances measured up the sides of the groove (both are 0 at the apex of the 
groove and 1 at the location where the groove wall intersects the flat surface into which the 
groove is cut). The angles Ψ and γ  refer to the solar angle (described in the text) and the groove 
opening angle respectively. The angle Ψ is related to the solar zenith angle. The enhancement of 
solar absorption due to multiple diffuse reflections of the incoming solar beam is shown 
schematically. Also shown are the portions of the groove that are shadowed from the incoming 
solar beam and the portions that are illuminated directly. The opening angle γ  depicted here is 
much smaller than for the typical grooves on the northern polar ice sheet of Mars (see Table 2). 
 
Figure 9: Absorption by the V-groove geometry using γ =165o and for local noon on the summer 
solstice at 80oN. See also Figures 2 and 3 of Pfeffer and Bretherton (1987) for further details and 
results applicable to terrestrial glaciers. Curves indicate the absorbed energy for the sun-facing 
and sun-opposing walls and for a flat surface.  
 
Figure 10: Absorption by the V-groove geometry using γ =60o and for local noon on the summer 
solstice at 80oN. Curves indicate the absorbed energy for the equator-facing and pole-facing 
walls and for a flat surface. The equator-facing wall is shadowed from the bottom of the groove 
to about y=0.44.  
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Table 1: Comparison of physical environmental parameters for the Antarctic dry valleys and 
Martian polar caps. 
 
 Antarctic dry valleys Martian north polar cap 

Gravity 9.81 ms-2 3.72 ms-2 

Solar constant (top of 
atmosphere) 

1380 Wm-2 594 Wm-2 

Atmospheric pressure 1000 mbar 5-20 mbar 

Atmospheric water vapor 
pressure 

0-9mbar ~10-3 mbar 

Accumulation rates – CO2 ice none 1-2m/year (Zuber, 2000) 

Accumulation rates – H2O ice 10-2 to 10-1m water 
equivalent/year 

10-4m water equiv./year (Clifford e
al., 2000) 

Sublimation rates – CO2 ice none 1-2m/year (all overwinter 
accumulation sublimates) 

Sublimation rates – H2O ice 10-1m water equiv./year in 
ablation zone 

10-4 to10-3m water equiv./year  
(Jakosky and Haberle, 1992) 

Melt rates 10-1 to 100m water equiv./year i
ablation zone 

none 

Mean annual surface 
temperature 

~255K ~155K (Clifford et al., 2000) 

Flow speeds 100 to 101m/year order 10-2m/year (Fisher, 2000) 

Dust deposition rates 0.5-1 gm-2/year 20-200 g m-2/year (Thomas et al., 
1992) 

Volumetric fraction of debris i
ice 

<< 1% 1-50+% (Clifford et al., 2000) 
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Table 2: Parameters used to model the Martian insolation regime. 
 

Parameter Value Units 

Planetary Distance 1.524 A.U. 

Obliquity 23.45 degrees 

Length of Day 24.623 hours 

Planetary Radius 3380 km 

Solar Constant 594 Wm-2 

Opening angle � 165 degrees 

Latitude 80 N degrees 
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Figure 1: Mars Orbiter Camera (MOC) image of the Martian north (left image) and south (right 
image) polar regions during their respective summers. The central white area in each image is the 
residual cap. The north polar residual cap is roughly 1100 kilometers across and is cut by dark, 
spiral troughs; the south polar residual cap about 420 km across. MGS MOC Release No. 
MOC2-231, 22 May 2000 (left image); MGS MOC Release No. MOC2-225, 27 April 2000 
(right image);]. Image Credit (these and other MOC images): NASA/JPL/Malin Space Science 
Systems. MOC images were obtained through the Malin Space Science Systems (MSSS) 
website, http://www.msss.com/moc_gallery/. 
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Figure 2: Cartoon representation of sublimation and accumulation on a scarp on the Martian 
icecap from Fisher, 1993. 
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Figure 3: Martian south polar residual cap "Swiss Cheese" terrain. MGS MOC Release No. 
MOC2-211, 8 March 2000. Image is illuminated by sunlight from the upper left. This image 
shows an upper layer of the Martian south polar residual cap that has been eroded, leaving flat-
topped mesas into which are set circular depressions. The tallest mesas shown here stand about 4 
meters high. Terrain such as this is found only on the south polar residual cap, leading to 
speculation that these landforms may result from the carbon dioxide ice thought to be common in 
the south polar region. The image covers an area 3 x 9 km near 85.6°S, 74.4°W at a resolution of 
7.3 meters per pixel. This picture was taken during early southern spring on August 3, 1999. 
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Figure 4: Aerial photographs of the lower Canada Glacier.  Top photo shows oblique view of 
several of the roughly circular basins.  Photo is taken looking southwest; the asymmetry of the 
equator facing vertical wall and pole-facing, shallow slope can be seen. Bottom photo shows 
larger section of the glacier toe – the circular basins can be seen best in the lower right section of 
the image. 
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Figure 5: Lower Taylor Glacier, Taylor Valley, Antarctica. This image shows how the canyons 
at the glacier toe appear to be a continuation of banding in the ice seen far up-glacier. The 
section of glacier shown here is approximately 6 km long. North is toward the top of the image. 
 
 



 34

 

  

 
Figure 6: Canada and Taylor Glaciers, Taylor Valley, Antarctica. The large roughness features 
can be seen on the lower reaches of the glaciers. For scale, both glaciers are approximately 3 km 
wide. 
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Figure 7: Cross section profiles of troughs on the Martian north polar cap, derived from Mars 
orbiting laser altimeter (MOLA) data. Troughs of this nature are pervasive on the polar caps of 
both hemispheres. Note the scale shown here is exaggerated; the troughs are very shallow, with 
opening angles of up to 165o. Generally the equator-facing wall is twice as steep as the opposing 
wall, Fig. D being the most characteristic example. 
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Figure 8: Idealized V-groove geometry used in the analysis. The x- and y-coordinates refer to 
non-dimensional distances measured up the sides of the groove (both are 0 at the apex of the 
groove and 1 at the location where the groove wall intersects the flat surface into which the 
groove is cut). The angles Ψ and γ  refer to the solar angle (described in the text) and the groove 
opening angle respectively. The angle Ψ is related to the solar zenith angle. The enhancement of 
solar absorption due to multiple diffuse reflections of the incoming solar beam is shown 
schematically. Also shown are the portions of the groove that are shadowed from the incoming 
solar beam and the portions that are illuminated directly. The opening angle γ  depicted here is 
much smaller than for the typical grooves on the northern polar ice sheet of Mars (see Table 2). 
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Figure 9: Absorption by the V-groove geometry using γ =165o and for local noon on the summer 
solstice at 80oN. See also Figures 2 and 3 of Pfeffer and Bretherton (1987) for further details and 
results applicable to terrestrial glaciers. Curves indicate the absorbed energy for the sun-facing 
and sun-opposing walls and for a flat surface.  
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Figure 10: Absorption by the V-groove geometry using γ =60o and for local noon on the summer 
solstice at 80oN. Curves indicate the absorbed energy for the equator-facing and pole-facing 
walls and for a flat surface. The equator-facing wall is shadowed from the bottom of the groove 
to about y=0.44.  
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