Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry

Edward Zaron
Portland State University, ezaron@pdx.edu

Citation Details
https://pdxscholar.library.pdx.edu/pics_pub/10
Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry

Edward D. Zaron*

Portland State University, Portland, Oregon

*Corresponding author address: Department of Civil and Environmental Engineering, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA
E-mail: ezaron@pdx.edu
A near-global model for the sea-surface expression of the baroclinic tide has been developed using exact-repeat mission altimetry. The methodology used differs in detail from other altimetry-based estimates of the open ocean baroclinic tide, but it leads to estimates which are broadly similar to previous results. It may be used for prediction of the baroclinic sea level anomaly at the frequencies of the main diurnal and semidiurnal tides, K_1, O_1, M_2, S_2, as well as the annual modulates of M_2, denoted MA_2 and MB_2. Based on a comparison with independent CryoSat-2 data, the tidal predictions are capable of explaining more than 13 cm2 variance at a few locations. The predicted tides are also validated by comparison with a database of hourly currents inferred from drogued surface drifters. The database is large enough to permit assessment of a simple model for scattering of the low-mode tide. Results indicate a scattering time scale of approximately one day, consistent with a priori estimates of time-variable refraction by the mesoscale circulation.
1. Introduction

Satellite altimetry has enriched our understanding of ocean dynamics by providing a sustained and near-global view of mean sea level and mesoscale eddies during the last 25 years (Fu and Cazenave 2001), it is now widely used in ocean forecasting (Willis et al. 2010), and it is contributing to a broad range of research on ocean and climate processes (Lyszkowicz and Bernatowicz 2017). Studies of ocean tides have been invigorated by the unique datasets generated with altimetry, leading to improved tide predictions (Stammer et al. 2014) and quantitative maps of tidal dissipation (Egbert and Ray 2000, 2001).

The astronomical tidal forcing, i.e., the perturbation of near-Earth gravity caused by the Sun and Moon, does not vary significantly over the depth of the ocean (Doodson and Warburg 1941), so the work done on the ocean by the tidal forcing is input almost exclusively to the barotropic tide (Kelly 2016). Significant energy loss from the barotropic tide occurs in shallow water on continental shelves, and in deep water at sea floor topography. In the latter case the tidal flow disturbs isopycnal surfaces and creates baroclinic pressure gradients which propagate as internal waves (Baines 1982). This process of barotropic tidal energy loss, leading to baroclinic tidal generation in the deep ocean, amounts to roughly a 1 TW rate of work (Egbert and Ray 2001, 2003; Egbert et al. 2004). Although the latter barotropic to baroclinic conversion accounts for only 1/3 of the tidal dissipation, the rate of work is similar to that done by wind on the ocean (Scott and Xu 2009), exclusive of the wind-work involved in generating surface waves and stirring the mixed layer. The vertical potential energy flux driven by the dissipation of these energy inputs is connected to the thermohaline circulation, meridional heat flux, and other climatically-relevant transport processes (Wunsch and Ferrari 2004). Once generated, the baroclinic tide can transport energy for 1000’s of kilometers, but the locations and mechanisms whereby it dissipates are not
known adequately. Ocean circulation climate models are sensitive to the detailed spatial distribution of the dissipation (Melet et al. 2013) so there is ongoing concern with mapping it empirically. Because tidal periodicities are aliased by satellite sampling, altimetry can only identify that component of the baroclinic tide which is phase locked with the astronomical tidal forcing. Hence, the baroclinic dissipation inferred from altimeter-derived maps is a combination of apparent dissipation due to the loss of coherence of the tide caused by time-variable modulations of the propagation medium (Park and Watts 2006; Rainville and Pinkel 2006), and irreversible dissipation due to processes such as wave-wave interactions (MacKinnon and Winters 2005; Ward and Dewar 2010; Wunsch 2017), shear-driven mixing (St. Laurent and Nash 2004), and wave breaking (Legg and Huijts 2006). The processes just mentioned range from weakly- to strongly-nonlinear, and it is not clear the degree to which they can be distinguished using ocean observations. Likewise, the extent to which turbulent transport resulting from these processes can be localized to the site of energy loss from the baroclinic tide is also not presently understood.

In any case, the goal of the present work is to construct accurate maps of the baroclinic tide useful for both tidal prediction and for dynamical studies in the open ocean. Because in situ observations of baroclinic tidal currents are typically highly variable, it was a surprise when baroclinic tides were observed with altimetry (Ray and Mitchum 1996; Kantha and Tierney 1997; Ray and Cartwright 2001; Carrère et al. 2004), but, since that time, maps of baroclinic tides have been produced with increasing resolution and fidelity (e.g., Dushaw 2015; Zhao et al. 2016; Ray and Zaron 2016). The motivation to produce accurate baroclinic tidal predictions grows out of the desire to remove aliased tidal variability from a variety of ocean observations (Zaron and Ray 2017), which will be especially important for making use of observations from the anticipated Surface Water & Ocean Topography (SWOT) swath altimeter mission (Gaultier et al. 2016).
This rest of this paper is organized as follows. First, the altimeter data and harmonic analysis are briefly described, emphasizing minor innovations compared to previous approaches in the literature. Then, the spatial model and other details involved in estimating gridded tidal fields are described, along with a brief comparison with independent altimeter data to illustrate the use of the model for prediction of baroclinic tidal sea surface height (SSH). In order to infer energetics from the mapped SSH fields, some model for the tidal dynamics is needed, and this is explored by detailed comparison with a large database of surface currents observed with Lagrangian drifters. Finally, the results are discussed in the context of other studies, and the article concludes with a brief summary.

2. Altimetry Data and Harmonic Analysis

The satellite altimeter data used in the present analysis are listed in Table 1, representing essentially all the exact-repeat altimeter mission data available during the 1992-2017 time period. By far the largest quantity of observations lie along the TOPEX/Jason reference orbit, but the other missions are essential for resolving the spatial structure of the baroclinic tide.

The path delay and geophysical corrections applied to the data are conventional and follow the GDR-D standard (Picot et al. 2012, 2014) with two minor innovations. The first innovation is that the barotropic ocean tide and earth load tide are corrected using the Goddard/Grenoble Ocean Tide model, version 4.10c (GOT4.10c; an updated version of the model developed in Ray 1999), which has been smoothly extrapolated by the author up to the coastline. The second innovation is that an estimate of the mesoscale sea level anomaly (SLA) is also subtracted from the SSH in order to remove as much non-tidal signal as possible, prior to harmonic analysis. The rationale and impact of this correction have been discussed previously (Ray and Byrne 2010; Ray and Zaron 2016), so it shall not be repeated here. As shown in Ray and Zaron (2011), the methodology used to estimate
the mesoscale SLA from multi-satellite altimetry (Duacs/AVISO team 2014; Pujol et al. 2016) does not completely filter out the baroclinic tidal signals. Filtering the baroclinic tidal signals from the mesoscale SLA estimate prior to using it as a correction is necessary, and this procedure is detailed in Zaron and Ray (2018).

Aside from the minor changes just described, the data processing is essentially identical to that used previously for harmonic analysis of along track altimetry. The altimeter data from missions with the same orbit ground tracks are assembled into time series at each point along the nominal ground track. Each time series is then harmonically analyzed using conventional methods (Cherniawsky et al. 2001; Carrère et al. 2004).

Some care is needed when choosing the tidal frequencies for mapping baroclinic tides. The first consideration is whether or not the aliased tidal frequencies can be determined with the given length of record for the given orbits. The second consideration is the extent of overlap or contamination by tidal frequencies which are not part of the analysis.

To address the first consideration, Table 2 lists the aliases and synodic periods for the tides which are mapped below, \(M_2, S_2, K_1, O_1 \), and the annual modulates of \(M_2 \), denoted \(MA_2 \) and \(MB_2 \) (Huess and Andersen 2001). The synodic period is the time needed to accumulate a phase difference of \(2\pi \) between signals at the given alias periods. For missions in the TOPEX/Jason reference orbit, the alias frequencies of these tides are unambiguously separable using time series longer than 3 years. For the Geosat Follow-On mission (G1A) in the Geosat orbit, the \(M_2, O_1 \), and \(MB_2 \) frequencies can be accurately identified, but the \(S_2 \) and \(K_1 \) tidal aliases require a 12 year time series to separate, and the \(MA_2 \) and \(S_2 \) aliases essentially coincide. Thus, the estimates of \(MA_2, S_2 \) and \(K_1 \) are inaccurate from G1A. The ERS/Envisat orbit is Sun-synchronous, so \(S_2 \) cannot be determined by missions in this orbit. There is a near overlap of \(O_1 \) and \(MA_2 \), so these tides also cannot be determined accurately from these missions.
In order to address the second consideration, it is necessary to inspect the synodic periods of a larger set of tides. This has been done for the set M_2, S_2, N_2, K_2, K_1, O_1, P_1, and Q_1, together with their annual modulates (not shown). For the missions in the TOPEX/Jason orbits, these additional frequency pairs extend the synodic period to about 6 years, which does not lead to problems with the present data sets. For the G1A orbit, the annual modulates of S_2 are found to nearly overlap with M_2, which adds to noise in harmonic constants. Missions in the ERS/Envisat orbit are more problematic; separation of M_2 and its annual modulates from N_2 and its annual modulates requires almost 9 years of data (Andersen 1995), so the baroclinic N_2 tide is a source of noise here. Likewise, the K_1–P_1 pair requires a nodal cycle to separate, so the presence of P_1 signals adds noise to K_1. Overlaps of the tidal aliases and the annual and semi-annual cycles also exist, but fortunately the annual and semi-annual signals in the open ocean are captured by the mesoscale SLA maps, and removed prior to harmonic analysis.

3. Spatial Model and Mapping

Previous efforts to map the baroclinic tides have used a variety of models to describe its spatial structure. For example, Ray and Zaron (2016) simply used an ad-hoc radial basis function to smoothly interpolate harmonic constants between orbit ground tracks, yielding estimates of baroclinic tidal fields with a minimum of assumptions about their dynamics or spatial coherence. The consistency of the results with the predicted wavenumber dispersion relation for linear inertia-gravity waves supports other methodologies in which these dynamics are assumed. The maps of Dushaw (2015) directly use the dispersion relation for internal waves at the tidal frequencies, deriving the spatial coherence from the assumed dynamics. An even more constrained spatial model is the plane-wave fitting used by Zhao et al. (2016), in which the spatial fields are assumed to be comprised of small number of waves propagating in directions inferred from the data.
Experience with the plane-wave fitting indicates that the baroclinic tidal fields closely obey linear dynamics (Ray and Cartwright 2001; Zhao et al. 2012; Zhao 2016); however, there is a tradeoff between bias and stability which depends on the complexity of the spatial model. For example, both empirical estimates and numerical models of baroclinic tides find a great deal of spatial structure and anisotropy, with waves organized into relatively narrow beams as the result of distributed sources and wave interference (Rainville et al. 2010). The unstructured signal model of Ray and Zaron (2016) is biased towards zero far from the data sites, and it is found that simply increasing the harmonic constants by 5% to 20%, depending on location, improves the accuracy of the tidal predictions made with the model. Similarly, one would expect the highly-structured plane-wave model of Zhao et al. (2016) to be biased in a wave field composed of relatively narrow beams. The bias depends on the size of the fitting window, but one would expect it to be proportional to $\partial^2 \eta / \partial y^2$, where η is baroclinic tidal amplitude and y is a coordinate perpendicular to the local propagation direction.

Based on the above, a spatial model was hypothesized which represents the baroclinic wave field locally with a small number of propagating waves combined with a polynomial amplitude modulation. To make these ideas precise, let $\mathbf{x} = (x, y)$ represent Cartesian coordinates on a locally-defined tangent plane, and assume that the baroclinic tide can be represented with N spatially-modulated plane waves, each with wavenumber modulus k_n and direction ϕ_n, for $n = 1, \ldots, N$. Assuming the amplitude envelope is modulated by a polynomial of order P, then the local spatial signal model for the complex amplitude of the baroclinic tide, η, is given by,

$$\eta(x, y) = \sum_{n=1}^{N} \sum_{p=0}^{P} \sum_{q=0}^{P-p} x^p y^q \left(a_{pqn} \cos(k_n \cdot \mathbf{x}) + b_{pqn} \sin(k_n \cdot \mathbf{x}) \right),$$

(1)

where vector wavenumber is given by $\mathbf{k}_n = k_n (\cos \phi_n, \sin \phi_n)$, and complex coefficients (a_{pqn}, b_{pqn}) are found by weighted least-squares fitting to the harmonically analyzed altimeter data. With this
representation, the component of the wave field propagating parallel to \(k_n \) is given by,

\[
\eta_+ (x, y) = \frac{1}{2} \sum_{n=1}^{N} \sum_{p=0}^{P} \sum_{q=0}^{P-p} x^p y^q (a_{pq} - ib_{pq}) \left(\cos (k_n \cdot x) + i \sin (k_n \cdot x) \right),
\]

(2)

and the anti-parallel component is given by,

\[
\eta_- (x, y) = \frac{1}{2} \sum_{n=1}^{N} \sum_{p=0}^{P} \sum_{q=0}^{P-p} x^p y^q (a_{pq} + ib_{pq}) \left(\cos (k_n \cdot x) - i \sin (k_n \cdot x) \right).
\]

(3)

Note that \(\eta \) and the model parameters, \((k_n, \phi_n, a_{pq}, b_{pq})\), are together a function of tidal frequency, \(\omega \in \{\omega_{M_2}, \ldots\} \). When it is necessary to indicate this dependence it will be shown using superscript notation, e.g., \(\eta^{(M_2)}(x,y) \) is the complex amplitude of the \(M_2 \) harmonic constant.

It remains to be stated how \(P, N, k_n, \) and \(\phi_n \) are determined. The order of the polynomial is simply chosen as \(P = 2 \), which eliminates the leading order bias term of a plane-wave fit. Determining \(N \), the number of component waves, is done with a preliminary analysis in which \(k_n \) and \(\phi_n \) are determined through an incremental model-building exercise. The procedure is as follows. The empirical along-track harmonic constants, \(\eta_o(x_i,y_j) \), are assembled in locally-defined coordinates, \(-L/2 \leq x_i \leq L/2 \) and \(-L/2 \leq y_i \leq L/2\), where \(L \) is the size of the two-dimensional data fitting window. Within the fitting window the harmonic constants are placed in square bins of size \(\Delta x \), averaging data from crossing tracks if necessary. The data within the grid are then regarded as the field of harmonic constants multiplied by the spatial sampling pattern of the altimeter ground tracks (Figure 1a). The contents of this array are windowed (Figure 1b) and the two-dimensional Fourier transform is taken. In essence, the resulting two-dimensional spectrum is the convolution of the baroclinic tide SSH with the antenna pattern of the ground tracks (Fig. 1c). In spite of the modulation by the antenna pattern, peaks in the spectrum are clearly identifiable (Fig. 1d). The two-dimensional spectrum is integrated azimuthally and the peak wavenumber used to assign \(k_n \) (Fig. 1g). Then, the two-dimensional spectrum is integrated radially from \((3/4)k_n\) to \((4/3)k_n\) and the azimuthal direction of the peak is assigned to \(\phi_n \) (Fig. 1j). A simple plane-wave fit is computed
and subtracted from the data, and the process is repeated until an insignificant amount of variance is removed.

It is useful to examine examples of this procedure in different regions, and this is shown in Figures 1-3 for three very different sites in the Pacific. Figure 1 is from a region northeast of the Hawaiian Ridge where the wave field is dominated by a northbound mode-1 wave from the Ridge and a southbound wave from the Aleutians. The power spectrum of the windowed data (Fig. 1d) clearly shows the peaks associated with the northward and southward propagating beams, with the expected wavelength (Fig. 1g) and propagation directions (Fig. 1j). When this first wave is removed, the spectrum of the residual is now dominated by the southward wave (Fig. 1e, h, and k). The splitting of the northward peak after the first and second waves are removed (Fig. 1e and f) indicates that it is not well-represented by a simple plane wave. Based on the shape of the spectral peak, it appears to be better represented by a radially-spreading wave (Fig. 1d); however, this spatial model is not part of this preliminary exercise which is only intended to identify \((k_n, \phi_n)\).

The units of the integrated spectra in the last two rows, mm\(^2\)/cpk and mm\(^2\)/rad, allow the results to be compared with the data in the following two figures. Note that the two-dimensional spectra in the second row are log-scaled, showing three orders of magnitude, and the colors are normalized by the maximum value. Thus, as the residual gets smaller, the peaks stand out less above the noise floor (Fig. 1f, i, l).

The wave field in the Subtropical Western Pacific is primarily composed of three mode-1 waves (Fig. 2a, b, and d), and the amplitudes of these waves (Fig. 2g, h, and i) are larger than those described above near the Hawaiian Ridge. Note also that the noise floor of the radial wavenumber spectrum (e.g., Fig. 2i) is noticeably elevated compared to the previous case (Fig. 1i). Presumably this is related to the higher level of mesoscale kinetic energy in this region.
The wave field in the Equatorial Pacific is much more directional than the previous examples (Fig. 3a, b, d). The wave fitting identifies two mode-1 waves and one mode-2 wave, all propagating to the south. Once again, notice how fitting with a single plane wave changes the directional distribution of variance (Fig. 3j vs. Fig. 3k), suggesting that radial spreading is significant even within these small analysis windows.

The antenna patterns are generally similar in these examples since they primarily depend on the ground track spacing among the missions (Figs. 1-3, panel c). Note that the Nyquist wavenumber, approximately 0.08 cpk, lies far outside the displayed range of wavenumbers. In fact, the antenna patterns are increasingly structured at large wavenumbers because of the high-wavenumbers associated with the across-track sampling. Fortunately, the tidal fields contain so little variance at these small spatial scales that the leakage is not problematic for low wavenumbers, \(|k| < 25 \times 10^{-3}\) cpk.

Table 3 lists the parameters for the spatial models for each of the tides considered. The analysis window of \(M_2\), \(L = 500\) km, is smaller than that used for the other tides. A larger window, \(L = 1000\) km, is used for \(S_2\), \(MA_2\), and \(MB_2\) because the along-track estimates of these tides are less accurate than \(M_2\), as discussed in Section 2. The larger window, \(L = 1000\) km, is used for the \(K_1\) and \(O_1\) tides in order to resolve the longer wavelength of these diurnal tides compared to the \(M_2\) tide. Although the window is of size \(L\), parameters in the model are determined by fitting the data with a weighting function, \(\exp\left(-5|x|/L^2\right)\), so essentially just data from the middle third of the analysis window are used. As mentioned in the caption of Table 3, this function is also used to window the data prior to computing the two-dimensional power spectrum for determination of \((k_n, \phi_n)\).

The procedure just described leads to a sequence of estimates for the dominant wavenumbers, modulus and direction \((k_n, \phi_n)\), for \(n = 1, \ldots, N\), ordered according to the variance explained in the 2-dimensional wavenumber domain. But how should the size of this expansion, \(N\), be determined?
Experimentation with the F-test, in which the ratio of explained-to-prior variance is compared to that expected by chance (Jenkins and Watts 1968), and Aikake’s Information Criterion (Bozdogan 1987) found that both methods sometimes lead to spurious results, apparently due to occasional outliers. Instead, a simpler criterion was used. Namely, the expansion was truncated at $n = N$ when the $n = N + 1$ wave removed less than 1.5 mm2 variance. The numeric value here was chosen to be approximately equal to the formal error estimate of the harmonic constants from the longest merged time series (TXA, J1A, J2A, J3A; Table 1). The value of N, which is typically in the range of 2 to 5 waves, is thus based on a subjective criterion designed to avoid over-fitting the observations.

With the spatial model defined as above, the mapping proceeds by dividing the ocean into patches of size $L \times L$ in a local tangent plane centered on latitude and longitude coordinates (λ_k, θ_l). The patches lie on a regular overlapping grid of latitudes, $\Delta \theta = \theta_{l+1} - \theta_l$, such that $2 \pi r_e \Delta \theta = r_{ol} L$, where r_e is the mean radius of the Earth and $r_{ol} = 1/4$ determines the extent of overlap. The longitude grid is also equidistant between the local tangent planes, $\Delta \lambda = \lambda_{k+1} - \lambda_k$, where $2 \pi r_e \cos(\theta_l) \Delta \lambda = r_{ol} L$; note that $\Delta \lambda$ and λ_k depend on l, but this dependence is suppressed in the notation for readability.

Previous published maps of the baroclinic tides have utilized along-track high-pass filtering of the data in order to suppress errors at wavelengths longer than 500 km, but this leads to a non-isotropic antenna response and filtering of east-west propagating waves (Ray and Zaron 2016). To overcome this problem, the present approach estimates the model parameters by fitting the along-track sea surface slope, rather than SSH. This reduces the influence of long-wavelength errors in the data, but because the same operation is applied to both the input data and the signal model, there is no loss of sensitivity to wavenumbers oriented in the east-west directions.
Finally, the complex coefficients \((a_{pqn}, b_{pqn})\) in equation (1) are determined by conventional weighted least-squares within each analysis window. The weights used are the inverse of the squared standard error estimates from the along-track harmonic analysis (Cherniawsky et al. 2001).

Once the model coefficients are found for each patch, the estimated tidal fields are gridded on a regular latitude-longitude grid at a resolution of \(\Delta \Theta = (1/20)^\circ\) by weighted averaging of the overlapping patches. The averaging kernel is a radial basis function, \(\exp(-(|x - x_{kl}|/(0.5(1 - r_{ol})L))^2)\), so the resulting field is essentially continuously differentiable at the edges of each patch.

One final step is involved in preparing a high resolution grid suitable for making tidal predictions, which is masking off regions where the estimate is thought to be inaccurate. This is done using the formal error estimate of the \(M_2\) harmonic constants determined from altimetry, averaged over 500 km. The mask is set to zero where the mean standard error is greater than \(\sigma_m = 2.75\) mm, a value which was subjectively determined. Additional criteria that result in a grid cell being masked off are the following: (1) fewer than 1250 data points used in the determination, (2) water depth less than 500 m, based on the GEBCO bathymetry (Weatherall et al. 2015), (3) less than 12 km distance to land, and (4) poleward of 60\(^\circ\) latitude. As a final step, the discrete-valued mask is convolved with a compactly supported, twice-continuously differentiable function (Wendland 1995) in order to smooth the mask over 3\(^\circ\). In general the mask delimits regions where the mapped field appears to be spurious; however, it would be advantageous to optimize the mask using more objective criteria in the future.

4. Assessment of Baroclinic Tide Estimates

Figure 4 shows the in-phase components of the \(M_2, S_2, K_1,\) and \(O_1\) tides obtained with the approach described above. The estimates obtained for the \(M_2, S_2, K_1,\) and \(O_1\) baroclinic tides
are superficially similar to those shown in previous works (Dushaw 2015; Zhao et al. 2016; Ray and Zaron 2016; Zhao 2017; Carrère et al. 2017), but they differ in quantitative detail. The detail visible in the S_2 field (Fig. 4b) is considerably reduced compared to that of M_2. This occurs because the map uses less data for S_2 compared with M_2, but also the amplitude of S_2 is lower and closer to the noise level. The way the spatial model is constructed essentially has a small-signal cutoff to avoid over-fitting the data.

As mentioned in Zhao (2014), the equatorward refraction of waves is evident for zonally-oriented waves of all the tides, but especially for the diurnal tides (Fig. 4c and d). Neglecting changes in wave speed caused by stratification or water depth, refraction along a ray path is determined the local inertial period f and its gradient β,

$$\frac{d\phi}{dt} = -\frac{f \beta c_p \cos \phi}{\omega \sqrt{\omega^2 - f^2}},$$ \hspace{1cm} (4)

where ϕ is the azimuthal angle of propagation and c_p is phase speed (Eden and Olbers 2014). Using the fact that the vector group velocity and scalar phase speed are related by,

$$c_g = c_p \sqrt{\omega^2 - f^2}/\omega(\cos \phi, \sin \phi),$$

the minimum radius of curvature of rays is given by $R = (\omega^2 - f^2)/(f \beta)$.

Maps of the annual modulates of M_2 in Figure 5 are a new component of this work. The baroclinic MA_2 and MB_2 tides are generally too small to estimate reliably, so a larger fitting window has been used, and the result is heavily weighted towards their values from missions in the TOPEX/Poseidon reference orbit. The Arabian Sea, the region between the Seychelles and Madagascar, and the region offshore of the Amazon River Plume are locations where seasonal modulations are detectable (Fig. 5b-d). Seasonal modulation of the internal tides in the South China Sea have been studied previously, and attributed to the seasonal cycle of upper ocean stratification (Jan et al. 2008). The present maps essentially provide a regional view of these changes,
which are present throughout the Western Pacific (Figure 5a). Note that baroclinic and barotropic tidal seasonality has been identified previously using altimeter data (Müller et al. 2014).

A comparison of the present estimates of M$_2$ with a similar estimate published in Ray and Zaron (2016) is shown in Figure 6. Denote the present estimate as HRET, for “High Resolution Empirical Tide”, and the Ray and Zaron (2016) estimate as IT, for “Internal Tide.” The difference of the in-phase components, HRET minus IT, is smaller than a few millimeters over much of the ocean (Fig. 6a), but differences exceeding a centimeter occur in the Western Pacific and in a few other regions where amplitudes are large and wavenumbers are zonal. It is useful to examine Figure 6 at high resolution (see Supplementary Materials), where it is evident that the difference field is highly structured. The differences display a distinct pattern of satellite ground tracks and indicate that the estimates are in best agreement along the tracks; however, in regions where the wavenumber is zonal, the difference is not a random error, but it consists of propagating waves.

Figure 7 illustrates the usefulness of the separate tide models for de-aliasing tides in independent altimeter data. The variance reduction of the CryoSat-2 altimeter SSH measurements is plotted using data from 2012–2018, averaging within 2° lat.–lon. bins (more than 10,000 measurements per bin). Positive values (red) indicate the degree to which the predicted tides remove aliased tidal variability, while negative values (blue) indicate that noise is added by the tide model. The maximum variance explained within any bin is 13 cm2 for M$_2$, but the mean variance is only 0.25 cm2. There are a few locations, particularly to the south of the Kuroshio, where the explained variance is negative, but this is a region where fewer CryoSat-2 data are available due to changes in its data collection mask, so the significance of these variance estimates is reduced. S$_2$ explains a much smaller amount of variance, essentially all within the ±30° latitude range displayed. The model for K$_1$ explains a maximum of 4 cm2 variance, almost all in the seas of the Western Pacific.
The model is less successful in explaining variance at the O$_1$, MA$_2$, and MB$_2$ frequencies (Fig. 7d-f). These are smaller tides, but there are more regions where the tidal correction fails to reduce the variance. Nonetheless, the fields indicate a few regions where these tides are large enough that they might be considered for use as tidal corrections, depending on the specific application. The variance reduction from the total of the tidal corrections is dominated by the M$_2$ and K$_1$ components (Fig. 7g).

5. Baroclinic Tidal Dynamics

The previous section focussed on the sea-surface height expression of baroclinic tides. Potentially more insight into the dynamics can be obtained by studying the baroclinic tidal currents. Let $u = (u, v)$ represent the horizontal current vector at the ocean surface. The instantaneous tidal currents ought to be related to the surface elevation through the equations,

$$u_t + f \hat{k} \times u = -g \nabla \eta + T(u, u_o), \quad (5)$$

where $T(u, u_o)$ is a vector which is a nonlinear function of both tidal currents and non-tidal currents, with the latter denoted by u_o. The relationship between the mean, phase-locked, tidal currents and the surface elevation is, in principle, more complicated because it involves the projection of the above dynamics onto particular tidal frequencies,

$$-i \omega_j u_j + f \hat{k} \times u_j = -g \nabla \eta_j + \hat{T}_j(u, u_o), \quad (6)$$

where it is understood that u_j and η_j now refer to complex-valued fields associated with the j-th tidal frequency, ω_j, and \hat{T}_j is analogous to the divergence of a Reynolds stress.

The physical effects represented by \hat{T} can be thought of as tidal self-interactions, such as shear-driven mixing (St. Laurent and Nash 2004), scattering by topography (Johnston et al. 2003), or sub- and super-harmonic generation (MacKinnon and Winters 2005; Wunsch 2017); and tidal/mean-
flow interactions, such as time-dependent refraction (Rainville and Pinkel 2006; Park and Watts 2006) or directional scattering by geostrophic modes (Ward and Dewar 2010). For the essentially low-mode description of the tidal elevation which can be inferred from altimetry, it is hypothesized that time-dependence of the propagation medium is the dominant physical process, and it can be approximated by the linear relationship,

\[\hat{T}_j(u, u_o) = -\lambda_j u_j, \]

(7)

where \(\lambda_j^{-1} \) is a damping time scale. One can estimate \(\lambda_j \) from the effective diffusivity of the non-tidal flow, \(\nu_o = c_o L_o \), where \(c_o \) and \(L_o \) are the root-mean-square phase speed perturbation and its decorrelation scale, respectively. Then, \(\lambda_j = \nu_o k_j^2 \), where \(k_j \) is the wavenumber of internal tide. Plausible estimates for \(c_o \) range from 0.05 m/s to 0.1 m/s (Zaron and Egbert 2014; Buijsman et al. 2016), with a correlation scale of 100 km to 400 km (Zaron and Egbert 2014). Assuming a mid-latitude value of \(k_j = 4.2 \times 10^{-5} \) m\(^{-1} \) for a mode-1 baroclinic semi-diurnal tide, the value of \(\lambda_{M2} \) ranges from \(8 \times 10^{-6} \) s\(^{-1} \) to \(6 \times 10^{-5} \) s\(^{-1} \), a range of 5% to 50% of the M\(_2\) frequency. For K\(_1\), one would expect \(\lambda_{K1} \) to be about a factor of 4 smaller because of the approximately double wavelength.

A test of the hypothesized dynamics, equations (6)–(7), has been conducted by predicting baroclinic tidal currents and comparing them with currents inferred from surface drifters. The data set consists of 96 million hourly current vectors from twelve thousand drogued drifters, collected from 1995 to 2015 as a part of the NOAA Global Drifter Program (Elipot et al. 2016). Observed currents are compared with predicted tidal currents, and the variance reduction is used as a measure of the goodness-of-fit. Figure 8 shows the explained variance as a map, averaged within 2.5° bins, when no damping is assumed (\(\lambda_j = 0 \)). For the largest and most accurately determined tides, M\(_2\) and K\(_1\), the model explains a positive amount of vector current variance almost everywhere.
Several points of interest can be noted from Figure 8. Comparison of the observed root-mean-square surface speed (Fig. 8a) with either of the root-mean-square predicted speeds (Fig. 8b and d), indicates that the predicted tidal currents are generally a small fraction of the observed currents; although, in a few areas, such as in Luzon Strait, near the Seychelles, near New Zealand, and off the North American west coast, the tidal currents may comprise 20% or more of the total. Also, since the tidal currents are related to the gradient of sea surface height, the M_2 currents look quite different from the M_2 surface elevation (Fig. 8b versus Fig. 4a). Close inspection of the explained current variance does highlight a few sites where the tide model has problems. The M_2 model adds variance (negative explained variance) at a few spots in the North Pacific and at several other locations near the coast (Fig. 8c, regions colored blue). The Gulf of Mexico is a region where the K_1 predictions are not accurate (Fig. 8e).

The GDP data set is large enough that it can discriminate between small adjustments to the dynamics. For example, the latitude-dependent acceleration of gravity, g, which varies by about 0.5% from pole to equator, is used in equation (6) (Moritz 2000). If a constant nominal value is used instead, $g = 9.81 \text{ m}^2/\text{s}$, the area averaged explained variance is reduced slightly.

Figure 9 shows the explained variance as a function of λ_j for the M_2 and K_1 tides. The predictions for the other tides are not accurate enough to usefully constrain the damping time scale. The explained variance is maximized for $\lambda_{M2} = 2 \times 10^{-5}$ and $\lambda_{K1} = 10^{-5}$ (Fig. 9a), values which are within the range proposed above. As is evident from Figure 8, the geographic distribution of M_2 and K_1 currents is very different, so these variance-maximizing values of λ_j are measuring different physical locations. If, instead, the explained variance is restricted to the latitude range that includes Luzon Strait, where both M_2 and K_1 are relatively large, the optimal values are $\lambda_{M2} = 2 \times 10^{-5}$ and $\lambda_{K1} = 0.5 \times 10^{-5}$ (Fig. 9b), approximately $\lambda_{M2} = 4\lambda_{K1}$, as predicted. The ratio of these coefficients varies somewhat when averaging over different regions when other con-
ditional averages are used; however, the general property of $\lambda_{M2} > \lambda_{K1}$ has been observed in every case examined.

6. Discussion

The maps of the low-mode M_2, S_2, and K_1 baroclinic tides presented here appear to be an incremental refinement of other published estimates (Zhao et al. 2016; Ray and Zaron 2016; Zhao 2017). Compared to these previously-published models, the HRET model involves small changes in the signal model, fitting the model to sea-surface slope rather than height, a slight increase in the quantity of data, and improved estimation and removal of non-tidal variability prior to harmonic analysis. The mapping methodology was inspired by the plane-wave fitting approach implemented by Zhao et al. (2016), which it sought to generalize and improve.

It is interesting to compare the present approach with one which uses the dynamics directly (e.g., Zaron et al. 2009). For the M_2 tide, the present approach estimates a maximum of 144 parameters per $(250\text{km})^2$ analysis window (6 wavenumbers \times 2 modulus and direction \times 6 spatial polynomial coefficients \times 2 in-phase and quadrature parts). Typically, this involves about 3600 harmonic constants, or about 25 data points per parameter to be estimated. If only 3 wavenumbers were identified in the model-building stage, then there would be 50 data per parameter. This differs from the dynamics-based approach where the number of parameters to be estimated is determined by the model’s spatial resolution and the assumed decorrelation scale of model errors. If the in-phase and quadrature components of the errors in the horizontal momentum equations were to be estimated, and a correlation scale of 50 km were assumed, there would be at least 200 parameters to estimate. This is roughly twice as many parameters as with the present approach, and easily 3 to 6 times as many in regions with relatively few waves. Thus, the highly structured signal model using relatively few degrees of freedom, with the vector wavenumber set by the preliminary model
building (a nonlinear estimator), seems to be an advantage compared to more general dynamics-based approaches (Carrère et al. 2017).

Nonetheless, it is clear that the present approach has limitations which will cause it to lose utility near abrupt topography or where the baroclinic wave field deviates from the rudimentary signal model. Figure 10 illustrates the K_1 harmonic constants in a region of Western Pacific where the Philippine Sea meets the East China Sea. The boundary between the baroclinic waves (in the deep water) and their absence (on the continental shelf) is apparent. Capturing this spatial structure with the signal model of equation (1) is not possible, at least within analysis windows containing a sufficient quantity of data. Instead, it seems likely that subsequent improvements will result from using a more dynamically-constrained approach, but with a highly-structured error covariance model to reduce the number of parameters involved.

The damping time scale of 10^5 s (or 1.2 d) estimated in Section 5 agrees with the residence time of 1–1.5 days estimated by Zhao et al. (2016), based their mode-1 M_2 tide map and the rate of energy input by the barotropic tide (Egbert and Ray 2001, 2003). Of course the present estimate is based on completely independent data and methodology, so it provides a check on the previous energy budget summaries (Wunsch and Ferrari 2004; Garrett and Kunze 2007).

The values of λ_j estimated above were obtained by maximizing a goodness-of-fit metric, which implicitly emphasizes those spatial regions with the largest baroclinic tidal kinetic energy. Thus, the area average damping time scale of the coherent tide could be greater or less than the inferred value, and it is difficult to place confidence limits on it, or map its spatial structure, without a detailed consideration of the physical mechanisms it represents. Such an analysis shall be the subject of future studies.

The form of the damping, $-\lambda_j u_j$, was justified as a model for the loss of energy from the phase-locked tide, but it may alternately be regarded as an energy source for the non-phase-locked tide.
The non-phase-locked tide obeys an energy equation, which could be written as

\[\nabla \cdot (c_g^{(j)} E_j') = \lambda_j \overline{E}_j - \gamma E_j', \quad (8) \]

where \(c_g^{(j)} \) is the group velocity and \(E_j' \) and \(\overline{E}_j \) are the non-phase-locked and phase-locked wave energy, respectively, associated with the \(j \)-th tidal frequency. This expression can be integrated over the deep ocean, bounded by the continental margins, to obtain,

\[(1 - r_j) P c_g^{(j)} E_j' = \lambda_j A \overline{E}_j - \gamma_j A E_j', \quad (9) \]

where \(r_j \) is the reflection coefficient for the low-mode baroclinic tide at the continental margin, about 0.4 (Kelly et al. 2013), \(P \) is the perimeter of the deep ocean, and \(A \) is the surface area of the ocean. At this level of approximation the quantities \(E_j \) and \(\overline{E}_j \) are regarded as area averages, and \(\gamma_j^{-1} \) is a damping time for the non-phase-locked time.

The global mean ratio of non-phase-locked to phase-locked baroclinic tidal variance, \(E_{M2}'/\overline{E}_{M2} \), is estimated as 0.5 (Zaron 2015, 2017). Equation (9) can be re-arranged to compute this same quantity,

\[\frac{E_j'}{\overline{E}_j} = \left(1 - r_j \right)^{-1} \frac{P c_g^{(j)}}{A \lambda_j} + \frac{\gamma_j}{\lambda_j}. \quad (10) \]

One expects the ratio, \(P/A \), to be some multiple of the reciprocal of \(R_e \), the radius of the earth, and \(c_g^{(j)}/\lambda_j \) is a measure of the propagation distance of the phase-locked tide, only about 0.05\(R_e \) using a mean group speed of \(c_g^{(M2)} = 2.5 \) m/s and \(\lambda_{M2} = 10^{-5} \) s\(^{-1}\). Even with a generous estimate for the perimeter, \(P \), across which the tides are reflected or dissipate, the ratio \(P/A \) does not seem much larger than about 4/\(R_e \), so the first term in the above expression is apparently smaller than 1/8. If the ratio \(E_j'/\overline{E}_j \) is to be smaller than 1, then the non-phase-locked tide must be rapidly damped, with \(\gamma_j \) the same size or larger than \(\lambda_j \).

It is hard to reconcile the estimate \(\gamma_j = \lambda_j \) with known mechanisms of dissipation for the low-mode tide. It is possible that estimates of \(E_{M2}'/\overline{E}_{M2} \) from altimetry are biased low (Zaron 2015,
2017). They are obtained from analysis of variance, which means they are implicitly weighted towards areas with the largest signals, presumably the generation sites where the non-phase-locked tide would be smaller than average. Estimates from moorings are not inconsistent with a larger value, $E'_j/E_j = 4$ (Alford and Zhao 2007), but even this is not large enough to constrain $\gamma_j \ll \lambda_j$.

Perhaps the $E'_j \gg E_j$ regime described by Weisberg et al. (1987) is more typical.

Alternately, it is possible that the same factors causing the loss of coherence of the internal tide also result in the formation of caustics where the higher amplitudes and nonlinearity could lead to a rapid transfer of energy into the broadband internal wave spectrum (Zhao and D’Asaro 2011; Dunphy and Lamb 2014). Laboratory studies with coherent internal wave sources find that the rapid transfer of energy out of the phase-locked waves is enabled by lateral inhomogeneity in the wave field (Bordes et al. 2012).

7. Summary

A new series of models for the phase-locked component of the low-mode-baroclinic M_2, S_2, K_1, and O_1 tides, and the annual modulations of the M_2 tide, have been developed. The models differ from previous efforts in minor respects. While development and intercomparison is an ongoing exercise, it appears that the present results are slightly more accurate than other published and un-published models (Carrère et al. 2017). Further improvements in satellite altimetry and processing techniques, and innovations in mapping techniques, will certainly lead to further increases in accuracy in the future.

The primary purpose of this manuscript is to document the mapping technique and validate the tide models using a large surface current drifter dataset. The latter leads to a new estimate for the scattering rate of the phase-locked tide, with implications for the generation and dissipation of the non-phase-locked tide.
The present model should be useful for removing aliased tidal signals from satellite altimeter measurements and in situ measurements of various kinds (Zaron and Ray 2017). The former should facilitate more accurate mapping of mesoscale sea level anomalies (Fu et al. 2010), including the identification of barotropic tidal energetics within small regions (Zaron and Egbert 2006). Tandem studies of barotropic and baroclinic tidal energetics, based on the present models, can be expected to lead to more rigorous bounds on the energetics than presented in Section 6 and should be considered in the future.

Acknowledgments. The along-track altimetry data were obtained using the Radar Altimeter Database System (RADS), http://rads.tudelft.nl/rads/rads.shtml, which is an effort of the Department of Earth Observation and Space Systems at TU Delft and the NOAA Laboratory for Satellite Altimetry. The surface drifter data were collected and distributed via the NOAA Global Drifter Program (http://www.aoml.noaa.gov/phod/dac/gdp_information.php). Computations were performed using the Portland Institute for Computational Science cluster computer, Coeus, acquired with support from NSF award #DMS1624776 and ARO award #W911NF-16-1-0307. Further support was provided by the National Geospatial-Intelligence Agency award #HM0177-13-1-0008 and NASA awards #NNX16AH88G and #NNX17AJ35G.

APPENDIX

References

Zhao, Z., and E. A. D’Asaro, 2011: A perfect focus of the internal tide from the Mariana Arc.

LIST OF TABLES

Table 1. Satellite altimeter missions used. Abbreviations for the mission names follows usage in the Radar Altimeter Database System (Scharroo et al. 2013). 33

Table 2. Alias periods [days] appear on the main diagonal. Synodic periods [days] are above the main diagonal. Synodic periods denoted 6793^* indicate aliases which are separable over an 18.6 yr. nodal cycle, assuming the nodal modulation of MA_2 is the same as that of M_2. 34

Table 3. Tide model parameters. Other parameters: maximum number of wavenumbers used, $N = 6$; order of polynomial, $P = 2$; tangent plane resolution, $\Delta x = 6$ km; fractional overlap of tangent planes, $1 - r_{ol} = 3/4$; 2-dimensional spectral window function and data weight, $\exp(-5|x/L|^2)$; 2-dimensional spectra over-sampling factor, $f_{2D} = 3$; global lat.-lon. grid resolution, $\Delta \Theta = (1/20)^\circ$; 2-dimensional interpolation weight for gridding, $\exp(-(|x|/0.5(1 - r_{ol})L)^2)$ 35
TABLE 1. Satellite altimeter missions used. Abbreviations for the mission names follows usage in the Radar Altimeter Database System (Scharroo et al. 2013).

<table>
<thead>
<tr>
<th>Satellite mission</th>
<th>Time period</th>
<th>Orbit cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TOPEX/Jason reference orbit, $\Delta t = 9.9156d$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1A</td>
<td>2002–2009</td>
<td>1–259</td>
</tr>
<tr>
<td>J2A</td>
<td>2008–2015</td>
<td>1–303</td>
</tr>
<tr>
<td>J3A</td>
<td>2016–2017</td>
<td>1–45</td>
</tr>
<tr>
<td>(TOPEX/Jason interleaved orbit, $\Delta t = 9.9156d$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1B</td>
<td>2009–2012</td>
<td>262–374</td>
</tr>
<tr>
<td>J2B</td>
<td>2016–2017</td>
<td>305–327</td>
</tr>
<tr>
<td>(Geosat orbit, $\Delta t = 17.0505d$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1A</td>
<td>2000–2008</td>
<td>37–223</td>
</tr>
<tr>
<td>(ERS/Envisat reference orbit, $\Delta t = 35.0000d$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2A</td>
<td>1995–2011</td>
<td>1–164</td>
</tr>
<tr>
<td>N1B</td>
<td>2002–2010</td>
<td>10–94</td>
</tr>
<tr>
<td>SAA</td>
<td>2013–2017</td>
<td>1–34</td>
</tr>
</tbody>
</table>
TABLE 2. Alias periods [days] appear on the main diagonal. Synodic periods [days] are above the main diagonal. Synodic periods denoted 6793^* indicate aliases which are separable over an 18.6 yr. nodal cycle, assuming the nodal modulation of MA_2 is the same as that of M_2.

<table>
<thead>
<tr>
<th></th>
<th>MA_2</th>
<th>M_2</th>
<th>MB_2</th>
<th>S_2</th>
<th>O_1</th>
<th>K_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TOPEX/Jason reference orbit, $\Delta t = 9.9156d$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA_2</td>
<td>75</td>
<td>365</td>
<td>183</td>
<td>274</td>
<td>118</td>
<td>132</td>
</tr>
<tr>
<td>M_2</td>
<td>62</td>
<td>365</td>
<td>1104</td>
<td>173</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>MB_2</td>
<td>53</td>
<td>546</td>
<td>330</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td>59</td>
<td>206</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_1</td>
<td></td>
<td></td>
<td>46</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_1</td>
<td></td>
<td></td>
<td></td>
<td>173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Geosat orbit, $\Delta t = 17.0505d$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA_2</td>
<td>170</td>
<td>365</td>
<td>183</td>
<td>6793^*</td>
<td>337</td>
<td>5611</td>
</tr>
<tr>
<td>M_2</td>
<td>318</td>
<td>365</td>
<td>359</td>
<td>175</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>MB_2</td>
<td>2459</td>
<td>181</td>
<td>118</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td>169</td>
<td>343</td>
<td>4378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_1</td>
<td></td>
<td></td>
<td>113</td>
<td>318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_1</td>
<td></td>
<td></td>
<td></td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ERS/Envisat reference orbit, $\Delta t = 35.0000d$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA_2</td>
<td>75</td>
<td>365</td>
<td>183</td>
<td>75</td>
<td>6793^*</td>
<td>94</td>
</tr>
<tr>
<td>M_2</td>
<td>94</td>
<td>365</td>
<td>94</td>
<td>365</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>MB_2</td>
<td>127</td>
<td>127</td>
<td>183</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td>∞</td>
<td>75</td>
<td>365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_1</td>
<td></td>
<td></td>
<td>75</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_1</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3. Tide model parameters. Other parameters: maximum number of wavenumbers used, \(N = 6 \); order of polynomial, \(P = 2 \); tangent plane resolution, \(\Delta x = 6 \) km; fractional overlap of tangent planes, \(1 - r_{ol} = 3/4 \); 2-dimensional spectral window function and data weight, \(\exp(-5|x|/L)^2) \); 2-dimensional spectra over-sampling factor, \(f_{2D} = 3 \); global lat.-lon. grid resolution, \(\Delta \Theta = (1/20)^\circ \); 2-dimensional interpolation weight for gridding, \(\exp(-(|x|/(0.5(1 - r_{ol})L))^2) \)

<table>
<thead>
<tr>
<th>Darwin Symbol</th>
<th>Doodson symbol</th>
<th>Alias periods</th>
<th>Fitting window (L) [km]</th>
<th>Wavelength range (L_{lo} - L_{hi}) [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(_2)</td>
<td>2 555 555</td>
<td>62/318/94</td>
<td>500</td>
<td>40–200</td>
</tr>
<tr>
<td>S(_2)</td>
<td>2 735 555</td>
<td>59/169/∞</td>
<td>1000</td>
<td>40–200</td>
</tr>
<tr>
<td>K(_1)</td>
<td>1 655 556</td>
<td>173/175/365</td>
<td>1000</td>
<td>90–450</td>
</tr>
<tr>
<td>O(_1)</td>
<td>1 455 554</td>
<td>46/113/75</td>
<td>1000</td>
<td>90–450</td>
</tr>
<tr>
<td>MA(_2)</td>
<td>2 545 555</td>
<td>75/170/75</td>
<td>1000</td>
<td>40–200</td>
</tr>
<tr>
<td>MB(_2)</td>
<td>2 565 555</td>
<td>53/2459/127</td>
<td>1000</td>
<td>40–200</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Fig. 1. Model building: determination of \(k_i \) and \(\phi_i \) in a domain northeast of Hawaii. (a) Color scale shows the quadrature component of the M\(_2\) harmonic constants along multiple satellite ground tracks. (b) Prior to spectral analysis, the data are spatially windowed, as shown. (c) The 2-dimensional power spectrum of the windowed sampling function shows how leakage occurs in the spectral domain. (d)-(f) The 2-dimensional power spectrum of the \(h(x) \) function used in the first three plane wave fits. (g)-(i) One-dimensional radial wavenumber spectrum, the azimuthal integral of (d)-(f); units of mm\(^2\)/cpk. The de-noised spectrum (black) is used to determine the peak wavenumber, \(k_i \), at the apex of the local quadratic fit (red). (j)-(l) Spectrum (black) integrated over the strip \([0.75, 1.25]\) as a function of azimuthal angle, \(\phi_i \) (local quadratic fit in red); units of mm\(^2\)/rad.

Fig. 2. Model building: determination of \(k_i \) and \(\phi_i \) in the Subtropical Western Pacific. Panels as in Figure 1.

Fig. 3. Model building: determination of \(k_i \) and \(\phi_i \) in the Equatorial Pacific. Panels as in Figure 1.

Fig. 4. Baroclinic tide estimates at \((1/20)^\circ\)-resolution. The in-phase component of the four main tidal components is shown. Note the different color scales used in each panel. Latitude range shown is \(-50^\circ\) to \(55^\circ\) in panels (a)-(b) and \(\pm30^\circ\) in panels (c)-(d).

Fig. 5. In-phase components of the seasonal modulates of M\(_2\). (a) MA\(_2\), (b) MB\(_2\), (c) MA\(_2\) offshore of the Amazon River plume, and (d) MB\(_2\) in the South China Sea and Western Pacific.

Fig. 6. Comparison with the M\(_2\) estimate of Ray and Zaron (2016). (a) The difference between the in-phase component. (b) The difference between the amplitude of the estimates. In both cases the field shown is HRET minus IT, the present work minus Ray and Zaron (2016).

Fig. 7. Explained variance with respect to CryoSat-2. Red color indicates where the model successfully reduces variance and may be used as a correction to remove baroclinic tidal sea level variability. Latitude range shown is \(-50^\circ\) to \(55^\circ\) in panels (a) and (g); the range is \(\pm30^\circ\) in the other panels.

Fig. 8. Surface currents. Latitude range shown is \(-50^\circ\) to \(55^\circ\) in (a)-(c); the range is \(\pm30^\circ\) in (d)-(e).

Fig. 9. Explained variance versus damping coefficient, \(\lambda_j \). (a) Average of the explained variance over the latitude range, \(-50^\circ\) to \(55^\circ\), for M\(_2\) and the range, \(-30^\circ\) to \(30^\circ\), for K\(_1\). (b) Average of the explained variance over the latitude range, \(10^\circ\) to \(30^\circ\), for both M\(_2\) and K\(_1\). Theory predicts maximum explained variance will occur when \(\lambda_{M2} = 4\lambda_{K1} \), approximately as observed when the explained variance is averaged over the same region for the two tides. The square symbol plotted next to the y-axis denotes the explained variance when \(\lambda_j = 0 \).

Fig. 10. In-phase component of K\(_1\) tide, computed from collinear satellite altimeter data. The red-white-blue color range corresponds \(\pm2\) cm range of tidal elevation. Background grayscale image displays the ocean topography. The baroclinic waves are largely confined to deep water and the spatial signal model does not capture the abrupt transition at the continental shelf break, e.g., near 125\(^\circ\)E–24\(^\circ\)N.
FIG. 1. Model building: determination of k_i and ϕ_i in a domain northeast of Hawaii. (a) Color scale shows the quadrature component of the M_2 harmonic constants along multiple satellite ground tracks. (b) Prior to spectral analysis, the data are spatially windowed, as shown. (c) The 2-dimensional power spectrum of the windowed sampling function shows how leakage occurs in the spectral domain. (d)-(f) The 2-dimensional power spectrum of the $h(x)$ function used in the first three plane wave fits. (g)-(i) One-dimensional radial wavenumber spectrum, the azimuthal integral of (d)-(f); units of mm2/cpk. The de-noised spectrum (black) is used to determine the peak wavenumber, k_i, at the apex of the local quadratic fit (red). (j)-(l) Spectrum (black) integrated over the strip $[0.75, 1.25]k_i$ as a function of azimuthal angle, ϕ_i (local quadratic fit in red); units of mm2/rad.
FIG. 2. Model building: determination of k_i and ϕ_i in the Subtropical Western Pacific. Panels as in Figure 1
FIG. 3. Model building: determination of k_i and ϕ_i in the Equatorial Pacific. Panels as in Figure 1.
FIG. 4. Baroclinic tide estimates at (1/20)°-resolution. The in-phase component of the four main tidal components is shown. Note the different color scales used in each panel. Latitude range shown is -50° to 55° in panels (a)-(b) and $\pm 30^\circ$ in panels (c)-(d).
FIG. 5. In-phase components of the seasonal modulates of M_2. (a) MA_2, (b) MB_2, (c) MA_2 offshore of the Amazon River plume, and (d) MB_2 in the South China Sea and Western Pacific.
Fig. 6. Comparison with the M2 estimate of Ray and Zaron (2016). (a) The difference between the in-phase component. (b) The difference between the amplitude of the estimates. In both cases the field shown is HRET minus IT, the present work minus Ray and Zaron (2016).
FIG. 7. Explained variance with respect to CryoSat-2. Red color indicates where the model successfully reduces variance and may be used as a correction to remove baroclinic tidal sea level variability. Latitude range shown is -50° to 55° in panels (a) and (g); the range is $\pm 30^\circ$ in the other panels.
Fig. 8. Surface currents. Latitude range shown is -50° to 55° in (a)–(c); the range is $\pm30^\circ$ in (d)–(e).
Fig. 9. Explained variance versus damping coefficient, λ_j. (a) Average of the explained variance over the latitude range, -50° to 55°N, for M_2 and the range, -30° to 30°N, for K_1. (b) Average of the explained variance over the latitude range, 10° to 30°N, for both M_2 and K_1. Theory predicts maximum explained variance will occur when $\lambda_{M2} = 4\lambda_{K1}$, approximately as observed when the explained variance is averaged over the same region for the two tides. The square symbol plotted next to the y-axis denotes the explained variance when $\lambda_j = 0$.
FIG. 10. In-phase component of K_1 tide, computed from collinear satellite altimeter data. The red-white-blue color range corresponds ± 2 cm range of tidal elevation. Background grayscale image displays the ocean topography. The baroclinic waves are largely confined to deep water and the spatial signal model does not capture the abrupt transition at the continental shelf break, e.g., near 125°E–24°N.