Portland State University

PDXScholar

Computer Science Faculty Publications and

Presentations Computer Science

2-2011

A Comparison of Relativistic and Reader-Writer
Locking Approaches to Shared Data Access

Philip William Howard
Portland State University

Josh Triplett
Portland State University

Jonathan Walpole
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

b Part of the Software Engineering Commons, and the Systems Architecture Commons

Let us know how access to this document benefits you.

Citation Details

Howard, Philip W., Josh Triplett, and Jonathan Walpole (2011). "A Comparison of Relativistic and Reader-
Writer Locking Approaches to Shared Data Access," Portland State University Computer Science
Department Technical Report "11-02"

This Article is brought to you for free and open access. It has been accepted for inclusion in Computer Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.


https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/11
mailto:pdxscholar@pdx.edu

A Comparison of Relativistic and Reader-Writer
Locking Approaches to Shared Data Access

Philip W. Howard, Josh Triplett, and Jonathan Walpole

Portland State University

Abstract. This paper explores the relationship between reader-writer
locking and relativistic programming approaches to managing accesses to
shared data. It demonstrates that by placing certain restrictions on writ-
ers, relativistic programming allows more concurrency than reader-writer
locking while still providing the same isolation guarantees. Relativistic
programming also allows for a straightforward model for reasoning about
the correctness of programs that allow concurrent read-write accesses.

1 Introduction

When multiple threads access shared data, there is a need for some form of
synchronization in order to prevent corrupted data. A common form of synchro-
nization is mutual exclusion where only one thread at a time is allowed to access
the data. The problem with this method is that it restricts concurrency and thus
scalability. Reader-writer locks separate critical sections into read-sections and
write-sections. Read-sections are allowed to proceed concurrently because they
can not corrupt the data (since they don’t change it).

Since reader-writer locks allow read-side concurrency, they should allow read-
only or read-mostly workloads to scale. However, most implementations of reader-
writer locks have a global lock variable that acts as a contention bottleneck.
Even implementations that are specifically designed to scale [7] require access-
ing a global lock variable with an atomic read-modify-write instruction. These
atomic instructions are a point of serialization. For small read-sections, these
atomic instructions so dominate the computation that little or no scalability is
observed in practice.[4, 8, 9]!

Relativistic programming is a synchronization mechanism which appears,
superficially, to be similar to reader-writer locking. Relativistic programming
makes a distinction between read-sections and write-sections. Read-sections are
allowed to proceed concurrently. The difference is that with relativistic pro-
gramming, readers don’t explicitly synchronize with writers. As a result, most
relativistic programming implementations don’t require any atomic instructions

! Lev et. al. present a reader-writer lock which scales for read-only workloads but
suffers significantly with even 1% writers. Their works shows that the Solaris reader-
writer lock does not scale for read-only workloads. Triplett shows that the Linux
reader-writer lock does not scale for read-only workloads.



in the read-side primitives. The other differences between relativistic program-
ming and reader-writer locks are that relativistic programming allows read-write
concurrency, and relativistic programming has weaker consistency guarantees
than reader-writer locks. The weaker consistency guarantees allow relativistic
programs to have both higher performance and better scalability than their
reader-writer lock counterparts.[3, 8, 9]

In this paper, we show how, under certain conditions, relativistic program-
ming can preserve the important properties of reader-writer locks even with
read-write concurrency. We then examine the consistency guarantees relativistic
programming supplies in the general case—that is, when these conditions are not
met. Finally, we show that these consistency guarantees are sufficient to form
a framework in which it is easy to reason about the correctness of relativistic
programs.

2 Methods and Their Primitives

Both the synchronization mechanisms we are considering define critical sections
of code that are bounded by begin and end primitives. There are two sets of prim-
itives: one for read-sections and one for write-sections. Relativistic programming
has two additional primitives which are used to control the ordering of events.

2.1 Reader-Writer Lock Primitives

Reader-writer locks bound write-sections with write-lock and write-unlock prim-
itives. Read-sections are bounded by read-lock and read-unlock primitives. The
primitives guarantee that write-sections are not concurrent with other write-
sections, and write-sections are not concurrent with read-sections. The simplest
implementation of the read-side primitives enforces the rule, “allow a reader to
start if there are no active writers.” Unfortunately, this implementation will allow
continually overlapping read-sections to lead to write starvation. There are other
implementations that favor writers, but they can lead to read starvation. There
are still others that are fair. Practitioners can choose which implementation to
use based on expected work-load. The write-preference and fair implementations
tend to have higher overhead. This can lead to lower performance and more se-
rialization due to the need for additional atomic instructions to implement the
more complicated semantics.

Atomic read-modify-write instructions are used to implement reader-writer
locks because each of the four primitives needs to communicate with other
threads. In order to preserve atomicity, these instructions form a serialization
point. Not only do the atomic instructions execute serially, but they are also
many times slower than non-atomic instructions. As a result the serial portion
of the computation may be longer than the parallel portion of the computation
(the work inside a read-section). According to Amdahl’s law, this will have a
direct negative impact on scalability.



The lack of read-write concurrency means that readers will never see partially
completed updates. This makes it easy to reason about the correctness of pro-
grams developed with reader-writer locks. Provided each writer leaves the data
structure in a valid state prior to leaving its write-section, then readers will only
encounter the data structure in a valid state. Also, writers will be guaranteed
that the state of the data structure is valid when they begin their write-section.
As a result, programmers only need to reason about whole operations and do
not need to be concerned with concurrency.

2.2 Relativistic Programming Primitives

Relativistic write-sections are delimited by write-lock and write-unlock. Most
relativistic programming implementations use a mutex to implement these prim-
itives, but note that the mutual exclusion is only between writers—readers are
not excluded. Relativistic readers are delimited by begin-read and end-read prim-
itives. There are times when the presence of a read-section can delay a write-
section, but write-sections never delay read-sections. This lack of symmetry al-
lows the read-side primitives to be implemented using only local operations—
atomic instructions are not required. It is this lack of atomic instructions which
means that relativistic readers can proceed without any serialization.

There are times when a relativistic writer needs to delay an operation until
all current readers have completed their read-sections. It is only readers that
exist at the time the delay begins that will affect the duration of the delay. Any
read-section that starts later will not be considered. As a result, continually
overlapping read-sections will not create an unbounded delay in the writer.

There are two primitives that writers can use when they need to delay an op-
eration. The wait-for-all-readers primitive forms a synchronous wait. The prim-
itive will not return until all readers that existed at the time the primitive was
called have finished their read-sections. The defer-until-all-readers primitive al-
lows a writer to schedule an a operation to complete asynchronously some time
after all current read-sections have completed. We will give examples of why
these are necessary and how they are used later.

The implementation of the primitives mentioned in this section is beyond the
scope of this paper. There are implementations freely available both in kernel
and in user mode that are described elsewhere.[1,5,6] We have chosen generic
names for the primitives presented in this paper rather than tying them to any
particular implementation. The correspondence between our names and those of
particular implementations should be obvious.

3 Synchronizing Linked List Operations

In this section, we show how both reader-writer locking and relativistic program-
ming are used to perform the following linked list operations: insert, remove, and
move. In each case, we look at what consistency guarantees can be made by each
method. From those consistency guarantees, we show how to reason about the
correctness of the implementation.



3.1 Insert

Figure 1 shows a linked list with nodes A, B, C, and E. Node D is inserted
between nodes C and E. The gray arrow shows the pointer out of C' prior to the
insert. The insertion happens in two steps: node D must be initialized (including
the pointer to E), and it must be linked into the list by changing the pointer out
of C'. With reader-writer locks, these two steps can happen in any order because
readers can not see the intermediate states. With relativistic programming, it is
important that the node be initialized and then linked into the list. Otherwise,
a concurrent reader may access node D before it is initialized.

[A>{B>C]
D)

Fig. 1. Linked list after adding node D. The gray arrow shows the original pointer out
of node C.

With both reader-writer locks and relativistic programming, there are only
two visible states—before and after the insert. With reader-writer locks, reads
are serialized with respect to writes. This means that any particular reader came
either before or after the insert. Those that came before will see the list without
D, those that came after will see the list with D. Relativistic programming allows
reads to proceed concurrently with writes. But since on all modern processors
an aligned pointer assignment is an atomic operation, when a reader follows the
pointer out of C, it will either encounter D or F based on whether the writer has
updated the pointer or not. So in both cases, the correctness of the writer can
be determined by considering the state of the list before and after the update.
No intermediate states need to be considered.

Even though reasoning about the correctness of the two approaches is the
same, there is a subtle timing difference that must be considered. The timeline in
Figure 2 shows the writer performing the insert as concurrent with two readers.
The diamond on the write line marks when the pointer out of C' is updated.
The diamonds on the read lines mark when the pointer out of C' is followed.
Both readers begin before the writer and both follow the pointer out of C' before
it is updated. Reader R1 finishes its read-section prior to the update of the
pointer. Our claim is that this case is indistinguishable from a reader-writer
locking reader that executed just prior to the write. But reader R2 continues
well after the writer completed its operation. This leaves open the possibility
that reader R2 will be concurrent with another write operation and it may see
the results of the subsequent write without observing the results of the first one.
If this presents a problem (see section 4.1 for a discussion of when this does
and does not present a problem), the writer can call wait-for-all-readers prior
to releasing the write-lock. This will extend the write-section until reader R1



completes meaning that another write can not begin until R1 completes. But
notice that the delay caused by wait-for-all-readers is no worse than the delay in
the reader-writer lock version. With reader-writer locks, there is an implicit wait-
for-all-readers in the write-lock. The difference between the two approaches is
that reader-writer locks insert the delay before the write-section, the relativistic
programming approach inserts the delay at the end of the write-section.

Writer

Fig. 2. Timeline showing reader R2 which observes the state of the data structure prior
to the write, but extends well after the write.

Figure 3 shows the timing of four readers and a writer performing the insert
described above. The circles show the external events that trigger the reading
and writing. The diamonds show the time when the writer updated the pointer
out of C' and when the readers observed the pointer out of C. In the relativistic
programming approach, reads are allowed to run concurrently with the write.
Readers R1 and R2 observe the list prior to the insert. Readers R3 and R4
observe the list after the insert. This is evident by the order of the diamonds.

The reader-writer lock read preference case shows how the write is delayed
until all readers have finished. The delay is shown by the dashed line. In this
case, all four readers observe the list prior to the insert. Note that this vio-
lates the order of the events that triggered the read and write operations. The
reader-writer lock write preference or fair case shows a delay in both the writer
and readers R3 and R4. In this case, the readers make the same observations as
in the relativistic case, but the write and two of the readers are delayed. This
type of delay has the potential to significantly reduce scalability. The relativis-
tic programming approach did not have these delays, but the outcome of the
computations was the same.

The reader-writer locking approach obtains consistency by delaying opera-
tions. However, this delay has the potential to cause operations to be ordered
differently than the events that triggered these operations. Relativistic program-
ming on the other hand allows the earliest possible completion of operations.

3.2 Remove

Removing a node from a linked list has many similarities to inserting. Removing
the node can be done by a single pointer change. This means that the ordering
and relative timing is the same as for insert.

There is one significant difference between an insert and a remove. Removing
a node has two distinct steps: unlinking the node and reclaiming memory used
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Fig. 3. Timing of a writer and four readers using the relativistic approach and reader-
writer locks with read preference and write preference or fair. The relativistic approach
allows both the earliest possible writes and earliest possible reads.

by the removed node. With relativistic programming, there is the possibility that
a reader holds a reference to the removed node even after the writer unlinked the
node. If the writer reclaimed the node while a reader still had a reference, the
reader could access the memory after it gets reused for some other purpose. For
this reason, the reclamation must be deferred until no readers hold a reference
to the node.

Relativistic readers are required to explicitly delimit their read-sections. The
definition of a read-section is any region of code where the reader holds a refer-
ence to the data structure. This means that when a reader exits their read-section
they do not hold any references to the data structure. Therefore, if a writer waits
until all current read-sections terminate then it is safe to reclaim the memory
for the removed node. This is precisely what wait-for-all-readers and defer-until-
all-readers are for. The writer can unlink the node then call wait-for-all-readers
and then safely reclaim the node. Alternatively, the writer can unlink the node
and call defer-until-all-readers to schedule the reclamation asynchronously. The
advantage of the second method is that the write-section can complete sooner
because the delay happens outside the write-section.

3.3 Move

Moving a node from one location to another within a linked list is more compli-
cated than either an insert or a remove because it involves updates to multiple



pointers. Figure 4 shows a linked list before and after moving node D. The
grayed arrows in the after view show the pointers which must be changed to
effect the move. With reader-writer locking there is no read-write concurrency
so no reader will observe an intermediate state of the write. Only the state be-
fore and the state after the write is visible. This is not the case with relativistic
programming.

Fig. 4. Linked list before and after moving node D. The grayed arrows show which
pointers must be changed to effect the move.

There are three pointers involved in moving a node. This means that there are
23 = 8 states that a reader could observe. These states include all-of-the-move
and none-of-the-move which are clearly safe, but there are six intermediate states
that may or may not be safe. Relativistic programming can reduce the number
of intermediate states down to one. Consider the move as shown in Figure 5.
Rather than moving node D, a copy of that node is made (labeled D’). This
allows the outbound pointer from D’ to be changed to point to B before D’ is
visible to any readers. This eliminates four of the possible intermediate states.
The two pointers labeled a and b in the figure allow two intermediate states: a
but not b or b but not a. However, if the writer does wait-for-all-readers between
the two writes, then only one intermediate state is visible—the state after the
first write.

Fig. 5. Relativistic move of node D. The order in which pointers a and b are written
determine which single intermediate state is visible.



If pointer b is updated before pointer a, then a reader might scan the entire
list and never see D. If a is changed first, then readers will always encounter
node D, but may encounter it twice (once as D’ and once as D). Triplett [8]
exploits this in his relativistic hash table move operation. Hash table lookups
compare a search key to each key in the bucket list until they find the item being
searched for. If the lookup was searching for the key in node D, then it would
not matter if the search found node D or D’ because both nodes contain the
same data. If the lookup was searching for any other key, both nodes D’ and D
would be skipped because the key would not match the search key.

By inserting a wait-for-all-readers between each write, relativistic writers can
reduce the number of visible states from 2" down to n where n is the number
of reader-visible writes to memory. In addition, the states become visible in the
program order of the writer. In other words, readers are able to see any prefix
of writes performed by the writer. This allows the programmer to reason about
far fewer states. There is a single question, “Is the data structure in a consistent
state following this particular memory write?” that the programmer needs to
reason about.

4 Generalized Relativistic Programming

The previous section introduced relativistic programming through examples us-
ing linked list operations and comparing the details of the relativistic program-
ming implementation with that of a reader-writer lock implementation. In this
section we extend these concepts to the general case.

In Section 3.1 we observed that for a linked list insert operation both reader-
writer locks and relativistic programming provide the same ordering and cor-
rectness guarantees. This is because with a linked list insert operation both the
the insert and the observation of the insert are atomic operations. Any time a
write can be made by a single atomic operation and the effects of that write
can be observed by a single atomic operation, the following two properties will
apply to the relativistic implementation provided a wait-for-all-readers occurs
between each write:

1. Reads are totally ordered with respect to writes
2. Reads will not observe partially complete writes

Relaxing either the wait-for-all-readers requirement or the atomicity require-
ments means that these properties will not be guaranteed.

4.1 Total Order Of Reads With Respect To Writes

If two writes happen without a wait-for-all-readers between them, it is possible
for a single read to be concurrent with both writes. This is illustrated in Figure 6.
Operation R is a read. Operations W1 and W2 are writes. Both of the writes are
concurrent with the read. When operations are concurrent, there is no implied
happens-before relationship between the two operations.[2] This means that R



can be thought of as happening before or after W1 as well as before or after
W2. This further means that the order W2 = R = W1 is possible (where =
reads “happens-before”) even though this would appear to violate the implied
happens-before relationship of the non-concurrent W1 and W2.

W1 W2

Fig. 6. Operation R can see operations W1 and W2 in any order.

The order of observations is local to (or relative to) a particular reader. There
is no “global observer” that defines the correct order. Each reader is allowed to
observe writes in their own reference frame. The potential reordering is limited
in scope to the length of any concurrent reader. If there are two writes A and
B such that there is no reader that is concurrent with both A and B, then all
readers will agree on the order of A and B—that is to say, A and B will be
totally ordered with respect to all reads.

Reader-writer locking provides a total order of reads with respect to writes.
This is done by delaying certain operations through mutual exclusion (see sec-
tion 3.1). Relativistic programming has the wait-for-all-readers primitive which
can be used to delay writes to preserve this total ordering. Performance and
scalability will be better without these delays.

It is our contention that many writes do not need to be ordered. Consider
a phone company. One customer cancels their service. Another customer signs
up for service. Provided the new customer is not given the old customer’s phone
number, these two operations are independent. There is no causal relationship
between them. A phone book that was printed containing either, neither, or both
updates would be equally valid. When a previously used phone number gets reas-
signed to a new customer, there is a causal relationship between the two writes:
the phone number was available because the previous customer relinquished it.
If relinquished phone numbers are placed into the pool of available numbers us-
ing defer-until-all-readers then there is no need for wait-for-all-readers between
writes. The causal order of updates will be preserved without it.

4.2 Partially Completed Updates

Reader-writer locking protects readers from seeing partially complete writes. If
relativistic writes can be made visible via a single atomic operation and if readers
observe the change via a single atomic operation, then relativistic readers will
not see partially complete writes. The need for atomicity on the write side is
obvious. To illustrate the need for atomicity on the read side, consider the move
operation depicted in Figure 4. The move required three pointers to be updated.
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Even if these three pointers could be updated as an atomic unit, reads do not
observe the change via a single atomic operation. Instead, readers observe the
change by reading the pointer out of A and the pointer out of C. Consider a
reader that progressed to node B prior to the move, then the move happens
atomically, then the reader traverses the rest of the list. The reader observed the
removal of node D from between nodes C' and F but did not observe node D in
its new location between nodes A and B. In other words, the reader observed a
partially completed write.

One of the difficulties in reasoning about the correctness of a concurrent
program is the number of states generated by every possible interleaving of
operations. The linked list move operation described in Section 3.3 required
three pointers to be changed. This led to a total of 23 = 8 states. Reader-writer
locking reduces the number of states that need to be reasoned about to two: the
state before and after the move. Relativistic programming reduces the number
of states to three: before and after the move and one intermediate state. In
general, relativistic programs can reduce the number of states from 2" down to
n by placing a wait-for-all-readers between each reader-visible memory write.

If a write operation requires a wait-for-all-readers following each write to
memory, write operations could be quite slow. However, there is an optimization
that often applies that can eliminate most of these. The optimization applies
whenever there is a traversal order that readers follow. For example, linked lists
read from the head to the tail of the list; tree lookups progress from the root
to a leaf; hash table lookups access the bucket list and then the list associated
with a particular bucket.

In the linked list move example given in Figure 5, there were two visible
writes. One of the writes removed D from the list, the other inserted D’. The
read traversal order follows the arrows in the figure. If the order of the writes is
the opposite of the traversal order, namely removing D and then inserting D’,
then any reader that observes the second write will also observe the first write.
This can be seen to be true by considering the traversal order. Any reader that
observes D’ did not read past C until after D was removed from the list. So
when the write order is opposite of the traversal order, the program order of the
writes is preserved for all readers even without the use of wait-for-all-readers.

Many updates meet the traversal order requirement for eliminating the wait-
for-all-readers. To illustrate the types of updates that meet this requirement, a
relativistic hash table move operation was developed that did not require any
wait-for-all-readers.[8] With both red-black trees and AVL trees, it is possible
to do an insert or delete, including rebalancing, with not more than one wait-
for-all-readers.[3)

4.3 A Prefix of Program Order

We have shown that relativistic programming can be used to reduce the number
of states that a reader can see. This reduces the number of states that must
be considered when reasoning about the correctness of a program. There is one
additional point that needs to be made concerning this. Writers can guarantee
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that readers will only see a prefix of the memory writes as performed in pro-
gram order. If a writer makes five changes to memory labeled A..E, then the
writer can guarantee that the only combination of changes a reader can see are:
none, A, AB, ABC, ABCD, ABCDE. The mechanisms for guaranteeing this are
either to use wait-for-all-readers or to rely on the traversal order and update
order.

The prefix property makes it much easier to reason about the correctness
of a relativistic program. Programmers tend to think of their code as executing
sequentially. Sometimes concurrent threads appear to see the effects of another
thread non-sequentially. This can lead to programming errors. By eliminating
this possiblity, relativistic programming means that the programmer only needs
to consider, “is the data consistent following this particular memory write?” If
the answer to this question is “yes” for every reader visible update, then the
program can be proven correct.

5 Conclusion

We have introduced relativistic programming and compared it to reader-writer
locking. Relativistic programs have the following advantages over programs writ-
ten using reader-writer locks:

1. Relativistic programs allow more concurrency and thus should scale better
2. Relativistic programs allow writes to happen sooner and allow readers to
more quickly observe writes

We also discussed properties of relativistic programs that can be used to
reason about their correctness. In particular, relativistic programs can be written
such that the following are true:

1. The number of observable states is n where n is the number of reader visible
changes made to memory

2. Readers can only observe a prefix of the program order of reader-visible
updates made to memory

By maintaining these two properties, relativistic programming makes it easy to

reason about the correctness of a program even though that program allows
read-write concurrency.
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