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To compare two multivariate random vectors of the same dimension, we define a
new stochastic order called upper orthant dispersive ordering and study its prop-
erties+We study its relationship with positive dependence and multivariate hazard
rate ordering as defined by Hu,Khaledi, and Shaked ~Journal of Multivariate Analy-
sis, 2002!+ It is shown that if two random vectors have a common copula and if
their marginal distributions are ordered according to dispersive ordering in the same
direction, then the two random vectors are ordered according to this new upper
orthant dispersive ordering+Also, it is shown that the marginal distributions of two
upper orthant dispersive ordered random vectors are also dispersive ordered+ Exam-
ples and applications are given+

1. INTRODUCTION

It is of interest to compare two random variables in terms of their variability+Although
this topic has been studied extensively in the univariate case, several attempts have
been made to extend it to the multivariate case+ Important contributions in this case
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have been made by Giovagnoli and Wynn @8# , Shaked and Shanthikumar @21# , and
Fernandez-Ponce and Suarez-Llorens @7# , among others+

Let X and Y be two univariate random variables with distribution functions F
and G and with survival functions OF and OG, respectively+A basic concept for com-
paring variability in distributions is that of dispersive ordering+ X is said to be less
dispersed than Y ~denoted by X �disp Y ! if

F�1~b!� F�1~a! � G�1~b!� G�1~a! whenever 0 � a� b � 1, (1.1)

where F�1 and G�1 are the right continuous inverses of the distribution functions
F and G, respectively+ This means that the difference between any two quantiles of
X is smaller than the difference between the corresponding quantiles of Y+ In case
the random variables X and Y are of continuous type with hazard rates rF and rG ,
respectively, then X �disp Y if and only if

rG ~G
�1~ p!! � rF ~F

�1~ p!!, ∀p � @0,1# + (1.2)

For more details on dispersive ordering, see Shaked and Shanthikumar @20, Sec+ 2B# +
In analogy with the characterization ~1+2! of the univariate dispersive order-

ing, we introduce a new order in the multivariate case, which we call upper orthant
dispersive ordering and study its properties+ According to ~1+2!, X �disp Y if and
only if the hazard rates of X and Y at the quantiles of the same order p are ordered
for all values of p � @0,1# + To this end, we first recall the definition of hazard rate
~or hazard gradient! in the multivariate case+ Consider a random vector X �
~X1, + + + , Xn! with a partially differentiable survival function OF~x! � P $X � x% +
The function R � �log OF is called the hazard function of X, and the vector rX of
partial derivatives, defined by

rX~x! � ~rX
~1!~x!, + + + , rX

~n!~x!!� � ]]x1

R~x!, + + + ,
]

]xn

R~x!�,
for all x � $x : OF~x!� 0% , is called the hazard gradient of X ~see Johnson and Kotz
@11# and Marshall @15# !+ Note that rX

~i !~x! can be interpreted as the conditional haz-
ard rate of Xi evaluated at xi , given that Xj � xj for all j � i; that is,

rX
~i !~x! �

fi�xi��j�i

$Xj � xj %�
OFi�xi��j�i

$Xj � xj %� ,

where fi~{6�j�i $Xj � xj %! and OFi~{6�j�i $Xj � xj %! are respectively the conditional
density and the conditional survival functions of Xi , given that Xj � xj for all j � i +
For convenience, here and below we set rX

~i !~x!�` for all x � $x : OF~x!� 0% +Now,
we define upper orthant dispersive ordering+
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Definition 1.1: Let X � ~X1, + + + , Xn! and Y � ~Y1, + + + ,Yn! be two random vectors
with respective survival functions OF and OG. We say that X is smaller than Y accord-
ing to upper orthant dispersive ordering (denoted by X �

uo-disp
Y) if for all uj �

@0,1# , j � 1, + + + , n, j � i,

�Xi��j�i

$Xj � Fj
�1~uj !%� �disp �Yi��j�i

$Yj � Gj
�1~uj !%�, (1.3)

for i � 1, + + + , n.

In case the distributions under consideration are absolutely continuous, the upper
orthant dispersive ordering can be equivalently expressed in terms of the hazard
gradients at the quantiles of the same orders of the conditional distributions+ If we
denote by xi~b;u! and yi~b;u!, the bth quantiles of the conditional distributions
~Xi 6�j�i $Xj � Fj

�1~uj !%! and ~Yi 6�j�i $Yj � Gj
�1~uj !%!, respectively, then

X �
uo-disp

Ym rX
~i !~F1

�1~u1!, + + + ,Fi�1
�1 ~ui�1!, xi ~b;u!, + + + ,Fn

�1~un !!

� rY
~i !~G1

�1~u1!, + + + ,Gi�1
�1 ~ui�1!, yi ~b;u!, + + + ,Gn

�1~un !!, (1.4)

for every b� @0,1# , u � @0,1# n�1 , and i �1, + + + , n, where rX
~i ! and rY

~i ! stand for the
ith components of the hazard gradients of X and Y, respectively+

The following slightly modified version of a theorem of Saunders and Moran
@19# provides a useful tool for establishing dispersive ordering among members of
a parametric family of distributions+

Theorem 1.1: Let Xa be a random variable with distribution function Fa for each
a � R such that the following hold:

(i) Fa is supported on some interval ~x�
~a! , x�

~a! ! � ~�`,`! and has density fa

that does not vanish on any subinterval of ~x�
~a! , x�

~a! ! .
(ii) The derivative of Fa with respect to a exists and is denoted by Fa

'.

Then

Xa �disp Xa* for a, a* � R, and a � a* , (1.5)

if and only if,

Fa
'~x!0fa~x! is decreasing in x+ (1.6)

In the next example we identify conditions under which two bivariate normal
random vectors are ordered according to upper orthant dispersive ordering+ More
examples are discussed in Section 4+
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Example 1.1 (Bivariate Normal Distribution): Let X and Y follow bivariate Nor-
mal distributions, each with mean vector ~0,0! and with dispersion matrices

SX � � s1
2 rs1s2

rs1s2 s2
2 � and SY �� s1

2 r 's1s2

r 's1s2 s2
2 � ,

respectively, with si � 0 for i � 1,2+ For the time being, we are assuming that the
marginal distributions of X and Y are identical+ The general case is considered later+
We use Theorem 1+1 to prove that in case r and r ' are of the same sign, then

6r ' 6 � 6r6n X �
uo-disp

Y+

Let us denote by Gr, the distribution function of $X16X2 � y% ~we are suppress-
ing its dependence on y for the clarity of notation!+ Then

Gr~x! �
1

P~X2 � y!
�

�`

x �
y

�`

fX1, X2
~u, v! du dv

�
1

P~X2 � y!
�

y

�`

P~X1 � x 6X2 � v! fX2
~v! dv

�
1

P~X2 � y!
�

y

�`

F � x �
rs1

s2

v

s1~1 � r2 !102
� 1

s2

f� vs2
� dv

and the corresponding conditional density function is

gr~x! �
1

P~X2 � y!s1~1 � r2 !102
�

y

�`

f � x �
rs1

s2

v

s1~1 � r2 !102
� 1

s2

f� vs2
� dv+

Now we compute

Gr
' ~x! �

]

]r
Gr~x!

�
1

P~X2 � y!
�

y

�`� �
s1

s2

v~s1~1 � r2 !102 !�
s1r

~1 � r2 !102 �x �
rs1

s2

v�
s1

2~1 � r2 !
�

� f � x �
rs1

s2

v

s1~1 � r2 !102
� 1

s2

f� vs2
� dv,
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which simplifies to

Gr
' ~x! �

e�~x 202s1
2!

P~X2 � y!M2p
�

y

�` �rs2

s1

� v�
M2ps2

2~1 � r2 !302

� exp��
1

2s2
2~1 � r2 ! �v�

rxs2

s1
�2�dv

� �
e�~x 202s1

2!

P~X2 � y!~2p!~1 � r2 !102
exp��

1

2s2
2~1 � r2 ! �y �

rxs2

s1
�2�+

(1.7)

Similarly, the conditional density function gr~x! can be written as

gr~x! �
e�~x 202s1

2!

P~X2 � y!M2ps1

�
y

�` 1

s2~1 � r2 !102~2p!102

� exp��
1

2s2
2 ~1 � r2!��v�

rxs2

s1
�2

dv+ (1.8)

This gives

h~x! �
Gr
' ~x!

gr~x!
� �s2s1 rWx

~ y!,

where rWx
~+! denotes the hazard rate of Wx , a normal random variable with mean

rxs20s1 and variance s2
2~1 � r2!+ It is known that the family of normal random

variables with a fixed variance but with different means is ordered according to
hazard rate order and the one with the smaller mean has the greater hazard rate+
Using this fact, it follows that if r � 0, then h~x! is increasing in x+ Hence, by
Theorem 1+1, 0 � r ' � r n X �

uo-disp
Y+ If r � 0, then h~x! is decreasing in

x; hence, ~X1, X2! is increasing in r in the sense of upper orthant dispersive order-
ing+ This proves the required result+ �

The organization of the article is as follows+ In Section 2 we study some prop-
erties of the upper orthant dispersive ordering as defined earlier+ It is proved that if
two random vectors have the same dependence structure ~copula!, then they are
ordered according to upper orthant dispersive ordering if and only if their corre-
sponding marginals are ordered according to univariate dispersive ordering+ In Sec-
tion 3 we consider the special case of nonnegative random variables ~more generally,
if the conditional distributions have common left end points of their supports!+ It is
shown that if two random vectors have the same marginal distributions and they are
ordered according to upper orthant dispersive ordering, then their bivariate copulas
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are ordered, implying that one random vector is more dependent in the sense of
positive quadrant dependence than the other+We also study the connection between
upper orthant dispersive ordering and multivariate hazard rate ordering as intro-
duced by Hu, Khaledi, and Shaked @9# + The last section is devoted to some exam-
ples and applications+ It is shown that if two univariate distributions are ordered
according to dispersive ordering, then the corresponding vectors of order statistics
from them are ordered according to upper orthant dispersive ordering+

2. PROPERTIES OF UPPER ORTHANT DISPERSIVE ORDERING

In this section we establish an interesting property of the upper orthant dispersive
ordering that if two n-dimensional random vectors X and Y have the same depen-
dence structure in the sense that they have the same copula, then dispersive order-
ing among the marginal distributions implies upper orthant dispersive ordering and
vice versa+ The notion of copula has been introduced by Sklar @23# , and studied by,
among others, Kimeldrof and Sampson @13# under the name of uniform represen-
tation and by Deheuvels @5# under the name of dependence function+A copula C is
a cumulative distribution function with uniform margins on @0,1# + Given a copula
C, if one defines

F~x! � C~F1~x1!,F2~x2 !, + + +Fn~xn !!, x � IRn, (2.1)

then F is a multivariate distribution function with margins as F1,F2, + + + ,Fn+ For any
multivariate distribution function F with margins as F1,F2, + + + ,Fn, there exists a
copula C such that ~2+1! holds+ If F is continuous, then C is unique and can be
constructed as follows:

C~u! � F @F1
�1~u1!,F�1

2~u2 !, + + + ,Fn
�1~un !# , u � @0,1# n+ (2.2)

It follows that if X and Y are two n-dimensional random vectors with margins as
~F1,F2, + + + ,Fn! and ~G1,G2, + + + ,Gn!, respectively, and if they have the same copula,
then

~F1~X1!,F2~X2 !, + + +Fn~Xn !! �
st
~G1~Y1!,G2~Y2 !, + + +Gn~Yn !!+ (2.3)

For i � 1, + + + , n, let us denote by Hi,u
X the cumulative distribution function

~cdf ! of the conditional distribution ~Xi 6�j�i $Xj � Fj
�1~uj !%! and by Hi,u

Y that of
~Yi 6�j�i $Yj � Gj

�1~uj !%!+ To prove the next theorem, we first prove the following
lemma, which may be of independent interest+

Lemma 2.1: If two n-dimensional random vectors X and Y have the same copula,
then, for i � 1, + + +n,

Fi � Hi,u
X �1
~b! � Gi � Hi,u

Y �1
~b!, b � @0,1# , u � @0,1# n�1+ (2.4)
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Proof: Proving ~2+4! is equivalent to proving that for i �1, + + +n and u � @0,1# n�1 ,

PHi,u
X � Fi

�1~v! � PHi,u
Y � Gi

�1~v!, ∀v � @0,1#

m P	Xi � Fi
�1~v!��j�i

$Xj � Fj
�1~uj !%


� P	Yi � Gi
�1~v!��j�i

$Yj � Gj
�1~uj !%#
, ∀v � @0,1#

m P	Fi ~Xi ! � v��j�i

$Fj ~Xj ! � uj %

� P	Gi ~Yi ! � v��j�i

$Gj ~Yj ! � uj %
 , ∀v � @0,1# ,

which is true because of ~2+3!, since X and Y have the same copula+ �

Theorem 2.1: Let X and Y be two n-dimensional random vectors with the same
copula. Then X �

uo-disp
Y if and only if Xi �disp Yi , i � 1, + + + , n.

Proof: By definition,

X �
uo-disp

Ym Hi,u
Y �1
~b!� Hi,u

X �1
~b! is increasing in b � @0, 1# ,

u � @0,1# n�1 , for i � 1, + + + , n+ (2.5)

It follows from ~2+4! that if X and Y have the same copula, then for i � 1, + + +n and
u � @0,1# n�1 ,

Hi,u
Y �1
~b!� Hi,u

X �1
~b! � Gi

�1 � Fi ~Hi,u
X �1
~b!!� Hi,u

X �1
~b!, (2.6)

for i � 1, + + +n and for every b � @0,1# +
It is easy to see that the right-hand side of ~2+6! is increasing in b if and only if

Gi
�1 Fi ~x! � x is increasing in x ~i+e+, if and only if Xi �disp Yi , i � 1, + + + , n!+ This

proves the desired result+ �

Recently, Müller and Scarsini @16# have investigated some other multivariate
stochastic orders for which results parallel to Theorem 2+1 hold for those orders+
The following interesting property of the upper orthant dispersive ordering imme-
diately follows from Theorem 2+1+

Corollary 2.1: Let Y � ~a1 X1 � b1,a2 X2 � b2, + + + ,an Xn � bn! . Then for ai � 1,
bi � IR, X �

uo-disp
Y.

Proof: Since X and Y have the same copula, the required result follows immedi-
ately from Theorem 2+1+ �
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Example 2.1 (Multivariate Normal Distributions): Let X follow the p-variate multi-
variate Normal distribution with mean vector m and dispersion matrix S� ~~sij !!,
with sij � rijsisj , rii � 1, si � 0, and i, j � 1, + + + , p+ Let Y follow the p-variate
multivariate Normal distribution with mean vector m' and dispersion matrix S' �
~~sij

' !!, with sij
'� rijsi

'sj
' , si

'� 0, and i, j �1, + + + , p+ It is known that X and Y have
the same copula+ It follows from Theorem 2+1 that X �

uo-disp
Y if and only if si � si

'

for i � 1, + + + , p+ This result in conjunction with Example 1+1 leads us to the follow-
ing result for comparing two bivariate Normal distributions+

Let X and Y follow bivariate Normal distributions with dispersion matrices

S � � s1
2 rs1s2

rs1s2 s2
2 �, S' �� s1

'2 r 's1
's2
'

r 's1
's2
' s2

'2 �,
respectively+ If 0 � si � si

' for i � 1,2 and 6r ' 6 � 6r6 � 1, then X �
uo-disp

Y+
It will be interesting to find necessary and sufficient conditions under which

two multivariate normal random vectors will be ordered according to upper orthant
dispersive ordering in the general case+

It follows immediately that if two random vectors are ordered according to
upper orthant dispersive ordering, then so are their corresponding subsets+ In par-
ticular, their marginal distributions will be then ordered according to univariate dis-
persive ordering+

Theorem 2.2: Let X and Y be two n-dimensional random vectors such that
X �

uo-disp
Y. Then

XI �
uo-disp

YI ,

where I � $i1, i2, + + + , ik% � $1,2, + + + , n%, XI � ~Xi1 , + + + , Xik !, YI � ~Yi1 , + + + ,Yik ! , and
k � 1, + + + , n.

The proof of the next result is also immediate+

Theorem 2.3: Let X1, + + + ,Xm be a set of independent random vectors for which the
dimension of Xi is ki , i � 1, + + + ,m. Let Y1, + + + ,Ym be another set of independent
random variables for which the dimension of Yi is ki , i � 1, + + + ,m. Then

~Xi �
uo-disp

Yi , i � 1, + + + ,m!n ~X1, + + + ,Xm ! �
uo-disp

~Y1, + + + ,Ym !+ (2.7)

Remark 2.1: A consequence of ~2+7! is that if X1, + + + , Xn is a collection of indepen-
dent univariate random variables and Y1, + + + ,Yn is another set of independent ran-
dom variables, then Xi �disp Yi , i � 1, + + + , n implies X �

uo-disp
Y+

In general, there does not seem to be any direct connection between upper
orthant dispersive ordering and the multivariate dispersive ordering as introduced
by Fernandez-Ponce and Suarez-Llorens @7# +According to their definition, X �disp

Y may not imply that Xi �disp Yi for i � 1, + + + , n+ Also, the multivariate dispersive
ordering as defined by them may not be preserved under permutations of the vari-

434 B.-E. Khaledi and S. Kochar



ables+ On the other hand, the upper orthant dispersive ordering is invariant under
the same permutation of the two vectors and their marginals are also ordered accord-
ing to univariate dispersive ordering+ Obviously, if X �

uo-disp
Y, then tr SX � tr SY ,

where SX and SY denote the dispersion matrices of X and Y, respectively+

3. THE CASE OF NONNEGATIVE RANDOM VARIABLES

In this section, we will restrict our attention to the case in which the random vectors
under consideration are nonnegative or, more generally, they have a finite common
left end point of their supports+We will see that certain results hold in this case that
may not hold in the general case+ The following assumption will be made at some
places in this article+

Assumption A: The random variables $Xi 6�j�i $Xj � Fj
�1~uj !%% and

$Yi 6�j�i $Yj � Gj
�1~uj !%% have a finite common left endpoint of their supports for

all u and for i � 1, + + + , n.

In the univariate case, for nonnegative random variables, there is an intimate
connection between hazard rate ordering and dispersive ordering and which is made
more explicit in the following result of Bagai and Kochar @1# +We use this theorem
to prove some of the results of this section+

Theorem 3.1: Let X and Y be two univariate random variables with distribution
functions F and G, respectively, such that F~0! � G~0! � 0. Then the following
hold:

(a) If Y �hr X and either F or G is DFR (decreasing failure rate), then Y �disp X.
(b) If Y �disp X and either F or G is IFR (increasing failure rate), then Y �hr X.

For a bivariate random vector ~S,T !, we say that T is right tail increasing in S
if P @T � t 6S � s# is increasing in s for all t, and we denote this relationship by
RTI~T 6S!+ If S and T are continuous lifetimes, then T is right tail increasing in S if
and only if r~s6T � t !� r~s6T � 0!� rS~s! for all s � 0 and for each fixed t+ The
RTI property is weaker than the RCSI ~right corner set increasing! property, but
stronger than PQD ~positive quadrant dependence!+ In the next theorem, we study
the effect of positive dependence on upper orthant dispersive ordering for nonneg-
ative random vectors+

Theorem 3.2: Let X � ~X1, X2! be a bivariate random vector such that the left end
point of the support of $Xi 6Xj � Fj

�1~u!% is finite and independent of u � @0,1# for
i, j � 1,2. Let XI � ~X1

I , X2
I ! be a random vector of independent random variables

such that Xi �
st

Xi
I , i � 1,2.

(a) If Xi is RTI in Xj , i � j, and Xi is DFR for i, j � 1,2, then

~X1, X2 ! �
uo-disp

~X1
I , X2

I !+ (3.1)
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(b) If ~X1, X2! �
uo-disp

~X1
I , X2

I ! and Xi is IFR for i � 1,2, then Xi is RTI in Xj ,
i � j, i, j � 1,2.

Proof:

~a! Note that RTI~Xi 6Xj ! if and only if, for all u � 0,

$Xi 6Xj � Fj
�1~u!% �hr Xi + (3.2)

It follows from Theorem 3+1~a! that if, in addition, Xi is DFR, then

$Xi 6Xj � Fj
�1~u!% �disp Xi �

st
Xi

I + (3.3)

Since this holds for i, j � 1,2, the required result follows+
~b! ~X1, X2! �

uo-disp
~X1

I , X2
I ! implies for all u � 0,

$Xi 6Xj � Fj
�1~u!% �disp Xi

I �
st

Xi , i � j, i, j � 1,2+

This together with the assumption that X1 and X2 are IFR implies ~3+2! by
Theorem 3+1~b!+ This proves that RTI~Xi 6Xj !, i � j, i, j � 1,2+ �

Theorem 3.3: Let X and Y be two n-dimensional random vectors satisfying Assump-
tion A and such that Xi �

st
Yi , i � 1, + + + , n. Then X �

uo-disp
Y implies that

Ci, j
X � Ci, j

Y for i, j � 1, + + + , n, i � j, (3.4)

where Ci, j
X ~Ci, j

Y ! denotes the copula of ~Xi , Xj ! ~~Yi ,Yj !! .

Proof:

X �
uo-disp

Yn ~Xi , Xj ! �
uo-disp

~Yi ,Yj !, i � j, i, j � $1, + + + , n% , (3.5)

from which it follows that

$Xi 6Xj � Fj
�1~uj !% �disp $Yi �Yj � Gj

�1~uj !%, uj � @0,1# ,

and which, in turn, implies

$Xi 6Xj � Fj
�1~uj !% �st $Yi 6Yj � Gj

�1~uj !%, uj � @0,1# (3.6)

under Assumption A since dispersive ordering implies stochastic ordering when the
random variables have a finite common left end point of their supports+ If we denote
by OFi, j ~ OGi, j ! the joint survival function of ~Xi , Xj ! ~~Yi ,Yj !!, then ~3+6! can be writ-
ten as
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OFi, j ~x,Fj
�1~uj !! � OGi+j ~x,Gj

�1~uj !! for x � 0,uj � @0,1#

m OFi, j ~F
�1

i ~ui !,Fj
�1~uj !!� OGi+j ~F

�1
i ~ui !,Gj

�1~uj !! for all ui ,uj � @0,1#

m OFi, j ~F
�1

i ~ui !,Fj
�1~uj !!� OGi+j ~G

�1
i ~ui !,Gj

�1~uj !! for all ui ,uj � @0,1#

~since Xi �
st

Yi , i � 1, + + + , n!

m OCi, j
X ~ui ,uj !� OCi, j

Y ~ui ,uj ! for all ui ,uj � @0,1#

m Ci, j
X ~ui ,uj !� Ci, j

Y ~ui ,uj ! for all ui ,uj � @0,1# ,

where OC~u, v!� 1 � u � v� C~u+v!+ �

If ~3+4! holds and the margins of ~Xi , Xj ! and ~Yi ,Yj ! are equal, then we say that
~Yi ,Yj ! is more PQD than ~Xi , Xj ! ~cf+ @10, p+ 36# !+ Note that Ci, j

X ~ui ,uj ! [ ui uj in
the case Xi and Xj are independent and Ci, j

X ~ui ,uj !� ui uj for all ui ,uj � @0,1# in the
case Xi and Xj are PQD+ Thus, according to Theorem 3+3, if Assumption A holds
and if X and Y have the same margins and X �

uo-disp
Y, then the Yi ’s are more depen-

dent than the Xi ’s according to PQD ordering+We obtain the following result as a
special case+

Corollary 3.1: Let X � ~X1, X2! be a bivariate random vector such that the left
end point of the support of $Xi 6Xj � Fj

�1~u!% is finite and independent of u � @0,1# ,
for i � j and i, j � 1,2. Let XI � ~X1

I , X2
I ! be a random vector of independent ran-

dom variables such that Xi �
st

Xi
I , i � 1,2+ Then

~X1, X2 ! �
uo-disp

~X1
I , X2

I !n X is PQD+ (3.7)

Contrast this result with Theorem 3+2~b!, which is a stronger one since RTI
implies PQD+ However, here no assumption on the monotonicity of the hazard rates
is made in the second case+

Remark 3.1: Assumption A is very crucial for Theorem 3+3 and Corollary 3+1 to
hold+ As a counterexample, let Y1 and Y2 be two independent U~0,1! random vari-
ables+ Let X1 � X2 be uniformly distributed over ~0,1! also+ Note that X1 and X2 are
strongly positively dependent, as they satisfy the Frechet upper bound+ Let us com-
pare ~X1, X2! with ~Y1,Y2! according to upper orthant dispersive ordering+ The rel-
evant conditional distributions to compare are

@X16X1 � u# and @Y1 6Y2 � u# , 0 � u � 1+

The left-hand conditional distribution is U~u,1! and the right-hand conditional dis-
tribution is U~0,1!+ Hence, ~X1, X2! �

uo-disp
~Y1,Y2!, but C1,2

X � C1,2
Y , contradictory to

~3+4!+ The reason for this contradiction is that unless Assumption A is satisfied,
dispersive ordering may not imply stochastic ordering+
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Theorem 3.4: Let X and Y be two n-dimensional random vectors satisfying Assump-
tion A and such that X �

uo-disp
Y. Then

uv � Ci, j
X � Ci, j

Y , i, j � 1, + + + , n, i � j, (3.8)

implies

Cov~h1~Xi !, h2~Xj !! � Cov~h1~Yi !, h2~Yj !! (3.9)

for all increasing convex functions h1 and h2 for which the above covariances exist.

Proof: Without loss of generality, let i � 1 and j � 2+ The survival functions of
~h1~X1!, h2~X2!!, h1~X1!, and h2~X2! are, respectively, PH~x1, x2! � OF~h1

�1~x1!,
h2

�1~x2 !!, PH1~x1!� OF1~h1
�1~x1!!, and PH2~x2!� OF2~h2

�1~x2 !!+ Similarly, the survival
functions of ~h1~Y1!, h2~Y2!!, h1~Y1!, and h2~Y2! are, respectively, PK~x1, x2! �
OG~h1

�1~x1!, h2
�1~x2 !!, PK1~x1! � OG1~h1

�1~x1!!, and PK2~x2! � OG2~h2
�1~x2 !!+ Covari-

ance between h1~X1! and h2~X2!, if it exists, can be expressed as

Cov~h1~X1!, h2~X2 !! ���~ PH~x1, x2 !� PH1~x1! PH2~x2 !! dx1 dx2

���~ OF~h1
�1~x1!, h2

�1~x2 !!

� OF1~h1
�1~x1!! OF2~h2

�1~x2 !!! dx1 dx2

���~ OF~F1
�1~u!,F2

�1~v!!� ~1 � u!~1 � v!!

� � h1
' ~F1

�1~u!!

f1~F1
�1~u!! �� h2

' ~F2
�1~v!!

f2~F2
�1~v!! � du dv

��
0

1�
0

1

~ OC1,2
X ~u, v!� ~1 � u!~1 � v!!

� � h1
' ~F1

�1~u!!

f1~F1
�1~u!! �� h2

' ~F2
�1~v!!

f2~F2
�1~v!! � du dv, (3.10)

where h1
�1~x1! � F1

�1~u! and h2
�1~x2 ! � F2

�1~v!+ The assumption X �
uo-disp

Y
implies that Xi �disp Yi , from which it follows that fi ~Fi

�1~u!! � gi ~Gi
�1~u!! and

Fi
�1~u!� Gi

�1~u!, i �1,2, under Assumption A+ Now hi
'~x! is increasing in x since

h~x! is convex+ Combining these facts, the required result follows from ~3+8!+ �

Theorem 3.5: Let X and Y be two n-dimensional random vectors satisfying the
Assumption A and let f1, + + + ,fn be increasing convex functions on IR�. Then

X �
uo-disp

Yn ~f1~X1!, + + + ,fn~Xn !! �
uo-disp

~f1~Y1!, + + + ,fn~Yn !!+
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Proof: Note that the cdf of fj~Xj ! is Ffj
~x! � Fj ~fj

�1~x!!, with its inverse as
Ffj

�1~u!�fj ~Fj
�1~u!!+We have to prove that for i �1, + + + , n, uj � ~0,1!, j �1, + + + , n,

j � i ,

�fi ~Xi !��j�i

$fj ~Xj ! � Ffj

�1~uj !% �disp �fi ~Yi !��j�i

$fj ~Yj ! � Gfj

�1~uj !%�;
that is,

�fi ~Xi !��j�i

$fj ~Xj ! � fj ~Fj
�1~uj !!%�

�disp �fi ~Yi !��j�i

$fj ~Yj ! � fj ~Gj
�1~uj !!%�,

which is equivalent to

�fi ~Xi !��j�i

$Xj � Fj
�1~uj !%� �disp �fi ~Yi !��j�i

$Yj � Gj
�1~uj !%�+

Using Assumption A, for i � 1, + + + , n, uj � ~0,1!, j � 1, + + + , n, j � i ,

�Xi��j�i

$Xj � Fj
�1~uj !%� �disp �Yi��j�i

$Yj � Gj
�1~uj !%�

implies

~Xi 6$Xj � Fj
�1~uj !%! �st ~Yi 6$Yj � Gj

�1~uj !%!+

Now the required result follows from Theorem 2+2 of Rojo and He @18# since
fi ’s are increasing convex functions+ �

Hu et al+ @9# gave the following definition of multivariate ~weak! hazard rate
ordering+

Definition 3.1: Let X and Y be n-dimensional random vectors with hazard gra-
dients rX and rY, respectively. We say that X is smaller than Y according to weak
hazard rate ordering (written as X �whr Y) if

�Xi��j�i

$Xj � xj %� �hr �Yi��j�i

$Yj � xj %�,
for i � 1,2, + + + , n, x � IRn; that is, if

rX
~i !~x! � rY

~i !~x!, i � 1,2, + + + , n, x � IR+

In the next theorem we establish results analogous to Theorem 3+1 between
upper orthant dispersive ordering and multivariate weak hazard rate ordering under
Assumption A+
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Theorem 3.6: Let X and Y be two n-dimensional random vectors satisfying Assump-
tion A.

(a) If Y �whr X and either rX
~i !~x! or rY

~i !~x! is decreasing in x, for i � 1, + + + , n,
then Y �

uo-disp
X.

(b) If Y �
uo-disp

X and either rX
~i !~x! or rY

~i !~x! is increasing in x, for i �1, + + + , n,
then Y �whr X.

Proof:

~a! Under Assumption A, Y �whr X implies that Yi �st Xi , i �1, + + + , n, which is
equivalent to Gi

�1~u!� Fi
�1~u!, for u � @0,1# , i �1, + + + , n+Again,Y �whr X

implies that for i � 1, + + + , n, ~Yi 6�j�i $Yj � xj %! �st ~Xi 6�j�i $Xj � xj %!+
Taking xj � Fj

�1~uj !, j � 1, + + + , n, j � i , we find that this implies yi
'~b;u!�

xi~b;u!, where yi
'~b;u! is the bth quantiles of the conditional distribution

~Yi 6�j�i $Yj � Fj
�1~uj !%! and xi~b;u! is as defined earlier+ On the other

hand, rY
~i !~x! decreasing in x implies that

�Yi��j�i

$Yj � xj %� �st �Yi��j�i

$Yj � xj
'%�,

for xj � xj
' , j � 1 + + + , n, j � i + This, along with Gi

�1~ui !� Fi
�1~ui !, implies

that

yi ~b;u! � yi
'~b;u!� xi ~b;u!, i � 1, + + + , n+

Using these observations, we obtain

rX
~i !~F1

�1~u1!, + + + ,Fi�1
�1 ~ui�1!, xi ~b;u!, + + + ,Fn

�1~un !!

� rY
~i !~F1

�1~u1!, + + + ,Fi�1
�1 ~ui�1!, xi ~b;u!, + + + ,Fn

�1~un !!,

since Y �whr X+ The right-hand side of this inequality is less than or
equal to

rY
~i !~G1

�1~u1!, + + + ,Gi�1
�1 ~ui�1!, yi ~b;u!, + + + ,Gn

�1~un !!

since rY
~i !~x! is decreasing in x+ This completes the proof of ~a!+

~b! From the assumption Y �
uo-disp

X, it follows that

rX
~i !~F1

�1~u1!, + + + ,Fi�1
�1 ~ui�1!, xi ~b;u!, + + + ,Fn

�1~un !!

� rY
~i !~G1

�1~u1!, + + + ,Gi�1
�1 ~ui�1!, yi ~b;u!, + + + ,Gn

�1~un !! (3.11)
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and

�Xi��j�i

$Xj � Fj
�1~uj !%� �st �Yi��j�i

$Yj � Gj
�1~uj !%� ,

which implies that xi~b;u!� yi~b;u! and Fj
�1~uj !� Gj

�1~uj !, j �1, + + + , n,
j � i + Using these facts and the assumption that rY

~i !~x! is increasing in x, it
follows that, for i � 1, + + + , n, the right-hand side of ~3+11! is less than or
equal to

rY
~i !~F1

�1~u1!, + + + ,Fi�1
�1 ~ui�1!, xi ~b;u!, + + + ,Fn

�1~un !! � rY
~i !~x!;

that is, we have shown that for i � 1, + + + , n,

rX
~i !~x! � rY

~i !~x!

and hence the required result+ �

Remark 3.2: If rX
~i !~x1, + + + , xi , + + + , xn ! increases in xi for i � 1, + + + , n, then we say

that the random vector X has a multivariate increasing hazard rate distribution ~cf+
Johnson and Kotz @11# !+ The condition rX

~i !~x1, + + + , xi , + + + , xn ! increasing in xj , j �
1, + + + , n, j � i , i � 1, + + + , n describes a condition of positive dependence that is
equivalent to saying that the random vector X has RCSI; that is,

P @X1 � x1, + + + , Xn � xn 6X1 � x1
' , + + + , Xn � xn

' #

increases in xi
' , i � 1, + + + , n+

We will now study some preservation properties of the upper orthant disper-
sive order under random compositions+ Such results are often referred to as preser-
vations under “random mapping” ~see Shaked and Wong @22# !, or preservations of
“stochastic convexity” ~see Shaked and Shanthikumar @20, Chap+ 6# and Denuit,
Lefèvre, and Utev @6# , and references therein!+

Let $ OFu, u � X % be a family of n-dimensional survival functions, where X is a
subset of the real line+ Let X~u! denote a random vector with survival function OFu+
For any random variable Q with support in X and with distribution function H, let
us denote by X~Q! a random vector with survival function OG given by

OG~x! ��
X
OFu~x! dH~u!, x � IRn+

Theorem 3.7: Consider a family of n-dimensional survival functions $ OFu, u � X %
as above. Let Q1 and Q2 be two random variables with supports in X and distribu-
tion functions H1 and H2, respectively. Let Y1 and Y2 be two random vectors such that
Yi �st X~Qi !, i � 1,2; that is, suppose that the survival function of Yi is given by

OGi ~x! ��
X
OFu~x! dHi ~u!, x � IR, i � 1,2+

DEPENDENCE, DISPERSIVENESS, MULTIVARIATE HAZARD RATE ORDERING 441



If

(a) X~u! �whr X~u ' ! whenever u � u ', (3.12)

(b) Q1 and Q2 are ordered in the univariate hazard rate order; that is,

Q1 �hr Q2 , (3.13)

(c) rX~u!
~i ! ~x1, + + + , xn ! is decreasing in xj , j � 1, + + + , n, i � 1, + + + , n,

then

Y1 �
uo-disp

Y2 + (3.14)

Proof: Hu et al+ @9# proved that assumptions ~a! and ~b! imply that Y1 �whr Y2+
Now, we show that for i � 1, + + + , n, rY1

~i !~x1, + + + , xn ! is decreasing in xj , j � 1, + + + , n,
then the required result will follow from Theorem 3+6~a!+Assumption ~a! is equiv-
alent to OFu~x! being TP2 ~recall from Karlin @12# that a function f :R2 r R is said
to be totally positive of order 2 ~TP2! if f ~x1 , y1 ! f ~x2 , y2 ! � f ~x1 , y2 ! f ~x2 , y1 !,
for x2 � x1 and y2 � y1! in ~u, xj !, j � 1, + + + , n+ rX~u!

~i ! ~x1, + + + , xn ! decreasing in
xj , j � 1, + + + , n, j � i is equivalent to OFu~x1, + + + , xn! being TP2 in ~xi , xj !, i, j �
1, + + + , n, j � i + Using these observations, it follows that OG1~x! is TP2 in ~xi , xj !,
i, j � 1, + + + , n ~cf+ Karlin @12# !, which is equivalent to rY1

~i !~x1, + + + , xn ! decreasing in
xj , j � 1, + + + , n, j � i + It is worth noting that rX~u!

~i ! ~x1, + + + , xn ! decreasing in xi is
equivalent to the fact that $Xi 6�j�i $Xj � xj %% is a DFR random variable, i �
1, + + + , n+ Now, OG1~x! can be written as

OG1~x! ��Pu�Xi � xi��j�i

$Xj � xj %�Pu��
j�i

$Xj � xj %, j � 1, + + + , n, j � i� dH1~u!;

that is, ~Y1, + + + ,Yn! is a sort of mixture of DFR random variables; therefore,
�] log OGj~x!0]xi is decreasing in xi , which is equivalent to rY1

~i !~x1, + + + , xn !
decreasing in xi + This completes the proof+ �

4. EXAMPLES AND APPLICATIONS

Example 4.1 (Multivariate Pareto Distributions): For a � 0, let Xa � ~Xa,1, + + + ,Xa, n!
have the survival function OFa given by

OFa~x1, + + + , xn ! � �(
i�1

n

xi � n � 1��a

, xi � 1, i � 1,2, + + + , n;

see, for example, Kotz, Balakrishnan, and Johnson @14, p+ 600# + The corresponding
density function is given by

fa~x1, + + + , xn ! � a~a � 1! + + +~a � n � 1!�(
i�1

n

xi � n � 1��a�n

,

xi � 1, i � 1,2, + + + , n+
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Hu et al+ @9# showed that Xa1
�whr Xa2

whenever a1 � a2+ On the other hand,
rX
~i !~x! � a0~(j�1

n xj � n � 1!, is decreasing in xj , j � 1, + + + , n+ Then from Theo-
rem 3+6~a! it follows that Xa1 �

uo-disp
Xa2

whenever a1 � a2+

Example 4.2 (Bivariate Farlie–Gumbel–Morgenstern Distributions): For a �
~�1, 1!, let Xa� ~Xa,1, Xa,2! have the survival function OFa given by

OFa~x1, x2 ! � OF1~x1! OF2~x2 !@1 � a~1 � OF1~x1!!~1 � OF2~x1!!#

and Ya� ~Ya,1,Ya,2! have the survival function OGa given by

OGa~x1, x2 ! � OG1~x1! OG2~x2 !@1 � a~1 � OG1~x1!!~1 � OG2~x1!!# ,

where OF1, OF2, OG1, and OG2 are arbitrary univariate survival functions ~which hap-
pen to be the marginal survival functions of Xa,1, Xa,2, Ya,1, and Ya,2, respectively,
independently of a!+ Assume that Xa, i �disp Ya, i , i � 1,2+ It is easy to see that
OC Xa~u, v! � OC Ya~u, v!+ Then, from Theorem 2+1, it follows that Xa �

uo-disp
Ya+

Example 4.3 (Multivariate Gumbel Exponential Distributions): For positive param-
eters l� $lI : I � $1,2, + + + , n%, I � �% , let Xl� ~X1, X2, + + + , Xn! have the survival
function OFl given by

OFl~x1, x2 , + + + , xn ! � exp ��(
I

lI)
i�I

xi� , ~x1, x2 , + + + , xn !� ~0,0, + + + ,0!;

see Kotz et al+ @14, p+ 406# + For another set of positive parameters l* � $lI
* : I �

$1,2, + + + , n%, I � �% , let Yl* � ~Y1,Y2, + + + ,Yn! have the survival function OGl* + Let
Xi �st Yi , i � 1, + + + , n; that is, li � l i

*+We show that if l� l*, then for i � 1, + + + , n,

�Xi��j�i

$Xj � Fj
�1~uj !%� �disp �Yi��j�i

$Yj � Gj
�1~uj !%�, uj � @0,1# + (4.1)

Since Xi �st Yi , i � 1, + + + , n, ~4+1! is equivalent to

�Xi��j�i

$Xj � xj %� �disp �Yi��j�i

$Yj � xj %�, i � 1, + + + , n+ (4.2)

Let xi � ~x1, + + + , xi�1, xi�1, + + + , n! + The survival function of ~Xi 6�j�i $Xj � xj %!,
denoted by OFi~xi ;xi!, is

OFi ~xi ;xi ! � exp ��xi �l i �(
j

l ij xj �(
j�k

l ijk xj xk � {{{� l12 + + +n)
j�i

xj�� + (4.3)

Similarly, the survival function of $Yi 6Yj � xj , j � i % , denoted by OGi~xi ;xi!, is

OGi ~xi ;xi ! � exp ��xi �l i �(
j

l ij
* xj �(

j�k

l ijk
* xj xk � {{{� l12 + + +n

* )
j�i

xj�� + (4.4)
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Now, the ratio

OGi ~xi ;xi !

OFi ~xi ;xi !
(4.5)

is increasing in xi ; that is,

�Xi��j�i

$Xj � xj %� �hr �Yi��j�i

$Yj , � xj %�, i � 1, + + + , n+ (4.6)

On the other hand, the random variable $Xi 6Xj � xj , j � i % has an exponential
distribution that is DFR+ Combining this observation with ~4+6!, it follows from
Theorem 3+1~a! that ~4+2! holds+ Now, applying Theorem 3+3 to this example, we
get that Ci, j

l is decreasing in l, where Ci, j
l denotes the copula of ~Xi , Xj !

Application 4.1 (Order Statistics): Let X1, + + + , Xn ~Y1, + + + ,Yn! be a random sample
from a univariate distribution with strictly increasing distribution function F ~G!+
Bartoszewicz @3# has shown that F �disp G implies Xi:n �disp Yi:n, i �1, + + + , n, where
Xi:n ~Yi:n! is the ith-order statistic of the X sample ~Y sample!+ We will strengthen
this result to prove that F �disp G implies

~X1:n , + + + , Xn:n ! �
uo-disp

~Y1:n , + + + ,Yn:n !+ (4.7)

We first show that in the case of random samples from continuous distribu-
tions, the copulas of order statistics are independent of the parent distributions+Note
that Yi:n �

st
G�1F~Xi:n!, i �1, + + +n+ Since the function G�1F is strictly increasing, it

follows from Theorem 2+4+3 of Nelsen @17# that C~Xi:n, Xj:n! � C~Yi:n,Yj:n!, for
i, j �1, + + + , n+ It now immediately follows from Theorem 2+1 that F �disp G implies
~4+7!+

Since the order statistics from a random sample are positively associated ~cf+
Boland,Hollander, Joag-Dev, and Kochar @4#! and since ~X1:n, + + + ,Xn:n! and ~Y1:n, + + + ,
Yn:n! have the same copula, the conditions of Theorem 3+4 are satisfied+ Hence, for
i, j � $1, + + + , n% ,

Cov~h1~Xi:n !, h2~Xj:n !! � Cov~h1~Yi:n !, h2~Yj:n !!,

for all increasing convex functions h1 and h2 for which the above covariances exist+
This result was originally proved by Bartoszewicz @2# using a different method+ A
similar result can be established for record values+

Application 4.2 (Record Values): Let X1, + + + , Xn, + + + ~Y1, + + + ,Yn, + + + ! be a sequence
of random variables from a univariate distribution F ~G!+ It is known that F �disp G
implies Rm

X �disp Rm
Y , where Rm

X ~Rm
Y ! is the mth record value of the X sequence ~Y

sequence!+ We first show that in the case of random sequences from continuous
distributions, the copulas of record values are independent of the parent distribu-
tions+ Then it will immediately follow from Theorem 2+1 that F �disp G implies
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~Rm1

X , + + + ,Rmn

X ! �
uo-disp

~Rm1

Y , + + + ,Rmn

Y !+ (4.8)

Let M~x! � �log OF~x!; then the distribution function of Rm
X can be expressed as

FRm
X ~x!� Gm~M~x!!, where Gm~x! is the distribution function of a Gamma random

variable with scale parameter one and shape parameter m+ Similarly, let N~x! �
�log OG~x!; then the distribution function of Rm

Y is FRm
Y ~x!� Gm~N~x!!+ Now, both

M~X1!, + + + ,M~Xn!, + + + and N~Y1!, + + + ,N~Yn!, + + + are sequences of independent and
identically distributed ~i+i+d+! exponential random variables with mean one+ Using
this observation, it follows that

~Rm1

X , + + + ,Rmn

X ! �
st
~M�1~Rm1

* !, + + + ,M�1~Rmn

* !!

and

~Rm1

Y , + + + ,Rmn

Y ! �
st
~N�1~Rm1

* !, + + + ,N�1~Rmn

* !!,

where Rm
* is the mth record value of a sequence of i+i+d+ exponential random vari-

ables with mean one+

C RX
~u1, + + + ,un ! � FRX ~FRm1

X
�1 ~u1!, + + + ,FRmn

X
�1 ~un !!

� P~Rm1

X � FRm1
X

�1 ~u1!, + + + ,Rmn

X � FRmn
X

�1 ~un !!

� P~M�1~Rm1

* !� M�1G�1
m1
~u1!, + + + ,M�1~Rmn

* !

� M�1Gmn

�1~un !!

� P~Rm1

* � Gm1

�1~u1!, + + + ,Rmn

* � Gmn

�1~un !!

� P~N�1~Rm1

* !� N�1Gm1

�1~u1!, + + + ,N�1~Rmn

* !� N�1Gmn

�1~un !!

� P~Rm1

Y � FRm1
Y

�1 ~u1!, + + + ,Rmn

Y � FRmn
Y

�1 ~un !!

� C RY
~u1, + + + ,un !+

This proves the desired result+
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