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Abstract—As wildfires surge in frequency and impact in the
Pacific Northwest, in tandem with increasingly traffic-choked
roads, personal exposure to harmful airborne pollutants is a
rising concern. Particularly at risk are school-age children,
especially those living in disadvantaged communities near major
motorways and industrial centers. Many of these children must
walk to school, and the choice of route can effect exposure. Route-
planning applications and frameworks utilizing computational
shortest paths methods have been proposed which consider
personal exposure with reasonable success, but few have focused
on pollution exposure, and all have been limited in scalability
or geographic scope. This paper addresses the lack of stud-
ies on this subject in Portland, OR. An application of the
A*Prune algorithm is proposed for the purpose of reducing
personal exposure for children attending Harriet Tubman Middle
School in NE Portland, one area of Portland where residents
are disproportionately affected by pollution. This method can
sometimes identify alternative routes which reduce pollution
exposure without significantly increasing travel distance over the
shortest route.

I. INTRODUCTION

Pollutants commonly encountered in urban centers, such as
nitrogen dioxide (NO2) and particulate matter (PM), have been
linked with negative health consequences, and exposure over a
short time can sometimes be significant [1] [2] [3]. In recent
decades, several factors have led to increasing danger from
personal pollution exposure in the Pacific Northwest (PNW).
As early as the 1990, both Portland and Seattle experienced
increases in population as well as a marked increase in per-
capita travel distance by car [4]. Traffic is one of the main
factors contributing to PM in the air [5]. In Portland, OR,
high concentrations of NO2, which is often identified as a
marker of PM [5] [6], have also been shown to closely
coincide with major roadways and their vicinity [7], as has
Diesel PM [8]. Meanwhile, with the recent increase in wildfire
frequency and impact in the Northwestern U.S., the region
has seen an increase in the concentration of particulate matter
of less than 2.5µm (PM2.5) in the atmosphere [9]. Further,
with rapid development and industrialization in East Asia,
it has been shown that some PM from Asian sources can
travel far enough to effect background PM levels in the PNW,
though this effect is not as relevant as a percentage of overall
PM in urban areas [10]. These facts motivate a concern for
the potential harm caused by increased personal exposure to
pollutants, particularly in urban settings. Previous studies have

also suggested that harm is not equitably distributed, but that
those living in lower income areas, or near major motorways
and industrial sources of pollution shoulder a disproportionate
amount of the costs of pollution [11] [12]. At even greater risk
are the children living in these areas, who are at greater risk
from pollution than adults [13]. Our study focuses on reducing
pollution exposure for students from Harriet Tubman Middle
School who walk to school. Harriet Tubman Middle School is
located near the I-5 freeway and Moda Center, and as such is in
an area with comparatively high concentrations of NO2 [7] and
PM. It has been noted that journey-time exposure to pollution
may be only a small part of the picture, with time spent in the
home and at school playing a major role [14]. However, as
it has been demonstrated that short term exposures can have
negative health consequences, a part of the problem which is
readily solved by existing shortest paths methods is the focus
of this paper, which shows that for some pollution surfaces and
routes, alternative healthier routes can sometimes be found.

II. PROBLEM FORMULATION

In searching for a computational approach to reducing
students’ personal exposure levels, we are motivated by an
understanding that finding least-polluted walking paths can be
readily formulated as a shortest paths problem, in which the
quantity to minimize is pollution. However, because it is likely
that students will be unwilling to increase the distance they
travel over the minimum by more than a threshold, as has
been seen among bikers [15], an additional constraint on the
maximum distance of viable walking routes is added. Then the
problem becomes finding the least-polluted path in a graph,
subject to a constraint on the maximum distance.

A. Mathematical Formulation

Consider a graph G = (V,E), with V the set of nodes in
G and E the set of edges. An edge e ∈ E is defined as (i, j),
where i, j ∈ V and are, of course, connected by an edge. Each
edge e has weights wexp(i, j) and wlen(i, j) corresponding to
a pollution exposure and distance measure, respectively. We
define a cost C(i, j) for e, which is a function of wexp and
wlen. Let P (u, v) be the set of all possible simple paths from
u to v for u, v ∈ V . Here a simple path p(u, v) is defined as a
sequence of adjacent nodes (n0, n1, n2, · · · , nk) such that no
node is visited twice, n0 ≡ u, nk ≡ v, and k is the number of



nodes in the path. Then we define the total pollution exposure,
distance, and cost, respectively, along a path p as follows:

wexp(p) =

m=k−1∑
m=0

wexp(nm, nm+1)

wlen(p) =

m=k−1∑
m=0

wlen(nm, nm+1)

C(p) =

m=k−1∑
m=0

C(nm, nm+1)

Given starting node u and target node v, the shortest path
problem without constraints would be to find a path r(u, v)
such that

C(r(u, v)) = min
p(u,v)∈P (u,v)

C(p(u, v))

Now consider a constraint Dmax, which we interpret here as
the largest total path distance to be allowed in a valid path.
The new shortest path problem with the constraint Dmax is
the same as above, except the the set of allowable paths is
smaller. Let PD ⊆ P be the set of all paths that satisfy the
constraint, that is

∀pD ∈ PD, wlen(pD) ≤ Dmax

Then the shortest path problem with this constraint is to find
a path r(u, v) such that

C(r(u, v)) = min
pD(u,v)∈PD(u,v)

C(pD(u, v))

B. Literature Review

Both the shortest path problem and the shortest path with
resource constraints problem have been extensively studied.
There are many well-known and effective solutions to the
shortest path problem, including the Bellman-Ford, Dijkstra,
and A* algorithms. A* was proposed as a class of algorithms
which were known to find the shortest path while searching
the fewest possible paths [16]. For a problem closely related
to finding the shortest path with a resource constraint, a modi-
fication of A* has been proposed. A*Prune has proven to be
an effective algorithm for finding the K shortest paths with
multiple resource constraints [17]. Several past studies have
looked at shortest paths methods and route finding applications
which consider personal pollution exposure. Some of the most
recent examples are web-based route finders developed for
cyclists in Montreal [6] and Vancouver [18], Canada. These
applications had success in finding least polluted paths which
differ from either the shortest path or some representative path.
However, both are limited to their respective cities, and only
the Montreal study was focused on reducing personal pollution
exposure; it finds the minimum exposure path, regardless
of distance. While application built for Vancouver is able
to take into account a preference for a shorter versus less
polluted route, the user must choose only one of distance
or exposure as the factor to minimize. Both of these tools
are designed with cyclist, rather than pedestrians, in mind.

Socharoentum and Karimi proposed a route planning frame-
work for multi-modal, walking-inclusive routes which takes
into account multiple factors including distance and pollution
exposure along the walking segment [19], but their application
was not focused on pollution exposure and used a coarse,
categorical measure for pollution levels. Additionally, two
studies have been conducted in the UK which look at reducing
personal pollution exposure during transit for school children
through shortest paths methods, and which show a potential
for reducing exposure in this way [20] [21]. However, their
methods only considered minimization of pollution exposure,
and were not readily scalable to other cities due in part to
necessary manual data manipulation [20]. To the author’s
knowledge, there are no applications of shortest path methods
for walking which take into account both minimizing exposure
and satisfying a maximum distance constraint. Further, the
author is not aware of any studies which consider reducing
personal pollution exposure through shortest paths methods in
Portland, OR. This study shares many of the limitations of
previous studies, including geography, and it should be noted
that a complete framework for routing, comprising an accurate
pollution model, routing tools, and a user interface, is beyond
the scope of this paper. What this paper proposes is a novel
application and implementation of the A*Prune algorithm to
reducing personal pollution exposure in Portland.

III. METHODOLOGY

A. Path Finding Algorithm

This algorithm is based on the A*Prune algorithm pro-
posed by Liu and Ramakrishnan [17]. The algorithm conducts
an A* search from s to t but at each step extends only those
paths which could possibly satisfy the constraint based on a
look-ahead procedure. The look-ahead heuristic used to help
decide priority for path extension is the Dijkstra minimum cost
from the last node in the path to the target. The look-ahead
heuristic used to eliminate paths that should not be extended
is the Dijkstra minimum distance from the last node in the
path to the target.

B. Important Notation for Procedure 1

Let hc(i, j) for i, j ∈ V be the cost of the simple least-cost
path from i to j. Let hd(i, j) for i, j ∈ V be the distance
of the simple shortest-distance path from i to j. For paths
p1(i, j) and p2(j, k) which share an end node, we write the
combination of the two paths, which is a path from i to k, as

p1(i, j) ∗ p2(j, k) = p(i, k)

We call p1 a head path of p and p2 a tail path of p. The
projected cost of a path p(s, j) given target t is defined as
C(p(s, j)) + hc(j, t).

C. Implementation

The A*Prune algorithm was implemented for finding a
single path and considering a single constraint, the maxi-
mum allowable distance. For ordering paths to search in the
A* search, a priority queue which prioritizes the path with



Procedure 1 A*Prune for a Single Path with One Constraint
Inputs: The graph G, a source node s, a target node t, a cost

function C(·), and a constraint Dmax

Outputs: The path p∗(s, t) satisfying

C(p∗) = min
p∈PD

C(p)

if it exists, along with C(p∗), wexp(p
∗), and wlen(P

∗)
1: Initialize the trivial path p(s, s)
2: wexp(p(s, s))← 0.0
3: wlen(p(s, s))← 0.0
4: C(p(s, s))← 0.0
5: V iable Paths← [p(s, s)]
6: while V iable Paths is not empty do
7: cp(s, u) ← the path in V iable Paths with least pro-

jected cost
8: Remove cp(s, u) from V iable Paths
9: u← the last node in cp(s, u)

10: if u ≡ t then
11: return cp(s, t), C(cp), wexp(cp), and wlen(cp)
12: end if
13: Successors←{successor nodes of u}
14: while Successors is not empty do
15: nbr ← a node in Successors
16: Remove nbr from Successors
17: if nbr ∈ cp(s, u) then
18: Goto 14
19: end if
20: np(s, nbr)← cp(s, u) ∗ (u, nbr)
21: C(np(s, nbr))← C(cp(s, u)) + C(u, nbr)
22: wexp(np(s, nbr))← wexp(cp(s, u)) + wexp(u, nbr)
23: wlen(np(s, nbr))← wlen(cp(s, u)) + wexp(u, nbr)
24: if wlen(np(s, nbr)) + hd(nbr, t) > Dmax then
25: Goto 14
26: end if
27: Insert np(s, nbr) into V iable Paths
28: end while
29: end while
30: return No Path Found

minimum projected cost was used. The projected cost for a
path is the sum of the actual path cost so far and the cost
of the Dijkstra least-cost path from the termination of the
path. In general, Dijkstra’s algorithm was used for computing
cost-to-go and distance-to-go heuristics. Since it was likely
not necessary to compute heuristics for all possible nodes in
the graph, and computation of each heuristic was sufficiently
computationally cheap, heuristics were computed on-line and
as needed. A heap was used to store viable paths to search
which prioritized the path with least projected cost. The cost
function was defined as

C(p) = (1− λ)exp(p) + λlen(p)

Here exp(p) and len(p) are respectively the total exposure and
length of the path or edge. The program was implemented in

Python [22] utilizing the OSMnx package [23] for extracting
street data from Open Streets Maps [24] and constructing the
walking network. The Scikit-Learn package [25] was used
for interpolating and predicting spatial pollution concentra-
tion functions based on available data. Matplotlib [26] and
the matplotlib basemap toolkit were used for plotting. The
implementation was also built upon NumPy [27] [28], Pandas
[29], and NetworkX [30].

D. Pollution Exposure Model and Walking Network

Gaussian process regression was used via Scikit-Learn for
producing plausible pollution maps based on available and
constructed data. The use of Gaussian processes and kriging
for interpolating and predicting air quality is well documented
and reasonably effective [7] [31]. Several data sets were used
to fit different regression models. These included data from
sparse, stationary AirNow sensors [32], sparsely reconstructed
data from a land use regression (LUR) model for Portland [7],
as well as purely contrived data with no relation to real data.
The accuracy of the testing model pollution surfaces was not
verified, is likely poor, and is beyond the scope of this paper.
Once a model was fitted, it was sampled in a regular grid
to produce a discrete pollution surface. The network obtained
via OSMnx was comprised of nodes representing intersections
as well as numerous intermediary nodes along the edges,
or streets, between intersections. Nodes were assigned the
pollution concentration value corresponding to their location
on the discrete pollution surface. Because edges were generally
short, fairly straight segments of road between nodes, edges
were assigned a pollution concentration value that was the
arithmetic mean of the values at the two end nodes. Exposure
was then defined as the product of the pollution concentration
and the length of the segment in meters, as a proxy for the
time a pedestrian would spend along the segment.

IV. RESULTS

A. Existence of Less Polluted Paths

Given a contrived pollution surface with a single, centered
pollution spike, the program found paths which avoided the
worst of the pollution, rather than routing directly through the
pollution hot spot, as it would if finding the least distance
path. The degree to which selected routes may differ from
the shortest route depended on the extremity of the spatial
differences in pollution. There existed at least some pollution
surfaces and routes for which the potential exposure reduction
from the least distance to least exposure path was large (-
84.95%), and was larger than the increase in distance (+50%),
as in 1. In fact, for many of the pollution surfaces that were
tested, including those based on AirNow and LUR data, there
were some shortest routes for which alternative, less polluted
routes could be identified, though the reductions were often
small, as seen in 2.



Fig. 1. An example least distance path, shown in red, which traverses through
a pollution spike, and an alternative path with less journey-time pollution
exposure, shown in green, given a contrived pollution surface.

Fig. 2. A least distance path (shown in red as the lower path) and an less
polluted path (shown in green as the upper path) given sparsely reconstructed
LUR data. The alternative path is 14.348% longer with a total exposure
reduction of 1.34579%.

B. Effects of Varying Cost-Function Parameters

Varying the cost parameter λ controlled the degree to
which distance is included in the cost function, which is not
equivalent to setting a maximum distance threshold. While
distance was already to some degree included in the measure
of exposure, this was useful for controlling the degree to which
the least cost path differed from the least distance path. With
λ = 1, the least cost path is the least distance path. With
λ = 0, the least cost path is the least exposed path. For some
pollution surfaces and routes, as λ is increased to 1, relatively
large reductions in pollution could be achieved with relatively
small increases in distance. A reduction in exposure almost
as great as the maximum reduction could be obtained with an
increase in distance much smaller than the maximum increase
for the routes represented in 3.

Fig. 3. λ versus the percent changes in distance and exposure for the least
cost path given a pollution surface and fixed source and target nodes. The
functions are discrete because the changes in the path are discrete.

V. DISCUSSION AND CONCLUSION

The shortest paths approach shows potential for reducing
personal exposure in Portland, especially in areas where there
may be large differences in the concentrations of pollutants,
such as near major roadways. For at least some pollution
surfaces and routes, an alternative route was found with
significant reductions in pollution exposure. For some routes,
a relatively large reduction in pollution could be achieved
with relatively small increases in distance. Sometimes, a route
could be found which reduced exposure almost as much as the
least exposed route but which had a much smaller increase in
distance; this suggests that sometimes including a maximum
distance threshold could be useful, and result in a much shorter
route which has almost equal benefit compared with the least
polluted path.

A. Future Work

The application of shortest paths methods with resource
constraints for reducing personal pollution exposure warrants
more research in Portland. Future work could focus on pro-
ducing a complete and useful framework. This would involve
producing and validating an accurate pollution surface for
Portland based on real data, as well as producing a user
interface and potentially a web application so that the methods
are available for use and their efficacy can be assessed. Given
such a structure, future research could then better determine
how well these methods perform in aggregate over various
conditions and neighborhoods. Such work has the potential
to reduce pollution-related inequality, as well as to help
mitigate the pollution-related health, economic, and social
costs increasingly faced by urban centers in the PNW.
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