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Differential Effects of Membrane Order on Membrane Permeability 

 

Miranda J. Bradley, Marshall J. Colville, Miles J. Crumley, Drake C. Mitchell 

Department of Physics, Portland State University 

Particular lipids were chosen for this study that are commonly 

found in biological membranes.  This study focuses on changes in 

membrane permeability with lipid composition.  Previous work has 

shown changes in permeability with the addition of cholesterol.  

These lipids have also been extensively studied as constituents of a 

ternary phase diagram1 (Fig. 2, below) that predicts phase behavior 

based on percent composition.  At 23oC, pure POPC membranes are 

in the liquid disordered (ld) phase at room temperature.  With the 

addition of cholesterol and sphingomyelin, the membranes exhibit 

liquid ordered (lo) or solid (so) characteristics as shown in Figure 2. 

Water Permeability 

The permeability coefficient of water through the membrane is plotted against both order as predicted by the 

ternary phase diagram and percent cholesterol in the membrane.  There is a notable difference between the 

first two samples in the completely ld  phase, indicating that in this region there is a stronger correlation 

between percent cholesterol in the membrane than bulk membrane order. 

Proton Permeability 

Similar to the result seen with water permeability, there is a marked change in proton permeability while the 

membrane is in the completely ld phase.  Travelling through the coexistence region, there do appear to be 

plateaus in the differently interconnected regions.  Once the membrane is in complete lo phase, there is a marked 

increase in permeability with addition of cholesterol that indicates a stronger correlation to percent cholesterol. 

Vesicle Rupture by 0.1% TritonX-100 

The results of vesicles ruptured by Triton were the least consistent from trial to trial, but are notable in that 

these are the only results that show consistent behavior in the 100% ld and 100% lo regions.  In these regions, 

change in percent cholesterol does not significantly change the speed of vesicle rupture. 

Anisotropy Decay of DPH:   

Order Parameter S 

The time resolved anisotropy decay order 

parameter S was found to correlate strongly 

with percent cholesterol in the membrane, 

increasing the fastest with the very small 

addition of cholesterol in the 100% ld region. 

Once enough sphingomyelin and cholesterol 

had been added to produce a 100% lo 

membrane, there was no change in order 

seen with the addition of cholesterol. 

1. There is a strong correlation between membrane permeability and the DPH 

anisotropy-derived order parameter S (shown in Fig. 9);  water permeability 

decreases with order and proton permeability increases with order.   

2. Within the 100% ld region of the ternary phase diagram, changes in percent 

cholesterol result in changes in water permeability (Fig. 6). 

3. Within the 100% ld and 100% lo regions of the ternary phase diagram, changes in 

percent cholesterol result in changes in proton permeability (Fig. 7). 

4. Within the 100% ld and 100% lo regions of the ternary phase diagram, changes in 

percent cholesterol do not affect the rate of vesicle rupture by Triton (Fig. 8). 

1.  de Almeida, R.F.M., Loura, L.M.S., Fedorov, A., Prieto, M. 2005. Lipid Rafts have Different Sizes Depending on Membrane Composition. J. Mol. Biol. Vol. 346, 1109-1120. 

2.  Mitchell, D. C., Litman, B.J. 1998. Molecular Order and Dynamics in Bilayers Consisting of Highly Polyunsaturated Phospholipids. Biophysical Journal. Vol. 74, 879-891. 

3.  Gensure, Rebekah H., Zeidel, Mark L., Hill, Warren G.  2006. Lipid raft components cholesterol and sphingomyelin increase H+/OH– permeability. Biochem J. Vol. 398, 485-495. 

4.  Lande, M.B., Donovan, J.M., Zeidel, M.L. 1995. The Relationship between Membrane Fluidity and Permabilities to Water, Solutes, Ammonia, and Protons. J. Gen. Physiol. Vol.106, 67-84. 

5.  Priver, Naomi A., Rabon, Edd C., Zeidel, Mark L. 1993. Apical Membrane of the Gastric Parietal Cell: Water, Proton, and Nonelectrolyte Permeabilites. Biochemistry. Vol. 32, 2459-2468. 

6.  Mathai, John C., Zeidel, Mark L. 2007. Measurement of Water and Solute Permeability by Stopped-Flow Fluorimetry. Methods in Molecular Biology. Vol. 400, 323-332. 

7.  Roos, A., Boron, W.F. 1981. Intracellular pH. Physiol. Rev. Vol. 61, 296-434. 

8.  Biegel, C.M., Gould, M.J. 1981. Kinetics of Hydrogen Ion Diffusion across Phospholipid Vesicle Membranes. Biochemistry. Vol. 20, 3474-3479. 

9.  Budinski, K.L., Zeigler, M., Fujimoto, B.S., Bajjalieh, S.M., Chiu, D.T. 2011. Measurements of the Acidification Kinetics of Single SynaptopHluorin Vesicles. Biophysical Journal. Vol. 101, 1580-1589. 

There is a clear relationship between permeability and 

ensemble membrane order indicated by anisotropy decay 

measurements of DPH.  Water permeability coefficients 

found in this study were comparable to those found in 

previous studies (Gensure3, Lande4), decreasing when 

POPC in the membrane is replaced by PSM and/or CHOL.  

Proton permeability was found to be much lower than that 

of previous studies, although the trend of increasing per-

meability with decreased percentage of POPC was also 

seen by Gensure3.  This difference could be explained by a 

difference in experimental procedure.  In this study, each 

pH gradient mix was monitored for 250 seconds to ensure 

the system had come to equilibrium. 

 INTRODUCTION 

 METHODS 
Vesicle Preparation 

Samples were prepared with POPC and PSM from Avanti Polar Lipids and CHOL from Sigma-Aldrich.  Large Unilamellar Vesicles were prepared by mixing lipids suspended in 

chloroform, evaporating the chloroform under a stream of nitrogen, resuspending in cyclohexane, freezing, and lyophilizing overnight.  Lyophilized samples were reconstituted 

with house buffer containing 2mM carboxyfluorescein, freeze/thawed 4X, and extruded with an Avanti mini-extruder at 65oC using 

0.2µm membranes (0.1µm for lifetime/anisotropy measurements), then allowed to cool slowly to room temperature overnight. 

Size-Exclusion Column Chromatography 

Carboxyfluorescein (CF) outside of the vesicles was removed by running cooled samples over a column containing Sephadex G-25 

Medium  filtration gel.  Clear separation of vesicles from external CF was observed, and verified by absorbance analysis of collected 
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POPC:  1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

CHOL:  cholesterol 

PSM:  porcine sphingomyelin 

Stopped-Flow Fluorimetry 

Vesicle preparations were exposed to sudden changes in external environment by rapid mixing using the Applied Photophysics piStar-

180 spectrometer with a mix time of approx. 3ms.  CF was excited at 492nm, and emitted fluorescence was detected through a 550nm 

high-pass filter.  For water permeability measurements, the vesicles were mixed with buffer containing added sucrose to bring the final 

osmotic potential to be twice that of the interior.  The resulting gradient is assumed to cause the vesicles to shrink by 50%, the water 

efflux concentrates the CF and causes self-quenching.3,4,5  The 

decrease in volume was fit as a single exponential decay.  This 

equation for V(t) was fit into the osmotic permeability equation (1)

and solved6 for the water permeability coefficient PW. 

Proton permeability measurements were taken by mixing the same preparation of vesicles with buffer whose pH was lowered by 

titration of HCl, resulting in an external pH of 6.7 (and gradient of 0.52).  Quenching of CF with lowered pH is monitored, internal pH 

is assumed to be 6.7 when the system comes to relative equilibrium (there 

was often a slow linear decay remaining after 5 minutes).3,4,5,7,8,9  The 

change in fluorescence was fit with a single exponential decay equation, 

and the time constant from this equation was fit into the equation for 

proton flux (2) and solved for the proton permeability coefficient PH+. 

Finally, the same preparation of vesicles were mixed with buffer containing 0.1% TritonX-100, a concentration previously found 

sufficient to completely solubilize lipid membranes.  CF fluorescence increased as it was released into solution, having been self-

quenched at 2mM inside the vesicles.  Vesicles were assumed to be entirely ruptured when the system came to equilibrium.  The time 

constant of this exponential rise in fluorescence was reported. 

Fluorescence Lifetime and Anisotropy Decay of DPH 

Lifetime and Anisotropy Decay measurements were taken of vesicles incubated with DPH (400:1 molar ratio) using an ISS ChronosFD frequency domain 

fluorometer, in the interest of finding another measurement of order to compare against composition and permeability.  The order parameter S (3) is a 

ratio of the non-decaying anisotropy (r∞) with the anisotropy at time 0 (r0);  values determined by the empirical sum of exponentials model.2   

Figure 4:  Normalized stopped-flow data
 

pH of 100% POPC Vesicles 
Exposed to pH Gradient 

Figure 1:  Membrane constituents used in this study
 

Time resolved anisotropy decay measurements of  diphenylhexa-

triene (DPH) embedded in membranes have also been shown to mod-

el membrane order (Mitchell2).  DPH is incorporated into the bilayer 

where its lifetime and anisotropy measurements indicate packing 

properties of the bilayer acyl chains. 

Questions: 

Is there a correlation between membrane order as predicted by the 

ternary phase diagram and membrane permeability? 

Is there a correlation between membrane order as predicted by time-

resolved anisotropy measurements of DPH in the membrane and 

membrane permeability? 

Relative Volume of  

100% POPC Vesicles  

Exposed to  

Osmotic Gradient 

Figure 3:  Normalized stopped-flow data 

Figure 2:  Ternary phase diagram at 23oC adapted from de Almeida1 

(1) 

(2) 

(3) 

 ABSTRACT 
Phospholipid membranes segregate into lateral domains of liquid ordered (lo) and liquid disordered (ld) phases when 

cholesterol and mixed species of lipids with saturated and unsaturated acyl chains are present.   To examine membrane 

permeability and rate of vesicle rupture by Triton in pure lo, pure ld, and mixed lo/ld phases, LUVs were prepared based 

on the ternary phase diagram of POPC, sphingomyelin, and cholesterol.  These LUVs were loaded with 2mM carboxyfluo-

rescein (CF) and formed by extrusion at 65oC. Using a stopped-flow fluorometer, changes in CF fluorescence were meas-

ured when LUVs were exposed to sudden osmotic gradients, pH gradients, or 0.1% Triton.  Acyl chain and phospholipid 

headgroup packing were assessed in all compositions with time-resolved measurements of DPH fluorescence lifetime 

and anisotropy decay. Water permeability was highest in the pure ld phase, and a factor of more than 100 lower in the 

pure lo phase.  Proton permeability was lowest in the pure ld phase, and approximately five-fold higher in the lo phase.  

The rate of membrane rupture was higher in the pure ld phase than in the pure lo phase, with inconsistent results in the 

coexistence region.  Water permeability was found to correlate with acyl chain packing, decreasing with increased 

membrane order.  Proton permeability increased exponentially with increasing membrane order.   

Figure 5:  Water permeability coefficients by percent across the lo/ld coexistence region of the ternary phase diagram compared to percent cholesterol
 

Figure 6:  Proton permeability coefficients by percent across the lo/ld coexistence region of the ternary phase diagram compared to percent cholesterol 
 

Figure 7:  Rate constant of vesicle rupture by Triton by percent across the lo/ld coexistence region of the ternary phase diagram compared to percent cholesterol
 

Figure 8:  Ratio of non-decaying anisotropy with anisotropy at time zero compared to percent 

cholesterol in composition
 

Figure 10:  Comparison of water permeability coefficients found in this 

study to those found in previous studies, by percent POPC.
 

Figure 11:  Comparison of proton permeability coefficients to previous 

studies, rescaled present study results in inset graph.
 

Figure 9:  Comparison of water and proton permeability coefficients with ensem-

ble membrane order as identified by anisotropy decay measurements of DPH.
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