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ABSTRACT 

 

The Columbia River is home to anadromous salmon populations that migrate upriver every year 

to spawn. These fish require cool water temperatures (Tw) to survive. In recent years, high summer 

Tw in the Columbia River has caused increased mortality of salmon. Different possible 

explanations for increased Tw include climate change, deforestation, and decreased summertime 

streamflow (Q) due to dams. In this study, robust linear regression models of Tw based on air 

temperature (Ta) and Q were developed to examine the change in Tw over time. The data was 

separated into an historical period (1938-1956) and a modern period (1977-2003). Seasonal 

regression models were used for May through October (summer) and November through April 

(winter) for each period. Comparison of these models showed that Tw has become less sensitive to 

recent atmospheric heating and cooling. By contrast, analysis suggested that Tw has become more 

sensitive to variations in Q. Of the 1.5ºC increase in maximum summertime Tw, approximately 

1.3ºC was due to dams and reservoir management based on changes in regression coefficients and 

average Q. A smaller, 0.2ºC change was estimated to be caused by increasing Ta since the mid-

20th century. While average maximum Tw has increased, both the statistical model and data suggest 

that the variability in Tw from its climatological average has decreased, probably due to reservoir 

management.  
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1.0 INTRODUCTION 

 

The Columbia River flows from British Columbia, Canada to the Pacific Ocean, and drains 

portions of British Columbia, Idaho, Oregon, Washington, and Montana (Figure 1). Major 

tributaries include the Snake and Willamette Rivers. Since 1933, fourteen hydroelectric dams have 

been built on the Columbia River. Additionally, there are nineteen dams on the Snake River 

(Yearsley, 2001) and over one hundred other dams on smaller tributaries in the Columbia River 

basin (NRC, 1996). 

In addition to providing people with electricity and water, the river is home to several different 

species of salmon. These anadromous fish spend the first one to three years of their lives in the 

river before migrating to the ocean (Dittman and Quinn, 1996). As they near the ends of their lives, 

they return to the streams where they were born in order to spawn. Salmon are sensitive to water 

temperature (Tw), and require different temperature ranges at different life stages. Tw above a 

certain threshold can cause increased disease and mortality as well as decreased growth rates in 

juveniles. (Boyd and Sturdevant, 1997). The lethal maximum temperature threshold varies 

between species. Adult steelhead have the lowest, at 21°C (Carter, 2006).  

Summer Tw in the Columbia River has increased during the twentieth century (Quinn and Adams, 

1996; Quinn et al., 1997; Bottom el al., 2011; Crozier et al., 2011). In recent years, such as 2015, 

increased Tw has led to decreased salmon counts (NMFS, 2016). Possible explanations for higher 

Tw include climate change, change in streamflow (Q) due to dams (Bottom et al., 2011; Moore, 

1967), and changes in riparian shading due to clear cutting and other land-use practices (Johnson, 

2004). 

Statistical models are often used to determine how changes to weather, climate, and hydrology 

may influence Tw (Moore, 1968; Bottom et al., 2011). Some statistical models of Tw use both air 

temperature (Ta) and Q as a basis function (e.g., Webb et al., 2003; Neumann et al., 2003), whereas 

other statistical models are regressed only against Ta (e.g., Stefan and Preud’homme, 1993; 

Erickson and Stefan, 1996; Pilgrim et al., 1998; Webb and Nobilis, 1997). The appeal of such 

models is that they are easy to develop and use, are based on readily available data, and can help 

explain seasonal, interannual, and long-term changes. In the Columbia River basin, Bottom et al. 
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(2011) developed a regression for Tw based on Ta and Q over the 1938-1956 period. Results 

suggested that dams and reservoir management caused an approximately 0.8°C increase in 

summertime Tw and a more than 2°C increase in the October and November time period. Similarly, 

Moore (1968) used regression models to show that the combined effects of dams and heating from 

the Hanford Nuclear Site accounted for a 1.8°C increase in July Tw in the Columbia River.  

The purpose of this study is to develop a statistical model of Tw in the Columbia River that captures 

the effect of Ta and Q, both before and after most major main-stem dams were built. The general 

approach and the data used are similar to Bottom et al. (2011), and the results herein represent both 

an evolution of that effort and an independent check on those results. Compared to Bottom et al. 

(2011), this study uses biweekly rather than monthly averaged data, and defines summer/winter 

regressions as May through October and November through April, rather than January through 

June and July through December (see 2.0 Methods and 3.0 Results). Additional archival Tw data, 

including Astoria (monthly, 1925-1956) and Vancouver (1941-1947), have been recovered and 

digitized, and are used to check the representativeness of the Tw record at Bonneville Dam (1938-

2003). Moreover, Tw data are subsampled to produce both a historical (1938-1956) and modern 

(1977-2003) statistical model, which enables analysis of possible changes to regression 

coefficients. Climatological means and anomalies in Tw are analyzed and interpreted.  

The data analysis and statistical modeling attempt to address the fundamental question: Why are 

water temperatures in the Columbia River increasing, and to what extent do reservoir management 

and climate change affect water temperature? While a complex issue, the results presented here 

are an initial effort to quantify major factors that influence Tw over long time scales. 
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2.0 METHODS 

 

2.1 Data 

The primary water temperature (Tw) data used in this study came from scroll case measurements 

taken at Bonneville Dam on the Columbia River, located at the head of tides at river kilometer 

(rkm) 235, roughly 64 km upstream of Portland, Oregon (Figure 1). Measurements for the years 

1938-1997 (http://www.streamnet.org/files/407/StuTempData.html) consist of one Tw value for 

each day. Additional data for the 1974-2003 period came from the United States Army Corps of 

Engineers (http://www.nwdwc.usace.army.mil/cgibin/dataquery.pl?k=bon). On days where these 

data sets overlapped, the arithmetic mean of the measurements from the two data sets was used to 

obtain a single daily Tw measurement. The latter data set primarily contains daily measurements, 

but for some days there are multiple measurements. In these instances, the arithmetic mean of all 

the measurements for the day was used as a daily average. For some days, there is no recorded Tw. 

Figure 1. Map of the Columbia River in Oregon and Washington, adapted from Yearsley (2001). 
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In the entire sixty-five-year data set, there are 361 days with no Tw measurement. More recent data 

from Bonneville Dam will be analyzed in a follow-on study. 

Daily mean discharge (Q) for the Columbia River was measured at The Dalles, approximately 70 

km upriver from Bonneville Dam. The United States Geological Survey has continuous daily 

measurements dating back 1878 (https://waterdata.usgs.gov/usa/nwis/uv?14105700 [May 2017]).  

Following Bottom et al. (2011), biweekly average air temperature (Ta) data (1915-2003) for the 

Columbia River Basin was obtained for multiple sub-basins from the Surface Water Modeling 

group at the University of Washington (available from http://www.hydro.washington.edu/ 

Lettenmaier/Data/ gridded/) (Hamlet and Lettenmaier, 2005). To obtain an average Ta for the entire 

basin, measurements from each sub-basin were weighted by the relative area of the sub-basin to 

the entire basin. 

Daily Tw and Q measurements were averaged over two-week periods to match the biweekly Ta 

data. The reference date for each two-week period is the average day of the period. 

While the combination of the Tw, Q, and Ta data sets spans almost the entire period from 1938-

2003, the years 1957-1976 were not considered in this analysis. This is because the river 

experienced excess heating from the Hanford Nuclear Site during those years (Bottom et al., 2011). 

Since part of this work aims to find trends in Tw, including these years would not accurately 

represent present conditions or historical conditions. The remaining years were separated into 

historical and modern periods. The historical period (1938-1956) represents the years when the 

river was less affected by dams and reservoir management. The modern period (1977-2003) 

represents the years when most of the existing dams had been constructed.  

Monthly average Tw and density measurements from Astoria, Oregon (rkm 29) for 1925-1956 were 

obtained from United States Coast and Geodetic Survey records (USCGS, 1954; USCGS, 1954; 

USCGS, 1962). These were used to verify the results of estimated Bonneville Tw for 1925-1938, 

which were obtained using the statistical model described below.  

Additional daily Tw measurements of the Columbia River from Vancouver, Washington (rkm 171), 

were available for 1941-1947 from the National Centers for Environmental Information (https:// 



 

 

5 

www.ncdc.noaa.gov/EdadsV2/). These were digitized and compared with the other Tw 

measurements to assess accuracy and variance.  

2.2 Theoretical Basis 

The one-dimensional heat transfer in a river can be described by the following partial differential 

equation: 

𝜕𝑇𝑤
𝜕𝑡

=  −
1

𝐴

𝜕𝑄𝑇𝑤
𝜕𝑥

+
𝜕

𝜕𝑥
(𝐾
𝜕𝑇𝑤
𝜕𝑥
) +

Σ𝐻

𝜌𝑐𝑝𝑑
                                           (1) 

where 𝑇𝑤 is a function of both along-channel distance (x) and time (t), 𝐴 is the river cross-section, 

𝐾 is the dispersion coefficient, 𝐻 is the net heat flux between the river and the atmosphere, 𝜌 and 

𝑐𝑝 are the density and specific heat of water, and 𝑑 is the river depth (Gu, 1998; Wagner et al., 

2011). The first term on the right side of the equation, representing advection, as well as the second 

term, representing dispersion, are often small compared to the third term, representing atmospheric 

heat flux (Gu, 1998; Wagner et al., 2011). Neglecting these terms, Equation 1 can then be written 

𝜕𝑇𝑤
𝜕𝑡

=
Σ𝐻

𝜌𝑐𝑝𝑑
                                                                       (2) 

Net heat flux comprises radiative flux, evaporative flux, and convective flux. The largest 

contributor to Tw change is radiative flux from incoming solar radiation (Wagner et al., 2011). Ta 

effects evaporative and convective fluxes in water, which are small, but Ta is also dependent on 

solar radiation (Moore, 1967). So, while Ta does not directly affect Tw, the two are positively 

correlated based on their mutual dependence on solar radiation (Johnson, 2004).  

The rate at which a body of water heats and cools is inversely related to its volume. In a river, 

volume (and river depth) increases with Q, so increased Q will have a negative effect on Tw (Webb 

et al., 2003). Additionally, an increase in Q corresponds to an increase in stream velocity. This 

causes a parcel of water to have a shorter residence time and therefore less time to absorb heat 

(Mayer, 2012).  

Based on these theoretical considerations, a statistical model can be developed to predict Tw based 

on Ta and Q. While the Tw/Ta correlation is not linear when Ta is below freezing or above 25ºC 
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(Erickson and Stefan, 2000; Mohseni and Stefan, 1999; Morrill et al., 2005), linear regression 

models based on Ta do well at weekly or monthly time scales (Benyahya et al., 2007; Erickson and 

Stefan, 2000; Pilgrim et al., 1998; Webb et al., 2003). Such a model has the form 

                                              𝑇𝑤(𝑡) = 𝛽0 + 𝛽1𝑇𝑎(𝑡) + 𝛽2𝑄(𝑡)                                                           (3) 

where 𝛽0, 𝛽1, and 𝛽2 are regression coefficients. Equation (3) can be modified by introducing a 

time lag to the Ta term, such that  

𝑇𝑤(𝑡) = 𝛽0 + 𝛽1𝑇𝑎(𝑡 − 1) + 𝛽2𝑄(𝑡)                                                       (4) 

where Tw at a given time is based on Ta from the previous time step. Stefan and Preud’homme 

(1993) showed that a time lag on Ta improves such models and that the ideal time lag increases 

with river size. 

2.3 Statistical Model 

Various linear regression models of Tw at Bonneville Dam based on Columbia Basin Ta and Q at 

The Dalles were tested for the historical and modern periods, separately. Variations included 

regressions based on January through December data, or regressions separated into two six-month 

subsets. Different time lag combinations of two or four weeks for Ta were tested for all models, as 

well as different sets of six-month periods. Model coefficients were calculated using robust 

regression with a weighting function given by Equation 5 (Ul-Saufie et al., 2012). 

𝑤 =
1

(1 + 𝑟2)
                                                                         (5) 

Robust regression is less affected by outliers than ordinary least squares regression, so errors in 

the data do not influence the coefficient estimates as much. All coefficients considered for the final 

models were significant at a 95% confidence level. 

Models were compared using their root mean squared errors (RMSE). This provides a measure of 

how well the model approximates measured data and is computed as  
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𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑡 − 𝑦𝑡)2

𝑛
                                                            (6) 

where �̂�𝑡 is the predicted value, 𝑦𝑡 is the measured value and 𝑛 is the sample size. A lower RMSE 

represents a better model. RMSE’s were calculated for the entire model as well as for annual 

maximum Tw. This tested how well a model approximated the measured annual maximum Tw. 

Test statistics for checking whether two means or regression slopes were significantly different at 

a 95% confidence level were computed as 

𝑡 =  
�̅� − �̅�

√𝑠𝑥
2

𝑛 +
𝑠𝑦2

𝑚

                                                                     (7) 

where �̅� and �̅� are the means of each sample, 𝑠𝑥
2 and 𝑠𝑦

2 are the standard deviations of each sample, 

and 𝑛 and 𝑚 are the corresponding sample sizes. The degrees of freedom for the t-distribution 

were calculated using the Welch–Satterthwaite equation as follows: 

𝑑𝑓 =  

(
𝑠𝑥
2

𝑛 +
𝑠𝑦
2

𝑚)

2

(
𝑠𝑥2

𝑛 )
2

𝑛 − 1 +
(
𝑠𝑦
2

𝑚)

2

𝑚− 1

                                                               (8) 
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3.0 RESULTS 

 

3.1 Vancouver and Astoria  

Water temperature (Tw) measurements taken at Bonneville Dam could be affected by natural 

spatial variability (e.g., top-to-bottom stratification), by daily heating and cooling cycles (if 

measurement times were inconsistent), or by measurement error. Before developing a regression 

model, the representativeness and accuracy of Tw measurements from Bonneville Dam were 

therefore checked against Astoria and Vancouver Tw records (Figures 2 and 3).  

Results show that monthly-averaged Tw measurements at Bonneville Dam were sometimes slightly 

higher in the summer than Astoria, but much lower than Astoria in winter, with an overall RMSE 

of 1.26°C (Figure 2). Monthly average density measurements for Astoria for those years indicated 

that salinity was generally below 2 parts per thousand, indicating that the Tw measurements 

predominately represent river rather than ocean temperatures. For the months of May through 

October the RMSE was 1.02°C and for the months of November through April it was 1.46°C.    

Figure 2. Monthly average water temperature (Tw) measured at Bonneville Dam and Astoria, 1925-1956. 

Residuals are Bonneville measurements subtracted from Astoria measurements. 
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The large differences in wintertime Tw may reflect the effect of warmer, wintertime river flow from 

coastal tributaries such as the Willamette River, which drain a more temperate region than the 

colder interior and may not be reflected in Bonneville (or Vancouver) measurements. Some 

heating of the lower Columbia River between Bonneville and Astoria may also occur in the winter. 

Though salinity intrusion during low flow conditions may also contribute to the warmer Tw at 

Astoria, the monthly averaged density measurements suggest this bias is small or negligible.  

The representativeness and accuracy of Tw measurements from Bonneville Dam were also tested 

by comparing the daily measurements with Vancouver measurements for the years 1941-1947. 

This resulted in an RMSE of 0.67°C (Figure 3), indicating that the two data sets agree well.  

 

 

 

 

 

 

 

 

Monthly average Tw measurements for Bonneville Dam, Vancouver, and Astoria were compared 

for the years 1941-1947. Vancouver and Bonneville Dam Tw measurements generally matched 

well and were much closer to one another than to Astoria (Figure 4). The residuals and RMSE’s 

between these three locations did not change much from 1941-1945, but in 1946 and 1947 there 

was a sharp increase in discrepancy between Astoria and Vancouver. Residuals and RMSE’s 

between Bonneville Dam and Vancouver also increased in those years, but to a lesser extent 

(Figure 5). The increase in discrepancies between the three Tw data sets over time indicates that 

data quality likely decreased. The change in RMSE is more noticeable between Vancouver and 

Figure 3. Biweekly average water temperature (Tw) measured at Bonneville Dam and 

Vancouver, 1941-1947. Residuals are Bonneville measurements subtracted from 

Vancouver measurements. 
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Bonneville and Vancouver and Astoria than between Bonneville and Astoria, suggesting that the 

problem lies with the Vancouver data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Monthly average water temperature (Tw) measured at Bonneville Dam, Vancouver, and Astoria 

with residuals shown by dotted lines, 1941-1947. 

Figure 5. RMSE's between monthly average water 

temperature (Tw) measured at Bonneville Dam, 

Vancouver, and Astoria, 1941-1947. 
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3.2 Climatology 

Climatological means of biweekly average Tw, air temperature (Ta), and flow (Q) were calculated 

for the modern and historical periods by taking the means of the biweekly averages for each two-

week period across each record span. For example, all biweekly average Tw measurements with a 

reference date of January 7th for the years 1938-1956 were averaged to obtain the historical 

climatological mean Tw for that date. By comparing the climatological means for the historical and 

modern periods, long-term trends could be observed. 

Climatology of biweekly average Tw shows that annual maximum Tw was 19.9°C on average 

during the historical period and 21.4°during the modern period (Figure 6). During both periods, 

this maximum occurred in the middle of August. Springtime (March and April) Tw did not change 

much between the two periods, while modern Tw was at least 1.5°C higher on average in the 

summer and autumn months (between June and January). The greatest difference occurred during 

November, when Tw was 2.6°C higher on average during the modern period.  

Biweekly average Ta did not change as much as Tw between the two periods. January through 

March Ta was 0.5°C to 1.8°C higher during the modern period, but during the rest of the year Ta 

fluctuated between 0.7°C lower to 1.3°C higher during the modern period (Figure 7). Annual 

maximum Ta occurred in late July during the historical period, but shifted to early August during 

the modern period. This may explain the apparent decrease in early July Ta, as the peak essentially 

shifted two weeks during the modern period.  

Changes in Q were very dramatic between the two periods due to the increase in dams and reservoir 

management in the modern period. Average annual maximum Q decreased from close to 14,000 

m3/s in the historical period to 8,000 m3/s in the modern period, while during November through 

March average Q was 1,000 to 2,000 m3/s higher in the modern period (Figure 8). This change in 

the annual hydrograph shows the effects of storage dams, where water is held during periods of 

naturally high Q and released later in order to optimize hydroelectric power generation and 

decrease risk of flooding. It is possible that long-term cycles such as the Pacific decadal oscillation 

also affected Q during these periods (e.g., Naik and Jay, 2005; 2011).  
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Figure 7. Climatological means of biweekly 

average air temperature (Ta) for 1938-1956 and 

1977-2003. Interquartile ranges (IQR’s) show 

values between the first and third quartile in 

each data set. ΔTa is the historical values 

subtracted from the modern values. 

Figure 6. Climatological means of biweekly 

average water temperature (Tw) at Bonneville 

Dam for 1938-1956 and 1977-2003. Interquartile 

ranges (IQR’s) show values between the first and 

third quartile in each data set. ΔTw is the 

historical values subtracted from the modern 

values. 

Figure 8. Climatological means of biweekly 

average discharge (Q) at The Dalles for 1938-

1956 and 1977-2003. Interquartile ranges 

(IQR’s) show values between the first and third 

quartile in each data set. ΔQ is the historical 

values subtracted from the modern values. 
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3.3 Historical Period 

A simple way to test the efficacy of a 

statistical model (see results below) is 

to determine whether the model 

performs similarly to, or better than, 

climatology. Biweekly average Tw 

measurements at Bonneville Dam for 

1938-1956 had an RMSE of 1.16°C 

when compared to the climatological 

average for that period (Figure 9).  

To develop a statistical model of Tw for 

the historical period, different time lags were tested for Ta. A two-week time lag on Ta was found 

to give the lowest RMSE. The lag probably occurs due to the travel time of water through the large 

Columbia River basin (Figure 1). Additionally, Tw responds more slowly to atmospheric heating 

than Ta due to its higher heat capacity. 

Different combinations of six-month periods were also tested to develop seasonal regressions. 

Regressions using May through October (summer) and November through April (winter) produced 

the best results, as measured by the smallest RMSE. When Q was included in both the summer 

and winter regressions, the coefficient had a negative sign during summer and a positive sign 

during winter (Table 1). To visually assess how Tw was correlated with Q, Ta was binned into 1 

degree subsets (e.g., 8.5-9.5°C), and scatter plots of Q and Tw were produced (Figures 10 and 11). 

Since a two-week time lag for Ta was used in the models, the Tw and Q measurements that occurred 

two weeks after each subset of Ta measurements were grouped together. Robust linear regression 

was used to determine the slope of the Tw/Q relationship for each Ta-binned subset. During summer 

months the relationship was typically negative (mean slope = -0.235 °C/103 m3/s) as would be 

expected (Figure 10). During winter months the relationship was usually not significant (Figure 

11), suggesting that a positive relationship between Tw and Q during winter was not statistically 

significant.  

Figure 9. Comparison of biweekly average water temperature 

(Tw) at Bonneville Dam to climatological average, 1938-1956. 
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Figure 10. Comparison of relationships between biweekly average water temperature (Tw) at Bonneville Dam and 

flow (Q) at The Dalles at constant basin air temperature (Ta) during May through October, 1938-1956. Slopes are 

shown where a significant relationship was found. 

Figure 11. Comparison of relationships between biweekly average water temperature (Tw) at Bonneville Dam and 

flow (Q) at The Dalles at constant basin air temperature (Ta) during November through April, 1938-1956. Slopes 

are shown where a significant relationship was found. 
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Table 1. Regression coefficients for different water temperature models, 1938-1956. 

 

Comparing the relationship between Tw and Q 

for the whole data set showed that during 

summer months Tw was high and Q varied from 

high to low (Figure 12). Although the winter 

Tw/Q relationship was generally not significant 

at constant Ta, there was a significant slope 

when all the points were considered together. 

During winter months Tw and Q were both 

generally below average. It is possible that the 

positive correlation between Tw and Q occurs 

because Tw increases during spring and early 

summer at the same time that Q is increasing. 

Figure 12 also shows that the Tw/Q relationship 

is more pronounced when Q is above 5,000 

m3/s, which occurs mainly during May through 

August. For these reasons, Q was left out of the 

winter seasonal regression. 

The final model selected for 1938-1956 was based on a regression for May through October 

(summer) using Ta and Q and a regression for November through April (winter) using only Ta 

(Figure 13). For both regressions, Ta was lagged by two weeks. This model had an RMSE of 

1.22ºC, which is slightly lower than the RMSE of the model based on the entire year (Table 2). 

The model has a higher overall RMSE than the climatological average but a lower RMSE for 

maximum annual Tw (0.74ºC versus 1.02ºC). The RMSE for summer was 1.20°C, while for winter 

it was 1.33°C. This indicates that the summer regression is more reliable than the winter regression, 

possibly due to a nonlinear relationship between Tw and Ta at sub-zero Ta. The model did not 

 Entire Year Seasonal Seasonal without Q in Winter 

May - Oct Nov - Apr May – Oct Nov - Apr 

Constant (𝛽0), ºC 9.10 +/- 0.20 11.40 +/- 0.49 6.85 +/- 0.46 11.40 +/- 0.49 7.65 +/- 0.19 

Ta coefficient (𝛽1), ºC/ºC 0.686 +/- 0.015 0.539 +/- 0.033 0.477 +/- 0.036 0.539 +/- 0.033 0.507 +/- 0.033 

Q coefficient (𝛽2), ºC/103 m3/s -0.155 +/- 0.032 -0.187 +/- 0.032 0.196 +/- 0.105 -0.187 +/- 0.032 - 

Figure 12. Comparison of relationship between 

biweekly average water temperature (Tw) at 

Bonneville Dam and flow (Q) at The Dalles for 

May through October (summer) and November 

through April (winter), 1938-1956. 
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predict as well in years with unusual Ta and Q. For example, it under-predicted high summer Tw in 

1941 when Ta was exceptionally high. Similarly, the model over-predicted summer Tw in 1948, 

coinciding with high Q that year.  

 

Table 2. RMSE's for different water temperature models, 1938-1956. 

 

 

 Entire Year Seasonal Seasonal without 

Q in Winter 

Climatology 

RMSE, ºC 1.29 1.23 1.22 1.16 

RMSEmax , ºC 0.73 0.74 0.74 1.02 

Figure 13. Modeled and observed biweekly average water temperature (Tw) at Bonneville Dam, 1938-1956. 

Residuals show observed measurements subtracted from model results. 
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3.4 Modern Period 

Biweekly average Tw measurements from Bonneville Dam for 1977-2003 were compared to the 

climatological average for that period, resulting in an RMSE of 1.02°C (Figure 14). The 

methodology described in section 3.3 was followed to develop a statistical model for this period, 

including verifying the relationship between Tw and Q. Dividing the data seasonally gave a 

negative regression coefficient for Q for November through April (winter) as well as May through 

October (summer) (Table 3). Isolating Tw and Q relationships at constant Ta gave similar results 

as for the historical period. Slopes were negative (mean = -0.390 °C/103 m3/s) during summer 

(Figure 15) and generally insignificant in winter (Figure 16) indicating that a negative Q 

coefficient in summer and no Q coefficient in winter was accurate. When all Tw and Q points were 

plotted together, there was a negative slope during summer and an insignificant slope during winter 

(Figure 17). Similar to the historical period, there was a more clear relationship between Tw and Q 

when Q was above 5,000 m3/s. 

 

 

 

 

 

 

 

 

Table 3. Regression coefficients for different water temperature models, 1977-2003. 

 

 Entire Year Seasonal Seasonal without Q in Winter 

May - Oct Nov – Apr May – Oct Nov - Apr 

Constant (𝛽0), ºC 10.95 +/- 0.33 13.89 +/- 0.47 9.44 +/- 0.57 13.89 +/- 0.47 8.40 +/- 0.18 

Ta coefficient (𝛽1), ºC/ºC 0.686 +/- 0.015 0.483 +/- 0.026 0.519 +/- 0.035 0.483 +/- 0.026 0.516 +/- 0.035 

Q coefficient (𝛽2), ºC/103 m3/s -0.319 +/- 0.059 -0.318 +/- 0.052 -0.201 +/- 0.105 -0.318 +/- 0.052 - 

Figure 14. Comparison of biweekly average water temperature (Tw) at Bonneville Dam 

to climatological average, 1977-2003. 
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Figure 15. Comparison of relationships between biweekly average water temperature (Tw) at Bonneville Dam 

and flow (Q) at The Dalles at constant basin air temperature (Ta) during May through October, 1977-2003. 

Slopes are shown where a significant relationship was found. 

 

Figure 16. Comparison of relationships between biweekly average water temperature (Tw) at Bonneville Dam 

and flow (Q) at The Dalles at constant basin air temperature (Ta) during November through April, 1977-2003. 

Slopes are shown where a significant relationship was found. 
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While it did not have the lowest RMSE, the final model chosen for the modern period had the same 

form and predictor variables as the one chosen for the historical period so that the two could be 

compared. Ta was lagged by two weeks and separate regressions were performed for May through 

October and November through April, with Q only included as a predictor variable in May through 

October (Figure 18). This model had an overall RMSE of 1.43ºC, which was higher than the RMSE 

of 1.02ºC obtained by using the climatological average (Table 4). The annual maximum Tw RMSE 

was also higher (0.94ºC versus 0.81ºC). While the statistical model is not as accurate overall as 

the climatological model, it better captures interannual variability. The summer regression had an 

RMSE of 1.11°C, while the winter regression had an RMSE of 1.48°C. This is similar to the 

historical model and may reflect the non-linear relationship between Tw and Ta at sub-zero Ta.  

 

Table 4. Comparison of RMSE's for different water temperature models for 1977-2003. 

 

 

 

 

 

 

 

 Entire Year Seasonal Seasonal without 

Q in Winter 

Climatology 

RMSE, ºC 1.53 1.39 1.43 1.02 

RMSEmax, ºC 1.30 0.94 0.94 0.81 

Figure 17. Comparison of relationship between 

biweekly average water temperature (Tw) at 

Bonneville Dam and flow (Q) at The Dalles for 

May through October (summer) and November 

through April (winter), 1977-2003. 
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3.5 Comparison 

The historical and modern statistical models depend on three regression coefficients and two input 

variables, all of which can change over decadal and secular time scales as the heat balance and 

hydrology shift (Equations 3 and 4). Any long-term trends in Ta due to climate change produce 

altered Tw in the statistical model. By the same mechanism, changed summertime (May through 

October) Q will cause a shift in modeled Tw. The regression coefficients for Ta and Q denote the 

sensitivity of the river system to these parameters; any changes to these coefficients likely reflect 

changes to physical characteristics such as the mean residence time of a water parcel, the mean 

depth of the system, the amount of shading in riparian streams, or any other factors which affect 

the advection-diffusion equation (Equation 1). 

A comparison of the Ta coefficients (𝛽1) for the historical and modern models (Equation 3) shows 

that the modeled Tw/Ta relationship in winter did not change significantly, whereas the modeled 

Tw/Ta relationship decreased significantly in summer from 0.539 ºC/ºC to 0.483 ºC/ºC (Table 5). 

A similar decrease in sensitivity over time is also observed in the response of Tw data to a Ta 

Figure 18. Modeled and observed biweekly average water temperature (Tw) at Bonneville Dam, 1977-2003. 

Residuals show observed measurements subtracted from model results. 
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perturbation from climatology (such as a heat 

wave). During the historical period, a 1ºC 

anomaly in Ta from climatology corresponded 

to a ~0.30ºC anomaly in Tw from climatology 

(Figure 19). During the modern period, the 

same Ta anomaly corresponded to a ~0.23ºC 

anomaly in Tw (Figure 20). The differences in 

the Tw/Ta relationships between the historical 

and modern models and data indicate that the 

modern hydrological system has become less 

responsive to recent (two weeks prior) 

atmospheric heating and cooling in the basin, 

especially during summer months. It is 

possible that the system responsiveness to 

earlier atmospheric forcing has increased, but 

this has not yet been investigated.  

The Q coefficient (𝛽2) increased dramatically 

in magnitude from -0.187 ºC/103 m3/s to -

0.318 ºC/103 m3/s for the summertime model 

(Table 5). While this may indicate that Q 

produced a greater effect on Tw during the 

modern period, the change may also (in part) 

reflect an artifact of the regression. Because the dynamic range of Q was much lower during the 

modern period, any non-linearity in the Tw/Q relationship will be represented differently. In 

particular, as noted earlier, the sensitivity of Tw to Q appears to lessen (asymptote) during historical 

flood events such as 1948 (e.g., Figure 12). Therefore, the regression slope in Figure 12 would 

steepen if the analysis were confined to the same range of Q as Figure 17, i.e., if restricted to less 

than 15,000 m3/s.  

 

Figure 19. Measured water temperature (Tw) at 

Bonneville Dam deviation from climatological mean 

compared to measured basin air temperature (Ta) 

deviation from climatological mean, 1938-1956. 

Figure 20. Measured water temperature (Tw) at 

Bonneville Dam deviation from climatological mean 

compared to measured basin air temperature (Ta) 

deviation from climatological mean, 1977-2003. 
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Table 5. Change in regression coefficients for 1938-1956 and 1977-2003. 

 

 

 

The changes in biweekly average Q were much greater than the changes in Ta between the two 

periods (Figures 7 and 8), suggesting that changes in Q might better explain the changes in Tw. 

Decreases in summer Q are due in part to irrigation withdrawals and in part to storage reservoirs 

which hold water for later release (e.g., Naik and Jay, 2005; 2011). Storing water in these reservoirs 

allows it to heat more than under natural flow conditions due to an increased residence time. 

Moreover, an increased residence time implies that meteorological conditions can affect Tw over a 

longer time period. This observation can help explain the decrease in the regression coefficient 𝛽1 

for two-week-lagged Ta. (Table 5). Essentially, storage reservoirs act as heat capacitors that store 

heated Tw in the summer and slowly release it in autumn. This can be seen in the large increase in 

Tw during October and November in the modern period (Figure 6). 

Another indicator of the effect of river management on Tw is the decrease in Tw deviation from 

climatology. During the historical period, the RMSE of observed Tw compared to climatology was 

1.16ºC (Figure 9), while during the modern period it was 1.02ºC (Figure 14). The historical system 

was more natural and showed more variability, while the modern system is less variable, probably 

because dams and river management average out and dampen natural variability. Though it is 

possible that long-term improvements or changes in Tw measurement protocol reduce the measured 

variance, initial analysis suggests this is a relatively small factor. Indeed, as shown in Table 5, the 

confidence intervals in the regression coefficients are small, and the coefficients 𝛽1 are 

significantly different in the historical and modern models. 

Overall, an excellent agreement is found between modeled and measured changes in Tw. The 

modeled change is defined as 

 Δ𝑇𝑤 = 𝑇𝑤,𝑀 − 𝑇𝑤,𝐻 (9) 

where 𝑇𝑤,𝑀 is 𝑇𝑤 predicted by the modern model with modern climatology as inputs, and 𝑇𝑤,𝐻 is 

𝑇𝑤 predicted by the historical model with historical climatology as inputs. Based on Equation 9, 

 Historical Period Modern Period Difference p-value 

Ta Coefficient-Summer (𝛽1), ºC/ºC 0.539 +/- 0.033 0.483 +/- 0.026 - 0.056 0.01 

Ta Coefficient-Winter (𝛽1), ºC/ºC 0.507 +/- 0.033 0.516 +/- 0.035 + 0.009  1.29 

Q coefficient-Summer (𝛽2), ºC/103 m3/s -0.187 +/- 0.032 -0.318 +/- 0.052 - 0.135 0.00 

Tw anomaly vs. Ta anomaly, ºC/ºC 0.295 +/- 0.041 0.229 +/- 0.030 - 0.067 0.01 
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annual maximum Tw increased by 1.5°C. This matches the observed change of 1.5°C, indicating 

that the models accurately represent the change in annual maximum Tw over time. 

The factors producing the modeled 1.5°C increase in annual maximum Tw are next investigated by 

considering the individual contributions of changed Q, Ta, and regression coefficients. 

These terms in Equation 9 are first expanded by substituting Equation 4, such that 

 Δ𝑇𝑤 = (𝛽0,𝑀 + 𝛽1,𝑀𝑇𝑎,𝑀 + 𝛽2,𝑀𝑄𝑀) − (𝛽0,𝐻 + 𝛽1,𝐻𝑇𝑎,𝐻 + 𝛽2,𝐻𝑄𝐻) (10),  

where the subscripts M and H denote the modern and historical model coefficients (β terms) or 

climatology (Q and Ta terms). 

Rearranging Equation 10 gives 

 Δ𝑇𝑤 = 𝛽0,𝑀 − 𝛽0,𝐻 + 𝛽1,𝑀𝑇𝑎,𝑀 − 𝛽1,𝐻𝑇𝑎,𝐻 + 𝛽2,𝑀𝑄𝑀 − 𝛽2,𝐻𝑄𝐻 (11) 

Based on the relationship between historical and modern coefficients and variables, Equation 11 

can be written 

Δ𝑇𝑤 = Δ𝛽0 + (𝛽1,𝐻 + Δ𝛽1)(𝑇𝑎,𝐻 + Δ𝑇𝑎) − 𝛽1,𝐻𝑇𝑎,𝐻 + (𝛽2,𝐻 + Δ𝛽2)(𝑄𝐻 + Δ𝑄) − 𝛽2,𝐻𝑄𝐻 (12),  

where the Δ terms denote the change (difference) between modern and historical conditions. For 

example, Δ𝛽2 = 𝛽2,𝑀 − 𝛽2,𝐻. 

After expanding Equation 12, the total change in modeled Tw becomes a function of 7 terms: 

 Δ𝑇𝑤 = Δ𝛽0⏟
1

+ Δ𝛽1𝑇𝑎,𝐻⏟    
2

+ Δ𝛽1Δ𝑇𝑎⏟    
3

+ 𝛽1,𝐻Δ𝑇𝑎⏟    
4

+ Δ𝛽2𝑄𝐻⏟  
5

+ 𝛥𝛽2𝛥𝑄⏟    
6

+ 𝛽2,𝐻Δ𝑄⏟    
7

 (13). 

In the equation above, terms 3 and 4 are influenced by changing Ta, terms 6 and 7 are influenced 

by changing Q, and terms 2, 3, 5, and 6 are influenced by altered system management and changing 

system characteristics. The βo term is a fitting parameter in Equation 4 which represents 

(mathematically) the estimated Tw in the extreme case of no Q and zero Ta at a two-week time lag. 

Practically, the βo term represents factors that are not being modeled (such as Ta or Q at a four-

week lag). A change in summertime βo (i.e., term 1) therefore reflects a change in the baseline 
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system properties and system response that are not modeled by the other terms. Estimated values 

for the 7 terms in Equation 13 are given in Table 6 for the August time frame, corresponding to 

the time of peak Tw. 

Table 6. Calculated values of the individual variables in Equation 13, representing August conditions during 

the time period of annual maximum water temperature (Tw, max).  

Δ𝛽0 𝛽1,𝐻 Δ𝛽1 𝛽2,𝐻 Δ𝛽2 𝑇𝑎,𝐻 Δ𝑇𝑎 𝑄𝐻  Δ𝑄 

2.5ºC 0.54 ºC/ºC - 0.06 ºC/ºC -0.19 ºC/103 m3/s - 0.14 ºC/103 m3/s 17ºC 0.4ºC 5.4 103 m3/s -1.7 103 m3/s 

 

Table 7. Calculated values of terms in Equation 12 based on values in Table 6 showing contribution from 

each term to total modeled change in water temperature (Tw). 

 

Term 

1 2 3 4 5 6 7 

Δ𝛽0 Δ𝛽1𝑇𝑎,𝐻 Δ𝛽1Δ𝑇𝑎 𝛽1,𝐻Δ𝑇𝑎 Δ𝛽2𝑄𝐻  Δ𝛽2Δ𝑄 𝛽2,𝐻Δ𝑄 

Value, ºC 2.5 -0.95 -0.02 0.19 -0.73 0.23 0.32 

 

Overall, a relatively small portion of the 1.5°C increase in maximum Tw since the mid-20th century 

is directly attributable to Ta increases occurring at a two-week time lag (Table 7). Annual 

maximum Ta only increased by 0.4°C, which, by the statistical model, suggests a roughly 0.2°C 

increase in Tw (Table 7, term 4). The effect of the altered regression coefficient is even smaller—

an insignificant difference of roughly 0.02°C is obtained when the Ta change of 0.4°C is scaled by 

the modern and historical 𝛽1 coefficient (Table 7, term 3). These considerations suggest that 

slightly more than 10% (~12%) of the increase in summer Tw between the historical and modern 

periods was directly caused by climate change (Table 7, terms 3 and 4). Presumably, a comparison 

over a longer time scale might show a larger effect; this is left for a future study. 

The direct effect of a changing hydrograph (at zero time lag) on peak Tw is also modeled to be a 

relatively modest 0.32°C (Table 7, term 7). When the effect of both ΔQ terms in Equation 13 are 

considered (terms 6 and 7), the direct contribution of an altered hydrograph to changing peak Tw 

is estimated to be ~0.55°C, or roughly 35% of total change (Table 7, terms 6 and 7). The relatively 

small, directly modeled influence occurs primarily because the measured difference in Q between 

the historical and modern periods (1,700 m3/s, Table 6) is relatively small during late summer. By 

contrast, the dramatically reduced hydrograph in May and June produces an increase of up to 

~1.1°C on modeled Tw (Figure 7). Given the relatively long residence time of water in the system, 



 

 

25 

such changes may be influencing August Tw and may be folded into the change observed in the βo 

coefficient (Table 7, term 1). More research is necessary on the influence of earlier time periods 

on measured data. 

A comparison of the historical and modern models shows that the combined effects of changes in 

Q as well as regression coefficients accounts for nearly 90% (88%), or 1.3ºC, of the change in 

annual maximum Tw (Table 7, terms 1, 2, 5, 6, and 7), although this is likely an overestimate 

because term 1 may reflect (in part) meteorological forcing at a larger time lag than two-weeks. 

Nonetheless, the overall small change in Ta climatology over the time periods considered here 

(Figure 7) and the discussion above suggests that climate change is likely a small influence. System 

changes, as well as alterations to Q, therefore likely drive change to Tw over the analyzed time 

period. However, while much of the long-term change in Q is likely due to dams and river 

management, some portion may be attributable to climate change and climate variability. The 

changes in Q between the two periods could be a result of changes in snowpack and precipitation 

in addition to reservoir management and irrigation withdrawals; therefore, a portion of the changed 

Q could also represent climate change (Naik and Jay, 2005; 2011). The changes in regression 

coefficients reflect the influence of reservoir management, since water responds differently to 

atmospheric heating and cooling in the modern, managed system. Changes in riparian shading and 

other factors are also likely important. 

Overall, a modeled increase of 1.3ºC in maximum summertime Tw due to altered Q and reservoir 

management is higher than the 0.8ºC increase in summer Tw attributed to these factors by Bottom 

et al. (2011). Since some effect of climate change is included in the change in Q and βo (Equation 

4) the results are broadly consistent and support the conclusion that anthropogenic interventions 

into the system have dominated system changes since the mid-20th century. Nonetheless, as in 

Bottom et al. (2011), this result is approximate since some dams existed during the base period for 

the historical model.  
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3.6 Hindcasting 

To estimate trends over climate-change relevant time scales and elucidate natural variability, it 

would be useful to extend the Tw record to pre-1938 conditions. Therefore, the historical model 

was used to hindcast Tw at Bonneville dam for 1915-1938, using the available Q and Ta data as 

inputs. Monthly average Tw measurements from Astoria from 1925-1938 were used to evaluate 

and ground-truth the statistical model results. Comparison of modeled Tw at Bonneville Dam to 

measured Tw at Astoria resulted in an RMSE of 1.69ºC (Figure 21). This is 0.43ºC higher than the 

RMSE of measured monthly average Tw at Bonneville Dam compared to Astoria for 1938-1956 

(Figure 2).  

 

A closer comparison suggests that much of the higher variance is driven by a few anomalous 

periods such as the winter and summer of 1926 or the winter of 1934. In several years, the model 

predicted higher winter and lower summer Tw at Bonneville Dam than at Astoria, exactly opposite 

of the general behavior noted for the 1938-1956 period (Figure 2). It is possible that the error in 

Figure 21. Measured monthly average water temperature (Tw) at Astoria compared to hindcast 

monthly average Tw at Bonneville Dam, 1925-1938. Residuals show modeled Bonneville Dam results 

subtracted from Astoria measurements. 
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Ta measurements is larger in the early 20th century, driving a larger variance. Moreover, the model 

may not represent identical conditions to the hindcasted period, since no dams existed prior to 

1934. The modeled summer Tw was especially low in 1926, which could be explained by unusual 

conditions that year. During that year, peak Q was less than 7,000 m3/s, which was exceptionally 

low for the pre-management period. When 1926 was not included in the comparison of the 

modeled and observed Tw, the RMSE decreased to 1.48ºC.  

Hindcasted Tw for 1915-1938 did not show as much variability in summertime maximums as 

measured values did for 1938-1956 (Figure 22). The years with highest modeled Tw were 1926, 

1930, 1931 and 1936. The highest Tw value for the 1915-1938 period occurred in 1936 and was 

20.1ºC, lower than the 1938-1956 period maximum of 22.3ºC that occurred in 1941. There was 

much more variability in wintertime low Tw. The lowest modeled Tw occurred during the winters 

of 1919/20, 1928/29, 1929/30, 1935/36, and 1936/37. The accuracy of the model is likely not 

sufficient to determine whether Tw in the 1915-1938 period was statistically different than the 

1938-1956 period. 

Figure 22. Hindcasted biweekly average water temperature (Tw) at Bonneville Dam, 1915-1938, shown in red and observed 

biweekly average Tw at Bonneville Dam, 1938-1956, shown in blue. 
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4.0 CONCLUSION 

4.1 Summary 

In order to study changes in water temperature (Tw) over time, linear regression models of Tw based 

on air temperature (Ta) and streamflow (Q) were developed for the Columbia River. Two periods 

were used for comparison: a historical period (1938-1956) when few main-stem dams existed on 

the river, and a modern period (1977-2003) when the river was more managed. The historical 

model performed better than the modern model, with an overall RMSE of 1.22ºC, compared to 

1.43ºC. Neither model had a lower RMSE than the climatological average for the period, but both 

models better represented interannual variability.  

Comparison of the models for the historical and modern periods showed that Tw was more sensitive 

to Q and less sensitive to Ta in summer during the modern period. The regression coefficient for 

Q was -0.187 ºC/103 m3/s for the historical period and -0.318 ºC/103 m3/s for the modern period. 

The regression coefficient for Ta was 0.539 ºC/ºC for the historical period and 0.483 ºC/ºC for the 

modern period. Tw anomalies from the climatological average were less sensitive to Ta anomalies 

during the modern period. These differences indicate that the Tw/Ta and Tw/Q relationships have 

changed over time, probably due to a combination of climate change and reservoir management. 

The increase in summer Tw due to system changes (e.g., reservoir management) and decreased Q 

was determined to be approximately 1.3ºC.  

The Tw model for the historical period was also used to hindcast Tw at Bonneville Dam for 1915-

1938. These results were compared to monthly average Tw measurements from Astoria. The 

relationship between the model results and the measured data had a higher RMSE than the 

relationship between measured data at Bonneville Dam and Astoria for 1938-1956. This could be 

because the historical model is not suited for the pre-dam scenario, or because of errors in the Q 

or Ta data used for hindcasting or the Tw data from Astoria. Further investigation into these 

possibilities would be useful. 

4.2 Next Steps 

The models developed in this study could be improved by different methods of data processing. 

For example, the sub-basin Ta data could be weighted based on each sub-basin’s flow contribution 

rather than area. Different time lags could be used for each sub-basin based on distance from 
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Bonneville Dam rather than one time lag for the entire basin average Ta. It is possible that these 

methods could better represent the physical nature of the system. More terms could also be added 

to the regression equation representing multiple time lags on Ta. This would give further insight 

into the delayed response of Tw to Ta in the modern, managed system. 

Additional data could also be used to improve the models developed here. The PRISM Climate 

Group (http://prism.oregonstate.edu/), part of The Northwest Alliance for Computational Science 

and Engineering, maintains climate records dating back to 1895. This data would expand the Ta 

data sets used in the model development, which could lead to more accurate models. Similarly, Tw 

and Ta measurements through 2017 can be used to assess recent trends and variability, such as the 

hot summers of 2009 and 2015.  

By improving the data used in these models, more accurate models could be developed that would 

better represent each time period. This would allow for more reliable comparisons between the 

models for different time periods, as well as better hindcasting capabilities. Additionally, Astoria 

Tw data from 1853-1876 compiled by Talke and Jay (2013) could be incorporated as a way to study 

Tw change over a longer period.  
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