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Abstract

We propose and document a new concurrent pro-
gramming model, relativistic programming. This
model allows readers to run concurrently with writ-
ers, without blocking or using expensive synchro-
nization. Relativistic programming builds on exist-
ing synchronization primitives that allow writers to
wait for current readers to finish with minimal reader
overhead. Our methodology models data structures
as graphs, and reader algorithms as traversals of
these graphs; from this foundation we show how
writers can implement arbitrarily strong ordering
guarantees for the visibility of their writes, up to
and including total ordering.

1 Introduction

Concurrent programming faces a difficult tradeoff
between simplicity and scalability. Simple concur-
rent algorithms incur high synchronization costs,
while highly scalable algorithms prove highly com-
plex to develop and maintain. This dilemma hinges
primarily on the ordering of memory operations, and
the order in which they become visible to threads.
Simple concurrent algorithms force more serializa-
tion to preserve sequential reasoning techniques,
while scalable algorithms allow more reordering and
force the programmer to think about concurrent be-
havior.
Existing concurrent programming models ap-

proach this dilemma by choosing a point on the slid-
ing scale and attempting to incrementally reduce
the drawbacks associated with that point. Trans-
actional memory presents a simple programming
model where transactions appear serialized, and
strives to eliminate the expensive synchronization
costs. Scalable algorithms seek simplicity by intro-
ducing reasoning models for weakly ordered memory

operations, and using proof systems to verify cor-
rectness.

We propose relativistic programming, a new model
for concurrent programming which achieves scalabil-
ity without sacrificing the simplicity of strong order-
ing guarantees. This model allows readers to run
concurrently with writers, without blocking or us-
ing expensive synchronization. Despite this concur-
rency, however, relativistic writers can strictly con-
trol the order their writes become visible to readers,
allowing straightforward reasoning about relativistic
algorithms.

Readers commonly perform multiple separate
memory reads as they traverse a data structure. By
allowing readers to run concurrently with writers,
and avoiding any delays in readers, we allow readers
to perform their reads interleaved with a writer’s
writes. It therefore becomes the writer’s responsi-
bility to prevent readers from observing inconsistent
states. Without blocking readers, the writer cannot
generally make a series of writes appear atomic, but
our methodology allows the writer to maintain the
order of its writes. With no write-side synchroniza-
tion, readers could observe any possible permutation
of writes; by adding write-side synchronization, writ-
ers may strictly preserve program order for any or
all writes, allowing any ordering policy up to and
including total order. The choice of ordering poli-
cies affects writer latency, but never impacts reader
performance or scalability.

“Laws of Order” [1] documents a set of inter-
locked properties for concurrent algorithms, and
proves that any algorithm with all those properties
must necessarily rely on expensive synchronization
instructions. These properties include “strong non-
commutativity”: multiple operations whose results
both depend on their relative ordering. Relativis-
tic readers, however, cannot execute strongly non-
commutative operations—a relativistic reader can-
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not affect the results of a write, regardless of order-
ing. This allows relativistic readers to avoid expen-
sive synchronization while maintaining correctness.
Relativistic programming builds on several exist-

ing synchronization primitives; in particular, rela-
tivistic writers rely on a primitive that waits for all
current readers to finish. Read-Copy Update (RCU)
implementations [10, 9, 7] provide such a primitive,
with little to no overhead for the corresponding read-
side delineation [8]. Any synchronization primitive
with the same semantics will work as well.
Section 2 documents the relativistic programming

methodology. Section 3 presents the status of our
ongoing research in this area. Section 4 summarizes
our contributions.

2 Methodology

Consider a simple set of reader and writer algo-
rithms based on mutual exclusion. Each algorithm
begins by acquiring a lock, and ends by releasing
that lock. Readers and writers run for a finite dura-
tion, delineated by these lock operations. As far as
other threads can observe, all operations of a run-
ning thread occur between the lock and unlock oper-
ations; since other threads cannot examine the data
structure without acquiring the lock themselves, the
operations performed by a thread appear atomic.
Thus, any set of reads and writes in this system will
appear sequential.
Reader-writer locking does not change this prop-

erty; readers cannot modify the memory observed by
other readers, so running readers concurrently does
not affect the sequential consistency of the system;
to generate an equivalent sequential order, choose
any arbitrary order for read operations. Similarly,
common applications of non-blocking synchroniza-
tion and transactional memory will roll back readers
or writers to ensure that reader operations cannot
observe intermediate states.
When using a relativistic programming technique

such as RCU, readers and writers still have finite
durations, but readers no longer exclude other read-
ers, or even writers. Thus, any number of readers
can run concurrently, together with a simultaneous
writer, providing joint-access parallelism. Multiple
writers continue to use disjoint-access parallelism,
accessing separate data simultaneously through the
use of locking or partitioned data structures.
A reader may perform multiple distinct read oper-

ations on memory in the course of traversing a single
data structure. For instance, in the course of look-
ing up an item in a hash table, a reader may read

the base address of the hash table, the head pointer
of the desired hash bucket, and the various “next”
pointers of the linked list in that bucket. These mul-
tiple reads may still represent a single semantic oper-
ation on some abstract data type, such as the lookup
of an item in a map or set.

Similarly, a single writer may need to perform
multiple modifications to implement a single seman-
tic operation. For example, to implement removal
from a linked list or hash table, a writer must mod-
ify the preceding next pointer (or head pointer) to
point past the disappearing item, and then reclaim
the memory associated with that node. To move a
node in a linked list, a writer could insert the new
node and remove the old, in some order.

In the absence of additional synchronization, if a
writer with concurrent readers performs two mem-
ory operations on a data structure, a reader travers-
ing the data structure and reading these memory
locations at different times may observe four dis-
tinct states of memory: the state with neither op-
eration performed, the state with both operations
performed, or either of the two states with a single
operation performed. (These same principles extend
to more than two memory operations in the obvious
manner, with 2n possible reader observations for n
memory operations; subsequent examples will ini-
tially focus on the case of two memory operations.)

With neither operation performed, the state of the
data structure appears the same to a reader as if that
reader completed before the writer began; thus, ob-
serving this state cannot do harm to a reader. Sim-
ilarly, with both operations performed, the state of
the data structure appears the same to a reader as if
that reader began after the writer completed; thus,
observing this state can do no harm either. Incor-
rect behavior can only occur if a reader observes one
of the two possible intermediate states.

For an example of such harm, consider the re-
moval of a node described earlier: first unlink the
node, then free the memory. If a reader does not
observe the node unlinked (and thus sees the node),
the reader must not observe the memory reclama-
tion; otherwise, the reader would access reclaimed
memory.

Mutual exclusion takes the simplest approach to
avoid this problem: by preventing readers from run-
ning concurrently with writers, readers cannot ob-
serve intermediate states at all, and the writer’s
modifications appear atomic. This simplifies reason-
ing about the writer’s algorithm, making it only nec-
essary to consider the initial and final states of the
data structure. In the removal example, the reader
would either observe the node in the data structure
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and not reclaimed, or would not observe the node at
all.
However, the writer often does not need to guar-

antee full atomicity of its changes. Of the four possi-
ble orderings of the two changes required to remove a
node, only one causes a problem in practice: not ob-
serving the removal (thus finding the node) and sub-
sequently observing the memory reclamation (read-
ing reclaimed memory). The reverse situation for
removal cannot arise: a reader cannot observe the
removal and care about the reclamation one way or
another. Thus, the writer need only ensure that the
operations appear in a particular order to the read-
ers, rather than making them appear atomic.
In the case of moving a node in a linked list or

hash table, both orderings of operations present un-
usual results. If a reader observes the removal and
not the insertion, it will fail to find the item at all.
If a reader observes the insertion and not the re-
moval, it will observe two copies of the item. How-
ever, the latter scenario might not violate the seman-
tics of the data structure; if looking for that node,
the reader will find one of the two identical copies,
and if looking for another node, the reader will skip
the duplicated items. Barring some additional se-
mantic requirement, this ordering does not pose a
problem. Thus, again, the writer need only preserve
the order of its write operations. This tolerance of
duplicates allows relativistic writers to copy part of
a data structure and operate on that copy to avoid
disturbing concurrent readers.
Without the ability to block readers, a writer must

instead avoid allowing readers to observe any al-
ternative orderings of write operations. Once the
writer has performed the first operation, some con-
current readers will observe that operation, and oth-
ers will not. The former readers cannot cause a prob-
lem, since whether they observe the second write or
not, they will not violate the ordering. The latter
readers, which have not seen the first write, con-
stitute potential hazards, since if they subsequently
observe the second write, they violate the ordering
constraint.
The writer can achieve this ordering with a “wait

for current readers” operation, such as those pro-
vided by RCU. A reader can only observe two oper-
ations in different orders if its traversal runs concur-
rently with both operations. Thus, if the writer can
prevent readers from running concurrently with both
operations, the writer has enforced the order of those
operations. The semantics of the “wait for current
readers” operation require that if the beginning of a
reader occurs before the beginning of the wait oper-
ation, the end of the reader must occur before the

end of the wait operation. Thus, if a writer inserts
a “wait for current readers” operation between two
other writes, no reader can run concurrently with
both writes, because any such reader would neces-
sarily begin before the wait operation begins and
end after the wait operation ends, violating the wait
semantics.

This introduces a key property of our method-
ology for correct relativistic programming: waiting
for current readers acts as a strong ordering bar-
rier between two write operations. This mechanism
extends to ordering an arbitrary number of opera-
tions, as long as a wait operation occurs between
each pair. Thus, from 2n possible observations of n
operations, a writer can eliminate all but n. The re-
maining possibilities consist of observing incremen-
tally longer prefixes of the series of operations, up
to observing the entire set.

In theory, a relativistic writer can order its oper-
ations with this approach alone and achieve correct-
ness. However, the “wait for current readers” opera-
tion adds significant latency to the writer, and using
it multiple times replicates that latency. Thus, for
practical reasons, the writer needs alternative means
of ordering write operations that does not always re-
quire a wait operation.

To implement a lightweight ordering mechanism,
writers can take the reader algorithms into account.
Readers, when traversing a data structure, introduce
a natural ordering corresponding to the order they
traverse nodes. Almost all modern CPU and mem-
ory architectures guarantee that if a CPU reads a
pointer value, then dereferences that pointer to read
the target memory (a dependent read), the fetch of
the pointer will occur before the fetch of the tar-
get memory.1 Thus, dependent reads occur in the
reader’s program order.

Common data structures storable in shared mem-
ory will look like some subset of a directed graph:
allocated memory corresponds to a graph node, and
a pointer corresponds to a directed edge, from the
node containing the pointer to the node containing
the target address. Because dependent reads occur
in program order, the reader has a well-defined node
position at any given point in its traversal; call this
the reader’s cursor. A writer cannot easily observe

1On architectures such as DEC Alpha which do not au-

tomatically guarantee memory ordering for dependent reads

[5], this traversal requires appropriate barriers for such reads,

such as smp_read_barrier_depends in the Linux kernel, used

in rcu_dereference.
Aggressive compiler optimizations, particularly those re-

garding local caches of global data, can also lead to problems

in this step [2]. This may necessitate compile-time barriers to

locally prevent such optimizations.
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a reader’s cursor directly, but it can nonetheless rely
on these cursors moving according to the reader’s
traversal algorithm.
Similarly, write operations occur at a well-defined

node position. Readers whose cursors will reach that
node position, but have not yet done so, must nec-
essarily observe that write operation. In an acyclic
data structure, readers whose cursors have already
passed that node position cannot observe that write
operation.
To avoid excess complexity in this reasoning, con-

sider only those structures isomorphic to an acyclic
graph. This excludes structures in which the read
algorithms may revisit the same node more than
once in a single traversal, which significantly simpli-
fies reasoning about the progression of read cursors.
This does not prohibit structures in which cycles ex-
ist, only structures in which the readers may per-
form cyclic traversals. For example, a doubly linked
list would support cyclic traversals, but if we pro-
hibit readers from following the “previous” pointers,
reader traversals will remain acyclic. Writers may
still use those previous pointers for their operations.
With this conceptual framework in mind, consider

again the algorithm for moving a node via insertion
and removal. The writer must insert the new node,
and subsequently remove the original node, without
allowing any reader to observe the second operation
and not the first. The writer’s insertion occurs at a
particular position in the list. After the writer has
inserted the new node, reader cursors before that po-
sition will observe the node, and cursors past that
position will not. An ordering violation will occur if
the reader cursors past the insert position can sub-
sequently observe the removal; this would contradict
the writer’s program order, and cause the reader to
miss the node entirely.
If the newly inserted node appears in the list be-

fore the original node, read cursors between the two
positions might observe an ordering violation: they
have already missed seeing the inserted node, and
might potentially miss seeing the original node as
well, making the node appear missing. The writer
can preserve ordering by waiting for those readers
to finish; this will “flush” all existing cursors from
the structure, and any new readers must start from
the well-defined start locations for traversals—in the
case of a linked list, the head of the list. Any new
read cursors must pass through the inserted node,
and thus cannot observe the ordering violation.
However, if the newly inserted node appears in

the list after the original node, no readers can possi-
bly observe a problematic ordering violation. Read-
ers between the two locations must have observed

the original node, and may subsequently observe the
new node, but as previously described this duplica-
tion need not violate the data structure semantics.
Thus, the writer need not flush all cursors from the
structure. As long as the writer preserves the pro-
gram order of its writes via appropriate system write
memory barriers, the readers will observe the writes
in the same order. Such a write memory barrier can
occur implicitly as part of a relativistic “publish”
primitive for pointers.

This observation provides a general rule for effi-
ciently ordering writes: writers may rely on reader
traversal order to provide a natural order for obser-
vations, and need only wait for current readers to
finish if the natural order does not imply the desired
order.

Finally, while we have provided the tools by which
a relativistic writer can preserve the ordering of arbi-
trary write operations, a given write algorithm need
not preserve every possible ordering constraint. A
writer may omit the synchronization between two
writes if readers will not care about the order in
which those writes become visible; subsequent syn-
chronization will still order that entire set of writes
with resepect to later writes. In particular, a writer
may choose to batch a series of updates with a sin-
gle synchronization. Similarly, independent writers
may not need to order their updates with respect
to each other, despite ordering the individual steps
of each update to preserve correctness. Whether a
writer may weaken ordering in this way depends on
the semantics required by the corresponding read
algorithms; however, this choice cannot affect the
performance of readers, only that of writers.

Summarizing the properties of correct relativistic
algorithms:

1. Writers need only enforce ordering of their op-
erations, not atomicity of an entire block of op-
erations.

2. Writers can wait for current readers between
two write operations to enforce the order of
those operations for concurrent readers.

3. Writers may rely on reader traversal order to
provide a natural order for their observations,
and need only wait for current readers to finish
if the writer might overtake a concurrent reader
traversing in the same direction; otherwise, a
standard write memory barrier suffices.

4. Writers may choose to leave a series of writes
unordered and omit synchronization between
them, while still using synchronization before or
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after those writes to order other writes with re-
spect to the entire series. This allows writers to
reduce write latency by relying on the seman-
tics of the reader algorithm, without affecting
reader scalability.

3 Ongoing Research

Our current methodology for relativistic program-
ming focuses on the scalability of concurrent read-
ers, by pushing the costs of synchronization and cor-
rectness onto writers. This approach proves ideal
for many common read-mostly workloads. The con-
verse case of write-mostly workloads demands an ap-
proach which allows writers to proceed without syn-
chronization, with readers bearing the synchroniza-
tion costs. We can achieve that goal through parti-
tioned data structures, which allow writers to per-
form CPU-local or thread-local writes without syn-
chronization; readers then observe all relevant local
structures to obtain a result. Simple cases of parti-
tioned data structures include sloppy counters [3] or
approximate counters [4], which partition a single
integer counter. We plan to provide a more com-
prehensive treatment of write-optimized concurrent
algorithms in the future.

Most existing relativistic algorithms synchronize
between writers using mutual exclusion, with var-
ious degrees of granularity. However, to simplify
the construction of relativistic writer algorithms, we
have also developed a technique to implement rel-
ativistic writers using transactional memory, with-
out disrupting or rolling back concurrent relativistic
reads.

Scalable relativistic implementations of various
data structures already exist based on Read-Copy
Update, including linked lists, radix trees, and hash
tables. We recently developed relativistic algorithms
for resizable hash-tables [11] and balanced trees [6],
based heavily on the new general methodology we’ve
presented here.

In section 1, we discussed “Laws of Order”, the
properties it introduces which require expensive syn-
chronization instructions, and how relativistic read-
ers can avoid these properties and the correspond-
ing cost. We have completed an extensive analy-
sis of “Laws of Order” and its implications for scal-
able concurrent programming, including the remain-
ing properties which imply expensive synchroniza-
tion instructions, and the various ways to avoid those
properties and the associated cost. We plan to doc-
ument this analysis in future work.

4 Conclusion

Our proposed relativistic programming methodol-
ogy supports the construction of concurrent algo-
rithms for arbitrary acyclic data structures. Rela-
tivistic readers provide excellent scalability and per-
formance by never blocking or using expensive syn-
chronization instructions. The corresponding rela-
tivistic writers may enforce a total ordering of write
operations based on writer program order, or weaken
that ordering to decrease write latency, without af-
fecting reader scalability. Relativistic programming
thus allows concurrent algorithms to achieve scal-
ability without sacrificing the simplicity of strong
memory ordering.
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