6-2019

Empirically-Informed Agent Based Modeling of Incentivized Forest Conservation - June 2019

Amare Teklay Hailu
Swedish University of Agricultural Sciences

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/fc_research

Part of the Economic Theory Commons, and the Environmental Studies Commons

Citation Details
https://pdxscholar.library.pdx.edu/fc_research/11

This Spring 2019 Meeting Presentation - Manchester, England is brought to you for free and open access. It has been accepted for inclusion in Forest Collaborative Research by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Empirically-informed agent based modeling of incentivized forest conservation

Amare Teklay Hailu
amare.teklay.hailu@slu.se

EfD Forest Collaborative Meeting
26th June, 2019
Manchester
Overview

1. Background

2. ABM of FFE

3. Netlogo

4. What is next?
Background

Payment for ecosystem services (PES):
- popular and ’easy’, BUT
- complex to design
 - do they work?
 - how (why) do they (not) work?
 - crowding out effect?
 - heterogeneous effect?
- context dependent
Background…

Framed field experiment (FFE):

- Nine villages in Ethiopia
- Sample of 432 household heads
- Formed groups of 8 randomly
- Each group endowed with 60 tree branches (‘forest stock’)

amare.teklay.hailu@slu.se
ABM of FFE
The experiment: baseline

Payoff

$$\pi_{it} = x_{it} + 2 \left(\frac{60 - \sum x_{it}}{8} \right), \text{where } x_{it} \leq 5$$

- Individuals face social dilemma
- We observe history without policy
Payoff with PES

Individual PES:

\[
\pi_{it} = \begin{cases}
 x_{it} + 2 \left(\frac{60 - \sum_{i=1}^{8} x_{it}}{8} \right) + 0.75 (RL - x_{it}), & \text{if } x_{it} \leq RL \\
 x_{it} + 2 \left(\frac{60 - \sum_{i=1}^{8} x_{it}}{8} \right), & \text{if } RL \leq x_{it} \leq 5
\end{cases}
\]

\(RL = \text{Above} \mid \text{Historical} \mid \text{Below}\)

- Group PES: \(\sum_{i=1}^{8} x_{it}\)
With and without PES

![Graph showing average harvest rate over rounds for Group and Individual scenarios.]

- **Y-axis**: Average harvest rate
- **X-axis**: Rounds
- **Legend**:
 - Group
 - Individual
Pay type and reference levels

- **Above**
 - Individual: 14, 0.96, 0.37, 0.43, 0.33
 - Group: 0.05, 0.14, 0.19, 0.49, 0.5

- **Historical**
 - Individual: 0.097, 0.27, 0.34, 0.67
 - Group: 0.075, 0.29, 0.46, 0.54, 0.79

- **Below**
 - Individual: 18, 0.42, 0.12
 - Group: 0.29, 0.38, 0.68

Legend:
- **Average reduction**
- **Average harvest with PES**
Baseline, PES and post-PES

![Bar chart](chart.png)
ABM of FFE data

- previous results are only aggregate values
- address the *how* of behavioral patterns, i.e., mechanism-based explanation
- formalize micro-level mechanisms that generate the phenomenon observed in experiments
- individual behavior affects group outcome, and group behavior affects individual behavior.
AgentEx (Schill et al, 2016)

- Cooperation in CPR games
 - focus of experiments
 - trust, communication (reduces social uncertainty)
 - not enough for sustainability (complexity in SES and uncertainty about resource dynamics)
 - environmental uncertainty

"Cooperation is not enough...for sustainable common-pool resource use"

- Sustainable ecosystem management depends on both social-social and social-ecological interactions (both affected by social and environmental uncertainties)
Netlogo
Pseudo-code

- **Setup:** users and stock (60 trees)
- **Harvest:** start random
- **Identify:** assign type (free rider, (un)conditional cooperators)
- **Update:** group average, others’ vs. own harvest
- **Reset:** show remaining trees and reset stock to 60
- **Report:** group total, group average, others’
What is next?

- Set rules for harvest (random?)
- Replicate behavioral patterns
- Explain heterogenous responses
- Explain interaction effects in treatments
- Show the role of individuals in group outcome
- Experiment level comparisons
What is next?...

- Can we use *behavior to explain behavior*?
- How to determine types of players:
 - Free rider: harvest highest or maximum?
 - Conditional cooperator: start random?
 - Unconditional cooperator: zero or least harvest?
- Validation?
Thank you!