

106

Therefore, we have proven this direction of the proposition.

“⇐⇐⇐”: Let 〈p, γ〉 = head(c′) ∈ Rep(B2P). Based on the hypothesis we have

φs = (c′ : 〈p, γv〉)⇒r
B2P 〈p, γωv〉,

where v, ω ∈ Γ∗, |φB
s | 6= 0, and |φP

s | 6= 0. Using φs, we can construct an infinite

trace such that

φ = c0 ⇒
∗
B2P (c′ : 〈p, γv〉)⇒r

B2P 〈p, γωv〉 ⇒r
B2P 〈p, γωωv〉 ⇒r

B2P

Because paths in the form of φs repeatedly occurs on φ, both the acceptance

condition and BPDS loop constraint are satisfied on φ. Therefore, φ is an accepting

run of B2P.

Proposition 5.1 presents a practical strategy for us to check LTL properties on

BPDS. As illustrated in Figure 5.2, there are two phases. First, we need to compute

a special set of repeating heads, R ⊆ Rep(B2P), where the repeating paths of the

heads satisfy the BPDS loop constraint. Second, we need to check if there exists a

path of B2P that leads from the initial configuration c0 to a configuration c such

that head(c) ∈ R.

��������	

���2

����
���	
��
��

����
���	
��
���
R

��
��
������

�
����

����	
pre�

�	������

 = ∅ ��

�������	
���
�����

��������	
���
�����

post*({c0 }) ∩ { c | head(c) R }∈

= ? = ∅

Figure 5.2: Computing the accepting run of B2P (c0 is the initial configuration).

107

5.3.1 Computing the Repeating Heads

As an important observation, when computing the repeating heads, we are looking

for a path between 〈p, γ〉 and 〈p, γv〉. However, the actual content of v is not

interested. Therefore, we can compute the repeating heads solely based on the

information about which heads are reachable from each other and whether the

accepting requirements (i.e., the Büchi acceptance condition and the BPDS loop

constraint) on the paths between these heads are satisfied. Such kind of informa-

tion can be encoded into a finite graph and the repeating heads can be computed

by detecting the strongly connected components that satisfy the accepting require-

ments.

Before constructing the graph, we need to define the notions about how an

edge of the graph can satisfy the accepting requirements. Therefore, we define

three labeling functions on the rules of B2P:

1. FB2P : ∆B2P → {0, 1}, where given r ∈ ∆B2P , FB2P(r) = 1 if head(r) ∈ FB2P

and FB2P(r) = 0 if otherwise;

2. RB(r) : ∆B2P → {0, 1}, where given r ∈ ∆B2P , RB(r) = 1 if r is constructed

using a BA transition from δ (defined for checking the BPDS loop constraint)

and RB(r) = 0 if otherwise;

3. RP(r) : ∆B2P → {0, 1}, where given r ∈ ∆B2P , RP(r) = 1 if r is constructed

using an LPDS rule from ∆ (defined for checking the BPDS loop constraint)

and RP(r) = 0 if otherwise.

Definition 5.5. The head reachability graph of B2P is a directed labeled graph

G = ((P × Γ), E), where the set of nodes are the heads of B2P, the set of edges

E ⊆ (P × Γ) × {0, 1}3 × (P × Γ) denotes the reachability relation between the

heads. Let p, p′, p′′ ∈ P , γ, γ′ ∈ Γ, v1, v2 ∈ Γ∗, and ε be the empty string. An edge

(〈p, γ〉, (b1, b2, b3), 〈p
′, γ′〉)(〈p, γ〉, (b1, b2, b3), 〈p
′, γ′〉)(〈p, γ〉, (b1, b2, b3), 〈p
′, γ′〉) belongs to E under the following conditions:

108

• ∃r = 〈p, γ〉 →֒B2P 〈p
′′, v1γ

′v2〉;

• ∃φ = 〈p′′, v1〉 ⇒
∗
B2P 〈p

′, ε〉;

• b1 = 1, if and only if FB2P(r) = 1 or 〈p′′, v1〉 ⇒
r
B2P 〈p

′, ε〉;

• b2 = 1, if and only if RB(r) = 1 or |φB| 6= 0;

• b3 = 1, if and only if RP(r) = 1 or |φP | 6= 0.

Definition 5.5 is based on the idea of backward reachability computation. Given

the head 〈p′, ε〉 reachable from 〈p′′, v1〉, if there exits a rule to indicate that 〈p′′, v1γ
′〉

is reachable from 〈p, γ〉, then we know that the head 〈p′, γ′〉 (a.k.a., 〈p′, εγ′〉) is

reachable from the head 〈p, γ〉. During such a computation process, we use the

three labels, b1, b2, and b3 to record the information whether a path between the

heads contains an accepting state in FB2P and satisfies the BPDS loop constraint.

The set of repeating heads, R, can be computed by exploiting the fact that a

head 〈p, γ〉 is repeating and the repeating path satisfies the BPDS loop constraint

if and only if

• 〈p, γ〉 is part of a strongly connected component of G; and

• this strongly connected component has internal edges labeled by (1, ∗, ∗),

(∗, 1, ∗), and (∗, ∗, 1), where ∗ represents 0 or 1.

Algorithm 5.1, RepHeads, takes B2P as input in order to compute the set of

repeating heads, R. The algorithm has two parts. First, it computes the head

reachability graph of B2P using three steps as follows:

1. Between line 4 and line 6, it constructs edges of the head reachability graph

from ∆B2P . We refer to such edges as direct reachability edges, because

reachability between the heads are satisfied through only one transition.

109

2. At line 8, it invokes the algorithm, HeadReachability, to compute the

indirect reachability relation between heads, i.e., reachability through more

than one transitions. As illustrated in Algorithm 5.2, HeadReachability

(see below for discussion) utilizes the backward reachability analysis algo-

rithm pre∗ presented in [77] to compute a set of labeled transition rules

(see Definition 5.5), ∆label, that describes the indirect reachability relation

between heads.

3. Between line 10 and line 12, it constructs edges of the head reachability graph

based on ∆label. We refer to these edges as indirect reachability edges.

Second, between line 15 and line 21, Algorithm 5.1 computes strongly connected

components of the head reachability graph G and checks whether there exists

strongly connected components that satisfy the accepting requirements. If a strongly

connected component satisfies the accepting requirements, all the heads on it are

added to the set R.

Algorithm 5.2, HeadReachability, computes a set of labeled transition rules

∆label, that describes the indirect reachability relation between heads. The algo-

rithm utilizes the pre∗ algorithm [77]. Given ∆B2P , pre∗ finds a special set of rules

trans ⊆ ∆B2P such that trans has rules all in the form of 〈p, γ〉 →֒B2P 〈p
′, ε〉, also

written as (p, γ, p′) for simplicity. With the three labels defined on BPDS rules,

we can further write a rule in trans as (p, [γ, b1, b2, b3], p
′). Given such a rule, the

algorithm between line 7 and 25 computes the reachability relation between heads,

where rel stores the processed rules from trans. Specifically,

• At line 11 or line 14, when we see a rule 〈p1, γ1〉 →֒B2P 〈p, γ〉, we know 〈p′, ε〉

is reachable from 〈p1, γ1〉; therefore, we add a new rule 〈p1, γ1〉 →֒B2P 〈p
′, ε〉

to trans;

• At line 17, when we see a rule 〈p1, γ1〉 →֒B2P 〈p, γγ2〉 , we know 〈p′, γ2〉 is

110

Algorithm 5.1 RepHeads(B2P = (P, Γ, ∆B2P , FB2P))

1: R← ∅, E ← ∅

2: {First, compute the set of edges, E, of the head reachability graph from B2P}

3: {Direct reachability between two heads, i.e., indicated by a rule of B2P}

4: for all r = 〈p, γ〉 →֒B2P 〈p
′, γ′v〉 ∈ ∆B2P , where v ∈ Γ∗ do

5: E ← E
⋃

{(〈p, γ〉, (FB2P(r), RB(r), RP(r)), 〈p′, γ′〉)}

6: end for

7: {Compute the indirect reachability relation between heads, see Algorithm 5.2.}

8: ∆label ← HeadReachability(∆B2P)

9: {Indirect reachability between two heads, computed by HeadReachability}

10: for all 〈p, γ〉
l
→֒B2P 〈p

′, γ′〉 ∈ ∆label do

11: E ← E
⋃

{(〈p, γ〉, l, 〈p′, γ′〉)}

12: end for

13:

14: {Second, find R in G}

15: Find strongly connected components, SCC, in G = ((P × Γ), E)

16: for all C ∈ SCC do

17: if C has internal edges labeled by (1, ∗, ∗), (∗, 1, ∗), and (∗, ∗, 1), where ∗

represents 0 or 1 then

18: {C contains a set of repeating heads whose repeating paths satisfy the

BPDS loop constraint}

19: R← R
⋃

{the heads in C}

20: end if

21: end for

22: return R

111

Algorithm 5.2 HeadReachability(∆B2P)

1: ∆label ← ∅, rel← ∅, trans← ∅

2: {Compute the head reachability graph of B2P using the pre∗ algorithm}

3: for all r = 〈p, γ〉 →֒B2P 〈p
′, ε〉 ∈ ∆B2P do

4: {Add the labeled rule r (written in a simplified form) to trans}

5: trans← trans
⋃

{ (p, [γ, FB2P(r), RB(r), RP(r)], p′) }

6: end for

7: while trans 6= ∅ do

8: pop t = (p, [γ, b1, b2, b3], p
′) from trans;

9: if t /∈ rel then

10: rel← rel
⋃

{t};

11: for all r = 〈p1, γ1〉 →֒B2P 〈p, γ〉 ∈ ∆B2P do

12: trans← trans
⋃

{ (p1, [γ1, b1
∨

FB2P(r), b2
∨

RB(r), b3
∨

RP(r)], p′) }

13: end for

14: for all 〈p1, γ1〉
l
→֒B2P 〈p, γ〉 ∈ ∆label, l = (b′1, b

′
2, b

′
3) do

15: trans← trans
⋃

{ (p1, [γ1, b1
∨

b′1, b2
∨

b′2, b3
∨

b′3], p′) }

16: end for

17: for all r = 〈p1, γ1〉 →֒B2P 〈p, γγ2〉 ∈ ∆B2P do

18: ∆label ← ∆label

⋃

{〈p1, γ1〉
l
→֒B2P 〈p

′, γ2〉}, where

l = (b1
∨

FB2P(r), b2
∨

RB(r), b3
∨

RP(r))

19: {Match the new rule with the rules that have been processed}

20: for all (p′, [γ2, b
′
1, b

′
2, b

′
3], p

′′) ∈ rel do

21: trans← trans
⋃

{ (p1, [γ1, b1
∨

b′1
∨

FB2P(r),

b2
∨

b′2
∨

RB(r), b3
∨

b′3
∨

RP(r)], p′′) }

22: end for

23: end for

24: end if

25: end while

26: return ∆label

112

reachable from 〈p1, γ1〉; therefore, we add a new rule 〈p1, γ1〉 →֒B2P 〈p
′, γ2〉

to ∆label.

• Between line 20 and line 22, since there is a new rule 〈p1, γ1〉 →֒B2P 〈p
′, γ2〉

generated, we need to go through the set rel in order to check if the new rule

can be combined with any processed rules. If there is a rule 〈p′, γ2〉 →֒B2P

〈p′′, ε〉 in rel, a new rule 〈p1, γ1〉 →֒B2P 〈p
′′, ε〉 should be added to trans.

During this process, we also use the labels to record the information whether the

Büchi acceptance condition and the BPDS loop constraint can be satisfied by

repeating the path between two heads.

Complexity analysis. Algorithm 5.2 is actually a pre∗ algorithm which takes

O(|P |2|∆B2P |) time and O(|P ||∆B2P |) space [77]. In Algorithm 5.1, the first

part generates the head reachability graph G which takes O(|P |2|∆B2P |) time and

O(|P ||∆B2P |) space by invoking Algorithm 5.2. The second part computes strongly

connected components in G which is a linear time computation with respect to the

size of G. The rules of ∆B2P contribute O(|∆B2P |) nodes and edges to the size

of G. Since the size of ∆label is O(|P ||∆B2P |), the total size of G is O(|P ||∆B2P |).

Obviously, the first part of the algorithm dominates the complexity; therefore Al-

gorithm 5.1 takes O(|P |2|∆B2P |) time and O(|P ||∆B2P |) space.

5.3.2 Computing the Reachability of Repeating Heads

After R is computed, we need to decide whether post∗({c0})
⋂

{c|head(c) ∈ R} = ∅,

i.e., given the initial configuration c0, if there exits c0 ⇒
∗ c for some head(c) ∈

R. Similar to the reachability analysis algorithm discussed in Section 5.2, a B2P

model can also be converted into a PDS model for reachability analysis, where the

complexity of the conversion is O(|B2P|).

The forward reachability algorithms, post∗, for PDS-equivalent models have

been well studied. We utilize Schwoon’s algorithm [77] in our LTL checking of

113

BPDS, where the complexity of the algorithm is O((|P |+ |∆B2P |)
3).

5.3.3 Summary

Given a BPDS BP and an LTL property ϕ, we can construct a transition sys-

tem B2P as the Cartesian product of BP and a BA Bϕ that recognizes ϕ. The

model checking problem is then reduced to computing if B2P has an accepting

run. There are two parts in computing the accepting run of B2P. First, we need

to detect a special set of repeating heads in B2P such that their repeating paths

can help satisfy the BPDS loop constraint. Algorithm 5.1 solves this problem us-

ing O(|P |2|∆B2P |) time and O(|P ||∆B2P |) space. Second, we need to check if a

repeating head is reachable from the initial configuration of B2P. This problem

can be solved using O((|P | + |∆B2P |)
3) time and space. In conclusion, the LTL

model checking of BPDS has the complexity of O((|P |+ |∆B2P |)
3).

5.4 OPTIMIZATION OF REACHABILITY ANALYSIS

5.4.1 Reduction Algorithm

As discussed in Chapter 4, a BPDS BP is constructed from a BA B and an LPDS

P using a Cartesian product. It is näıve to verify such a BPDS model, since

we may not need all the information from a model to prove a specific type of

property. Instead, it is a common practice to automatically prune the model

according to the property to be verified. For example, the set of BPDS rules is the

product of δ that belongs to B and ∆ that belongs to P in the näıve approach.

However, with respect to reachability analysis, a complete product is unnecessary

when B and P are asynchronous (i.e., when the BA transitions and LPDS rules

are independent), since their transition orders usually do not matter. Without

affecting the verification result, static partial order reduction can be applied to

reduce the BPDS rules generated by the product. The reduced BPDS model BPr

114

will have a smaller set of transition rules ∆′
r ⊆ ∆′ and fewer state transition traces

while still preserving the reachability properties of BP . Figure 5.3 illustrates the

verification process that supports the reduction. When constructing the BPDS

BPDSRULES

PDS
Model

YES

NO

with Static Partial

Order Reduction
P'r checker

BPDS2PDS
BPDS

Reduced

BPr

LPDS P

BBA

Figure 5.3: Reachability analysis of BPDS with static partial order reduction.

BPr from B and P, static partial order reduction is applied to reduce the BPDS

rules that are generated. Since there are fewer BPDS rules to be explored in

verification, the reachability analysis is more efficient with reduction than that of

the näıve approach.

Our reduction [49] is based on the observation that when B and P transition

asynchronously, one can run continuously while the other one loops. Figure 5.4

illustrates the idea of reducing a BPDS state transition graph that starts from

the configuration c0,0. Figure 5.4a is a complete state transition graph. There are

three types of transition edges:

• a horizontal edge represents a transition when B transitions and P self-loops,

which follows a BPDS rule in the form of 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉;

• a vertical edge represents a transition when P transitions and B self-loops,

which follows a BPDS rule in the form of 〈(g, q), γ〉 →֒BP 〈(g
′, q), w〉; and

• a diagonal edge represents a transition when B and P transition together,

which follows a BPDS rule in the form of 〈(g, q), γ〉 →֒BP 〈(g
′, q′), w〉.

For every configuration ci,j = 〈(g, q), γv〉 (0 ≤ i ≤ m and 0 ≤ j ≤ n) as well as

the BA transition t = q
σ
→ q′ and the LPDS rule r = 〈g, γ〉

τ
→֒ 〈g′, ω〉 that are

115

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(a) Complete transition graph

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(b) Reduce hori./diag. edges

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(c) Reduce vert./diag. edges

Figure 5.4: An example of static partial order reduction on BPDS transitions.

State transition edges are reduced without affecting the reachability from c0,0 when

BA and LPDS are asynchronous.

both enabled on ci,j, if t and r are independent, we can reduce a large set of state

transitions in Figure 5.4a without affecting the reachability from c0,0 to other con-

figurations in the graph. Figure 5.4b and Figure 5.4c illustrate two types of static

partial order reductions that reduce horizontal/diagonal transition edges and ver-

tical/diagonal transition edges respectively. The reduction can significantly reduce

the transition rules of BP , when BA transitions and LPDS rules are independent.

Now we present an optimization of Algorithm 4.1, where the reduction is ap-

plied during the rule generation of the BPDS model BPr. In the reduction pro-

cess, we need to identify those situations when BPDS rules can be reduced. Since

the reduction is applied only if the transitions of B and P are independent, a

straightforward approach needs to maintain all independent BA transitions and

LPDS rules as the reducible candidates. However, such an approach is inefficient.

Because B and P are asynchronous in most of their transitions, there are many

independent BA transitions and LPDS rules. Therefore, we try to identify the

situations when BA transitions and LPDS rules are dependent so that we know

what BPDS rules cannot be reduced instead of what BPDS can be reduced. Note

that both reduction approaches should have the same effect. We define a set of

LPDS heads, SensitiveSet, on Conf(P) as follows:

116

Definition 5.6. SensitiveSet = { head(〈g0, ω0〉) }
⋃

{ head(c′) | ∃r = c
τ
→֒ c′ ∈

∆, ∃t ∈ δ, r and t are dependent }, where 〈g0, ω0〉 is the initial configuration of P.

The concept of SensitiveSet is similar to that of sleep set [33]. However, instead

of identifying transitions that are unnecessary to be executed (i.e., reducible) at

a state, SensitiveSet identifies transitions that should be preserved (i.e., irre-

ducible).

Algorithm 5.3 applies the reduction following the idea illustrated in Figure 5.4b,

where the horizontal/diagonal edges are reduced.

• At line 6, since the LPDS rule r and the BA transition t are dependent,

B and P must transition together; therefore, we construct a BPDS rule

〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉;

• At line 9, we construct a vertical rule 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 to represent

the asynchronous situation when P transitions and B self-loops. Since Al-

gorithm 5.3 follows the reduction demonstrated in Figure 5.4b, all vertical

BPDS rules are preserved;

• At line 12, we construct a horizontal rule 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 to repre-

sent the asynchronous situation when B transitions and P self-loops, if and

only if head(r) belongs to SensitiveSet.

Complexity analysis. Same to Algorithm 4.1, Algorithm 5.3 takes O(|δ| × |∆|)

time and O(|δ×∆|) space, where |δ×∆| denotes the size of BPDS rules that can

be constructed without the reduction.

Let nSR be the number of LPDS rules (in ∆) whose heads belong to SensitiveSet,

and nsync be the number of BPDS rules (in ∆′) where the corresponding BA tran-

sitions and LPDS rules are dependent. We have |∆hori| = nSR × |δ| and |∆sync| =

nsync. As illustrated in Figure 5.4, asynchronous transitions can be organized as

117

Algorithm 5.3 BPDSRulesViaSPOR(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅

2: for all r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ do

3: for all t = q
σ
→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do

4: if r and t are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

7: else

8: {Vertical edges (see Figure 5.4b), when P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉}

10: if 〈g, γ〉 ∈ SensitiveSet then

11: {Horizontal edges (see Figure 5.4b), when B transitions P self-loops}

12: ∆hori ← ∆hori

⋃

{〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉}

13: end if

14: end if

15: end for

16: end for

17: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

18: return ∆′
r

118

triples where each one includes a vertical transition, a horizontal transition, and a

diagonal transition, so we have |∆vert| =
|δ×∆|−nsync

3
. The number of rules generated

in Algorithm 5.3 is |∆′
r| = nsync+

|δ×∆|−nsync

3
+nSR×|δ| =

2
3
nsync+

|δ×∆|
3

+nSR×|δ|.

The number of transition rules reduced is |∆′|−|∆′
r| =

2
3
|δ×∆|− 2

3
nsync−nSR×|δ|.

We can infer from this expression that the fewer dependent transitions of B and

P the more BPDS rules Algorithm 5.3 can reduce.

5.4.2 Correctness Argument

In Algorithm 5.3, a diagonal rule is reduced if the corresponding BA transition

and LPDS rule are independent. This kind of reduction does not affect any reach-

ability property, because the diagonal rule can be represented by one horizontal

rule and one vertical rule respectively. A horizontal rule is reduced if the head of

the corresponding LPDS rule in P does not belong to SensitiveSet. There is a

special set of heads,

DivideSet = { h | h ∈ SensitiveSet, ∀r = c
τ
→֒ c′ ∈ ∆ and ∀t ∈ δ, if head(c) = h

then r and t are not dependent }.

Informally, DivideSet describes a set of configurations that can be considered

as divide-lines (in the traces of P projected from the traces of BP) for two ad-

jacent LPDS transitions that are respectively dependent and independent with

the BA transitions. Given a trace of BPr in the form of 〈(g0, q0), ω0〉 ⇒BP

. . . ⇒BP 〈(gj, qj), ωj〉 ⇒BP . . . ⇒BP 〈(gk, qk), ωk〉 ⇒BP . . . (0 ≤ j < k), if

head(〈gj, ωj〉) ∈ DivideSet and 〈(gk, qk), ωk〉 is the first configuration satisfying

head(〈gk, ωk〉) ∈ SensitiveSet after 〈(gj, qj), ωj〉, we can infer that no horizontal

transition occurs between 〈(gj, qj), ωj〉 and 〈(gk−1, qk−1), ωk−1〉 in the trace (i.e.,

qj = qk−1), because the horizontal transitions have been reduced.

Theorem 5.2. BPr preserves the reachability of BP from the initial configuration.

Proof. It is easy to observe that BPr and BP have the same state space and initial

119

configuration, so the question is to prove that (1) given a trace of BP in the form

of φ = c0 ⇒BP c1 . . . ⇒BP c, there is a corresponding trace of BPr such that

φ′ = c0 ⇒BP c′1 . . .⇒BP c; and (2) vice versa.

“⇒⇒⇒”: Two types of transitions are reduced in BPr, compared to BP . As explained

above, the reduction of diagonal transitions does not affect any reachability prop-

erty. We prove that the reduction of horizontal transitions does not affect the

correctness of (1) by mathematical induction.

Basis. If |φ| = 0, i.e., c = c0, the reachability trivially holds on BPr. If |φ| = 1,

because there is no horizontal transition reduced on the initial configuration, for

any transition c0 ⇒BP c of BP there must be a corresponding trace of BPr that

preserves the reachability.

Inductive step. Given a trace φ = c0 ⇒BP c1 . . . ⇒BP ci ⇒BP c′ (i ≥ 0) of BP

where |φ| = i + 1, if there exists a trace φ′ = c0 ⇒BP c′1 . . .⇒BP c′j ⇒BP c′ (j ≥ 0)

of BPr where |φ′| = j + 1, we show that for every t = c′ ⇒BP c of BP , there

is a trace of BPr such that c0 ⇒
∗
BP c. Recall that the horizontal transitions are

reduced in BPr except at configurations whose heads belong to SensitiveSet, so

we need to prove that this reduction does not affect the reachability if t involves a

horizontal transition that is reduced in BPr. In the trace φ′, we can always find a

configuration

c′k = 〈(gk, qk), ωk〉, 0 ≤ k ≤ j,

such that c′k is the last configuration satisfying head(〈gk, ωk〉) ∈ SensitiveSet.

Thus, the path from c′k to c′ has the form of

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk+1, qk), ωk+1〉 ⇒BP . . .⇒BP (c′ : 〈(gj+1, qk), ωj+1〉),

where B always loops at the state qk after c′k. Because the horizontal transitions

are reduced on the configurations after c′k, BPr cannot directly have the transition

(c′ : 〈(gj+1, qk), ωj+1〉) ⇒BP (c : 〈(gj+1, qk+1), ωj+1〉), i.e., the corresponding BPDS

120

rule 〈(gj+1, qk), γj+1〉) →֒BP 〈(gj+1, qk+1), γj+1〉 (γj+1 is the top stack symbol of

ωj+1) does not exist after the reduction. However, since the BA transitions and

LPDS transitions are independent on the path from c′k to c′, we can shift the

horizontal transition backward to the position right after c′k where the horizontal

transitions are not reduced. In this case, the path is

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk, qk+1), ωk〉 ⇒BP 〈(gk+1, qk+1), ωk+1〉 ⇒BP . . .⇒BP (c :

〈(gj+1, qk+1), ωj+1〉).

Therefore, we have proven that there exists a trace of BPr such that c0 ⇒
∗
BP c.

“⇐⇐⇐”: The other direction always holds because ∆′
r ⊆ ∆′. For every rule of BPr,

BP has the same rule. Thus, for every trace of BPr, BP has the same trace.

Theorem 5.3. BPr is optimal with respect to static partial order reduction.

Proof. Since static partial order reduction is applied on the model before model

checking, information available only during the model checking process cannot be

utilized. For example, given two LPDS rules: r1 = c ֒
τ
−→ c′ that is dependent

with at least one BA transition and r2 = c′′ ֒
τ ′

−→ c′ that is independent with all

BA transitions. A transition path through r2 clearly does not need to explore a

horizontal transition at c′ in order to preserve the reachability. However, unless in

the model checking process, we cannot know how c′ is reached, i.e., via r1 or r2.

Therefore, head(c′) should be added to SensitiveSet and horizontal BPDS rules

should not be reduced if they are related to head(c′).

We prove the theorem by demonstrating that any BPDS rule constructed by

Algorithm 5.3 cannot be reduced without affecting the reachability properties to

be verified.

• At line 6, if the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 is reduced, the con-

figuration 〈(g′, q′), ω〉 may not be reachable anymore, since B and P must

121

transition together at dependent transitions. Furthermore, any BPDS con-

figuration that is reachable from 〈(g′, q′), ω〉 may also be affected. Note that

〈(g′, q′), ω〉 may still be reachable through other BPDS paths even if the rule

is reduced, but we cannot know this unless in the model checking process.

Therefore, we should not reduce the rule;

• At line 9, if 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 is reduced, the configuration 〈(g′, q), ω〉

may not be reachable anymore. For example, in Figure 5.4b, reduce any

vertical transition may affect the reachability to some BPDS configurations;

• At line 12, if 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 is reduced, the configuration 〈(g, q′), γ〉

may not be reachable anymore. For example, in Figure 5.4b, reduce any hor-

izontal transition may affect the reachability to some BPDS configurations.

With the information available in static partial order reduction, we cannot ensure

reducing any rule constructed by Algorithm 5.3 without affecting the reachability

properties; therefore, we have proven that BPr is optimal.

Example 1. Given a BA transition, t = Wrk
{no event}
−−−−−−→ Idle, illustrated in Fig-

ure 4.1 and an LPDS rule, r = 〈a, main1〉 ֒
{no intr}
−−−−−→ 〈!a, main2〉, illustrated in

Figure 4.4, Algorithm 4.1 constructed the following BPDS rules:

• 〈(a, Wrk), main1〉 →֒BP 〈(a, Idle), main1〉, i.e., B transitions and P self-

loops;

• 〈(a, Wrk), main1〉 →֒BP 〈(!a, Wrk), main2〉, i.e., P transitions and B self-

loops; and

• 〈(a, Wrk), main1〉 →֒BP 〈(!a, Idle), main2〉, i.e., B and P transitions to-

gether.

122

Since t and r are independent, B and P do not need to transition together.

Furthermore, the LPDS head 〈a, main1〉 is not in SensitiveSet, since there is

no BA transition dependent with an LPDS rule that transition to 〈a, main1〉.

Therefore, Algorithm 5.3 only constructs one BPDS rule 〈(a, Wrk), main1〉 →֒BP

〈(!a, Wrk), main2〉, while the first and third BPDS rules are reduced.

Example 2. Given a BA transition t = Init
{reset}
−−−−→ Rst and an LPDS rule r =

〈a, reset0〉 ֒
{no intr}
−−−−−→ 〈a, reset1〉, since t and r are dependent, both Algorithm 4.1

and Algorithm 5.3 need to construct the BPDS rule 〈(a, Init), reset0〉 →֒BP

〈(a, Rst), reset1〉 to represent the synchronous transition of B and P.

Example 3. Given a BA transition t = Intr
{no event}
−−−−−−→ Wrk and an LPDS rule

r = 〈a, NonHWRelated1〉 ֒
{intr}
−−−→ 〈a, isr0 NonHWRelated1〉, since t and r are

dependent, both Algorithm 4.1 and Algorithm 5.3 need to construct the BPDS

rule 〈(a, Intr), NonHWRelated1〉 →֒BP 〈(a, Wrk), isr0 NonHWRelated1〉 to rep-

resent the synchronous transition of B and P. However, this BPDS rule is actually

unnecessary. Since the procedure NonHWRelated neither operates the hardware

nor accesses any software global variable, interrupting NonHWRelated to execute

the ISR will not affect the verification results.

Reducing ISR calls. Example 3 demonstrates that ISR calls are unnecessary af-

ter some LPDS transitions; therefore, these ISR calls should be reduced. Following

the idea of relative atomicity (see Chapter 3), we can understand the execution of

ISR as an atomic transition with respect to other lower-priority software routines.

A statement of the lower-priority routines is dependent with such an ISR transition

if and only if the statement operates hardware or accesses software global variables;

otherwise, the statement is independent with the ISR transition. Based on this

observation, the idea similar to Algorithm 5.3 can also be applied to reduced the

ISR calls introduced to LPDS. Chapter 6 will further discuss the reduction of ISR

calls combined with Algorithm 5.3 in implementation.

123

5.5 OPTIMIZATION OF LTL CHECKING

5.5.1 Reduction Algorithm

When verifying an LTL property on a BPDS BP , some transition orders between

the BA B and the LPDS P can also be reduced without affecting the verification

result. In this section, we present how to utilize the concept of static partial order

reduction in the LTL checking of BPDS. We denote the reduced BPDS model as

BPr. Let ∆′
r be the set of BPDS rules of BPr and ∆′ be the set of BPDS rules

of BP . We have ∆′
r ⊆ ∆′, i.e., BPr has a smaller set of BPDS rules compared to

BP .

In reachability analysis, we have demonstrated that static partial order reduc-

tion can be applied on BPDS without affecting the reachability from the initial

configuration to any other configurations. This reduction is conservative, since

there always exists at least one trace that preserves the reachability to certain

configuration. However, LTL checking is different, since we not only need to know

whether a configuration is reachable, but also need to know how the configuration

is reached. In other words, without the knowledge about what LTL property to

verify, a reachability-preserving trace may not be able to preserve the LTL prop-

erty. Therefore, we need to consider the LTL property in our reduction algorithm.

As discussed in Chapter 2, there are five temporal operators that are commonly

used to specify LTL properties. Partial order reduction cannot be effectively ap-

plied with the next operator, XXX. Intuitively, next operator states the relation

between two propositions within one state transition, which can make all tran-

sition orders between B and P matter to the verification result. Therefore, we

apply static partial order reduction with LTL properties that do not use the next

operator. This type of LTL property is denoted as LTL−X .

Definition 5.7. Given an LTL−X formula ϕ to be verified on BP , a BPDS rule

c →֒BP c′ is invisible to ϕ if and only if Lϕ(c) = Lϕ(c′), i.e., all state transitions

124

that follow this BPDS rule do not change the value of the propositional variables

in At(ϕ); otherwise the rule is visible to ϕ. If all the transitions on a BPDS path

are invisible to ϕ, the path is also invisible to ϕ.

Definition 5.8. Given a BPDS rule rBP , V isProp(rBP) denotes the set of propo-

sitional variables whose value is affected by the BPDS rule rBP . Obviously, if

V isProp(rBP) = ∅, rBP is invisible.

• Given t = q
σ
−→ q′ ∈ δ and a ∈ 2At(ϕ), for every rBP = 〈(g, q), γ〉 →֒BP

〈(g, q′), γ〉 ∈ ∆′, if V isProp(rBP) = a 6= ∅, t is said to be horizontally visible.

• Given r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ and a ∈ 2At(ϕ), for every rBP = 〈(g, q), γ〉 →֒BP

〈(g′, q), ω〉 ∈ ∆′, if V isProp(rBP) = a 6= ∅, r is said to be vertically visible.

Intuitively, horizontal visibility describes the situation when some propositional

variables are evaluated only based on the states of BA; vertical visibility describes

the situation when some propositional variables are evaluated only based on the

states of LPDS. This kind of classification, as quite useful in symbolic represen-

tations (see Section 5.6), can help us reduce many visible BPDS rules without

affecting the LTL−X properties to be verified.

Given a BA transition t and an LPDS rule r, Algorithm 5.4 decides whether

the corresponding diagonal/horizontal BPDS rules are reducible candidates. We

should assume that t and r are independent; otherwise, since B and P must tran-

sition together when t and r are dependent, no BPDS rule can be reduced.

• Between line 8 and line 9, if there is no visible BPDS rule, both the horizontal

rule r1 and the diagonal rule r3 are reducible candidates;

• Between line 11 and line 13, the diagonal rule r3 is a reducible candidate if it

is replaceable by a horizontal rule and a vertical rule. Lemma 5.3 will discuss

the correctness of this reduction;

125

Algorithm 5.4 ReducibleBPDSRules(t ∈ δ, r ∈ ∆)

Require: t and r are independent.

1: ReduceDiag ← FALSE, ReduceHori← FALSE

2: Let t = q
σ
−→ q′

3: r = 〈g, γ〉
τ
→֒ 〈g′, ω〉

4: r1 = 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 {Horizontal BPDS rules, see Figure 5.4a}

5: r2 = 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 {Vertical BPDS rules, see Figure 5.4a}

6: r3 = 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 {Diagonal BPDS rules, see Figure 5.4a}

7: if V isProp(r1) = ∅ and V isProp(r2) = ∅ and V isProp(r3) = ∅ then

8: {If r1, r2, and r3 are all invisible}

9: ReduceDiag ← TRUE, ReduceHori← TRUE

10: else

11: if V isProp(r1) = V isProp(r3) or V isProp(r2) = V isProp(r3) or

V isProp(r1) = ∅ or V isProp(r2) = ∅ then

12: ReduceDiag ← TRUE

13: end if

14: if r1 is invisible or t is horizontally visible then

15: ReduceHori← TRUE

16: end if

17: end if

18: return (ReduceDiag, ReduceHori)

126

• Between line 14 and line 16, the horizontal rule r1 is a reducible candidate if

it is either invisible or constructed from a BA transition (i.e., t) that is hor-

izontally visible. Theorem 5.5 will discuss the correctness of this reduction.

Definition 5.9. Similar to the reduction applied in reachability analysis, we need

to decide which BPDS rules cannot be reduced. Therefore, we identify three sets

of heads, SensitiveSet, V isibleSet, and LoopSet on Conf(P) as follows:

• SensitiveSet = { head(〈g0, ω0〉) }
⋃

{ head(c′) | ∃r = c
τ
→֒ c′ ∈ ∆, ∃t ∈ δ, r

and t are dependent }, where 〈g0, ω0〉 is the initial configuration of P;

• V isbileSet = { head(〈g′, ω〉) | ∃r = 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 ∈ ∆′ that is

visible to ϕ; and r is irreducible according to Algorithm 5.4 };

• LoopSet = { h | for every strongly connected component C in GP , pick a

head h from C }, where GP is the head reachability graph of P and there is

no preference on how h is selected from C.

SensitiveSet is necessary to preserve the reachability from the initial configuration

to other configurations; the concept of V isibleSet is similar to that of SensitiveSet,

i.e., preserving the reachability of BPDS paths right after a visible transition that

cannot be reduced according to Algorithm 5.4; LoopSet, similar to the concept

of cycle closing condition [44], is introduced to satisfy the BPDS loop constraint

when a loop of P is involved in the accepting run of B2P.

Algorithm 5.5 applies the reduction following the idea illustrated in Figure 5.4b,

where the horizontal/diagonal edges are reduced.

• At line 6, since the LPDS rule r and the BA transition t are dependent,

B and P must transition together; therefore, we construct a BPDS rule

〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉;

127

Algorithm 5.5 BPDSRulesViaSPOR LTL(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅, ∆diag ← ∅

2: for all r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ do

3: for all t = q
σ
→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do

4: if r and t are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

7: else

8: {P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉}

10: (ReduceDiag, ReduceHori)← ReducibleBPDSRules(t, r)

11: if ReduceDiag = FALSE then

12: {B and P transition together}

13: ∆diag ← ∆diag

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

14: end if

15: if ReduceHori = FALSE or

〈g, γ〉 ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet then

16: {B transitions and P self-loops}

17: ∆hori ← ∆hori

⋃

{〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉}

18: end if

19: end if

20: end for

21: end for

22: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

⋃

∆diag

23: return ∆′
r

128

• At line 9, we construct a vertical rule 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 to represent

the asynchronous situation when P transitions and B self-loops. Since Al-

gorithm 5.5 follows the reduction demonstrated in Figure 5.4b, all vertical

BPDS rules are preserved;

• At line 10, we invoke Algorithm 5.4, i.e., ReducibleBPDSRules, to decide

if the horizontal/diagonal BPDS rules are reducible candidates;

• Between line 11 and line 14, we construct a diagonal BPDS rule if necessary;

• Between line 15 and line 18, we construct a horizontal BPDS rule if necessary;

Note that even if ReducibleBPDSRules returns TRUE for ReduceHori,

we still have to preserve this horizontal BPDS rule if head(r) belongs to

SensitiveSet, V isibleSet, or LoopSet.

Complexity analysis. Algorithm 5.5 takes O(|δ|×|∆|) time and O(|δ×∆|) space,

where |δ×∆| denotes the size of BPDS rules that can be constructed without the

reduction.

Let nsync be the number of BPDS rules that are generated from dependent BA

transitions and LPDS rules (at line 6), nv be the number of BPDS rules related to

visible transitions (i.e., when Algorithm 5.4 returns ReduceDiag or ReduceHori as

FALSE), nsvl be the number of BPDS rules associated to SensitiveSet, V isibleSet,

and LoopSet (at line 17 when ReduceHori is TRUE). We have |∆hori

⋃

∆diag| = nv+

nsvl and |∆sync| = nsync. As illustrated in Figure 5.4, asynchronous transitions can

be organized as triples where each one includes a vertical transition, a horizontal

transition, and a diagonal transition, so we have |∆vert| =
|δ×∆|−nsync

3
. The number

of rules generated by Algorithm 5.5 is |∆′
r
| = nsync + |δ×∆|−nsync

3
+ nv + nsvl =

2
3
nsync + |δ×∆|

3
+ nv + nsvl. The number of transition rules reduced is |∆′| − |∆′

r| =

2
3
|δ×∆|−nv−

2
3
nsync−nsvl. Therefore, our reduction is effective when the following

criteria have small sizes:

129

• BPDS rules visible to ϕ;

• dependent transitions of B and P; and

• loops in P.

5.5.2 Correctness Argument

We prove the correctness of the reduction by two steps. First, we assume that

no visible BPDS rule (including the related invisible BPDS rules) is reduced by

Algorithm 5.5. More specifically, the pseudo code between line 10 and line 17 of

Algorithm 5.4 is not used in this case. Based on this assumption, let the reduced

BPDS model be BP ′
r. We prove that any LTL−X property is invariant on BP and

BP ′
r. Second, let the reduced BPDS model without the assumption be BPr. We

prove that any LTL−X property is invariant on BP ′
r and BPr.

First, any LTL−X property is invariant on BP and BP ′
r. There are several

concepts that can help our proof.

Definition 5.10. Given a labeling function L, two infinite paths φ1 = s0 → s1 →

. . . and φ2 = q0 → q1 → . . . are stuttering equivalent, written as φ1 ∼st φ2, if

there are two infinite sequences of positive integers 0 = i0 < i1 < i2 < . . . and

0 = j0 < j1 < j2 < . . . such that for every k ≥ 0, L(sik) = L(sik+1) = . . . =

L(sik+1−1) = L(qjk
) = L(qjk+1) = . . . = L(qjk+1−1).

Definition 5.11. We define a transition block as a BPDS path K = c⇒∗
BP c′ such

that K is invisible, where for c = 〈(g, q), ω〉, head(〈g, ω〉) ∈ V isibleSet. K can be

considered as an invisible path right after a visible transition. Given two transition

blocks K = c ⇒∗
BP c′ and K ′ = c′′ ⇒∗

BP c′′′, they are referred to as corresponding

transition blocks if c = c′′ and c′ = c′′′. Obviously, K ∼st K ′.

Lemma 5.1. If BP has a transition block K = c0 ⇒BP c1 ⇒BP . . . ⇒BP c, BP ′
r

always has a corresponding transition block K ′ = c0 ⇒BP c′1 ⇒BP . . .⇒BP c.

130

Proof. Two types of transitions are reduced in BP ′
r: diagonal and horizontal.

First, the reduction of diagonal transitions does not affect this lemma. Given any

invisible diagonal transition t = c ⇒BP c′, if it is reduced by Algorithm 5.5, all

transitions starting from c must be invisible. Therefore, we can always use an

invisible path, (c : 〈(g, q), γv〉) ⇒BP (c′′ : 〈(g, q′), γv〉) ⇒BP (c′ : 〈(g′, q′), ωv〉), to

replace t, where Lϕ(c) = Lϕ(c′′) = Lϕ(c′), γ ∈ Γ, and v, ω ∈ Γ∗.

Second, we prove that the reduction of horizontal transitions does not affect this

lemma by mathematical induction.

Basis. When |K| = 0, i.e., c = c0, the lemma trivially holds. When |K| = 1, since

no horizontal edges are reduced at c0, the lemma also holds.

Inductive step. Given K = c0 ⇒BP c1 . . . ⇒BP ci−1 ⇒BP c′, where |K| = i > 0,

if BP ′
r has a transition block K ′ = c0 ⇒BP c′1 . . . ⇒BP c′j−1 ⇒BP c′ where |K ′| =

j > 0, we show that for every invisible transition t = c′ ⇒BP c of BP , there is a

transition block of BP ′
r such that c0 ⇒

∗
BP c.

In K ′, we can always find a configuration c′k = 〈(gk, qk), ωk〉 (0 ≤ k < j) such

that c′k is the last configuration satisfying

head(〈gk, ωk〉) ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet.

Thus, the path from c′k to c′ has the form of

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk+1, qk), ωk+1〉 ⇒BP . . .⇒BP (c′ : 〈(gj, qk), ωj〉),

where B always loops at the state qk after c′k. Because the horizontal transitions

are reduced on the configurations after c′k, BP
′
r cannot have a horizontal transition

from c′ to c. However, since the BA transitions and LPDS transitions are inde-

pendent on the path from c′k to c′, we can shift the horizontal transition backward

to the position right after c′k where the horizontal transitions are not reduced. In

this case, the path is

131

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk, qk+1), ωk〉 ⇒BP 〈(gk+1, qk+1), ωk+1〉 ⇒BP . . .⇒BP (c :

〈(gj, qk+1), ωj〉).

Note that, this path is invisible, because BP ′
r does not have any visible transitions

on the paths between c′k and c. Otherwise, there must be a configuration, 〈(g, q), ω〉

after c′k on path K ′, such that head(〈g, ω〉) ∈ V isibleSet. Therefore, BP ′
r has a

transition block c0 ⇒
∗
BP c.

Lemma 5.2. Any LTL−X property is invariant under stuttering [22].

Theorem 5.4. Any LTL−X property is invariant on BP and BP ′
r.

Proof. We prove that if BP has a trace φ, BP ′
r always has a trace φ′ that is

stuttering equivalent to φ; and vice versa.

“⇒⇒⇒”: φ can be written as a sequence of transition blocks such that K0 ⇒BP

K1 ⇒BP . . ., where only the transitions between the transition blocks are visible.

Since no visible transition is reduced, BP ′
r has the same transitions that connect

these transition blocks in φ. Lemma 5.1 has already proven that ∀i ≥ 0, BP ′
r has

K ′
i corresponding to Ki. Therefore, BP ′

r has a trace φ′ such that φ ∼st φ′.

“⇐⇐⇐”: For every rule of BP ′
r, BP has the same rule; therefore, for every trace of

BP ′
r, BP has the same trace.

Second, any LTL−X property is invariant on BP ′
r and BPr.

Lemma 5.3. Any diagonal BPDS rule (written as 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉)

reduced according to Algorithm 5.4 can be replaced by a horizontal BPDS rule and

a vertical BPDS rule.

Proof. The diagonal BPDS rule can be either visible or invisible. As illustrated in

Figure 5.5, a visible diagonal BPDS rule is reduced in the following four conditions:

132

VisProp(r1) = VisProp(r3)

r1

r3 r'

VisProp(r2) = VisProp(r3)

r3

r'

r2

r1

r3 r' r3

r'

r2

VisProp(r1) = VisProp(r2) =

Legend:

Dashed line: visible rule

Solid line: invisible rule

Figure 5.5: Reducible visible diagonal BPDS rules.

• For V isProp(r1) = V isProp(r3), we know that r′ = 〈(g, q′), γ〉 →֒BP 〈(g
′, q′), ω〉

must be invisible; therefore r3 can be replaced by r1 and r′ without affecting

the stuttering equivalence between the paths of BP ′
r and BPr.

• For V isProp(r2) = V isProp(r3), we know that r′ = 〈(g′, q), γ′〉 →֒BP 〈(g
′, q′), γ′〉

must be invisible, where γ′ is the top stack symbol in ω; therefore r3 can be

replaced by r2 and r′.

• For V isProp(r1) = ∅, given r′ = 〈(g, q′), γ〉 →֒BP 〈(g
′, q′), ω〉, we know that

V isProp(r′) = V isProp(r3); therefore r3 can be replaced by r1 and r′.

• For V isProp(r2) = ∅, given r′ = 〈(g′, q), γ′〉 →֒BP 〈(g
′, q′), γ′〉, where γ′ is the

top stack symbol in ω, we know that V isProp(r′) = V isProp(r3); therefore

r3 can be replaced by r2 and r′.

As illustrated in Figure 5.6, an invisible diagonal BPDS rule is reducible in the

following two conditions:

• For V isProp(r1) = V isProp(r3) or V isProp(r1) = ∅, we know that r′ =

〈(g, q′), γ〉 →֒BP 〈(g
′, q′), ω〉 must be invisible; therefore r3 can be replaced by

133

VisProp(r1) = VisProp(r3)

r1

r3 r'

VisProp(r2) = VisProp(r3)

r3

r'

r2

VisProp(r1) = VisProp(r2) =
OR OR

Figure 5.6: Reducible invisible diagonal BPDS rules.

r1 and r′ without affecting the stuttering equivalence between the paths of

BP ′
r and BPr.

• For V isProp(r2) = V isProp(r3) or V isProp(r2) = ∅, we know that r′ =

〈(g′, q), γ′〉 →֒BP 〈(g
′, q′), γ′〉 must be invisible, where γ′ is the top stack

symbol in ω; therefore r3 can be replaced by r2 and r′.

Theorem 5.5. Any LTL−X property is invariant on BP ′
r and BPr.

Proof. We prove that given a trace of BP ′
r in the form of φ′ = c0 ⇒BP c′1 . . .⇒BP c,

there is a trace of BPr in the form of φ = c0 ⇒BP c1 . . . ⇒BP c, such that φ′ and

φ are stuttering equivalent; and (2) vice versa.

“⇒⇒⇒”: Lemma 5.3 has demonstrated that the reduction of diagonal BPDS rules

according to Algorithm 5.4 does not affect the stuttering equivalence between any

traces of BP ′
r and BPr. Therefore, we only need to prove that the reduction

of horizontal BPDS rules does not affect the stuttering equivalence neither. In

Algorithm 5.4, a horizontal BPDS rule is considered as a reducible candidate if it

is either invisible or constructed from a BA transition that is horizontally visible.

In both ways, the horizontal transition can be shifted backward on the BPDS trace

without affecting the stuttering equivalence requirement. We prove this direction

of the theorem by mathematical induction.

134

Basis. If |φ′| = 0, i.e., c = c0, our argument trivially holds. If |φ′| = 1, be-

cause there is no horizontal transition reduced on the initial configuration, for any

transition c0 ⇒BP c of BP ′
r, there must be a stuttering equivalent trace of BPr.

Inductive step. Given a trace φ′ = c0 ⇒BP c′1 . . . ⇒BP c′j ⇒BP c′ (j ≥ 0) of

BP ′
r where |φ′| = j + 1, if there exists a trace φ = c0 ⇒BP c1 . . . ⇒BP ci ⇒BP c′

(i ≥ 0) of BPr where |φ| = i + 1, we show that for every t = c′ ⇒BP c of BP ′
r,

there is a trace of BPr such that c0 ⇒
∗
BP c. Furthermore, if φ′ and φ are stuttering

equivalent, the new traces of BP ′
r and BPr are also stuttering equivalent.

In the trace φ, we can always find a configuration

ck = 〈(gk, qk), ωk〉, 0 ≤ k ≤ i,

such that ck is the last configuration satisfying

head(〈gk, ωk〉) ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet.

Thus, the path from ck to c′ has the form of

(ck : 〈(gk, qk), ωk〉)⇒BP 〈(gk+1, qk), ωk+1〉 ⇒BP . . .⇒BP (c′ : 〈(gi+1, qk), ωi+1〉),

where B always loops at the state qk after ck. Because the horizontal transitions

are reduced on the configurations after ck, BPr cannot directly have the transition

(c′ : 〈(gi+1, qk), ωi+1〉) ⇒BP (c : 〈(gi+1, qk+1), ωi+1〉), i.e., the corresponding BPDS

rule 〈(gi+1, qk), γi+1〉) →֒BP 〈(gi+1, qk+1), γi+1〉 (γi+1 is the top stack symbol of ωi+1)

does not exist after the reduction. However, we can shift the horizontal transition

backward to the position right after ck where the horizontal transitions are not

reduced. No matter whether the transition is invisible or horizontally visible (as the

two types of reducible horizontal BPDS rules according Algorithm 5.4), the paths

before and after the shift operation are stuttering equivalent. We can construct

the new path as

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk, qk+1), ωk〉 ⇒BP 〈(gk+1, qk+1), ωk+1〉 ⇒BP . . .⇒BP (c :

〈(gi+1, qk+1), ωi+1〉).

135

Therefore, we have proven this direction of the theorem.

“⇐⇐⇐”: the other direction trivially holds because BP ′
r has all the BPDS rules of

BPr.

Theorem 5.6. Algorithm 5.5 preserves all LTL−X properties to be verified on BP.

Proof. This theorem holds, as the result of Theorem 5.4 and Theorem 5.5.

Theorem 5.7. BPr is optimal with respect to static partial order reduction.

Proof. Similar to the proof of Theorem 5.3, we demonstrate that any BPDS rule

constructed by Algorithm 5.5 cannot be reduced without affecting the LTL−X

property to be verified.

• At line 6, if the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 is reduced, the con-

figuration 〈(g′, q′), ω〉 may not be reachable anymore, since B and P must

transition together at dependent transitions. Furthermore, any BPDS con-

figuration that is reachable from 〈(g′, q′), ω〉 may also be affected. Since we

do not know whether the reachability to 〈(g′, q′), ω〉 can affect the LTL−X

property without going through a model checking process, the BPDS rule

should not be reduced;

• At line 9, if 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 is reduced, the configuration 〈(g′, q), ω〉

may not be reachable anymore. For example, in Figure 5.4b, reduce any

vertical transition may affect the reachability to some BPDS configurations;

• At line 13, the diagonal rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 is constructed only

in two possibilities as illustrated in Figure 5.7. In a general point of view,

the BPDS rule cannot be reduced in either way (see Section 5.6.2 for further

discussion);

• At line 17, the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 is not reduced. When

ReduceHori = FALSE, reducing the rule may eliminate the traces of BPr

136

Legend:

Dashed line: visible rule

Solid line: invisible rule
r1

r2 r3

r1'

r2'

Figure 5.7: Irreducible diagonal BPDS rules.

that are stuttering equivalent with a trace of BP ′
r; when the BPDS rule

is related to SensitiveSet, reducing the rule can affect the reachability to

〈(g, q′), γ〉; when the BPDS rule is related to V isibleSet, reducing the rule

can either affect invisible paths after visible transitions or eliminate all hor-

izontally visible transitions after visible transitions; when the BPDS rule is

related to LoopSet, reducing the rule can simply remove all BPDS traces,

because the BPDS loop constraint may not be satisfied.

With the information available in static partial order reduction, we cannot be

sure to reduce any rule constructed by Algorithm 5.5 without affecting the LTL−X

property to be verified; therefore, we have proven that BPr is optimal.

5.6 SYMBOLIC ALGORITHMS

A system design can have an enormous number of states; therefore, it is almost

impossible to specify the design explicitly in practice, where the transition relation

between every two states is described by a separate rule. It is also inefficient

to analyze an explicit representation, because most analysis algorithms need to

explore all the transition rules.

Symbolic representation is a compact way to specify system designs. A symbolic

rule describes the transition relation between two sets of states. In a general point

of view, we can consider a hardware transaction function in modelC (see Chapter 3)

137

as a symbolic rule of BA or a C statement in software programs as a symbolic rule

of LPDS, because both of them describe the transition relation between two sets

of states. Therefore, we can apply our static partial order reduction algorithms

directly on the programs specified using C, modelC, etc. On the other hand, data

structures such as BDD can be utilized to encode the transition rules of BPDS

during model checking. Symbolic model checking that operates on these symbolic

BPDS rules are more efficient than model checking on explicit BPDS rules. In

this section, we will discuss the symbolic algorithms for the first type of symbolic

representation, where the algorithms work directly on the programs in order to

construct reduced BPDS models.

5.6.1 Reduction Algorithm for Reachability Analysis

Given the symbolic representations of BPDS discussed in Section 4.4, we present

Algorithm 5.6 as the symbolic version of Algorithm 5.3. Algorithm 5.6 is similar

to Algorithm 5.3, except that Algorithm 5.6 operates on symbolic rules of BA and

LPDS in order to construct symbolic rules of BPDS. We have two observations on

Algorithm 5.6:

• B and P need to transition together only when their transitions are depen-

dent; and

• B and P can transition in an interleaved manner when their transitions are

independent.

The two observations tell us how BP can be constructed from B and P so that only

the necessary BPDS rules are included. Since a modelC program can be considered

as the symbolic representation of BA and a C program can be considered as the

symbolic representation of LPDS, we can construct a BPDS model by instrument

the C program using the modelC program. If we drop the acceptance condition

138

Algorithm 5.6 SymbolicBPDSRulesViaSPOR(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅

2: for all R = 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉 ⊆ ∆ do

3: for all U = Q× {σ} ×Q ⊆ δ and σ ⊆ L′
P2B(〈g, γ〉) and τ ⊆ L′

B2P(U) do

4: if R and U are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U

7: else

8: {Vertical edges (see Figure 5.4b), when P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× Uloop

10: if 〈g, γ〉 ∈ SensitiveSet then

11: {Horizontal edges (see Figure 5.4b), when B transitions P self-loops}

12: ∆hori ← ∆hori

⋃

〈g, γ〉 −֒→
R′

BP〈g, γ〉, where R′ = Rloop × U

13: end if

14: end if

15: end for

16: end for

17: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

18: return ∆′
r

139

of the BPDS model, the resulting program actually corresponds to the PDS ver-

ification model, P ′
r; therefore, we can utilize existing model checkers to solve our

reachability problems of BPDS. Chapter 6 will discuss the details regarding the

implementation aspect of Algorithm 5.6.

5.6.2 Reduction Algorithm for LTL Checking

As discussed in Section 4.4, a symbolic LPDS rule, 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉, describes a set

of LPDS rules that are not only labeled by the same input symbol but also have

the same state transition with respect to the control flow. The transition relation

R describes a set of data-flow transitions with respect to the same control-flow

transition. It is inefficient (also unnecessary) to specify an LTL property on both

the control flow and the data flow of LPDS; otherwise, all symbolic BPDS rules can

be visible (due to some visible data-flow transition). Without loss of generality,

we assume that the labeling function Lϕ is defined based on the BA states and

the LPDS states that are only related to the control flow. Furthermore, we extend

the function V isProp to take symbolic BPDS rules as the input. Algorithm 5.7

and Algorithm 5.8 are the symbolic version of Algorithm 5.4 and Algorithm 5.5

respectively. We have the following observations:

• A symbolic BA transition rule describes a set of BA transitions. There may

exist some visible BPDS rules that are constructed from such BA transi-

tions. Assuming that we are not allowed to reduce any visible BPDS rule,

in the worst case, if every symbolic BA transition rule describes some BA

transitions that are horizontally visible, we will not be able to reduce any of

the horizontal symbolic BPDS rules. This is the motivation for us to reduce

visible BPDS rules based on how the property is specified.

• As illustrated in Figure 5.7, diagonal BPDS rules are irreducible only if the

related horizontal and vertical BPDS rules are all visible.

140

Algorithm 5.7 ReducibleSymbolicBPDSRules(U ⊆ δ,R ⊆ ∆)

Require: U and R are independent.

1: ReduceDiag ← FALSE, ReduceHori← FALSE

2: Let U = Q× {σ} ×Q

3: R = 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉

4: R1 = 〈g, γ〉 −֒→
R′

BP〈g, γ〉, where R′ = Rloop × U {Horizontal BPDS rules}

5: R2 = 〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× Uloop {Vertical BPDS rules}

6: R3 = 〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U {Diagonal BPDS rules}

7: if V isProp(R1) = ∅ and V isProp(R2) = ∅ and V isProp(R3) = ∅ then

8: {If R1, R2, and R3 are all invisible}

9: ReduceDiag ← TRUE, ReduceHori← TRUE

10: else

11: if V isProp(R1) = V isProp(R3) or V isProp(R2) = V isProp(R3) or

V isProp(R1) = ∅ or V isProp(R2) = ∅ then

12: ReduceDiag ← TRUE

13: end if

14: if R1 is invisible or U is horizontally visible then

15: ReduceHori← TRUE

16: end if

17: end if

18: return (ReduceDiag, ReduceHori)

141

Algorithm 5.8 SymbolicBPDSRulesViaSPOR LTL(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅, ∆diag ← ∅

2: for all R = 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉 ⊆ ∆ do

3: for all U = Q× {σ} ×Q ⊆ δ and σ ⊆ L′
P2B(〈g, γ〉) and τ ⊆ L′

B2P(U) do

4: if R and U are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U

7: else

8: {P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× Uloop

10: (ReduceDiag, ReduceHori)← ReducibleBPDSRules(U,R)

11: if ReduceDiag = FALSE then

12: {B and P transition together}

13: ∆diag ← ∆diag

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R × U

14: end if

15: if ReduceHori = FALSE or

〈g, γ〉 ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet then

16: {B transitions and P self-loops}

17: ∆hori ← ∆hori

⋃

〈g, γ〉 −֒→
R′

BP〈g, γ〉, where R′ = Rloop × U

18: end if

19: end if

20: end for

21: end for

22: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

⋃

∆diag

23: return ∆′
r

142

• The first type of irreducible diagonal BPDS rule, as demonstrated on the left

side of Figure 5.7 requires the LTL properties being specified on an explicit

BPDS configuration. However, in symbolic representations, properties are

specified on control-flow locations, where each control-follow location corre-

sponds to a set of BPDS configurations. If a vertical transition is visible, the

related diagonal transition should also be visible. Therefore, such irreducible

diagonal BPDS rules do not exist in symbolic representations.

• In practice, the second type of irreducible diagonal BPDS rule, as demon-

strated on the right side of Figure 5.7, is reducible under certain conditions.

The rule r3 can be replaced by r1 and r′2 if

1. V isProp(r1)
⋃

V isProp(r′2) = V isProp(r3); and

2. the propositional variables respectively from V isProp(r1) and V isProp(r′2)

do not occur in the same Boolean expression (i.e., excluding the tem-

poral operators) of the LTL property.

r3 can be replaced by r2 and r′1 if

1. V isProp(r2)
⋃

V isProp(r′1) = V isProp(r3); and

2. the propositional variables respectively from V isProp(r2) and V isProp(r′1)

do not occur in the same Boolean expression of the LTL property.

143

Chapter 6

IMPLEMENTATION

In our approach, hardware and software can be specified using different languages

such as C or SystemC. These specification languages need to be converted to

a uniform format acceptable by the model checking engine. A straightforward

conversion preserves the state space of the specification; however, it usually suffers

from the state explosion problem. Therefore, a counterexample-guided abstraction

refinement process is commonly applied to alleviate this problem, where the process

starts with a highly abstracted conversion and then asymptotically introduces more

details to the abstraction based on infeasible counterexamples given by the model

checking engine.

For safety property verification, counterexample-guided abstraction refinement

has been widely applied to software implementations such as C programs. Accord-

ing to the discussions in Chapter 5, BPDS models can be specified in C/modelC

programs and then converted into a C program for checking safety properties.

Therefore, the SLAM verification engine can be utilized to solve our verification

problems. SLAM accepts properties specified in SLIC, a property specification

language designed for software. As for our co-verification framework, property

specification on hardware behaviors also is desired. We demonstrate how SLIC

can be adapted to specify hardware properties.

For liveness property verification, one major challenge is loop computation,

i.e., checking whether or not there exists a loop in the design that may not termi-

nate. Loop computation is often inefficient in counterexample-guided abstraction

refinement, because a loop needs to be completely unrolled in order to check its

144

termination properties. Such unrolling itself may not even terminate when the

specification language has the power to describe a Turing machine. Therefore,

verification of liveness properties on C programs requires different techniques than

safety properties. In this chapter, we will discuss verification of liveness properties

on BPDS models specified using Boolean programs. The general concept of our

approach also is applicable to BPDS models specified using C/modelC programs

when a liveness verification engine for C programs (such as Terminator [25]) is

available.

Considering a hardware BA model and a software LPDS model, we discuss

the implementation in three steps: First, we need to construct a BPDS model

from the BA and LPDS models. Second, we want to specify the properties that

should be observed on the target model in verification. Third, we should apply

our reduction algorithms at a proper phase of our implementation so that the size

of the BPDS model can be reduced with a low cost. The rest of this chapter is

organized as follows: Section 6.1 and Section 6.2 discuss the implementation of

reachability analysis and LTL checking for co-verification respectively. Section 6.3

discusses our co-verification tool, CoVer.

6.1 REACHABILITY ANALYSIS

As discussed in Chapter 4, a symbolic BPDS model can be constructed directly

from a symbolic BA model and a symbolic LPDS model. In co-specification, we

have designed a language, modelC, to formally specify the device behaviors from

the view of a driver, namely a formal device model (also referred to as a hardware

interface model [49]). A Formal Device Model (FDM) includes both the HW/SW

interface specification and hardware specification (see Chapter 3). Conceptually,

the hardware behaviors described by a FDM can be represented by a symbolic BA

model, where a hardware transaction function describes a set of BA transitions

labeled by the same input symbol. Our goal is to verify a driver implementation

145

with its FDM, where the driver’s C code can be considered as a symbolic LPDS

model and an atomic software statement describes a set of LPDS rules labeled

by the same input symbol. We can then construct a symbolic BPDS model from

the symbolic BA model and the symbolic LPDS model. The Cartesian product is

carried out via code instrumentation, i.e., instrument the driver’s C code with the

device’s modelC code. The symbolic BPDS model, as the result of the product,

is actually a C program with non-determinism and a Büchi constraint. We can

safely drop the Büchi constraint, since it is irrelevant to reachability analysis.

Therefore, the non-deterministic C program can be verified by the SLAM engine [4]

for reachability properties.

SLAM takes SLIC [10] as the property specification language. Since SLIC was

designed for software verification, the language constructs of SLIC mainly focus

on the control flow of C programs. This is different from hardware designs, where

the data flow is more interesting. We demonstrate that the properties regarding

hardware behaviors can also be specified using the SLIC language within our co-

verification framework.

A straightforward product of the BA and LPDS will construct BPDS rules

that are unnecessary for reachability analysis. In Chapter 5, we presented a static

partial order reduction algorithm to reduce BPDS rules while constructing the

BPDS model. Since the reduction is applied during the compilation phase of co-

verification, no modification is necessary to the model checker. This is very helpful

in practice, because verification engines with industrial strength, such as SLAM,

can thus be readily utilized.

6.1.1 Cartesian Product via Code Instrumentation

There are two types of BPDS rules. First, synchronous BPDS rules are constructed

from dependent BA transitions and LPDS rules. Second, asynchronous BPDS rules

are constructed from independent BA transitions and LPDS rules.

146

In co-specification, the synchronous BPDS rules are specified in HW/SW inter-

face. For example, when a driver invokes a function, WRITE REGISTER UCHAR (see

Figure 3.1), to update device interface registers, the corresponding hardware trans-

action functions, e.g., atWritePortA, are invoked subsequently1. This sequence of

operations can be understood as a synchronous (a.k.a., dependent) transition of the

driver and device, where the driver executes the function, WRITE REGISTER UCHAR,

and at the same time the device executes the hardware transaction function,

atWritePortA. In the other direction, when device raises an interrupt, the driver

should invoke ISR to service the interrupt. The function RunIsr, illustrated in

Figure 3.4, models such a process. There are two atomic blocks in RunIsr. The

first atomic block checks the states of both device and driver to decide if an ISR

should be invoked; and the second atomic block sets the device and driver to the

proper state after the ISR returns. The two atomic blocks should be considered as

two synchronous transitions of the device and driver.

With respect to asynchronous BPDS rules, there are three types of asyn-

chronous transitions, i.e., BA transitions and LPDS self-loops, LPDS transitions

and BA self-loops, and BA and LPDS transition together. The three types of

asynchronous BPDS rules can be modeled as interleaved executions between the

driver statements and the hardware transaction function of the hardware model.

Hardware instrumentation function. As illustrated in Figure 6.1, a hardware

instrumentation function implements a non-deterministic loop to invoke atRun DIO

and RunIsr in sequence. If an interrupt is raised due to a hardware state transition

by executing atRun DIO, the context-switch to the ISR is modeled as a function

call, where the execution switches back to the interrupted thread only after the

ISR returns. This approach is correct to simulate the context-switches because

1In verification, the implementation of WRITE REGISTER UCHAR is replaced by the glue code
illustrated in Figure 3.3. The replacement is carried out automatically by Static Driver Verifier
(SDV) [4], the working environment of SLAM.

147

VOID HWInstr () {

while(choice()) { // Non-deterministic choices

atRun DIO(); // Run hardware transaction function

RunIsr(); // If interrupt has been raised

}

}

Figure 6.1: The hardware instrumentation function.

ISRs are relatively atomic to other driver routines.

Code instrumentation. We insert the hardware instrumentation function, HWIn-

str, after every atomic driver statement to construct asynchronous BPDS rules.

The idea is based on the concept of relative atomicity as illustrated in Figure 3.7.

The non-deterministic while-loop simulates the delays of either software or hard-

ware, i.e., BA transitions and LPDS self-loops or LPDS transitions and BA self-

loops. The situation when hardware (i.e., BA) and software (i.e., LPDS) transition

together can be replaced by continuous executions of a driver statement and the

hardware transaction function, atRun DIO.

6.1.2 Specification of SLIC rules

Hardware and software are different in nature. When specifying the properties

to be verified on hardware and/or software, their differences must be explored

to ensure that the unique behaviors of hardware and software can be precisely

captured. In general, hardware is data-flow-centric, where the state change of

registers by hardware transactions is interested; software is control-flow-centric,

where the execution sequences of program statements are interested. These design

features must be considered in the property specifications of co-verification.

Control flow refers to the order in which individual statements, instructions, or

148

// InvalidRead: the driver should never complete an I/O read request using

// STATUS SUCCESS without actually reading any data from the device.

// Declare the state variable used by this rule

state { enum { INIT, DPCSch } s = INIT; }

[atReadPortA, atReadPortB, atReadPortC].entry {

halt; // Stop the current execution if any data is read from hardware

}

WdfInterruptQueueDpcForIsr.entry {

s = DPCSch; // DPC is scheduled in the ISR

}

DioDpc.entry {

// Stop the current execution if DPC is not scheduled in the ISR

if (s == INIT) halt;

}

WdfRequestCompleteWithInformation.entry {

// If the I/O request is completed with STATUS SUCCESS but no data

// is actually read, raise an alarm.

if((s == DPCSch) && ($2 == STATUS SUCCESS))

abort “Input request is successfully completed with no read operation.”;

}

Figure 6.2: The SLIC rule InvalidRead for the PIO-24 digital I/O card driver.

The driver source code is discussed in Section 2.5. We implemented a test harness,

as illustrated in Figure 6.3, to model the OS environment on how the driver should

be called.

149

function calls of an imperative or a declarative program are executed or evaluated.

The SLIC language allows temporal properties to be specified on the order of func-

tion calls/returns. Commonly, there are two types of events that can be specified

on a function: entry and exit. The two events identify the program points in the

function immediately before its first statement and immediately before it returns

control to the caller. Meanwhile, the states of the program can be specified by

referring to function parameters and global variables at the events. The value of

the nth formal parameter in a function is referred to as $n. The return value of a

function is referred to as $return.

Figure 6.2 illustrates an example of a SLIC rule that checks whether the driver

will ever complete an I/O read request using STATUS SUCCESS without actually

reading any data from the device. The halt statement signals that the analysis

of the current execution path should stop. We halt the verification when a port

(A, B, or C) is read by the driver, which satisfies the rule immediately; otherwise

when the function, WdfRequestCompleteWithInformation, is invoked with the

second formal parameter equal to STATUS SUCCESS, we raise an alarm using the

statement, abort.

Figure 6.3 illustrates the test harness that models the OS environment for invok-

ing the driver. Instead of directly invoking the dispatch routines that are provided

by the PIO-24 digital I/O card driver, we invoke the role type functions. A role

type function corresponds to those dispatch routines that service the same type of

request in Windows. Such dispatch routines should have the same function type;

however, they may be defined under different names in various driver implementa-

tions. Therefore, role type functions help us to attain the portability of verification

over different driver implementations. The tool that matches role type functions

to driver dispatch routines is provided by Static Driver Verifier (SDV) [4]. For ex-

ample, the role type function, fun WDF IO QUEUE IO DEVICE CONTROL, corresponds

to the dispatch routine, DioEvtDeviceControl, in the PIO-24 driver and the role

150

void main() {

// Non-deterministically invoke the role type functions for different requests

switch(choice()) {

case 0: fun WDF IO QUEUE IO READ(. . .); break;

case 1: fun WDF IO QUEUE IO WRITE(. . .); break;

default: fun WDF IO QUEUE IO DEVICE CONTROL(. . .); break;

}

// Invoke DPC to complete the request

fun WDF DPC(. . .);

}

Figure 6.3: The test harness for InvalidRead.

type function, fun WDF DPC, corresponds to the dispatch routine, DioDpc, in the

driver. As an execution scenario, the two dispatch routines DioEvtDeviceControl

and DioDpc can be invoked in sequence by the harness. Meanwhile, the hardware

instrumentation function, HWInstr, is invoked after every driver statement due to

the code instrumentation. If the device model raises an interrupt, the ISR routine,

DioIsr, will be invoked via HWInstr. At last, although the test harness invokes

the DPC routine, DioDpc, it will not be executed in verification unless DioIsr has

requested for a DPC routine (at the line P3 of Figure 2.8b). This is guaranteed

by the SLIC rule, InvalidRead, where the rule halts verification at the entry of

DioDpc if no DPC routine was requested by DioIsr.

Data flow refers to the order in which the values of variables are changed. For

example, in a clock-driven hardware design, the values of registers are updated

along with every clock cycle. How the registers should be updated depends on the

current state of the registers and the design of the hardware (i.e., the transition

rules specified). Property specifications based on data flow usually monitor the

151

changes of register values along with clock cycles. In our approach, clock cycles

are abstracted away. Instead, we use hardware transaction functions to describe

the state transition rules of hardware. Because hardware transaction functions

are atomic in the view of software, we do not need to monitor the intermediate

hardware state within a transaction. Because software cannot directly update

the hardware state without going through hardware transaction functions, we do

not need to monitor the hardware state when a program statement is executed.

As a result, we monitor the hardware states at the exits of hardware transaction

functions, because conceptually these exit events occur when hardware states are

updated. Figure 6.4 illustrates a SLIC rule that checks whether the hardware

// InvalidHWInterrupt: formal device model should not raise an interrupt when

// it is in an interrupt disabled state.

// Check the hardware state at the exit of a hardware transaction function

atRun DIO.exit {

// If hardware raises an interrupt when it is in an interrupt disabled state

if(($g DIORegs.IRQST.IRQST1==1) && ($g DIORegs.IRQ.IRQENn!=1)) {

abort “Interrupt is raised when the Interrupt Enable (IE) register is 0.”;

}

Figure 6.4: The SLIC rule InvalidHWInterrupt for the PIO-24 digital I/O card

device model.

model of the PIO-24 digital I/O card will ever raise an interrupt when its interrupt

status is disabled. This rule is useful to validate the correctness of our formal

device/driver models in co-specification.

152

6.1.3 Reduction

In Chapter 5, we demonstrated an approach to efficient reachability analysis of

BPDS models. The process that reduces a BPDS model BP is presented in Algo-

rithm 5.3 and the symbolic version is presented in Algorithm 5.6. As the key idea

of the reduction, we observe that the BA B and the LPDS P can run separately

when their state transitions are independent. This allows the reduction of many

transition rules of BP without affecting the verification result. Following the con-

cept of static partial order reduction, these reducible transition rules need not be

included when constructing the BPDS model.

Software synchronization points. With respect to static partial order reduc-

tion, a key concept is SensitiveSet, defined to identify the BPDS rules that are

necessary in reachability analysis. As the concrete counterpart of the SensitiveSet

concept in implementation, we define software synchronization points as a set of

program locations1 where the program statements right before these locations may

be dependent with some of the hardware state transitions. In general, there are

three types of software synchronization points:

1. the point where the program is initialized;

2. those points right after software reads/writes hardware interface registers;

3. those points where hardware interrupts may affect the software execution.

The first and second types are straightforward for hardware and software to tran-

sition synchronously. We may understand the third type in such a way that the

effect of interrupts (by executing ISRs) may influence certain program statements,

e.g., the statements that access global variables. For example, in Figure 2.8b, the

program reads hardware interface registers by READ REGISTER UCHAR. There is a

1Assuming the program is preprocessed to ensure that every statement is atomic from the view of hardware.

153

software synchronization point right after the function call. There is another soft-

ware synchronization point right before the statement P1 of Figure 2.8a, because

a global variable CurrentRequest is accessed in the previous statement.

To construct the reduced BPDS model, BPr, according to Algorithm 5.6, we

instrument the driver code by HWInstr in such a way that HWInstr is invoked

at every software synchronization point. Conceptually, the instrumentation lets

hardware run after every HW/SW synchronous transition. Compared to the triv-

ial approach that inserts HWInstr after every software statement to simulate the

concurrent state transitions of hardware and software, our algorithm can signif-

icantly reduce the complexity of the verification model, because the number of

software synchronization points are usually very small in common applications.

6.2 LTL CHECKING

We have implemented the LTL checking algorithm for BPDS, where the LPDS P is

specified using Boolean programs and the BA B is specified using Boolean programs

with the semantic extension of relative atomicity, i.e., hardware transitions are

modeled as atomic to software. In this section, we first present an example of a

BPDS model specified in Boolean programs. Second, we illustrate how we specify

LTL properties on such a BPDS model. Third, we elaborate on how we generate

a reduced BPDS model for the verification of an LTL−X formula.

6.2.1 A BPDS Model specified using Boolean programs

We specify B and P using our co-specification approach as described in Chapter 3.

Figure 6.5 demonstrates such an example. The states of B are represented by

global variables. All the functions labeled by the keyword atomic are hardware

transaction functions that describe the state transitions of B. The function main

is the program entry of P, where main has three steps:

154

void main() begin

decl v0,v1,v2 := 1,1,1;

reset();

// wait for the reset to complete

v1,v0 := status();

while(!v1|v0) do v1,v0 := status(); od

// wait for the counter to increase

v2,v1,v0 := rd reg();

while(!v2) do v2,v1,v0 := rd reg(); od

// if the return value is valid

if (v1|v0) then

error: skip;

fi

exit: return;

end

atomic void inc reg()

begin

if (!c0) then c0 := 1;

elsif (!c1) then c1,c0 := 1,0;

elsif (!c2) then

c2,c1,c0 := 1,0,0; fi

end

// represent hardware registers

decl c0, c1, c2, r, s;

atomic void reset()

begin reset cmd: r := 1; end

atomic bool<3> rd reg()

begin return c2,c1,c0; end

atomic bool<2> status()

begin return s,r; end

// hardware instrumentation function

void HWInstr() begin

while(∗) do HWModel(); od

end

// asynchronous hardware model

atomic void HWModel() begin

if (r) then

reset act: c2,c1,c0,r,s := 0,0,0,0,1;

elsif(s) then inc reg(); fi

end

Figure 6.5: An example of BA B and LPDS P both specified in Boolean programs.

155

1. resets the state of B by invoking the function reset;

2. waits for the reset to complete;

3. waits for the counter of B to increase above 4, i.e., v2==1.

When a hardware transaction function, such as reset or rd reg, is invoked from

P, it represents a dependent (a.k.a., synchronous) transition between B and P.

On the other hand, the hardware transaction function HWModel represents inde-

pendent (a.k.a., asynchronous) transitions of B with respect to P. In this example,

since the dependent transitions of B and P are already specified as direct function

calls, the rest of the Cartesian product is to instrument P with the independent

transitions of B, i.e., add function call to HWInstr after each statement in main.

Such instrumentation only models two types of asynchronous BPDS rules when B

transitions and P self-loops or P transitions and B self-loops. The BPDS rules

when B and P transition together are not directly modeled by code instrumen-

tation. Sometimes, these types of BPDS rules are not necessary to the checked

LTL property; therefore, they can be replaced by interleaved transitions of B and

P (Note that the transition order between B and P does not matter here). Oth-

erwise, when these types of BPDS rules may affect the LTL property, we need to

apply some restrictions on how the propositional variables are evaluated during

verification, in order to reduce the BPDS rules. The next sub-section will discuss

the details about what LTL properties require the asynchronous BPDS rules for

B and P to transition together as well as how we can satisfy such requirements in

verification.

6.2.2 Specification of LTL Properties

Without loss of generality, we specify LTL properties on the statement labels of

Boolean programs. Formally, such labels are considered as propositional variables

that evaluate to true at those BPDS configurations right after the execution of the

156

labeled statements. For example, we write an LTL formula, F exit, which asserts

that the function main always terminates. This property is asserted on a common

scenario: when software waits for hardware to respond, the waiting thread should

not hang. As illustrated in Figure 6.5, the hardware transaction function, HWModel,

describes a hardware model that responds to software reset immediately; therefore,

the first while-loop in main will not loop for ever. Since hardware increments its

register after reset, the second while-loop in main also will terminate. Therefore, F

exit holds. Note that the non-deterministic while-loop in HWInstr will repeatedly

call HWModel, which is guaranteed by the BPDS loop constraint and the fairness

between hardware state transitions (i.e., transitions specified by HWModel should

not be starved by self-loop transitions introduced when constructing a BPDS).

There may exist a hardware design that cannot guarantee immediate responses

to software reset commands. Therefore, delays should be represented in the hard-

ware model. Figure 6.6 illustrates a hardware transaction function, HWModelSlow,

which describes a hardware design that cannot guarantee immediate responses

to reset commands. The property, F exit, fails on the BPDS model that uses

atomic void HWModelSlow() begin

if (r) then

if (∗) then reset act: c2,c1,c0,r,s := 0,0,0,0,1; fi

elsif(s) then inc reg(); fi

end

Figure 6.6: Hardware does not respond to reset immediately.

HWModelSlow for hardware, since the hardware can delay the reset operation in-

finitely. In practice, design engineers may want to assume that hardware can delay

the reset operation; therefore, software should wait for reset completion; however

hardware should not delay the reset operation for ever. Such assumptions also

157

can be specified as LTL formulae. Under the assumption, G (reset cmd → (F

reset act)), the property, F exit, will hold on the BPDS model.

As another example, we write an LTL formula, G !error, asserting that the

labeled statement, error, in main is not reachable. The verification of G !error

fails on the BPDS model in Figure 6.5. Since hardware is asynchronous with

software when incrementing the register, it is impossible for software to control

how fast the register is incremented. Therefore, when software breaks from the

second while-loop, the hardware register may have already been incremented to 5,

i.e., (v2==1)&&(v1==0)&&(v0==1).

B and P transition together in an asynchronous BPDS rule. The property

G !(error && reset ack) specifies that BPDS does not contain states such that the

hardware model acknowledges the reset command at the same time that P is

executing the software statement labeled by error. Despite the usefulness of such

kind of rule, they put a requirement on how the propositional variables should be

evaluated during verification. In this case, the BPDS rules for B and P to transition

together cannot be easily reduced; otherwise, the propositional variables, error and

reset ack, will not be evaluated as true at the same time. To solve this problem,

we let the propositional variable, error, stay true when B executes and P self-

loops; therefore, error and reset ack can be evaluated as true at the same time

even when the asynchronous BPDS rules for B and P to transition together are

reduced.

6.2.3 Reduction

In order to construct the Cartesian product of B and P, we need to add a function

call to HWInstr after every software statement. As discussed in Chapter 5, some

BPDS rules are unnecessary to be generated for such a product. In other words, it

is only necessary to call HWInstr after certain software statements in order to verify

158

an LTL−X property. There are three types of program locations of P necessary

for instrumentation. Except for the software synchronization points as defined in

Section 6.1, we define the other two types of program locations:

Software visible points. Corresponding to V isibleSet, we define software visible

points as a set of program locations right after the program statements whose labels

are used in the LTL property. For example, in Figure 6.5 the program location

right after the statement, error, can be a software visible point. However, the

location right after the statement, reset act, cannot be a software visible point,

since this statement is in a hardware transaction function of B.

Software loop points. Corresponding to LoopSet, we define software loop points

as a set of program locations involved in program loops. The precise detection

of those loops needs to explore the program’s state graph, which is inefficient.

Therefore, we try to identify a super set LoopSet′ ⊇ LoopSet using heuristics.

A program location is included into the super set if it is at (1) the point right

before the first statement of a while loop; (2) the point right before a backward

goto statement; or (3) the entry of a recursive function, which can be detected by

analyzing the call graph between functions.

As for implementation, we first detect the software synchronization points, vis-

ible points, and loop points in the Boolean program of P and then inserts function

calls to HWInstr only at those detected points. Conceptually, the instrumenta-

tion lets hardware run for all the possibilities at those instrumentation points.

Note that some transitions described by HWModel (called via HWInstr) may be

visible when a statement label in HWModel is used in the LTL formula, e.g., F

reset act. However, such BA transitions are horizontally visible, since reset act

is not affected by any transition of P. This is why function calls to HWInstr can

be reduced without affecting the LTL properties even if HWModel describes visible

transitions. Compared to the trivial approach that inserts HWInstr after every

159

software statement to simulate the concurrent state transitions of hardware and

software, our reduction can significantly reduce the complexity of the model to be

verified, since the number of the instrumentation points are usually very small in

common applications.

6.3 CO-VERIFICATION TOOL, COVER

We have created a co-verification tool, CoVer, which provides two options for

reachability analysis and LTL property verification respectively.

Reachability analysis. Figure 6.7 illustrates the implementation for reachabil-

ity analysis. CoVer has two steps. First, the frontend automatically instruments

Driver code
Co-verification

SLAM

YES

NOinstrumentation
frontend

C program
Formal Device
Model (FDM)

SLIC rule

Figure 6.7: CoVer implementation for reachability analysis.

the driver with the formal device model to generate the verification model, a C

program. Static partial order reduction is applied during this step in order to

reduce function calls to the hardware instrumentation function, HWInstr. Sec-

ond, the SLAM engine checks the reachability property (in the form of a SLIC

rule) on the C program. As proven in Chapter 5, the reachability properties sat-

isfied/disatisfied on the verification model will also be satisfied/disatisfied on the

original device/driver model.

It is important to note that our approach is not restricted by the verification

engine, SLAM. Any verification engine that supports: (1) the verification of C

programs; (2) non-determinism; and (3) property specification languages similar

to SLIC, can be readily utilized in our co-verification approach.

160

LTL property verification. As illustrated in Figure 6.8, we have realized the

LTL checking algorithm for BPDS as well as the static partial order reduction

algorithm in our co-verification tool, CoVer. The implementation is based on the

Moped model checker [77]. CoVer takes three inputs: First, the LTL assertions and

Software LPDS model
Co-verification

YES

NO

instrumentation
frontend

Boolean program

LTL assertions

Hardware BA model

Büchi constraint

Model checker
based on Moped

LTL assumptions
+ LTL2BA

BA

+

Figure 6.8: CoVer implementation for LTL checking.

assumptions. Second, the software LPDS model specified using Boolean programs.

Third, the hardware BA model specified using Boolean programs with relative

atomicity.

There are three steps in verification: First, the LTL formulae are converted

into a BA using the LTL2BA tool [31]. Second, the software LPDS model is

instrumented with the hardware BA model to generate a Boolean program with

the Büchi constraint. Third, this Boolean program is verified for the LTL formulae

using the model checker implemented based on Moped. The static partial order

reduction is implemented in the second step, and the Moped model checker is

extended in order to support the BPDS loop constraint.

161

Chapter 7

EVALUATION

In practice, our approach has two phases: First, we need to formally specify the

HW/SW interface protocols, i.e., co-specification. Second, we can utilize the formal

models, as constructed in the co-specification process, in co-verification of driver

implementations. Since our specifications closely resemble the implementation

semantics of HW/SW interfaces, the formal models can be used, without any

modification, as the test harness in co-verification. When a formal model is used

as the test harness for a driver implementation, we refer to such a test harness as

a Formal Device Model (FDM), because it describes the device behaviors in the

view of the driver.

We applied our approach to four device/driver frameworks. One of the de-

vice/driver frameworks is still under development, while the other three have ex-

isted for many years. Following the mechanized process presented in Chapter 3, we

constructed four formal models from the English documents of the device/driver

frameworks. Although the quality of the English documents varies, the formal

models are specified under the same criteria. For example, hardware behaviors

visible to software should be clearly specified, and vice versa. We also applied au-

tomatic tools, such as CoVer, to validate our formal models. This is a significant

benefit of formal models, because they can be analyzed by automatic tools. In

total, there are fifteen specification issues in the English documents discovered

during our formal specification process. Such specification issues can mislead de-

velopment engineers and cause product failures. Given the fact that some of the

English documents have existed for many years and been revised several times, our

162

formalization approach is rather effective.

Co-verification is evaluated in reachability analysis and LTL checking respec-

tively. For reachability analysis, CoVer is able to co-verify driver implementations

with their FDMs. Both the driver implementations and the FDMs are directly used

without any modification. There are five Windows drivers developed for the four

device/driver frameworks: one Microsoft in-house driver, one Open Systems Re-

sources (OSR) sample driver published by OSR online [67], and three drivers pub-

lished in Microsoft Windows Driver Kit (WDK) as the sample drivers [59, 61, 63].

Except for the Microsoft in-house driver, which is a prototype currently under de-

velopment, all other drivers are fully functional and well tested; however, utilizing

our co-verification tool, CoVer, we have still discovered twelve real bugs. All of

these bugs, which could cause serious system failures including data loss, interrupt

storm, device hang, etc., were previously unknown to the driver developers. For

LTL checking, we have designed a synthetic BPDS template to generate BPDS

models with various complexities. The template mimics the common scenarios of

HW/SW interactions. The evaluation illustrates that our reduction algorithm is

very effective in both reachability analysis and LTL checking. The average reduc-

tion of the verification cost is 70% in time usage and 30% in memory usage.

7.1 CO-SPECIFICATION

As discussed in Chapter 3, the development process of a device/driver framework

contains three stages: design, development, and certification. We have applied our

approach to the first two stages.

First, for the design stage, we have applied our approach to the next generation

of a pervasively used industry standard. Our approach has led to the detection of

five issues in the draft English HW/SW interface document. One of the issues is a

spec-inconsistency in an algorithm pseudo-code that describes the hardware-side

interface protocol. This finding has triggered a discussion between two companies

163

who participated in the design of this HW/SW interface protocol. Our formal

model has 4781 lines of modelC code that covers about 277 pages of the English

document. Therefore, the Model-Doc ratio is 17.26, which indicates that the

draft English document is considerably elaborate compared with the other case

studies (see below). The Model-Doc ratio is an important criteria to compare

the formal model with its document. Specifically, Model-Doc is the ratio between

the size of the formal model and the size of the document portion that is actually

modeled.

Second, for the development stage, we have applied our approach to three long-

existing device/driver frameworks:

• the Sealevel PIO-24 digital I/O device/driver framework, a.k.a., PIO-24 [78];

• the Intel 8255x 10/100Mbps Ethernet controller device/driver framework,

a.k.a., Ethernet controller [39]; and

• the USB 2.0 device/driver framework, a.k.a., USB 2.0 [23, 57].

Our HW/SW interface formalization process (i.e., co-specification) has led to the

detection of ten issues in the English documents.

PIO-24 device/driver framework. We use two sets of tables to present the eval-

uation of our formalization process. Table 7.1 illustrates the overall statistics about

the formalization for the PIO-24 device/driver framework. The statistics are gath-

ered before and after the formalization respectively. We require the specification

engineer1 to give an estimation of the manual effort necessary for formalization,

so that we can compare how well interface documents with different complexities

can be handled by an engineer. We also take the specification engineer’s experi-

ence into consideration, where three areas of the experience may largely affect the

1The author is the specification engineer in this dissertation research.

164

Table 7.1: Formalization of the PIO-24 device/driver framework.

Gathered before the formalization process

HW/SW interface doc. (document) size (pages) 20

The portion of the doc. for the HW/SW interface protocol (pages) 10

The portion of the doc. that cannot be modeled (pages) 10

Specification engineer’s experience in driver development (years) 2

Specification engineer’s experience in hardware design (years) 1

Specification engineer’s experience in formal verification (years) 3

Specification engineer estimated manual effort (person-day) 7

Gathered after the formalization process

The actual manual effort (person-day) 3

Specification issues found in the English document 2

Size of the modelC code in formal model (lines) 773

Size of the comments in formal model (lines) 577

Model-Doc ratio as 773/10

(lines of the modelC code)/(pages of the modeled doc.) = 77.3

result of the formalization. Two specification issues have been discovered in the

HW/SW interface document for the PIO-24 device/driver framework: one spec-

inconsistency and one spec-incompleteness. Taking the spec-incompleteness issue

as an example, the document does not mention the default value of the interrupt

pending register (which is usually disabled by default in many English documents

for HW/SW interface specifications); therefore, we assign a non-deterministic ini-

tialization value to this register in our formal specification. Coincidentally, the

Windows driver of this device does not clear the interrupt pending register during

the driver initialization. This uninitialized register affects the driver’s interrupt

handling process, which can lead to data loss (see rule ProperISR2 in Table 7.7 for

165

Table 7.2: Formal model of the PIO-24 device/driver framework. (Com.: com-

ments, Doc.: document)

File name
of lines Doc.

Description
Com. Code pages

DIODefs.h 63 151 2 Data structures

DIO.c 210 192 1 Hardware transaction function

DIODrv.c 37 76 1 software-side protocol

Global∼.c 21 15 N/A Global variables for both

hardware and software models

DIORegs.c 146 270 3 Registers, HW/SW interface events

Environ∼.c 100 69 3 Simulate inputs to Port A, B, and C

more details about this driver bug). We consider this driver bug partially caused

by the spec-incompleteness issue, because the document should at least warn driver

developers that the interrupt pending register is not initialized by default.

Table 7.2 illustrates the detailed statistics about the formal model for the PIO-

24 HW/SW interface protocol. The formal model, as implemented in six files, has

577 lines of comments and 773 lines of modelC code. This corresponds to 10 pages

of the English document. In the form of comments, we have added references that

point to the corresponding document positions; therefore, the formal model can be

related back to the original document. The file “Global∼.c” defines all the global

variables that represent hardware and software states; therefore, we are not able

to determine the exact number of corresponding pages in the document.

Ethernet controller device/driver framework. The statistics about formal-

izing the Ethernet controller device/driver framework are presented in Table 7.3

and Table 7.4 respectively. Compared to the English document of the PIO-24

device/driver framework, the English document of Ethernet controller is more

166

Table 7.3: Formalization of the Ethernet controller device/driver framework.

Gathered before the formalization process

HW/SW interface doc. (document) size (pages) 175

The portion of the doc. for the HW/SW interface protocol (pages) 136

The portion of the doc. that cannot be modeled (pages) 39

Specification engineer’s experience in driver development (years) 2

Specification engineer’s experience in hardware design (years) 1

Specification engineer’s experience in formal verification (years) 3

Specification engineer estimated manual effort (person-day) 14

Gathered after the formalization process

The actual manual effort (person-day) 21

Specification issues found in the English document 6

Size of the modelC code in formal model (lines) 2370

Size of the comments in formal model (lines) 1446

Model-Doc ratio as 2370/136

(lines of the modelC code)/(pages of the modeled doc.) = 17.43

elaborate. This can be inferred from the major difference between their Model-

Doc ratios, where the Model-Doc ratio of PIO-24 is much higher. Because the

semantics of formal models closely resemble the HW/SW implementation seman-

tics, necessary details must be specified. Therefore, the size of formal models can

be considered as a standard measurement of the HW/SW interface complexities.

During our formalization process, we have detected six specification issues in the

Ethernet controller English document. One example of the issues is already illus-

trated in Figure 3.8. Given that this document has been published for seven years

and revised three times, we were surprised. We have also observed an interesting

difference between the manual effort estimations: it is clear that engineers have a

167

Table 7.4: Formal model of the Ethernet controller device/driver framework.

(Com.: comments, Doc.: document)

File name
of lines Doc.

Description
Com. Code pages

E100Defs.h 203 768 14 Data structures

E100.c 182 197 15 Hardware transaction function

E100Drv.c 48 182 9 software-side protocol

Global∼.c 20 15 N/A Global variables for both

hardware and software models

E100Regs.c 173 492 35 Registers, HW/SW interface events

Port.c 170 151 5 Handle software commands to

PORT interface registers

CmdUnit.c 410 329 26 Process the Command Unit (CU)

RcvUnit.c 133 134 25 Process the Receive Unit (RU)

Environ∼.c 107 102 7 Simulate the inputs to the device

better control over English documents that are less complicated.

USB 2.0 device/driver framework. The USB 2.0 device/driver framework is

different from the previous device/driver frameworks such as PIO-24 and Ethernet

controller in the sense that USB 2.0 devices use the USB bus instead of the PCI

bus. Therefore, their HW/SW interfaces are quite different. Nevertheless, our

approach has also been successfully applied to the USB 2.0 device/driver frame-

work. The statistics are presented in Table 7.5 and Table 7.6 respectively. The

formal model has 2304 lines of modelC code, which corresponds to 60 pages of

the USB 2.0 document [23] and 70 pages (by estimation) of the Microsoft online

document [57]. Therefore, the Model-Doc ratio is 17.72. We have discovered

two spec-incompleteness problems in the Microsoft online document. Windows

168

Table 7.5: Formalization of the USB 2.0 device/driver framework.

Gathered before the formalization process

HW/SW interface doc. (document) size (pages) 650 + 120

= 770

The portion of the doc. for the HW/SW interface protocol (pages) 60 + 70

= 130

The portion of the doc. that cannot be modeled (pages) 640

Specification engineer’s experience in driver development (years) 2

Specification engineer’s experience in hardware design (years) 1

Specification engineer’s experience in formal verification (years) 3

Specification engineer estimated manual effort (person-day) 16

Gathered after the formalization process

The actual manual effort (person-day) 20

Specification issues found in the English document 2

Size of the modelC code in formal model (lines) 2304

Size of the comments in formal model (lines) 1016

Model-Doc ratio as 2304/130

(lines of the modelC code)/(pages of the modeled doc.) = 17.72

provides a set of programming interfaces for operating USB devices. However,

some programming rules are not specified, which has confused driver developers.

We have discovered such programming problems in driver implementations using

CoVer. For example, one of the problems is caused by redundant function calls

from driver to stop a USB device2.

Because formal models are manually specified, it is impossible to guarantee that

2Note that such problems are not reported as bugs in co-verification statistics; however, they
can also be considered as bugs in a stricter standard.

169

Table 7.6: Formal model of the USB 2.0 device/driver framework. (Com.: com-

ments, Doc.: document)

File name
of lines Doc.

Description
Com. Code pages

USBDef.h 52 128 20 Data structures

USB.c 186 178 20 Hardware transaction function

USBDrv.c 112 140 20 software-side protocol

Global∼.c 9 8 N/A Global variables for both

hardware and software models

wdfintfs.c 393 1394 50 Registers, HW/SW interface events

device.c 244 445 15 USB device state machine

Environ∼.c 20 11 5 Simulate the inputs to USB devices

no error is made by the specification engineer. However, we are able to validate

our formal models using automatic tools. For example, a C compiler has helped

discover quite a few specification inconsistencies in our formal models, because

most inconsistencies fail the syntax/semantic checking right away. Furthermore,

CoVer has helped discover thirteen errors in our formal models. The errors are

mostly introduced by code copy-paste and misunderstandings of the English speci-

fications. In our approach, the ability to utilize automatic tools in formal HW/SW

interface specifications is a significant advantage over English specifications.

7.2 CO-VERIFICATION

Co-verification is evaluated in reachability analysis and LTL checking respectively,

where real driver programs are verified in reachability analysis and synthetic BPDS

models are used as the benchmark in LTL checking. All evaluation experiments run

on a Lenovo ThinkPad notebook with Dual Core 2.66GHz CPU and 4GB memory.

170

The timeout threshold is set as 3000 seconds for both reachability analysis and LTL

checking. For reachability analysis, the spaceout threshold is set as 2000MB, which

is enforced by the SLAM engine. For LTL checking, the spaceout threshold is not

explicitly specified, i.e., a maximum of 4000MB memory may be used.

7.2.1 Reachability Analysis

In reachability analysis, the properties to be verified can be classified into two

categories:

1. whether a driver callback function3 accesses the hardware interface registers

in correct ways, e.g., a command should not be issued when hardware is

busy;

2. whether a driver callback function can cause an out-of-synchronization be-

tween the driver and device. For example, we check if the return value of a

driver callback function correctly indicates the current hardware state.

We have applied CoVer to co-verification of a Microsoft in-house driver with

its FDM developed in co-specification. This in-house driver is a prototype with

the functionalities partially implemented. However, CoVer can still be applied to

analyze the implemented portion of the driver. As a result, two real bugs were

discovered. This is an advantage over runtime validation where most functional-

ities of the driver need to be implemented before any comprehensive test can be

conducted.

We have also applied CoVer to four fully functional Windows device drivers

with their FDMs:

• OSR PIO-24 driver [67];

3 Windows OS invokes predefined driver callback functions to service the I/O requests from
user applications.

171

• Microsoft Ethernet controller driver [61];

• OSR USB 2.0 OSRUSBFX2 driver [59]; and

• Microsoft USB 2.0 USBSAMP driver [63].

Because the source code of the drivers has been provided to public as samples

for years, we did not expect to find many bugs. However, utilizing CoVer, we

discovered ten real bugs. All of these bugs, which could cause serious system

failures including data loss, interrupt storm, device hang, etc., were previously

unknown to the driver developers.

PIO-24 driver by OSR. Table 7.7 presents the statistics on the verification

of the PIO-24 driver with its FDM. We discovered four bugs and proved two

Table 7.7: Statistics on the co-verification of the PIO-24 device/driver.

Size of the driver (# of lines) 1724

Size of the formal device model (# of lines) 1237

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0Entry

Driver and device will not go

out-of-synchronization when 391.3 293 214.3 181 Passed

starting.

DevD0Exit

Driver and device will not go

out-of-synchronization when 71.1 69 38.4 43 Passed

stopping.

IsrCallDpc
ISR will not queue DPC without

Timeout N/A 700.5 218 Failed
reading the hardware registers.

InvalidRead
Driver will not read any invalid

589.4 132 91.3 66 Failed
input data.

ProperISR1
ISR will clear device interrupt-

58.9 58 35.2 43 Failed
pending status before return.

ProperISR2
ISR will not acknowledge the

74.1 62 28.7 37 Failed
interrupt raised by other devices.

properties of the driver using CoVer. For example, the code excerpt in Figure 2.8

172

contains one bug, which violates the rule InvalidRead (illustrated in Figure 6.2)

and will cause the driver return invalid data to user applications. This “invalid

read” bug occurs when the ISR routine DioIsr interrupts the device driver control

routine DioEvtDeviceControl at P1, where the variables CurrentRequest and

AwaitingInt become inconsistent. DioIsr will not execute the if block at P2

because AwaitingInt is FALSE. Later the DPC routine DioDpc is requested at P3.

After both DioIsr and DioEvtDeviceControl have returned, DioDpc starts to

run. At P4, the data is read from PortAValueAInt which has never been written

in DioIsr; therefore, the data is invalid. However, DioIsr still sends the invalid

data back to user application with STATUS SUCCESS at P5.

Another serious bug (discovered using the rule ProperISR1) of this driver can

cause an interrupt storm. The design of the device allows interrupts being repeat-

edly generated in certain configuration; however the driver does not handle the

interrupts correctly which will cause interrupts being raised more frequently than

that can be consumed, i.e., interrupt storm. This bug also reveals a problem of

the device document. Since the assumption on device input is not well defined in

the document, our formal model has to simulate all possible input. On the other

hand, the driver fails to handle one of the possibilities. As a solution to fix this

bug, the driver can disable the interrupt in ISR first and re-enable it later after

interrupt processing is completed.

Ethernet controller driver by Microsoft. Table 7.8 presents the statistics

on the verification of the Intel 82557/82558 based Ethernet controller driver with

its FDM. We discovered three bugs and proved five properties of the driver using

CoVer. For example, CoVer helps discover a bug that violates the rule DevD0Entry

and reports an error trace where the callback function EvtDeviceD0Entry returns

TRUE even if the driver fails to initialize the device correctly. This is a direct

violation of Windows device driver programming standards and will cause the

173

Table 7.8: Statistics on the co-verification of the Ethernet controller device/driver.

Size of the driver (# of lines) 14406

Size of the device formal model (# of lines) 3586

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0Entry

Driver and device will not go

out-of-synchronization when 1328.3 758 367.1 182 Failed

starting.

DevD0Exit

Driver and device will not go

out-of-synchronization when Timeout N/A 206.6 143 Failed

stopping.

IsrCallDpc

ISR will not queue DPC

64.1 99 39.9 79 Passedwithout reading the

hardware registers.

ProperISR1
ISR will clear device interrupt-

48.9 59 32.6 52 Passed
pending status before return.

ProperISR2
ISR will not acknowledge the

779.3 291 407.4 199 Passed
interrupt raised by other devices.

DoubleCUC
Driver will not issue a command

Timeout N/A 602.4 238 Failed
while the command unit is busy.

DoubleRUC
Driver will not issue a command

N/A Spaceout 1797.3 231 Passed
while the receiving unit is busy.

ProperReset
Driver uses a correct sequence

Timeout N/A 86.9 71 Passed
to reset the device.

device to become unusable without the OS being notified. The error trace also

illustrates that the driver continues its attempts to initialize the device even after

the previous device operations have failed. This may cause the device to become

permanently unaccessible.

Another bug that violates the rule DoubleCUC is illustrated in Figure 3.16b,

where the function D100IssueScbCommand waits before issuing a new command

only if the function parameter WaitForScb is TRUE. This kind of design is due to

a performance optimization. Since there are some program locations where the

driver knows that the device command register is free, it is unnecessary to check

174

Table 7.9: Statistics on the co-verification of the USB 2.0 OSRUSBFX2 de-

vice/driver.
Size of the driver (# of lines) 2892

Size of the device formal model (# of lines) 3068

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

StopIO
I/O on interrupt pipe should be

Timeout N/A 2755.6 340 Passed
stopped during powering down

ResetDevice

All I/O on all pipes should be

318.0 150 126.2 82 Failedstopped before resetting

the device.

ResetPipe
Driver must stop the pipe before

0.9 28 0.6 28 Passed
resetting it.

DevIORead
A read request should fail if the

221.4 133 54.6 60 Passed
device is in an invalid state.

DevIOWrite
A write request should fail if the

200.3 132 87.6 71 Passed
device is in an invalid state.

the register before issuing a new command. However, CoVer has demonstrated that

in some program execution path, a command is issued by the driver even when

the device command register is busy. This is a typical example of performance

optimization creating bugs. Since optimized code is often more complex than the

original code, it very important to use automatic tools, such as CoVer, in order to

ensure the correctness of the optimization.

USB 2.0 device drivers by Microsoft and OSR. Table 7.9 presents the statis-

tics on co-verification of the OSR OSRUSBFX2 driver implementation. We discov-

ered one real bug in this driver using CoVer. The SLIC rule ResetDevice checks

that I/O on all pipes should be stopped before a resetting command; however, the

driver fails to follow this rule in certain execution paths. As for the SLIC rule

ResetPipe, the verification cost is very low. Because CoVer (actually, SLAM)

decides that the error routine (i.e., function that contains the reachability label)

175

Table 7.10: Statistics on the co-verification of the USB 2.0 USBSAMP de-

vice/driver.
Size of the driver (# of lines) 3969

Size of the device formal model (# of lines) 3068

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

StopIO
I/O on interrupt pipe should be

105.8 81 98.2 72 Passed
stopped during powering down

ResetDevice
All I/O on all pipes should be

200.1 100 110.3 65 Failed
stopped before resetting

the device.

ResetPipe
Driver must stop the pipe before

54.2 51 31.6 40 Failed
resetting it.

DevIORead
A read request should fail if the

70.1 63 38.4 48 Passed
device is in an invalid state.

DevIOWrite
A write request should fail if the

68.5 63 34.7 48 Passed
device is in an invalid state.

is not reachable in the call graph of the instrumented program, verification stops

with a rule pass right after compilation; therefore, no model checking is necessary

for ResetPipe. Table 7.10 presents the statistics on co-verification of the Microsoft

USBSAMP driver implementation. We discovered two real bugs in this driver us-

ing CoVer. Other than ResetDevice, the SLIC rule ResetPipe is also violated

by USBSAMP driver, where the driver does not stop the I/O on a pipe before

resetting. Such bug may cause data loss in I/O operations. Note that verification

of the OSRUSBFX2 driver costs much more time and memory than that of the

USBSAMP driver, because OSRUSBFX2 implements iterations on operating mul-

tiple USB device pipes. These iterations need to be fully unrolled in verification.

Effectiveness of reduction. We have also compared the differences of co-

verification performance on whether our reduction algorithm is applied. It is clear

176

that our reduction algorithm can significantly scale co-verification, especially when

the target system is complex. For example, when no reduction is applied, there is

only one non-useful result in Table 7.7, however half of the verification cannot com-

plete in Table 7.8. This is because the Ethernet controller device/driver have more

comprehensive functionalities and implementation than the PIO-24 device/driver.

7.2.2 LTL Checking

We designed a synthetic BPDS template BPDS<N> for N > 0 to evaluate our

algorithms. As illustrated in Figure 7.1, this template is similar to the BPDS

model in Figure 6.5. The major difference is between the models of P. BPDS<N>

has two function templates level<N> and gcd<N> for P, where each of the function

templates has N instances. For 0 < i ≤ N , level<i> calls gcd<i> which is the ith

instance of gcd<N> that computes the greatest common divisor (implementation

of gcd<N> is omitted). For 0 < j < N , the instance of <stmt> in the body of the

function level<j> is replaced by a call to level<j+1>. The instance of <stmt>

in the body of level<N> is replaced by skip. The design of BPDS<N> mimics

the common scenarios in co-verification: since hardware and software are mostly

asynchronous, there are many software statements independent with hardware

transitions.

Table 7.11 presents the statistics for the verification of five LTL formulae on

the BPDS models generated from BPDS<N>, where some of the LTL formulae are

discussed as the examples in Chapter 6.

Table 7.12 presents the statistics for the verification of BPDS models generated

from BPDS Slow<N>, a template that differs from BPDS<N> only in the hardware

model. BPDS Slow<N> uses the hardware model illustrated in Figure 6.6. As dis-

cussed in Chapter 6, verification of the properties A1 and A2 will fail on the BPDS

models generated from BPDS Slow<N>, since the hardware cannot guarantee an im-

mediate response to the software reset command. However, by assuming A2, the

177

decl c0, c1, c2, r, s; // hardware registers

decl g; // software global variable

void main() begin

decl v0,v1,v2 := 1,1,1;

reset();

v1,v0 := status();

while(!v1|v0) do v1, v0 := status(); od

// call the first level

level<1>();

v2,v1,v0 := rd reg();

while(!v2) do v2,v1,v0 := rd reg(); od

if (v1|v0) then error: skip; fi

exit: return;

end

void level<i>()

begin

decl v0,v1,v2,v3,v4,v5;

v2,v1,v0 := rd reg();

v5,v4,v3 := rd reg();

v2,v1,v0 :=

gcd<i>(v5,v4,v3,v2,v1,v0);

if(*) then reset(); fi

if(g) then

g := (v3 != v0);

<stmt>;

fi

end

Figure 7.1: The BPDS template BPDS<N> for evaluation.

verification of A1 should pass. Obviously, the verification of this property, denoted

by ϕ (including both A1 and A2), costs more time and memory compared to other

properties, because ϕ is more complex than other properties.

We can infer from the two tables that our reduction algorithm is very effective

in reducing the verification cost. For example, without the reduction, verification

of the property ϕ gets a spaceout failure for N = 2000, i.e., CoVer fails to allocate

more memory from the Operating System. The statistics suggest that our reduc-

tion algorithm can reduce the verification cost by 80% in time usage and 35% in

memory usage on average.

178

Table 7.11: Statistics on the LTL checking of BPDS<N>. (NoR.: No Reduction.

Red.: Reduction)

LTL Property
N

500 1000 2000

F exit
NoR. 177.9sec/49.1MB 606.8sec/98.1MB 1951.5sec/196.3MB

Red. 55.6sec/27.8MB 100.9sec/55.6MB 231.5sec/111.2MB

G(reset cmd → NoR. 100.8sec/51.1MB 439.0sec/102.1MB 1742.1sec/204.3MB

(F reset act)) Red. 19.2sec/31.6MB 37.2sec/63.2MB 115.0sec/126.5MB

F level N
NoR. 165.3sec/49.1MB 524.1sec/98.1MB 1934.1sec/196.3MB

Red. 52.9sec/27.8MB 99.8sec/55.6MB 230.7sec/111.2MB

G !level N
NoR. 94.8sec/43.4MB 404.0sec/86.2MB 1728.9sec/172.5MB

Red. 10.7sec/25.0MB 22.3sec/49.9MB 84.5sec/99.9MB

G !error
NoR. 96.6sec/42.4MB 402.6sec/84.8MB 1719.9sec/169.8MB

Red. 10.1sec/24.8MB 21.2sec/49.2MB 81.5sec/98.5MB

7.3 SUMMARY

Summary of the bug discovery by co-verification. Consider the twelve bugs

discovered using co-verification in Windows driver implementations:

• All the bugs involve interactions between drivers and devices.

• One bug happens when a driver does not initialize its device correctly, i.e.,

a default device state is not considered during the initialization process.

• Three bugs happen when devices interrupt their drivers. It is a restricted

version of concurrency checking.

• Four bugs are due to the out-of-synchronization between drivers and devices.

For example, a driver issues a command while its device is busy.

179

Table 7.12: Statistics on the LTL checking of BPDS Slow<N> which uses the hard-

ware model of Figure 6.6. (NoR.: No Reduction. Red.: Reduction)

LTL Property
N

500 1000 2000

A1:F exit
NoR. 186.5sec/49.1MB 576.4sec/98.1MB 1913.5sec/196.3MB

Red. 38.1sec/27.8MB 98.5sec/55.6MB 207.1sec/111.2MB

A2:G(reset cmd NoR. 143.1sec/61.0MB 587.1sec/122.0MB 1778.7sec/203.5MB

→ (F reset act)) Red. 28.3sec/35.5MB 64.3sec/71.0MB 164.1sec/142.0MB

A1 using A2 as NoR. 1264.0sec/223.4MB 3750.3sec/446.7MB N/A/spaceout

the assumption Red. 255.8sec/109.5MB 565.6sec/218.9MB 1260.8sec/437.7MB

F level N
NoR. 181.9sec/49.1MB 588.6sec/98.1MB 1908.4sec/196.3MB

Red. 42.2sec/27.8MB 90.8sec/55.6MB 198.6sec/111.2MB

G !level N
NoR. 96.7sec/43.4MB 414.6sec/86.2MB 1679.7sec/172.5MB

Red. 12.1sec/25.0MB 26.9sec/49.9MB 91.5sec/99.9MB

G !error
NoR. 95.0sec/42.5MB 414.2sec/84.8MB 1672.6sec/169.8MB

Red. 11.5sec/24.8MB 25.3sec/49.2MB 88.9sec/98.5MB

• Four bugs happen when drivers mishandle their device failures. For example,

a driver returns SUCCESS when its device actually fails.

Summary of evaluation. We have five observations through evaluation:

• First, our co-specification approach is very effective in detecting the specifica-

tion issues of English documents. We have discovered fifteen specification

issues in four English documents, where some of the issues have existed for

many years.

• Second, the formal models developed in co-specification can precisely capture

the HW/SW interface behaviors regardless of the English documents’ quality.

180

• Third, the correctness of the formal models can be easily analyzed by auto-

matic tools.

• Fourth, our co-verification algorithm is effective in discovering sophisticated

bugs of HW/SW interface implementations in driver programs. Utilizing

CoVer, we have discovered twelve real bugs in five Windows driver im-

plementations. All these bugs are previously unknown to driver developers,

even after comprehensive testing.

• Fifth, our reduction algorithm is efficient in alleviating the verification cost.

For both reachability analysis and LTL checking, the average reduction of

the verification cost is 70% in time usage and 30% in memory usage.

181

Chapter 8

CONCLUSION AND FUTURE RESEARCH

8.1 CONCLUSION

HW/SW interfaces exist in all kinds of computer systems ranging from embedded

systems to personal computers. These systems are often expected to be reliable.

However, the intrinsic complexity in HW/SW interface designs have always been

a challenge to this goal. It is challenging to specify HW/SW interface protocols

in a manner that is clear and precise to both hardware and software engineers;

it is challenging to synthesize a unifying formal model for HW/SW interfaces,

since hardware and software have different implementation semantics; it is also

challenging to develop effective tools for HW/SW co-verification, where the design

features of HW/SW interfaces are well exploited.

Throughout this dissertation, we have demonstrated that co-verification of

HW/SW interface protocols can be effectively achieved via formal specification

and model checking.

Co-specification. It is possible to formally specify HW/SW interface protocols

in such a way that closely resembles the implementation semantics of hardware

and software. Our specification language, modelC, is designed based on the C

semantics with three restrictions to achieve finite state and two extensions to sup-

port non-determinism and relative atomicity. The hardware behaviors are specified

using TLM, a common approach in hardware specification. In order to specify a

hardware-side interface protocol in modelC, one should model the hardware states

182

using global variables; and describe the hardware behaviors using hardware trans-

action functions. A hardware transaction function is an atomic C function that

describes the transition rule with respect to the state change of (hardware) global

variables. The concurrency in a hardware design is modeled via interleaved exe-

cutions of hardware transaction functions and non-deterministic choices made on

the control flow of each hardware transaction function. On the other hand, it is

straightforward to specify a software-side interface protocol using modelC. Dif-

ferent from hardware, software states are maintained by both (software) global

variables and local variables. In software specification, an atomic program state-

ment describes a set of software state transitions.

Except for the purpose of co-verification, formal models constructed by co-

specification can also be utilized in the development process of devices and drivers,

as the formal HW/SW interface specifications. Compared with English specifica-

tions, formal models are clear, precise, and easy for development engineers to

understand. Furthermore, formal models can serve as the basis of a uniform plat-

form for co-verification, co-simulation, conformance testing, etc. Section 8.2 will

discuss how to apply the formal models to co-simulation and conformance testing

respectively.

Co-specification is very effective to help identify specification issues of HW/SW

interface protocols. As discussed in Chapter 7, the formalization process of four

device/driver interface protocols has led to the detection of fifteen specification

issues, given the fact that some of the specifications have existed as the industry

standards for many years.

Co-verification model. BPDS is a suitable formal model for HW/SW interfaces.

A BPDS model is the Cartesian product of a BA and an LPDS, where BA is a

suitable representation for hardware which is finite state; and LPDS is a suitable

representation for software which is often infinite state. The input alphabets of BA

183

and LPDS are induced on the states of each other, so that BA transitions and LPDS

rules can be combined into BPDS rules. BPDS has a synchronous execution mode,

i.e., both the BA and LPDS must transition at the same time in order to make one

BPDS transition. In synchronous execution mode, it is straightforward to model

the situation when hardware and software transition simultaneously. However,

they may also be interleaving, which is modeled by introducing self-loop transitions

to both BA and LPDS.

Co-verification algorithms. The verification problem of BPDS for either safety

properties or liveness properties is solvable in cubic time and space with respect

to the size of the BPDS model and the property to be checked. For reachability

analysis (i.e., safety properties only), BPDS is converted into PDS so that existing

model checkers for PDS can be readily utilized to solve the problem. For LTL

checking (including safety properties and liveness properties), an LTL property is

first negated and then represented as a BA. The BA is combined with BPDS in

such a way that the BA monitors the state transitions of the BPDS. The LTL

property fails if the BA has an accepting run on the BPDS; otherwise, the LTL

property passes.

The verification cost can be greatly alleviated via reducing the size of BPDS.

Since hardware and software are mostly asynchronous, their transition orders are

often unnecessary to be explored during verification. Therefore, many BPDS rules

can be pruned in the compilation phrase while constructing a BPDS from a BA

and an LPDS. Such reduction is very useful in practice, since it does not require

any modification to the model checker. Therefore, model checkers with industry

strength, such as SLAM, can be readily utilized. Interestingly, our reduction al-

gorithm is also useful as the formal foundation for those reductions applied with

runtime techniques. For example, the reduction method used in Device Driver

Tester (DDT) [46] is actually one kind of static partial order reduction for HW/SW

184

interfaces. The motivation and correctness of such reduction have been thoroughly

discussed in this dissertation.

Our co-verification tool, CoVer, has been applied to five Windows drivers with

their Formal Device Models (FDMs). Some of the drivers are fully functional,

well tested, and used as sample drivers for many years. However, utilizing CoVer,

we have still discovered real bugs in each of the drivers and the total bug count

is twelve. All of these bugs, which could cause serious system failures including

data loss, interrupt storm, device hang, etc., were previously unknown to the

driver developers. Furthermore, evaluation suggests that the average reduction of

verification cost is 70% in time usage and 30% in memory usage.

8.2 FUTURE RESEARCH

This dissertation has presented a useful approach to improve the reliability of

HW/SW interface implementations; however, it is only the tip of the iceberg.

There are other interesting research that needs to be explored.

8.2.1 Co-verification of Liveness Properties on Driver Code

We demonstrate the verification of liveness properties on BPDS models specified

using Boolean programs. In practice, it is desired that co-verification of liveness

properties can be applied to driver implementations. For example, developers may

want to know whether their drivers may hang on device operations. Co-verification

of liveness properties on driver implementations can be realized based on liveness

verification engines for C programs, such as Terminator [24, 25].

As illustrated in Figure 8.1, given a liveness property, a driver implementation,

and a FDM, we can implement a co-verification frontend that converts the input

into a C program with some liveness constraints, where the idea of the conversion

is presented in Algorithm 5.8. Therefore, the verification problem can be solved

185

Driver code Terminator

YES

NOFormal Device
Model (FDM)

Liveness
property

Co-verification
instrumentation

frontend

C program
with liveness

constraints

Figure 8.1: Co-verification of liveness properties on driver implementations.

by Terminator.

8.2.2 Co-simulation

Although we can discover sophisticated bugs using co-verification, co-simulation,

i.e., simulating a driver with its device model, is also highly desired in practice.

Simulation can help discover shallow bugs with a low cost and is often used to

evaluate the efficiency of implementations.

As illustrated in Figure 8.2, a FDM constructed by co-specification can also

be used in co-simulation, where the FDM interface is a thin layer that adapts

OS ecosystem

Driver

I/O

Lower level
driver statck Symbolic Execution

Environment (SEE)

Formal Device
Model (FDM)

FDM interface

SEE interface

. . .

. . .

.

Figure 8.2: Co-simulation using formal device model.

the interface of the FDM to simulation environment. One major challenge to

186

co-simulation is how to support relative atomicity and non-determinism without

changing the FDM. We need to implement two modules: a Symbolic Execution

Environment (SEE) and a SEE interface.

Symbolic Execution Environment executes a FDM via the FDM interface.

Note that non-determinism can be easily supported by symbolic execution.

SEE interface has three functions:

• First, it intercepts the communications between the driver and its underline

stack in order to reroute the I/O to SEE.

• Second, it ensures the relative atomicity. For example, hardware transaction

functions should be atomic to each other; and some driver operations such

as kernel API calls should be atomic to hardware transaction functions.

• Third, it serves as the boundary between symbolic execution and concrete

execution, i.e., how a symbolic value can be passed to concrete system en-

vironment; and how a concrete system call can be translated into symbolic

values.

Although related work can be found in DDT [46] with a technique called selec-

tive symbolic execution [18], the challenges are still open on how to simulate a

comprehensive FDM (instead of a shallow symbolic device model used in DDT);

how to ensure that the interface states of the FDM are always consistent in the

view of the driver, which is not guaranteed by selective symbolic execution; and

how to optimize the simulation since symbolic execution also suffers from the state

explosion problem.

8.2.3 Co-monitoring

An approach to protocol conformance validation is monitoring, where the behav-

iors of a system is observed and compared to the golden model that describes

187

the protocol. With respect to HW/SW interfaces, the behaviors of a device and

its driver should be monitored together, i.e., co-monitoring. The formal model

developed in co-specification can be used as the golden model for co-monitoring.

Figure 8.3 illustrates the framework of co-monitoring, which is different from

co-simulation in four aspects:

OS ecosystem

Driver

I/O

Lower level
driver statck Symbolic Execution

Environment (SEE)

Formal Device
Model (FDM)

FDM interface

CoM interface

. . .

. . .

.

Hardware Abstraction Layer (HAL)

Software

Hardware

Device

. . .

Upper level device stack

Figure 8.3: Co-monitoring using formal device model.

• First, there is a real hardware device interacting with the driver.

• Second, it only monitors the communications between the driver and the

lower level driver stack; therefore, the communications should be affected as

little as possible.

• Third, it symbolically executes the FDM according to the monitored com-

munications, which makes the FDM a mirror of the device with respect to

their states.

188

• Fourth, it raises an alarm when a protocol violation is detected.

One key part of co-monitoring is the CoM (Co-Monitoring) interface, which serves

three functions:

• First, it monitors the communications between the driver and its underline

stack in order to constrain the symbolic execution of the FDM.

• Second, it ensures the relative atomicity inside the FDM, i.e., hardware trans-

action functions should be atomic to each other.

• Third, it monitors the execution of the FDM and raises an alarm if the

FDM’s state indicates a protocol violation by either the driver or the device.

Essentially, co-monitoring does two things: deduces the device’s states based on

the monitored communications; and raises an alarm if a violation is detected by

analyzing the FDM’s states with the communications.

8.2.4 Formal-model-guided Automatic Test Case Generation

It is a common practice that a higher level design, a.k.a., a golden model, is

developed before a system is actually implemented. Such a golden model is very

useful to evaluate the correctness and efficiency of the design. After the system is

implemented, it is also desired that the golden model can be used to guide the test

case generation.

As illustrated in Figure 8.4, we can utilize a FDM as the golden model to

generated test cases for its hardware device. There are three steps for automatic

test case generation:

• First, it utilizes symbolic path exploring tools such as KLEE [17] to generate

path constraints for the FDM. Path constraints describe the condition that

must hold on execution of a path.

189

OS ecosystem
Test Driver

Lower level
driver statck

Symbolic Path
Explorer (SPE)

Formal Device
Model (FDM)

FDM interface

. . .

.

Hardware Abstraction Layer (HAL)

Software

Hardware

Device

. . .

Upper level device stack

a test harness for
device()

Path contraint solver

Test code generator
+

path contraints

test code

Figure 8.4: Automatic test case generation based on formal device model.

• Second, it implements a path constraint solver, which, given a path con-

straint, generates concrete input to the FDM in order to execute the path.

It also implements a test code generator, which generates a test harness using

the concrete input.

• Third, it loads the test harness, as a driver of the device, into the driver

stack; therefore, automatic testing is conducted as if a driver operates its

device.

Following this approach, test cases can be generated automatically and the device

functionality can be covered by these test cases in a low cost, because the device

is logically similar to its FDM and the symbolic path explorer often can generate

path constraints in such a way that guarantees a high path coverage on the FDM.

This approach can also be combined with co-monitoring; therefore, any protocol

violation by the device can be automatically detected during testing.

190

REFERENCES

[1] Accellera. Property Specification Language – Reference Manual, 1.1 edition,

June 9 2004.

[2] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic

verification of embedded systems. IEEE Transactions on Software Engineering

(TSE), 22(3):181–201, March 1996.

[3] Felice Balarin, Harry Hsieh, Attila Jurecska, Luciano Lavagno, and Alberto L.

Sangiovanni-Vincentelli. Formal verification of embedded systems based on

CFSM networks. In Proceedings of the 33st Design Automation Conference

(DAC), pages 568–571, New York, NY, USA, 1996. ACM.

[4] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichten-

berg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah

Ustuner. Thorough static analysis of device drivers. In Proceedings of the

1st ACM SIGOPS/EuroSys European Conference on Computer Systems (Eu-

roSys), pages 73–85, New York, NY, USA, April 18-21 2006. ACM.

[5] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.

Automatic predicate abstraction of C programs. In Proceedings of the 2001

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), pages 203–213, New York, NY, USA, June 20-22 2001.

ACM.

[6] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for

boolean programs. In Proceedings of the 7th international SPIN conference on

191

Model checking software, volume 1885 of Lecture Notes in Computer Science,

pages 113–130. Springer, August 30 - September 1 2000.

[7] Thomas Ball and Sriram K. Rajamani. Boolean programs: A model and

process for software analysis. Technical Report MSR-TR-2000-14, Microsoft

Research, Microsoft Corporation, One Microsoft Way Redmond, WA 98052,

February 2000.

[8] Thomas Ball and Sriram K. Rajamani. Generating abstract explanations of

spurious counterexamples in C programs. Technical Report MSR-TR-2002-09,

Microsoft Research, January 2002.

[9] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system

software via static analysis. In Proceedings of the 29th SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), pages 1–3, New

York, NY, USA, January 16-18 2002. ACM.

[10] Thomas Ball and Sriram K. Rajamani. SLIC: a Specification Language for

Interface Checking (of C). Technical Report MSR-TR-2001-21, Microsoft Re-

search, Microsoft Corporation, One Microsoft Way Redmond, WA 98052, Jan-

uary 2002.

[11] David Becker, Raj K. Singh, and Stephen G. Tell. An engineering environ-

ment for hardware/software co-simulation. In Proceedings of the 29th Design

Automation Conference (DAC), pages 129–134, Los Alamitos, CA, USA, June

8-12 1992. IEEE Computer Society.

[12] Berkeley. Ptolemy project. http://ptolemy.eecs.berkeley.edu/index.htm, Oc-

tober 2010.

[13] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Ru-

pak Majumdar. The BLAST query language for software verification. In

192

Proceedings of the 11th International Static Analysis Symposium (SAS), vol-

ume 3148 of Lecture Notes in Computer Science, pages 2–18. Springer, August

26-28 2004.

[14] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The

software model checker BLAST. International Journal on Software Tools for

Technology Transfer (STTT), 9(5-6):505–525, September 2007.

[15] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of

pushdown automata: Application to model-checking. In Proceedings of the 8th

International Conference on Concurrency Theory (CONCUR), volume 1243

of Lecture Notes in Computer Science, pages 135–150. Springer, July 1-4 1997.

[16] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, August 1986.

[17] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and

automatic generation of high-coverage tests for complex systems programs. In

Proceedings of the 8th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pages 209–224, Berkeley, CA, USA, December 8-10

2008. USENIX Association.

[18] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. Se-

lective symbolic execution. In Proceedings of the 5th Workshop on Hot Topics

in System Dependability (HotDep), June 29 2009.

[19] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson En-

gler. An empirical study of operating systems errors. In Proceedings of the

eighteenth ACM symposium on Operating systems principles (SOSP), pages

73–88, New York, NY, USA, October 21-24 2001. ACM.

193

[20] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking.

Journal of the ACM (JACM), 50(5):752–794, September 2003.

[21] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-

nization skeletons using branching-time temporal logic. In Proceedings of Logic

of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71,

London, UK, May 1981. Springer.

[22] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.

MIT Press, Cambridge, MA, USA, 1999.

[23] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips. Uni-

versal Serial Bus Specification, 2.0 edition, April 27 2000.

[24] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and

Moshe Y. Vardi. Proving that programs eventually do something good. In

Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), pages 265–276, New York, NY, USA,

January 17-19 2007. ACM.

[25] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs

for systems code. In Proceedings of the 2006 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 415–426,

New York, NY, USA, June 11-14 2006. ACM.

[26] Luis Alejandro Cortes, Petru Eles, and Zebo Peng. Formal coverification of

embedded systems using model checking. In Proceedings of the 26th EU-

ROMICRO Conference, pages 1106–1113, Washington, DC, USA, September

5-7 2000. IEEE Computer Society.

194

[27] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceed-

ings of the Joint 8th European Software Engineering Conference (ESEC) and

9th ACM SIGSOFT Symposium on the Foundations of Software Engineering

(FSE), pages 109–120, New York, NY, USA, September 10-14 2001. ACM.

[28] David A. Duffy. Principles of automated theorem proving. John Wiley & Sons,

Inc., New York, NY, USA, 1991.

[29] Eclipse Foundation. Eclipse. http://www.eclipse.org, October 2010.

[30] Alessandro Forin, Behnam Neekzad, and Nathaniel L. Lynch. Giano: The

two-headed system simulator. Technical Report MSR-TR-2006-130, Microsoft

Research, September 2006.

[31] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation.

In Proceedings of the 13th International Conference on Computer Aided Ver-

ification (CAV), volume 2102 of Lecture Notes in Computer Science, pages

53–65, London, UK, July 18-22 2001. Springer.

[32] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tar-

rodaychik, and O. Yamamo. A hardware-software co-simulator for embed-

ded system design and debugging. In Proceedings of Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 155–164, New York, NY,

USA, August 29 - September 1 1995. ACM.

[33] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems - An Approach to the State-Explosion Problem. PhD thesis, Univer-

sity of Liege, November 1994.

[34] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with

PVS. In Proceedings of the 9th International Conference on Computer Aided

195

Verification (CAV), volume 1254 of Lecture Notes in Computer Science, pages

72–83, London, UK, June 22-25 1997. Springer.

[35] Daniel Groβe, Ulrich Kühne, and Rolf Drechsler. HW/SW co-verification of

embedded systems using bounded model checking. In Proceedings of ACM

Great Lakes Symposium on VLSI (GLSVLSI), pages 43–48, New York, NY,

USA, April 30 - May 1 2006. ACM.

[36] Rajesh Gupta, Claudionor Coelho, and Giovanni De Micheli. Synthesis

and simulation of digital systems containing interacting hardware and soft-

ware components. In Proceedings of the 29th Design Automation Conference

(DAC), pages 225–230, Los Alamitos, CA, USA, June 8-12 1992. IEEE Com-

puter Society.

[37] Andreas Hoffmann, Tim Kogel, and Heinrich Meyr. A framework for fast

hardware-software co-simulation. In Proceedings of the Conference on Design,

Automation and Test in Europe (DATE), pages 760–765, Piscataway, NJ,

USA, March 12 - 16 2001. IEEE Press.

[38] IEEE. IEEE Standard for Verilog (IEEE Std 1364-2005). IEEE, 2005.

[39] Intel. Intel 8255x 10/100 Mbps Ethernet Controller Family – Open Source

Software Developer Manual, 1.3 edition, January 2006.

[40] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-

Aided Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA,

USA, 2000.

[41] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware

design: a survey. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 4(2):123–193, April 1999.

196

[42] Daniel Kroening and Natasha Sharygina. Formal verification of systemc

by automatic hardware/software partitioning. In Proceedings of the 2nd

ACM/IEEE International Conference on Formal Methods and Models for Co-

Design (MEMOCODE), pages 101–110, Washington, DC, USA, July 11-14

2005. IEEE Computer Society.

[43] Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes:

The Automata-Theoretic Approach. Princeton University Press, Princeton,

New Jersey, USA, 1994.

[44] Robert P. Kurshan, Vladdimir Levin, Marius Minea, Doron Peled, and Hüsnü

Yenigün. Static partial order reduction. In Proceedings of the 4th International

Conference on Tools and Algorithms for Construction and Analysis of Systems

(TACAS), volume 1384 of Lecture Notes in Computer Science, pages 345–357,

London, UK, March 28 - April 4 1998. Springer.

[45] Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron Peled, and Hüsnü

Yenigün. Combining software and hardware verification techniques. Formal

Methods in System Design (FMSD), 21(3):251–280, November 2002.

[46] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source binary

device drivers with DDT. In Proceedings of the 2010 USENIX annual technical

conference (USENIXATC), pages 12–12, Berkeley, CA, USA, June 22C25

2010. USENIX Association.

[47] Juncao Li, Nicholas T. Pilkington, Fei Xie, and Qiang Liu. Embedded ar-

chitecture description language. Journal of Systems and Software (JSS),

83(2):235–252, February 2010.

[48] Juncao Li, Xiuli Sun, Fei Xie, and Xiaoyu Song. Component-based abstrac-

tion and refinement. In Proceedings of the 10th International Conference on

197

Software Reuse (ICSR), volume 5030 of Lecture Notes in Computer Science,

pages 39–51, Berlin, Heidelberg, May 25-29 2008. Springer.

[49] Juncao Li, Fei Xie, Thomas Ball, and Vladimir Levin. Efficient reachability

analysis of Büchi pushdown systems for hardware/software co-verification. In

Proceedings of the 22nd International Conference on Computer Aided Ver-

ification (CAV), volume 6174 of Lecture Notes in Computer Science, pages

339–353. Springer, July 15-19 2010.

[50] Juncao Li, Fei Xie, Thomas Ball, Vladimir Levin, and Con McGarvey. An

automata-theoretic approach to hardware/software co-verification. In Pro-

ceedings of the 13th International Conference on Fundamental Approaches to

Software Engineering (FASE), volume 6013 of Lecture Notes in Computer

Science, pages 248–262. Springer, March 20-28 2010.

[51] Juncao Li, Fei Xie, and Huaiyu Liu. Guiding component-based hard-

ware/software co-verification with patterns. In Proceedings of the 33rd EU-

ROMICRO Conference on Software Engineering and Advanced Applications

(EUROMICRO-SEAA), pages 67–74, Washington, DC, USA, August 28-31

2007. IEEE Computer Society.

[52] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for

distributed algorithms. In Proceedings of the 6th Annual ACM Symposium on

Principles of Distributed Computing (PODC), pages 137–151, New York, NY,

USA, August 10-12 1987. ACM.

[53] Kenneth L. McMillan. Symbolic Model-Checking: an approach to the state

explosion problem. PhD thesis, Carnegie Mellon University, May 1992.

[54] Kenneth L. McMillan. The SMV System. Carnegie Mellon University, Novem-

ber 6 2000.

198

[55] Mentor Graphics. Seamless. http://www.mentor.com, October 2010.

[56] Microsoft. Device simulation framework design guide. MSDN:

http://msdn.microsoft.com/en-us/library/ff538293.aspx, October 2010.

[57] Microsoft. Framework USB reference. MSDN: http://msdn.microsoft.com/en-

us/library/ff543092(VS.85).aspx, October 2010.

[58] Microsoft. Microsoft visual studio. http://www.microsoft.com/visualstudio/en-

us/default.mspx, October 2010.

[59] Microsoft. OSRUSBFX2: sample WDF driver for USB 2.0 devices.

MSDN: http://msdn.microsoft.com/en-us/library/ff544368(VS.85).aspx, Oc-

tober 2010.

[60] Microsoft. Programming techniques for framework-based drivers. MSDN:

http://msdn.microsoft.com/en-us/library/ff544546.aspx, October 2010.

[61] Microsoft. Sample WDF driver for Intel 8255x 10/100 Mbps Ethernet con-

troller. MSDN: http://msdn.microsoft.com/en-us/library/ff544373.aspx, Oc-

tober 2010.

[62] Microsoft. Synchronizing interrupt code. MSDN:

http://msdn.microsoft.com/en-us/library/ff544728.aspx, October 2010.

[63] Microsoft. USBSAMP: sample WDF driver for USB 2.0 devices.

MSDN: http://msdn.microsoft.com/en-us/library/ff544747(VS.85).aspx, Oc-

tober 2010.

[64] David Monniaux. Verification of device drivers and intelligent controllers: a

case study. In Proceedings of the 7th ACM & IEEE International conference on

Embedded Software (EMSOFT), pages 30–36, New York, NY, USA, September

30 - October 3 2007. ACM.

199

[65] Brendan Murphy and Mario R. Garzia. Software reliability engineering for

mass market products. Software Reliabilty Engineering, 8(1), December 2004.

[66] Open SystemC Initiative (OSCI). http://www.systemc.org/, October 6 2010.

[67] OSR. Sample WDF driver for Sealevel digital I/O kit. OSR:

http://www.osronline.com/article.cfm?article=403, April 17 2007.

[68] Claudio Passerone, Luciano Lavagno, Massimiliano Chiodo, and Alberto L.

Sangiovanni-Vincentelli. Fast hardware/software co-simulation for virtual pro-

totyping and trade-off analysis. In Proceedings of the 34st Design Automation

Conference (DAC), pages 389–394, New York, NY, USA, June 9-13 1997.

ACM.

[69] Doron Peled. Combining partial order reductions with on-the-fly model-

checking. Formal Methods in System Design (FMSD), 8(1):39–64, January

1996.

[70] Carl Pixley. Introduction to a computational theory and implementation of se-

quential hardware equivalence. In Proceedings of the 2nd International Work-

shop, on Computer Aided Verification (CAV), volume 531 of Lecture Notes in

Computer Science, pages 54–64, London, UK, June 18-21 1990. Springer.

[71] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE

Annual Symposium on Foundations of Computer Science (FOCS), pages 46–

57, Washington, DC, USA, October 31 - November 2 1977. IEEE Computer

Society.

[72] Amir Pnueli. Applications of temporal logic to the specification and verifi-

cation of reactive systems: A survey of current trends. In Current Trends

in Concurrency, volume 224 of Lecture Notes in Computer Science, pages

510–584. Springer, New York, NY, USA, 1986.

200

[73] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent

software. In Proceedings of the 11th International Conference on Tools and

Algorithms for Construction and Analysis of Systems (TACAS), volume 3440

of Lecture Notes in Computer Science, pages 93–107. Springer, April 4-8 2005.

[74] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-

current systems in CESAR. In Proceedings of the 5th Colloquium on Interna-

tional Symposium on Programming, volume 137 of Lecture Notes in Computer

Science, pages 337–351, London, UK, April 6-8 1982. Springer.

[75] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is un-

decidable. ACM Transactions on Programming Languages and Systems

(TOPLAS), 22(2):416–430, March 2000.

[76] James A. Rowson. Hardware/software co-simulation. In Proceedings of the

31st Design Automation Conference (DAC), pages 439–440, New York, NY,

USA, June 6-10 1994. ACM.

[77] Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische

Universität München, Institut für Informatik, June 2002.

[78] Sealevel Systems, Inc. PIO-24.LPCI User Manual, July 2006.

[79] Luc Semeria and Abhijit Ghosh. Methodology for hardware/software co-

verification in C/C++. In Proceedings of Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 405–408, New York, NY, USA,

January 26 - 28 2000. ACM.

[80] Peter Shier. Using the device simulation framework for software simulation

of USB devices. http://download.microsoft.com/download/5/b/9/5b97017b-

e28a-4bae-ba48-174cf47d23cd/DEV098 WH06.ppt, 2006.

201

[81] Alok Sinha. Windows driver quality signature.

http://download.microsoft.com/download/9/8/f/98f3fe47-dfc3-4e74-92a3-

088782200fe7/TWDE05008 WinHEC05.ppt, February 2005.

[82] David A. Solomon. Inside Windows NT. Microsoft Press, 2 edition, 1998.

[83] Michael M. Swift. Improving the Reliability of Commodity Operating Systems.

PhD thesis, University of Washington, October 2005.

[84] Jan Tretmans. A formal approach to conformance testing. PhD thesis, Uni-

versity of Twente, December 1992.

[85] Peter H. J. van Eijk, Chris A. Vissers, and Michel Diaz, editors. The formal

description technique LOTOS. Elsevier Science Inc., New York, NY, USA,

1989.

[86] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal

logics of programs. Journal of Computer and System Sciences (JCSS),

32(2):183–221, April 1986.

[87] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence

checking of static affine programs using widening to handle recurrences. In

Proceedings of the 21st International Conference on Computer Aided Veri-

fication (CAV), volume 5643 of Lecture Notes in Computer Science, pages

599–613, Berlin, Heidelberg, June 26 - July 2 2009. Springer.

[88] Fei Xie and Huaiyu Liu. Unified property specification for hardware/software

co-verification. In Proceedings of the 31st Annual International Computer

Software and Applications Conference (COMPSAC), pages 483–490, Wash-

ington, DC, USA, July 24-27 2007. IEEE Computer Society.

[89] Fei Xie, Guowu Yang, and Xiaoyu Song. Component-based hardware/software

202

co-verification for building trustworthy embedded systems. Journal of Systems

and Software (JSS), 80(5):643–654, May 2007.

