
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2010

An Automata-Theoretic Approach to Hardware/An Automata-Theoretic Approach to Hardware/

Software Co-verification Software Co-verification

Juncao Li
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Li, Juncao, "An Automata-Theoretic Approach to Hardware/Software Co-verification" (2010). Dissertations
and Theses. Paper 12.
https://doi.org/10.15760/etd.12

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/12
https://doi.org/10.15760/etd.12
mailto:pdxscholar@pdx.edu

An Automata-Theoretic Approach to

Hardware/Software Co-verification

by

Juncao Li

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Thomas Ball

Jingke Li

Suresh Singh

Bryant W. York

Fu Li

Portland State University

c© 2010

i

ABSTRACT

Hardware/Software (HW/SW) interfaces are pervasive in computer systems. How-

ever, many HW/SW interface implementations are unreliable due to their intrinsi-

cally complicated nature. In industrial settings, there are three major challenges to

improving reliability. First, as there is no systematic framework for HW/SW inter-

face specifications, interface protocols cannot be precisely conveyed to engineers.

Second, as there is no unifying formal model for representing the implementation

semantics of HW/SW interfaces accurately, some critical properties cannot be for-

mally verified on HW/SW interface implementations. Finally, few automatic tools

exist to help engineers in HW/SW interface development.

In this dissertation, we present an automata-theoretic approach to HW/SW co-

verification that addresses these challenges. We designed a co-specification frame-

work to formally specify HW/SW interface protocols; we synthesized a hybrid

Büchi Automaton Pushdown System, namely Büchi Pushdown System (BPDS), as

the unifying formal model for HW/SW interfaces; and we created a co-verification

tool, CoVer that implements our model checking algorithms and realizes our re-

duction algorithms for BPDS.

The application of our approach to the Windows device/driver framework has

resulted in the detection of fifteen specification issues. Furthermore, utilizing

CoVer, we discovered twelve real bugs in five drivers. These non-trivial findings

have demonstrated the significance of our approach in industrial applications.

ii

DEDICATION

To the memory of my father, Bochun Li

To my mother, Jinping Cao

To my wife, Xiaojing Liu

iii

ACKNOWLEDGMENTS

This dissertation could not have been accomplished without the help and influence

by many generous people. I am sincerely grateful and deeply in debt to them.

First and foremost, thanks to my advisor, Prof. Fei Xie, who brought me on

board to software engineering and formal methods. When I first met Fei, various

wild ideas jumped out of my head, but I was never able to find the right track

to approach the real problems. Fei always listened to my ideas with a patient

smile and then pointed out the problems. While Ph.D. study is a long trip with

enormous possible outcomes, I often plan for the worst. Fei has always encouraged

me and cheered me up when I was frustrated. Fei taught me how to be a student,

a researcher, and an educator.

Dr. Thomas Ball and Dr. Vladimir Levin were very generous to share their

visions and ideas with me. The key idea of this research comes from a discussion

with them. They spent lots of time and effort in helping me with this research.

Every discussion with them was fruitful with ideas. They also helped me edit my

papers and critiqued my talks. Vladimir hosted me during my two internships at

Microsoft. He also helped me in writing the very first prototype of CoVer in order

to deal with bitunion operations of SLAM.

Prof. Bryant W. York helped me in many different ways, from computer science

to life philosophy. He has broad knowledge and always is ready to help me. He

taught me the idea of cognitive science, so that I can understand how knowledge is

acquired by people and, most importantly, by myself. He showed me how science

iv

in very different disciplines can be combined to serve each other. He taught me

how to write technical papers and gave me feedback on my talks.

Con McGarvey was my mentor during my two internships at Microsoft. Con

taught me various skills for working in Microsoft and discussed my research. For

a rookie like me, he had to be very patient and responsible. There are many other

friends from Microsoft who also gave me great help. They are Randy Aull, Jaivir

Aithal, Albert Chen, Alessandro Forin, Nar Ganapathy, David Hargrove, Rahul

Kumar, Shuvendu Lahiri, Jakob Lichtenberg, Arvind Murching, Onur Ozyer, Shaz

Qadeer, Peter Shier, Peter Wieland, Eliyas Yakub, and Yue Zuo. Among those

merits that I learned from them was their passion to make better software. This has

inspired me during my dissertation work and is what wakes me up every morning

and excites me every day.

My other dissertation committee members, Prof. Fu Li, Prof. Jingke Li, and

Prof. Suresh Singh, made invaluable contributions to my dissertation. They offered

their perspectives on my research and gave careful feedback on my dissertation.

While I did not study all by my own, it is always my pleasure to take classes

from PSU faculties, such as Prof. Sergio Antoy’s Programming Language, Prof.

Andrew Black’s Scholarship Skills, and Prof. David Maier’s Algorithm Design and

Analysis. I can hardly remember the last time when I blinked my eyes in Prof.

Ivan Sutherland’s lectures. They are too interesting for me to miss any.

Thanks to my fellow graduate students, Yan Chen, Tim Chevalier, Thanh

Dang, Tom Harke, Chuan-kai Lin, Emerson Murphy-Hill, Nicholas T. Pilking-

ton, Xiuli Sun, and Candy Yiu. Interactions with them have enriched my Ph.D.

study and sometimes made my life much easier. For example, this dissertation’s

LATEX template would have costed me tons of time if it was not for Chuan-kai’s

work.

v

Four years of Ph.D. study may be joyful to me; however, it cannot be pleasant

to my wife, Xiaojing Liu. Thanks to her love and understanding, which have made

me happy every day. At last, certainly, not least, thanks to my parents, Bochun

Li and Jinping Cao. Their persistent and passionate characters have been the role

model for me. Their early education of me has made me most who I am today.

vi

CONTENTS

Abstract . i

Dedication . ii

Acknowledgments . iii

List of Tables . x

List of Figures . xi

1 Introduction . 1

1.1 Motivation and Problem Statement 1

1.1.1 Motivation . 1

1.1.2 Problem Statement . 2

1.1.3 The Device/Driver Scenario 4

1.2 Contributions . 5

1.2.1 Our Approach . 5

1.2.2 Device/Driver Development using Our Approach 9

1.3 Related Work . 10

1.4 Dissertation Outline . 14

2 Background . 16

2.1 State Transition Systems . 17

2.1.1 Büchi Automaton . 17

2.1.2 Pushdown System . 18

2.1.3 Concurrent System . 19

2.2 Property Specification Languages 20

2.2.1 Linear Temporal Logic (LTL) Formula 20

2.2.2 Specification Language for Interface Checking (SLIC) 22

2.3 Model Checking . 22

2.3.1 SLAM Engine for C Programs 24

vii

2.3.2 Moped Engine for Pushdown Systems 25

2.4 Partial Order Reduction . 26

2.5 Windows Device/Driver Stack . 27

3 Co-specification . 33

3.1 Specification Techniques for HW/SW Interfaces 35

3.1.1 Concurrency in a System . 36

3.1.2 Transaction Level Modeling (TLM) of Hardware 37

3.1.3 Relative Atomicity . 38

3.1.4 Non-determinism in Co-specification 40

3.1.5 The modelC Language . 41

3.2 Specification of HW/SW Interface Protocols 42

3.2.1 HW/SW Interface Specification 43

3.2.2 Hardware Specification . 45

3.2.3 Software Specification . 47

3.2.4 A Realization of Relative Atomicity 48

3.2.5 Summary and Generalization 49

3.3 Applications and Evaluation Criteria 50

3.3.1 Formalization Process from English Specifications 52

3.3.2 Applications in the HW/SW Development Process 58

3.3.3 Evaluation Criteria . 63

4 Co-verification Model . 67

4.1 Büchi Automaton as Hardware Model 68

4.2 Labeled Pushdown System as Software Model 71

4.2.1 Representing Software Design 71

4.2.2 Accepting Inputs from Hardware 73

4.3 Unifying Model for Co-verification 78

4.3.1 Preliminaries . 78

4.3.2 Büchi Pushdown System (BPDS) 82

4.3.3 BPDS Loop Constraint . 87

4.4 Symbolic Representations . 88

4.4.1 Symbolic representation of BA 88

4.4.2 Symbolic representation of LPDS 90

4.4.3 Symbolic representation of BPDS 93

viii

5 Co-verification Algorithm . 96

5.1 Model Checking Problems of BPDS 97

5.1.1 Reachability Analysis . 99

5.1.2 LTL Checking . 99

5.2 Reachability Analysis Algorithm . 102

5.3 LTL Checking Algorithm . 104

5.3.1 Computing the Repeating Heads 107

5.3.2 Computing the Reachability of Repeating Heads 112

5.3.3 Summary . 113

5.4 Optimization of Reachability Analysis 113

5.4.1 Reduction Algorithm . 113

5.4.2 Correctness Argument . 118

5.5 Optimization of LTL Checking . 123

5.5.1 Reduction Algorithm . 123

5.5.2 Correctness Argument . 129

5.6 Symbolic Algorithms . 136

5.6.1 Reduction Algorithm for Reachability Analysis 137

5.6.2 Reduction Algorithm for LTL Checking 139

6 Implementation . 143

6.1 Reachability Analysis . 144

6.1.1 Cartesian Product via Code Instrumentation 145

6.1.2 Specification of SLIC rules 147

6.1.3 Reduction . 152

6.2 LTL Checking . 153

6.2.1 A BPDS Model specified using Boolean programs 153

6.2.2 Specification of LTL Properties 155

6.2.3 Reduction . 157

6.3 Co-verification Tool, CoVer . 159

7 Evaluation . 161

7.1 Co-specification . 162

7.2 Co-verification . 169

7.2.1 Reachability Analysis . 170

7.2.2 LTL Checking . 176

7.3 Summary . 178

ix

8 Conclusion and Future Research . 181

8.1 Conclusion . 181

8.2 Future Research . 184

8.2.1 Co-verification of Liveness Properties on Driver Code 184

8.2.2 Co-simulation . 185

8.2.3 Co-monitoring . 186

8.2.4 Formal-model-guided Automatic Test Case Generation . . . 188

References . 190

x

LIST OF TABLES

7.1 Formalization of the PIO-24 device/driver framework. 164

7.2 Formal model of the PIO-24 device/driver framework. 165

7.3 Formalization of the Ethernet controller device/driver framework. . 166

7.4 Formal model of the Ethernet controller device/driver framework. . 167

7.5 Formalization of the USB 2.0 device/driver framework. 168

7.6 Formal model of the USB 2.0 device/driver framework. 169

7.7 Co-verification of the PIO-24 device/driver. 171

7.8 Co-verification of the Ethernet controller device/driver. 173

7.9 Co-verification of the USB 2.0 OSRUSBFX2 device/driver. 174

7.10 Co-verification of the USB 2.0 USBSAMP device/driver. 175

7.11 LTL checking of BPDS<N>. 178

7.12 LTL checking of BPDS Slow<N>. 179

xi

LIST OF FIGURES

1.1 Development process of device/driver frameworks. 4

1.2 Main components of our co-verification approach. 5

1.3 Development process of device/driver frameworks using our approach. 9

2.1 Denotations of a pushdown system 18

2.2 Syntax of the SLIC language. 23

2.3 SLIC specification for a simple property of a global queue. 24

2.4 The abstraction-check-refinement loop of SLAM 24

2.5 Model checking with traditional partial order reduction. 27

2.6 Model checking with static partial order reduction. 27

2.7 A generic view of Windows device/driver stacks. 28

2.8 Driver sample code, Device Driver Control. 30

2.8 Driver sample code, Interrupt Service Routine (ISR). 31

2.8 Driver sample code, Deferred Procedure Call (DPC) 32

3.1 Co-specification framework. 42

3.2 An implementation of a software interface event function. 44

3.3 Relating register calls to software interface event functions. 45

3.4 Interrupt monitoring function. 46

3.5 Hardware transaction function of the PIO-24 device model. 46

3.6 A C function for outputting to Port A. 47

3.7 Execution model of relative atomicity. 48

3.8 An excerpt from Intel 10/100 Mbps Ethernet Controller document. 50

3.9 Excerpt of PIO-24 specification: hardware interface registers. 53

3.10 Macros for interface register offsets of the PIO-24 device. 54

3.11 Excerpt of PIO-24 specification: meaning of CW. 54

3.12 Excerpt of PIO-24 specification: input to Port A. 55

3.13 The module function, RunInterrupt. 56

3.14 Excerpt of PIO-24 specification: a recommendation for software. . . 57

xii

3.15 The formalization process from an English specification. 57

3.16 Excerpts of Linux and Windows drivers for the same device. 60

4.1 A hardware design represented by BA. 69

4.2 Representing a Boolean program using PDS. 72

4.3 An ISR procedure. 75

4.4 Representing the procedure main using LPDS. 76

4.5 Representing the procedures reset, etc. using LPDS. 77

4.6 Example of constructing BPDS rules. 86

4.7 Symbolic BA transition rules specified in modelC. 91

5.1 Reachability analysis of BPDS. 103

5.2 Computing the accepting run of B2P. 106

5.3 Reachability analysis of BPDS with static partial order reduction. . 114

5.4 An example of static partial order reduction on BPDS transitions. . 115

5.5 Reducible visible diagonal BPDS rules. 132

5.6 Reducible invisible diagonal BPDS rules. 133

5.7 Irreducible diagonal BPDS rules. 136

6.1 The hardware instrumentation function. 147

6.2 The SLIC rule InvalidRead. 148

6.3 The test harness for InvalidRead. 150

6.4 The SLIC rule InvalidHWInterrupt. 151

6.5 A BPDS model specified in Boolean programs. 154

6.6 Hardware does not respond to reset immediately. 156

6.7 CoVer implementation for reachability analysis. 159

6.8 CoVer implementation for LTL checking. 160

7.1 The BPDS template BPDS<N> for evaluation. 177

8.1 Co-verification of liveness properties on driver implementations. . . 185

8.2 Co-simulation using formal device model. 185

8.3 Co-monitoring using formal device model. 187

8.4 Test case generation based on formal device model. 189

1

Chapter 1

INTRODUCTION

1.1 MOTIVATION AND PROBLEM STATEMENT

1.1.1 Motivation

Computer systems such as Personal Computers (PCs) and embedded systems are

pervasive. Our everyday life depends on these systems, e.g., accessing data from a

local disk or via the Internet using our personal computers and driving to work in

our cars equipped with tens and even hundreds of embedded processors. Such de-

pendencies demand high-confidence in these systems. We would be greatly annoyed

by blue screens from Microsoft Windows while working on important documents

and endangered by malfunctions of the embedded controllers in our cars’ braking

systems. Many such failures come from HW/SW (Hardware/Software) interface

problems that are often hard to test and to debug. High-confidence is traditionally

achieved by extensive testing which is becoming cost-prohibiting and, therefore,

increasingly supplemented by formal verification such as model checking [21, 74].

HW/SW interfaces are pervasive in modern computer systems. For example,

device drivers [19] that operate hardware, constitute about 70% of Linux kernel

code (version 2.4.1) and for Windows XP there are over 35,000 device drivers with

over 100,000 versions available for various hardware devices [65]. Because drivers

usually work in the kernel mode of Operating Systems (OSs), their failures can

have severe consequences. Kernel mode drivers cause 85% of reported failures in

2

Windows XP [83] and there are seven times more failures in drivers than in the

rest of the Linux kernel [19]. There have been many efforts [4, 14] to formally

verify software properties on drivers without considering the behaviors of hard-

ware devices. A successful example is Microsoft’s Static Driver Verifier (SDV) [4],

which is a tool for Windows driver verification based on the SLAM model check-

ing engine [9]. Nevertheless, one of the fundamental reasons for computer system

failures has been overlooked for years. According to Microsoft’s Online Crash Anal-

ysis (OCA) [81], at least 52.6% of Windows crashes are related to the interactions

between device drivers (software) and their devices (hardware)1, not to mention

those failures that cannot be gathered, e.g., a USB (Universal Serial Bus) mouse

cannot be detected after a PC system awakes from sleep. These kinds of system

failures are commonly related to HW/SW interface interactions.

1.1.2 Problem Statement

Our thesis is that co-verification of HW/SW interface protocols can be effectively

achieved via formal specification and model checking. There are three major chal-

lenges:

• Lack of effective formal specification framework. Hardware and software are

often manufactured separately because their construction requires highly dif-

ferent expertise. Therefore, specifications are necessary to describe HW/SW

interface protocols. Such specifications should be self-explanatory and free of

ambiguities, since any specification mistake may be encoded in implementa-

tions and cause serious failures. In industrial settings, English is commonly

used to specify HW/SW interface protocols. The misinterpretations and

implementation deviations due to ambiguous or inaccurate English specifi-

cations have been a long-outstanding hazard to system reliability.

1Not all drivers interact with devices. For example, an antivirus driver intercepts and analyzes
I/O between other drivers and devices.

3

• Lack of a unifying formal model for HW/SW interfaces. Hardware and soft-

ware have different implementation semantics and different formal represen-

tations. Hardware designs are finite state and often modeled as some kind

of finite state machines such as ω-automata or Büchi automata (BA) [43].

Software designs are infinite state and often modeled as some kind of Push-

down Systems (PDSs) [77]. However, for HW/SW interfaces, it is not desired

to model both hardware and software as either pushdown systems or finite

state machines (see Section 1.3).

• Lack of verification tool support. It is highly desired that both the design

and implementation of HW/SW interfaces are supported by automatic ver-

ification tools, so that critical properties can be analyzed in a faithful and

systematic manner. There are few tools existing for such a purpose and many

lack practical performance. Among the various challenges to co-verification

tool development, the key is how to efficiently exploit the nature of HW/SW

interactions in co-verification, so that the tools can scale up to a practical

level of complexity.

Other than these major challenges, there is also a lack of understanding about

HW/SW interface failures. Although hardware and software engineers are well

aware of the intrinsic complications of HW/SW interface implementations, all have

experienced significant difficulties in pinpointing the root causes of relevant failures.

One major reason is that hardware implementations are usually unaccessible to

software engineers, and vice versa. Therefore, it is impossible for software engineers

to look into the states of a hardware device when the driver fails together with

the device during runtime testing; and, at the same time, it also is hard for those

hardware engineers of the device to look into the driver’s state.

4

1.1.3 The Device/Driver Scenario

In computer systems, HW/SW interfaces are often implemented in devices and

drivers. A device/driver framework refers to a type of HW/SW interface as well as

the devices and drivers that both utilize this interface. We observed a common de-

velopment process for device/driver frameworks in industrial settings as illustrated

in Figure 1.1. The process contains three stages: First, the design stage, where a

Design
HW/SW interface
protocol

Draft

specification

Manual proof
reading

Issues detected

Published English
specification

Passed

Develop devices
or drivers

Devices or
drivers

Failed

In-house testing

Passed

Released products

Conformance testing
Certification:

Passed

Design
Stage

Development
Stage

Post-release
Stage

English

Ship the product

Failed

Figure 1.1: Development process of device/driver frameworks.

group of hardware and software companies design the HW/SW interface protocol

of a device/driver framework together. The HW/SW interface specification is com-

monly written in structured English. Second, the development stage, where the

English specification is published so that different companies can produced devices

and drivers that are compliant with the HW/SW interface protocol. Finally, the

post-release stage, where devices and drivers are tested for their conformance to

the HW/SW interface protocol. (More discussion is presented in Section 3.3.)

5

As we have discussed in the previous sub-section, this development process suf-

fers from three problems: First, since English lacks a formal semantics, we cannot

guarantee a unique interpretation from the same English specification. Second,

there is not a unifying formal model used to represent the device/driver inter-

actions. Third, verification tools cannot be used to validate the English specifi-

cations and are little used to validate the device/driver implementations against

the HW/SW interface protocol. It is also very hard for engineers to debug their

implementations for an issue related to device/driver interactions.

1.2 CONTRIBUTIONS

1.2.1 Our Approach

We present an automata-theoretic approach to HW/SW co-verification, verifying

hardware and software together. The main components of our approach are illus-

trated in Figure 1.2. In co-specification, we formally specify the HW/SW interface

Co-specification
(BPDS)

Model checking
Formal model

Figure 1.2: Main components of our co-verification approach.

protocol, where the result of the specification can be represented by a unified

formal model of HW/SW interface. Such a formal model then can be analyzed au-

tomatically using model checking algorithms for correctness assurance. In order to

realize our approach, we make the following five contributions in this dissertation:

Co-specification. We design a co-specification framework to specify HW/SW

interface protocols, where the specification captures the asynchronous hardware

behaviors, the asynchronous software behaviors, and the interactions between hard-

ware and software. In our approach, the differences between hardware and software

6

are not only considered but also exploited. For example, we utilize the concept of

Transaction Level Modeling (TLM) [66] to specify hardware; we use a restricted C

semantics to specify software. Our specification language, modelC, utilizes the C

semantics with three restrictions to achieve a finite state representation and two

extensions to support the characteristics of HW/SW interface specifications.

The modelC language has precise semantics; a hardware specification in mod-

elC can be represented as a BA [43]; a software specification in modelC can be

represented as a PDS [77]; and the specification of HW/SW interactions in modelC

can be represented as the synchronization of the BA and PDS. Therefore, formal

models constructed by co-specification can be utilized in the development process

of hardware and software, as the formal HW/SW interface specifications. Further-

more, they can also serve as the test harnesses for co-verification, co-simulation,

conformance testing, etc. For example, in co-verification, a hardware model con-

structed by co-specification can be used as the harness for verifying a software

implementation.

Co-verification model. We synthesize a hybrid Büchi Automaton Pushdown

System (BPDS) as a unifying formal model for HW/SW co-verification. The in-

sight is to synchronize a BA that represents hardware and a PDS (actually a labeled

pushdown system as presented in Chapter 4) that represents software. The BPDS

closely models the implementation semantics of both hardware and software. For

example, BA have been commonly used to model hardware designs in verifica-

tion practices; the unbounded stack of PDS can represent recursion in software

programs. Generally speaking, a BPDS model is a concurrent system with a syn-

chronous execution mode [22], i.e., both the BA and the PDS must transition at

the same time in order to make one BPDS transition. In synchronous execution

mode, it is straightforward to model the situation when hardware and software

transition simultaneously. However, they may also step asynchronously, which can

7

be modeled by introducing self-loop transitions to both BA and PDS.

Co-verification algorithms and optimizations. We design verification al-

gorithms of BPDS models for reachability properties and Linear Temporal Logic

(LTL) [71] properties respectively. With respect to reachability analysis, we demon-

strate that a BPDS model can be converted into a PDS model; therefore, existing

model checkers for PDS can be readily utilized in co-verification. For LTL check-

ing, we employ an automata-theoretic approach. An LTL formula is first negated

and then represented as a BA. The BA is combined with BPDS in such a way that

the BA monitors the state transitions of the BPDS. As the last step, we only need

to compute whether the BA has an accepting run on the BPDS.

In a näıve approach, verification of BPDS needs to explore all interleavings of

the concurrent execution between BA and PDS, where some of the interleavings

may be unnecessary to explore. We prove that some special interleavings between

the BA and PDS are enough to preserve the properties to be checked. We base

our reduction algorithms on the concept of static partial order reduction [44], a

paradigm of partial order reduction [33, 69] that reduces unnecessary state tran-

sitions during the compilation phase instead of the model checking phase. Such

reduction algorithms are very useful in practice, since they do not require any mod-

ification to the model checker. Therefore, model checkers with industry strength

can be readily utilized in our approach.

Co-verification tool. We have created a co-verification tool, CoVer, that sup-

ports both reachability analysis and LTL model checking of BPDS. For reachability

analysis, CoVer is implemented based on the SLAM verification engine [4]. It ac-

cepts HW/SW designs or implementations specified in C/modelC languages. For

LTL checking, CoVer is implemented based on the Moped model checker [77]. It

accepts HW/SW designs specified in Boolean programs [7]. For every property vio-

lation detected, CoVer provides an execution trace of both hardware and software.

8

This feature is a significant help to hardware and software engineers in exploring,

understanding, and validating HW/SW interface designs and implementations.

Evaluation. We use Windows devices/drivers for the case studies of our research.

We have applied our approach to four device/driver interfaces, such as the Intel

8255x 10/100Mbps Ethernet controller device/driver interface and the USB 2.0 de-

vice/driver interface. All the HW/SW interfaces are industry standards presented

in English specifications. Our co-specification process of HW/SW interfaces led

to the detection of fifteen issues in the English specifications. Such specification

issues can mislead development engineers and cause product failures. Given the

fact that some of the English specifications have existed for many years and been

revised several times, our approach is rather effective of discovering these issues.

Co-verification is evaluated in reachability analysis and LTL checking respec-

tively. For reachability analysis, we have applied CoVer to five Windows driver

implementations, using the formal device models constructed by co-specification.

Some of the drivers are fully functional, well tested, and provided as sample drivers

in Microsoft Windows Driver Kit (WDK) [59, 61, 63] for many years. Utilizing

CoVer, we have discovered real bugs in each of the drivers for a total bug count

of twelve. All of these bugs, which could cause serious system failures including

data loss, interrupt storm, device hang, etc., involve device/driver interactions and

were previously unknown to the driver developers. More specifically, one bug hap-

pens when a driver does not initialize its device correctly, i.e., a default device

state is not considered during the initialization process; three bugs happen when

devices interrupt their drivers, e.g., one of the bugs may cause an interrupt storm;

four bugs are due to the out-of-synchronization between devices and drivers, e.g.,

a driver issues a command while its device is busy; and four bugs happen when

drivers mishandle their device failures, e.g., a driver returns SUCCESS when its

device actually fails. For LTL checking, we designed a synthetic BPDS template

9

to generate BPDS models with various complexities. Such template can mimic the

common scenarios of HW/SW interactions. The co-verification statistics illustrate

that our reduction algorithms are very effective in both reachability analysis and

LTL checking. The average reduction of the verification cost is 70% in time usage

and 30% in memory usage.

1.2.2 Device/Driver Development using Our Approach

Figure 1.3 illustrates how our approach can be integrated into the development

process of device/driver frameworks. In the design stage, the HW/SW interface

Design
HW/SW interface
protocol

Draft Automatic
verification

Issues detected

Formal model as HW/SW
interface specification

Passed

Develop devices
or drivers

Devices or
drivers

Failed

In-house testing:

Passed

Released products

Conformance testing
Certification:

Passed

Design
Stage

Development
Stage

Post-release
Stage

formal
model tools

co-verification
co-simulation
. . .

Ship the product

Failed

Figure 1.3: Development process of device/driver frameworks using our approach.

protocol is formally specified as a formal model using our co-specification frame-

work. This formal model can be validated by automatic tools such as CoVer. In the

10

development stage, the formal model is published to guide the HW/SW interface

implementations. Furthermore, tools can be utilized to validate the device/driver

implementations using the formal model as a test harness. In conformance test-

ing, the formal model can also serve as the golden model, where the device/driver

implementations are tested according to the behavior of the formal model.

In this device/driver development process, our BPDS model serves as the formal

representation of HW/SW interactions; our co-specification framework is utilized

in the formal specification of HW/SW interface protocols; and our co-verification

tool, CoVer, is applied to check the formal models and implementations.

1.3 RELATED WORK

Formal verification. Formal verification [41] uses rigorous mathematical reason-

ing to show that a design meets a property specification. In general, there are two

approaches to formal verification: theorem proving and model checking. Theorem

proving [28, 40] checks a property on a system design by proving a theorem in an

underlying logic. Since most theorem provers require lots of manual effort, they

may not scale to verifying HW/SW implementations. This dissertation research

employs the other approach, model checking [21, 74], an automatic formal method

that checks whether a model conforms to given properties. Usually, the model is

generated automatically from a system design or implementation; the properties

are specified manually to assert the desired behaviors of the system; and model

checking is the process that explores the state space of the model to check whether

a property can be violated.

When the target system is complex, model checking often faces a combinatorial

explosion of the state space to be explored. To address this problem, techniques

such as predicate abstraction [34] are often applied to reduce the complexity of

models. These abstractions should be conservative so that all defects in the original

system are preserved. However, due to over-approximation, a defect found in the

11

model may not be a real defect in the system. Kurshan [43] proposed the idea of

counterexample-guided abstraction and refinement, where the verification process

starts with a highly abstracted model and then asymptotically introduces more

details to the abstraction based on infeasible counterexamples given by the model

checking engine. Clarke, et al. [20] applied this idea to symbolic model checking

and demonstrated its effectiveness in hardware verification. Ball, et al. [6] utilized

this idea in SLAM to verify C programs. We implement our co-verification tool,

CoVer, based on the SLAM engine; therefore, counterexample-guided abstraction

and refinement is also applied in CoVer.

The property specification languages usually are different for various applica-

tion domains of model checking. In hardware model checking, temporal logic [71,

72] often is used. In a temporal logic, the usual operators of propositional logic

are augmented with temporal operators, which are used to form assertions about

changes over time. Depending on the temporal operators, there are different

temporal logics such as LTL [71] and Computation Tree Logic (CTL) [21]. The

Property Specification Language (PSL) [1], as the industry standard for hardware

property specification, is an extension of LTL and CTL. In software model check-

ing, properties are often specified in C-like languages such as SLIC (Specification

Language for Interface Checking) [10] and BLAST query language [13], because

preserving the source language constructs makes the specification more intuitive

than temporal logic based specifications. Our co-verification framework accepts

property specifications in either LTL or SLIC.

Formal specification of HW/SW interfaces. Various formal languages have

been proposed for specifying the designs of embedded systems, e.g., Hybrid Au-

tomata [2], LOTOS [85], Co-design Finite State Machines (CFSMs) [3], and Petri-

net based languages such as PRES [26]. Hybrid Automata and CFSMs have been

directly model-checked. LOTOS and PRES have been verified via translation to

12

directly model-checkable languages. Furthermore, there have been lots of research

on formalizing interface semantics, such as I/O automata by Lynch, et al. [52]

and interface automata by De Alfaro, et al. [27]. Kroening, et al. [42] have used

SystemC [66] to specify HW/SW interface designs. However, none of the research

formally models the stack, an important feature of software implementations. We

model the software stack, so that our specification can closely resemble the imple-

mentation semantics of HW/SW interfaces. As a significant benefit, our formal

specifications can be used, without any modification, as the test harness for soft-

ware (respectively, hardware) implementations.

Li, et al. [47, 51] modeled component-based embedded systems using ω-automata

and specified xPSL [88] (an extension of PSL to support the specification of tem-

poral assertions over both hardware and software events) properties on component

interfaces as one representation of HW/SW interface protocols. When the inter-

face protocols are complex, the number of required xPSL assertions becomes quite

large, which is inefficient for either engineers or verification engines to use.

Co-verification. Validation techniques for HW/SW interface designs (respec-

tively, implementations) fall into two major categories: co-simulation and (formal)

co-verification, which complement each other. Co-simulation is low-cost and ef-

ficient in detecting shallow bugs while co-verification provides exhaustive state

coverage and is effective in detecting deep bugs.

Research on co-simulation [11, 12, 32, 36, 37, 68, 76, 79] led to industrial tools

such as Mentor Graphics’ Seamless [55] and Microsoft’s Giano [30]. This research

focuses on exploring the design boundary between hardware and software rather

than the correct implementations of HW/SW interfaces. For example, one impor-

tant mission of such kind of co-simulation is to decide whether a function unit is

best implemented in hardware or software. This is different from our goal: the

correctness assurance of HW/SW interface designs and implementations.

13

Microsoft developed the Device Simulation Framework (DSF) [80] to support

the co-simulation of device drivers and their device models. The goal of DSF is to

improve the test coverage, increase the test automation, and reduce the test cost

of drivers. Using DSF, driver implementation issues can be discovered at an early

stage of development even before real hardware devices are available. However, the

device models used in DSF are developed in an ad-hoc manner, i.e., only common

device functionalities and a small subset of device behaviors are modeled; therefore,

the test coverage of DSF is limited. As we discuss in Chapter 8, our formal models

from co-specification also can be used in co-simulation via some extensions to DSF.

Device Driver Tester (DDT) [46] is a symbolic simulation engine for testing

closed-source binary device drivers against undesired behaviors, such as race con-

ditions, memory errors, resource leaks, etc. Given a driver’s binary code, DDT

simulates its execution with symbolic hardware, a shallow hardware model that

mimics simple device behaviors such as interrupts. In symbolic hardware, most

design logic is abstracted away by non-determinism; therefore, false bugs may be

reported due to the overapproximation of the hardware behaviors. When simulat-

ing the interactions between device and driver, DDT employs a reduction method

that allows interrupts only after each kernel API call by the driver. Such reduc-

tion is quite ad-hoc, since no formal correctness justification was given. Our static

partial reduction algorithms are quite similar to the reduction idea used by DDT

and can be considered as a formal foundation for DDT’s reduction method.

There has been less research on co-verification than co-simulation. Kurshan,

et al. [45] presented a co-verification framework which models hardware and soft-

ware designs using finite state machines. Xie, et al. [48, 89] extended this frame-

work to hardware and software implementations and improved its scalability via

component-based co-verification. However, finite state machines are limited in

modeling software implementations, since they are not suitable to represent soft-

ware features such as a stack.

14

Another approach to integrating hardware and software within the same model

is exemplified by Monniaux in [64]. He modeled a USB host controller device

using a C program and instrumented the device driver, another C program, in

such a way as to verify that the USB host controller driver correctly interacts

with the device. The hardware and software were both modeled by C programs

and thus are formally PDSs. However, a composition of the two PDSs to model

the HW/SW concurrency is problematic, because it is known that, in general,

verification of reachability properties on concurrent PDS with unbounded stacks

is undecidable [75].

Groβe, et al. [35] applied Bounded Model Checking (BMC) to check whether

assembly programs are correctly executed on a RISC CPU. Our approach is differ-

ent from Groβe’s approach in the sense that the properties are at a higher level of

abstraction concerning the interactions between devices and drivers. Furthermore,

the completeness of BMC is restricted by a predefined verification bound compared

to a standard model checking approach.

Bouajjani, et al. [15] presented a procedure to compute backward reachability

of PDS and applied this procedure to linear/branching-time property verification.

This approach was improved by Schwoon [77] and implemented in Moped, a tool

that checks LTL properties of PDS. An LTL formula is first negated and then

represented as a BA. The BA is combined with the PDS to monitor its state

transitions; therefore, the model checking problem is to compute whether the BA

has an accepting run. The goal of this previous research was to verify software

only; our goal is to co-verify hardware and software.

1.4 DISSERTATION OUTLINE

This dissertation is organized as follows. Chapter 2 introduces the background of

our research. Chapter 3 presents our co-specification framework and discusses how

to apply co-specification to the development process of hardware and software.

15

Chapter 4 elaborates on the Büchi pushdown system model for co-verification.

Chapter 5 presents our co-verification algorithms. Chapter 6 discusses the imple-

mentation details of our co-verification approach. Chapter 7 presents the evalua-

tion results. Chapter 8 concludes and discusses future work.

16

Chapter 2

BACKGROUND

A state transition system is an abstract machine used in the study of computation.

The machine consists of a set of states and transitions between states, which may

be labeled by symbols chosen from an alphabet; the same label may appear on

more than one transition; both the set of states and the set of transitions are not

necessarily finite, or even countable. If the alphabet is a singleton, the system is

essentially unlabeled; therefore a simpler definition that omits the labels can be

used. State transition systems usually have various forms in order to represent

different systems. For example, finite state machines, such as Büchi automata

and ω-automata [43], are common representations of hardware designs. Pushdown

systems [15, 77], pushdown automata without input alphabets and acceptance

conditions, are common representations of software programs.

Properties specify the desired behaviors that should be observed on a system.

Temporal logics [71, 72] have been widely used in property specification for both

hardware and software. For example, they can be used to define a semantics

for programs in such a way that includes termination and pre-/post- conditions.

However, temporal logics are not intuitive in software property specifications when

the source language constructs are desired. Alternatively, Specification Language

for Interface Checking (SLIC) [10] is a well known software property specification

language designed for safety properties1 in the SLAM project [4]. SLIC has a C-

like syntax, is infinite state, and allows state variables to be read from or written

1Often stated as: “bad events never happen.”

17

to in property specifications.

Model checking [21, 74] is an automatic technique that verifies whether a state

transition system meets a property specification. It was first introduced on finite

state systems such as hardware designs, and then applied to infinite state systems

such as software programs. In this dissertation, we utilize two software model

checkers in the implementation of our co-verification algorithms: the SLAM verifi-

cation engine [4] for C programs and the Moped model checker [77] for pushdown

systems.

One major challenge to model checking is the state explosion problem, which

is due, among other causes, to the modeling of concurrency by interleaving. How-

ever, exploring all interleaving of concurrent executions often is unnecessary. Such

observations led to a technique called partial order reduction [33], which is applied

on-the-fly during model checking in order to avoid exploring unnecessary interleav-

ings. Kurshan, et al. [44] have demonstrated that partial order reduction can also

be applied statically during the compilation phase before model checking; there-

fore, the reduction can be applied without any modification to the model checking

algorithm.

Last, we will introduce the Windows device/driver stack as one of the applica-

tion domains of our approach.

2.1 STATE TRANSITION SYSTEMS

2.1.1 Büchi Automaton

A Büchi Automaton (BA) B, as defined in [43], is a non-deterministic finite state

automaton accepting infinite input strings. Formally, B is a tuple (Σ, Q, δ, q0, F),

where Σ is the input alphabet, Q is the finite set of states, δ ⊆ (Q×Σ×Q) is the

set of state transitions, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final

states. B accepts an infinite input string if and only if it has a run over the string

18

that visits at least one of the final states infinitely often. A run of B on an infinite

string s is a sequence of states visited by B when taking s as the input. We use

q
σ
→ q′ to denote a transition from state q to q′ with the input symbol σ. A path

of B is a sequence of states, q1
σ1−→ q2

σ1−→ . . . qi
σi−→ . . ., where qi ∈ Q, σi ∈ Σ, i > 1.

2.1.2 Pushdown System

A Pushdown System (PDS) P, as defined in [77], is a tuple (G, Γ, ∆, 〈g0, ω0〉),

where G is a finite set of global states (a.k.a., control locations), Γ is a finite stack

alphabet, ∆ ⊆ (G × Γ) × (G × Γ∗) is a finite set of transition rules, and 〈g0, ω0〉

is the initial configuration. A PDS transition rule is written as 〈g, γ〉 →֒ 〈g′, ω〉,

where ((g, γ), (g′, ω)) ∈ ∆. A configuration of P is a pair 〈g, ω〉, where g ∈ G is a

global state and w ∈ Γ∗ is a stack content. The set of all configurations is denoted

by Conf(P). The head of a configuration c = 〈g, γv〉 (γ ∈ Γ, v ∈ Γ∗) is 〈g, γ〉 and

denoted by head(c). Similarly the head of a rule r = 〈g, γ〉 →֒ 〈g′, ω〉 is 〈g, γ〉 and

denoted by head(r). The head of a configuration decides the transition rules that

Denotation Comment

g ∈ G Global state (a.k.a., control location)

γ ∈ Γ Stack symbol

ω, v ∈ Γ∗ Stack

〈g, ω〉 ∈ Conf(P) A configuration of P

〈g, γ〉 →֒ 〈g′, ω〉 A PDS transition rule, i.e., ((g, γ), (g′, ω)) ∈ ∆

〈g, γv〉 ⇒ 〈g′, ωv〉 A PDS state transition

〈g, γv〉 ⇒∗ 〈g′, ωv〉 Forward reachability relation

head(c), head(r) Head of a PDS configuration/rule

Figure 2.1: Denotations of a pushdown system

19

are applicable to this configuration, where the deciding factors are the global state

and the top stack symbol. By definition, a head can also be considered as a special

type of configuration. If two PDS rules have the same head, the rules are said

to be non-deterministic, since the execution of either rule is non-deterministically

decided.

Given a rule r = 〈g, γ〉 →֒ 〈g′, ω〉 ∈ ∆, for every v ∈ Γ∗, the configuration

〈g, γv〉 is an immediate predecessor of 〈g′, ωv〉 and 〈g′, ωv〉 is an immediate suc-

cessor of 〈g, γv〉. We denote the immediate successor relation in PDS as 〈g, γv〉 ⇒

〈g′, ωv〉, where we say this state transition follows the PDS rule r. The reachability

relation, ⇒∗, is the reflexive and transitive closure of the immediate successor re-

lation. A path of P is a sequence of configurations, c0 ⇒ c1 ⇒ . . . ci ⇒ . . ., where

ci ∈ Conf(P), i ≥ 0. The path is also referred to as a trace of P if c0 = 〈g0, ω0〉

is the initial configuration. Figure 2.1 lists some frequently-used PDS denotations

for reference convenience.

2.1.3 Concurrent System

A concurrent system consists of a set of components that execute together [22].

Normally, there are two modes of execution: asynchronous or interleaved execution,

in which only one component transitions at a time, and synchronous execution in

which all the components transition at the same time. A concurrent system with an

asynchronous execution mode is referred to as an asynchronous system; otherwise

it is referred to as a synchronous system.

In this dissertation, we use two similar phrases with different meanings: the

phrase synchronous (respectively, asynchronous) execution is concerned with

whether concurrent components must transition at the same time to make a system

transition; on the other hand, the phrase synchronous (respectively, asynchronous)

transition is concerned with how transitions of concurrent components may affect

each other, i.e., the dependent relation between transitions (see Chapter 4).

20

2.2 PROPERTY SPECIFICATION LANGUAGES

For reasoning about transition systems, temporal logics have been widely used as

formal property specifications. In a temporal logic, the usual operators of proposi-

tional logic are augmented by temporal operators, which are used to form assertions

about changes in time. One can assert, for example, that if proposition p holds

in the present, then proposition q holds at some instant in the future, or at some

instant in the past.

Temporal logics differ in the temporal operators that they provide and the

semantics of those operators. For example, Computation Tree Logic, CTL [21], is

a branching-time logic that describes time in a tree-like structure, where temporal

operators can be used to quantify over the paths that are possible from a given

state. In contrast, Linear Temporal logic (LTL) [71], only provides operators for

describing events along a single computation path. This dissertation will discuss

the model checking algorithm of co-verification for LTL properties in Chapter 5.

Although temporal logics are powerful to define a semantics for programs, e.g.,

termination and pre-/post- conditions, they are not intuitive in software property

specifications when the source language constructs are desired. Furthermore, since

software programs usually have infinite states, it is desired that such feature is

also considered in the property specification language. SLIC is a software property

specification language designed for SLAM engine. Different from temporal logics

such as LTL, SLIC can be infinite, as it can count. However, SLIC is restricted

to safety properties. Chapter 6 will utilize SLIC to specify safety properties in

co-verification.

2.2.1 Linear Temporal Logic (LTL) Formula

LTL formulae are built up on a set of propositional variables, the common logic

connectives, and a set of temporal operators, where the common logic connectives

21

are:

• Negation (not), denoted by ¬;

• Conjunction (and), denoted by
∧

;

• Disjunction (or), denoted by
∨

;

• Material implication (if...then), denoted by →;

• Biconditional (if and only if), denoted by ↔;

and the temporal operators are:

• X for next;

• G for always, i.e., globally;

• F for eventually, i.e., in the future;

• U for until;

• R for release.

Let At be a finite set of atomic propositions and a ∈ At be a propositional variable.

An LTL formula can be built according to the following syntax:

ϕ ::= a|¬ϕ|ϕ1

∧

ϕ2|ϕ1

∨

ϕ2|ϕ1 → ϕ2|ϕ1 ↔ ϕ2|XXXϕ|GGGϕ|FFFϕ|ϕ1UUUϕ2|ϕ1RRRϕ2

For example, a termination property of a software thread can be expressed as

FFF exit,

where exit is the label on the statement when the thread exits. Such formula states

that all runs of the thread will eventually terminate. Another formula

GGG (FFF p),

states that the propositional variable p will repeatedly become true during the

system execution.

22

2.2.2 Specification Language for Interface Checking (SLIC)

The SLIC language is designed to specify the temporal safety properties of Ap-

plication Program Interfaces (APIs) implemented in the C language. A SLIC

specification, S, defines a state machine that monitors the behavior of the pro-

gram P ||L at APIs’ procedural interface, where P ||L is the sequential composition

of the client P that uses APIs and the library L that provides APIs. An interface

state is a triple (A, {call, return}, Ω}), where A is a procedure, the second compo-

nent indicates that control is being passed to A by a call or that control is returning

from A to its caller, and Ω is a valuation to the formal parameters of procedure and

the return value of A. The state machine rejects certain finite execution traces (a

sequence of interface states) of P ||L, either because P makes improper use of the

API implemented by L or because L does not properly implement the API. SLIC

uses a C-like syntax as presented in Figure 2.2. Figure 2.3 illustrates an example

of a SLIC rule for a global queue of integers. The rule states that it is an error to

have more than four zeroes in the queue.

2.3 MODEL CHECKING

Model checking is an automatic technique that tests whether a model of a system

complies with a property specification. It was introduced on finite state systems by

Clarke and Emerson [21] and independently by Queille and Sifakis [74]. Since hard-

ware systems are finite state, model checking was most often applied to hardware

designs [43, 54]. In the last decade, model checking of software implementations

which are usually infinite state has achieved major progress [4, 14]. Such software

model checking techniques implement a counterexample-guided abstraction and

refinement process, i.e., an iterative process that asymptotically introduces more

details to the abstraction based on infeasible counterexamples. This dissertation

utilizes two software model checkers for co-verification of reachability properties

23

Syntax Comment

S ::= state A SLIC specification consists of a state

transFun+ structure, and a list of transfer functions.

state ::= state { fieldDecl+ } A state structure is a list of field

declarations.

fieldDecl ::= ctype id = expr; A field has a C type, an identifier and an

initialization expression.

transFun ::= pattern stmt A transition function consists of a pattern

and a statement.

pattern ::= id . event | [[[idList]]] . event

event ::= entry | exit

stmt ::= id+ = expr+; Parallel assignment statement.

| if (choose) stmt [else stmt]

| abort string;

| halt;

| { stmt }

chose ::= * Non-deterministic choice

| expr

expr ::= id | expr op expr . . . Pure expression sub-language of C

idList ::= id | idList , id

id ::= C identifier refer to fields of state structure

| $ int $i refers to ith formal parameter

| $ return return value of a function

| $ C identifier global variable

Figure 2.2: Syntax of the SLIC language.

24

state {

int zero cnt = 0;

}

get.exit {

if ($return == 0)

zero cnt = zero cnt − 1;

}

put.entry {

if ($1 == 0) {

if (zero cnt == 4)

abort “Queue has 4 zeroes!”;

else

zero cnt = zero cnt + 1;

}

}

Figure 2.3: SLIC specification for a simple property of a global queue.

and LTL properties respectively.

2.3.1 SLAM Engine for C Programs

As illustrated in Figure 2.4, the SLAM model checking engine contains three major

parts to conduct reachability analysis on an C program instrumented with SLIC

rules: (1) Abstraction. C2BP [5], a predicate abstraction engine, translates the

Abstraction (C2BP)
SLIC rule

C program

Check (Bebop)

Refinement (Newton)

Boolean program

Counter example

Refinement hint

No bug
Correct

True bug
Error

Figure 2.4: The abstraction-check-refinement loop of SLAM

instrumented C program into a Boolean program. Boolean programs are equivalent

in power to pushdown automata, which accept context-free language. (2) Check.

Bebop [6], a symbolic model checker for Boolean programs, conducts reachability

analysis on the Boolean program. If no bug is detected, verification terminates

25

with a SLIC rule pass. (3) Refinement. When Bebop finds an error trace, if the

trace is confirmed to be feasible, SLAM reports the bug; otherwise, if the trace is

infeasible, SLAM uses Newton [8] to generate new predicates that can eliminate

the spurious path. This Abstraction-Check-Refinement loop usually ends when the

check step cannot find any error trace or an error trace is confirmed to be a bug.

SLAM supports reachability analysis of sequential programs. Figure 2.3 shows an

example of a SLIC rule.

2.3.2 Moped Engine for Pushdown Systems

Moped, a model checker developed by Schwoon, supports both reachability analysis

and LTL checking of pushdown systems [77]. Since PDSs are equivalent in power

to Boolean programs, Bebop can be replaced by Moped in SLAM.

For LTL checking, Moped employs an automata-theoretic approach. Given an

LTL formula, Moped first converts it to a BA B = (Σ, Q, δ, q0, F), and then makes

a product of B with the target PDS P = (G, Γ, ∆, 〈g0, ω0〉) to construct a Büchi

pushdown system, BP = ((P ×Q), Γ, ∆′, 〈(p0, q0), w0〉, G). Let L : (G×Γ)→ Σ be

a labeling function that associates the head of a PDS transition rule with the set

of propositions that hold on it. BP is built such that:

• 〈(p, q), γ〉 →֒ 〈(p′, q′), w〉 ∈ ∆′, if 〈p, γ〉 →֒ 〈p′, w〉, q
σ
→ q′, and σ ⊆ L(〈p, γ〉).

• (p, q) ∈ G, if q ∈ F .

The model checking problem of an LTL formula on a PDS is then reduced into the

problem that computes an accepting run of the BA. It is important to note that

Moped constructs a Büchi pushdown system in such a way that the BA monitors

the state transitions of the PDS; thus, there is no interaction between the BA

and PDS. This is different from the Büchi pushdown system constructed for co-

verification in Chapter 4, where interactions between the BA and PDS go in both

directions.

26

2.4 PARTIAL ORDER REDUCTION

One common method for reducing the complexity of model-checking concurrent

systems is partial order reduction [33, 69]. This approach is based on an observation

that properties in question often do not distinguish among the state-transition

orders in concurrent systems. Traditional partial order reduction algorithms use an

explicit state representation and depth-first search. The state space and transitions

to be searched are selected during the model checking process; therefore, model

checkers have to be customized for the reduction.

Normally, there are two types of transitions that help decide the selection pro-

cess during reachability analysis [33]. Persistent sets describe the set of transitions

that should be searched at a state, so that the verification result is conservatively

preserved. A persistent set is constructed in such a way that no transition of the

set can be disabled by any execution sequence of transitions that are not in the

set. Sleep sets describe the set of transitions that can be avoided at a state without

affecting the verification result. The key idea behind a sleep set is that if (1) a

transition has been explored, and (2) it is independent with all the transitions on

the searching path thereafter, this transition is unnecessary to be explored even

though it is enabled in current state.

With respect to partial order reduction for LTL checking, a common approach

is the ample set methods, which computes a set of state transitions that needs to

be explored at each state during model checking. Peled [69] demonstrated that a

number of conditions must be enforced on ample sets so that the truth value of

the property to be checked is preserved in the reduced model.

Figure 2.5 illustrates the process of model checking with traditional partial or-

der reductions. Because this approach requires modifications in the model checker

and is often applied with depth-first search, it is difficult to apply the reduction

27

Model checker with
YES

NO

Target model partial order reductions

Figure 2.5: Model checking with traditional partial order reduction.

with other techniques that use breadth-first search, e.g., the symbolic model check-

ing based on Binary Decision Diagrams (BDDs) [53].

Kurshan, et al. [44] developed an alternative approach called static partial order

reduction, where the key idea is to apply partial order reduction when a model is

generated from the system specification. Therefore, no modification to the model

checker is necessary. As illustrated in Figure 2.6, the model is reduced during

the compilation phase by exploring the structure of the system specification. Any

model checker that accepts the original model can be used to solve the verification

problem of the reduced model.

Model
YES

NO

Reduced
checkermodel

Target
model

Static partial
order reduction

Figure 2.6: Model checking with static partial order reduction.

2.5 WINDOWS DEVICE/DRIVER STACK

Drivers check device status or send commands to devices by reading or writing de-

vice registers, and receive notification of state changes from devices through inter-

rupts. In Windows [82], drivers are organized in stacks as illustrated in Figure 2.7.

Each layer of a driver stack services a specific type of device in the corresponding

28

Function driver (e.g., mouse, network card)

Bus driver (e.g., PCI, USB)

Intermediate software layers
Software

Hardware

Bus device (e.g., PCI, USB)

Function device (e.g., mouse, network card)

DDI (Device Driver Interface)ISR (Interrupt Service Routine)

Interrupt

Interrupt

Signal

Signal

Intermediate hardware layers
Interrupt Signal

DDIISR

DDIISR

Figure 2.7: A generic view of Windows device/driver stacks.

hardware stack. One common method to classify device/driver layers is by decid-

ing whether devices of a layer interconnect other devices. If so, this type of device

is called as a bus device, e.g., PCI (Peripheral Component Interconnect) bus or

USB (Universal Serial Bus) bus; otherwise, this type of device is referred to as a

function device, e.g., a network adapter card connected to the PCI bus or a USB

mouse connected to the USB bus. We usually refer to function devices (respec-

tively, function drivers) directly as devices (respectively, drivers) for simplicity. For

example, a PCI function device is referred to as a PCI device.

In the stack shown in Figure 2.7, in addition to the target device and driver

layers whose HW/SW interface protocols we want to specify, there may be other

layers in between. We refer to these layers as intermediate layers. Co-specification

(see Chapter 3) needs to abstract the intermediate layers in such a way that the

interactions between the target device and driver layers are properly modeled.

Different layers of a driver stack usually have different I/O interfaces. For

example, USB drivers read USB device registers using Device Driver Interface

29

(DDI) functions such as WdfUsbRetrieveConfigDescriptor; and PCI drivers read

device registers using DDI functions such as READ REGISTER UCHAR.

A Windows driver example. Figure 2.8 illustrates the excerpts from an Open

System Resources (OSR) sample driver [67] for a PCI device, Sealevel PIO-24

digital I/O card [78]. This driver will be used as an example in the rest of this

dissertation. The digital I/O card has three 8-bit ports (namely, A, B, and C)

for input or output. When the interrupt is enabled and Port A has an input, the

card raises a data-ready interrupt. The driver inputs data when the data-ready

interrupt is raised and outputs data by writing to the port registers.

DioEvtDeviceControl is the callback function that handles device control com-

mands and DioIsr is the Interrupt Service Routine (ISR). For example, when an

application sends down an I/O request, IOCTL WDFDIO READ PORTA AFTER INT, to

read data, the callback function, DioEvtDeviceControl, stores this request and

marks the driver’s status variable, AwaitingInt, to be true. Therefore, when the

device raises an interrupt later, data will be read from the device by the ISR,

DioIsr. Because ISRs run at the highest priority in a system, they preempt and

block all other system routines [62]. Therefore, ISRs should return as quickly

as possible. If necessary, an ISR will schedule a lower-priority routine for post-

interrupt processing of the received data, where this kind of routine is commonly

referred to as a Deferred Procedure Call (DPC). As illustrated in Figure 2.8c,

the DPC routine, DioDpc, returns the data read by ISR to upper applications and

completes the I/O request with proper status indicating the result of the operation.

Chapter 7 will discuss that the driver excerpt in Figure 2.8 contains a bug

which can cause invalidate data being returned to upper applications. This bug is

discovered by our co-verification tool, CoVer.

30

VOID DioEvtDeviceControl(. . .) {

. . .

switch(IoControlCode) {

. . .

// Waits for an interrupt to occur, and when it does,

// ISR/DPC will read the contents of PortA.

case IOCTL WDFDIO READ PORTA AFTER INT:

. . .

// If PortAInput is true, the interrupt is enabled

if (devContext->PortAInput == FALSE) {

status = STATUS INVALID DEVICE STATE;

} else {

// Store the I/O request to CurrentRequest

devContext->CurrentRequest = Request;

// Tell ISR: we’re waiting for an interrupt

P1: devContext->AwaitingInt = TRUE;

. . .

return;

}

break;

. . .

}

. . .

}

(a) Device Driver Control.

Figure 2.8: Excerpts from OSR sample driver code for PIO-24 digital I/O card.

31

BOOLEAN DioIsr(. . .) {

. . .

// Check if we have an interrupt pending

data = READ REGISTER UCHAR(

devContext->BaseAddress + DIO INTSTATUS OFFSET);

if(data & DIO INTSTATUS PENDING) {

// Are we waiting for this interrupt

P2: if(devContext->AwaitingInt) {

// Read the contents of PortA

data = READ REGISTER UCHAR(

devContext->BaseAddress + DIO PORTA OFFSET);

// Store it in our device context

// DPC will send the data to users

devContext->PortAValueAtInt = data;

devContext->AwaitingInt = FALSE;

}

// Request our DPC

P3: WdfInterruptQueueDpcForIsr(Interrupt);

// Tell WDF, and hence Windows, this is our interrupt

return(TRUE);

}

return(FALSE);

}

(b) Interrupt Service Routine (ISR).

Figure 2.8: Excerpts from OSR sample driver code for PIO-24 digital I/O card.

32

BOOLEAN DioDpc(. . .) {

. . .

// Is there a read-after-interrupt request in progress?

if (devContext->CurrentRequest) {

// Get a pointer to the I/O request.

req = devContext->CurrentRequest;

devContext->CurrentRequest = NULL;

// Get the data that was read in ISR

P4: data = devContext->PortAValueAtInt;

}

// Is there a pending request?

if(req) {

PUCHAR dataBuffer;

. . .

// Retrieve the buffer for the input data

status = WdfRequestRetrieveOutputBuffer(req, 0, (PVOID*)&dataBuffer, &length);

if(NT SUCCESS(status)) {

// Return the data to the user – Just 1 byte, read in the ISR

*dataBuffer = data;

// Complete the request with success, pass back 1 in the information field

P5: WdfRequestCompleteWithInformation(req, STATUS SUCCESS, 1);

return; // This request is successfully completed

} else {

WdfRequestCompleteWithInformation(req, STATUS INVALID REQUEST, 0);

}

}

(c) Deferred Procedure Call (DPC).

Figure 2.8: Excerpts from OSR sample driver code for PIO-24 digital I/O card.

33

Chapter 3

CO-SPECIFICATION

As the first step of co-verification, we need to specify HW/SW interface protocols.

Such specification should capture the asynchronous hardware behaviors, the asyn-

chronous software behaviors, and the interactions between hardware and software

(i.e., synchronous behaviors of hardware and software). For various verification

foci, the models constructed by co-specification can be used in different ways. For

example, we can combine a driver implementation with its device model to verify

whether the driver correctly operates its device; or we can verify the design of

a hardware device using its driver model as the test harness. In any case, the

specification semantics should be precise, so that automatic tools can be applied

to validate the specification; the specification framework should consider the dif-

ferences between hardware and software, so that hardware and software can be

described in such a way close to their implementation semantics; and the specifi-

cation process should exploit the unique features of HW/SW interactions, so that

reductions can be applied to alleviate the cost of co-verification.

With respect to hardware and software, there are three types of concurrency

in a system, i.e., the hardware concurrency, the software concurrency, and the

HW/SW concurrency. One major challenge to co-specification is how to present

the three types of concurrency in a proper level of abstraction so that irrelevant de-

tails are abstracted away while the specification still preserves the essential system

behaviors. We utilize the concept of Transaction Level Modeling (TLM) to specify

hardware behaviors. A hardware transaction is essentially a hardware state transi-

tion that is atomic in the view of software. Hardware concurrency is specified using

34

hardware transactions with non-determinism. We also propose a semantic model,

relative atomicity, to characterize the fact that concurrent components (hardware

transactions and software threads) often have different execution priorities. Any

concurrency characterized by relative atomicity can be represented by a Push-

down System (PDS), which is very useful to simplify the models constructed by

co-specification and therefore, reduce the co-verification cost. Our co-specification

language, modelC, as designed based on a restricted C semantics, supports both

relative atomicity and non-determinism.

The co-specification framework describes HW/SW interface protocols using

three parts: the HW/SW interface specification, the hardware specification, and

the software specification. The HW/SW interface specification describes how hard-

ware and software should transition synchronously when they interact with each

other. The hardware specification describes the desired hardware behaviors when

hardware and software transition asynchronously, i.e., when there is no HW/SW

interaction. The software specification describes the desired operation sequences

for software to control hardware. The three parts together specify the complete

behaviors of a system.

We choose hardware devices and software drivers as the application domain

of our research. In industrial settings, device/driver (HW/SW) interface proto-

cols are commonly presented via English specifications. English does not have

formal semantics; therefore, English specifications usually have ambiguities and

inconsistencies. In co-specification, we write formal models to describe the be-

haviors of devices and drivers with respect to their interface protocols. Such a

co-specification framework should also be utilized in the development process of de-

vices and drivers; therefore, we not only will gain formal semantics for device/driver

interface specifications but also can utilize automatic tools to validate these spec-

ifications. Furthermore, the formal models from co-specification can serve as the

basis of a uniform platform not only for co-verification, but also for co-simulation,

35

conformance testing, etc. Following our co-specification framework, we present a

mechanized process to construct formal models of device/driver interface protocols

from English specifications. We also discuss how to integrate our approach into

the device/driver development process and propose the evaluation criteria for our

approach.

3.1 SPECIFICATION TECHNIQUES FOR HW/SW INTERFACES

In the scope of co-verification, a system contains both hardware and software.

There are three types of concurrency in such systems, i.e., the hardware concur-

rency, the software concurrency, and the HW/SW concurrency. One major chal-

lenge to co-specification is how to capture the various types of concurrency in a

proper level of abstraction so that irrelevant details are abstracted away while the

specification still preserves essential system behaviors.

First, we briefly discuss the three types of concurrency and how they are related

to the HW/SW interface specification. Only the system behaviors that are closely

related to HW/SW interface protocols should be preserved. Second, we discuss

the TLM for hardware. TLM is a common practice in hardware design, where the

design logic is specified by transaction functions while the implementation details

such as clock signals are abstracted away. Third, we present a semantic model,

relative atomicity. Although there is a lot of concurrency existing in a system,

its complexity can be greatly reduced by characterizing the execution priorities

existing in HW/SW interface designs. Fourth, we elaborate on how we utilize

the concept of non-determinism to abstract away details unnecessary for interface

specifications. Fifth, we present our co-specification language, modelC.

36

3.1.1 Concurrency in a System

Hardware concurrency. Hardware is concurrent in nature and hardware con-

currency exists at various levels of design abstractions. In the view of software, we

consider two types of hardware concurrency:

• concurrency between hardware modules; and

• concurrent assignments to registers.

For example, the Intel Ethernet Controller [39] has sub-modules such as command

unit, receiving unit, interrupt management, etc., which are fully concurrent. Since

they may not be driven by the same clock signal, we should consider their execution

as asynchronous. A sub-module can be further divided into smaller sub-modules or

directly implemented [38]. When a module is directly implemented, its operation

consists of a sequence of steps that are driven by a clock signal. The states of the

module are maintained in hardware registers and updated simultaneously upon

clock cycles. How the registers should be updated during a clock cycle depends on

the registers’ states before the clock cycle and the state transition rule specified

for the hardware design.

Software concurrency. Device drivers are commonly multi-threaded to service

different requests such as interrupts from hardware, I/O requests from user applica-

tions, etc. In the view of hardware, we consider two types of software concurrency:

• multiple threads concurrently operate hardware, e.g., read/write hardware

interface registers; and

• an Interrupt Service Routines (ISR) is invoked to service a hardware inter-

rupt, where the current executing thread is preempted [60].

Conceptually, we can understand each thread as a PDS. The threads together

should be represented as a product of the PDSs, which results in a Concurrent

37

Pushdown System (CPDS) [73]. Note that even reachability analysis of CPDS is

undecidable [75]. Therefore, it is desired that software behaviors are modeled using

a single PDS as much as possible. As we shall demonstrate later, the second type

of software concurrency can be represented as a single PDS following the semantic

model of relative atomicity. We will specify both types of software concurrency;

therefore, our approach can be utilized in the formalization of HW/SW interface

specifications (see Section 3.3). However, our co-verification model (see Chapter 4)

and co-verification algorithms (see Chapter 5) will only address the second type of

software concurrency (due to the decidability issue).

HW/SW concurrency. A device and its driver are mostly asynchronous and

only transition synchronously when they interact through their interface. The

HW/SW concurrency describes such situations:

• mostly, software and hardware transition asynchronously, where their states

do not affect each other; and

• when hardware and software interact with each other, their synchronous

transition will be decided by the states of both hardware and software.

3.1.2 Transaction Level Modeling (TLM) of Hardware

We utilize the TLM concept to specify hardware behaviors. TLM is a common

approach to hardware design, where the key concept is to abstract away imple-

mentation details at the design stage so that one can focus on the design logic of

a system.

Hardware transaction. Since our goal is to specify HW/SW interface protocols,

the design logic, rather than the implementation details, is relevant. Therefore,

modeling the clock-driven semantic feature of hardware implementations is not

38

necessary. For example, a data-transfer command is usually processed in multi-

ple clock cycles; however, it may only be necessary to describe this command as

one hardware state transition from the view of software. We define a hardware

transaction to represent a hardware state transition in an arbitrarily long but fi-

nite sequence of clock cycles. Hardware transactions are atomic to software. The

concept of hardware transaction preserves hardware design logic that is visible to

software, but hides details that are only necessary for synthesizable Register Trans-

fer Level (RTL) designs. In the rest of this dissertation, we will describe hardware

state transitions on the abstraction level of transactions instead of RTL level.

Hardware transaction function. We define a hardware transaction function

as a C function that describes a set of hardware transactions (i.e., hardware state

transitions). Because transactions are atomic, the intermediate hardware states

during a transaction are invisible to software. In other words, the hardware state

variables are simultaneously updated by a hardware transaction function from the

software point of view. We define the current-states and next-states of a hardware

transaction function respectively as ρ ⊆ Q representing the hardware states when

entering the function and ρ′ ⊆ Q representing the hardware states when exiting

the function. Formally, a hardware transaction function, F : Q × Q, describes

a set of hardware state transitions. Following this definition, any terminating C

function can be treated as a hardware transaction function. In order to differentiate

the definition of hardware transaction functions from other C functions, we use

the keyword atomic to indicate the type of hardware transaction function (see

Figure 3.2 for example).

3.1.3 Relative Atomicity

Concurrent threads usually have different execution priorities. Since higher-priority

threads preempt lower-priority threads, they should be considered atomic to the

39

lower-priority threads. Relative atomicity captures this semantic feature: the ex-

ecution of a higher-priority thread is atomic to that of a lower-priority thread.

Any concurrency that follows the relative atomicity model can be represented by

a single PDS. In our HW/SW interface protocol specifications, relative atomicity

mainly captures two ideas:

• hardware transactions are atomic in the view of software; and

• ISRs are atomic with respect to other software routines, since ISRs have the

highest priority.

Consider the execution model of a software program and a hardware design,

the program contains a set of statements that are atomic in the view of hardware;

and the hardware design is specified as a hardware transaction function. Algo-

rithm 3.1 illustrates the scheduling algorithm for such an execution model, which

demonstrates the idea of relative atomicity. The algorithm runs a hardware trans-

Algorithm 3.1 RelativeAtomicity()

1: if Non-deterministic-Choice() then

2: “Run hardware transaction function for one time”

3: else

4: if Interrupt-Pending() or Isr-Running() then

5: “Run one atomic statement of ISR”

6: else

7: “Run one atomic statement of lower-priority routines”

8: end if

9: end if

action or an atomic software statement based on non-deterministic choices. In

computer systems, when some hardware raises an interrupt, the Operating System

(OS) typically calls all the ISRs that are registered in the interrupt vector table

40

in sequence until an ISR acknowledges its ownership of the interrupt. During this

process, only one ISR can run at a time and other hardware interrupts on the same

bus are suppressed [62]. Although uncommon, it is possible that a driver provides

ISRs with different priorities, where an ISR can preempt another lower-priority

ISR. However, this does not affect the atomicity of an ISR with respect to other

lower-priority driver routines. Furthermore, the higher-priority ISR is atomic with

respect to the lower-priority ISR.

Relative atomicity captures the execution semantics of a system with different

execution priorities; therefore, we can represent such execution semantics using a

less complex model, PDS, compared to CPDS. In verification, relative atomicity

can help us not only achieve decidability but also reduce complexity. Since rel-

ative atomicity is based on the observation of real execution semantics between

hardware and software, there is no abstraction in this semantic model. However,

it is important to note that when we need to represent more than one concurrent

software thread with the same priority in a verification run, relative atomicity may

not be applicable; therefore, we need a CPDS as the formal model for software.

3.1.4 Non-determinism in Co-specification

In co-specification, we utilize non-determinism mainly in two ways: (1) updating

the variable values; and (2) deciding the conditions of branches or loops. For

both ways, the use of non-determinism abstracts away the details unnecessary for

interface specification. For example, one important utilization of non-determinism

in our approach is how we model the hardware concurrency.

Non-deterministic interleaving. Hardware is concurrent in nature. For exam-

ple, a network card processes software command and receives data concurrently.

To specify this kind of hardware concurrency, we design an approach called non-

deterministic interleaving which has three steps:

41

1. identify the concurrent modules (e.g., command unit, receive unit, etc.) of

the target hardware device;

2. specify the modules using separate C functions which we refer to as module

functions; and

3. non-deterministically invoke these module functions in a hardware transac-

tion function.

The hardware concurrency is simulated in such a way that the module functions are

executed in a non-deterministic sequence when the hardware transaction function

is executed multiple times (see Section 3.2 for examples).

3.1.5 The modelC Language

As an important part of co-specification, we need a modeling language. Currently,

the C language (or its variants) is commonly used in TLM specifications, since C

semantics is widely understood by both hardware and software developers. There-

fore, we present a modeling language, modelC, based on C semantics.

The modelC language uses C semantics with two extensions to support non-determi-

nism and relative atomicity as well as the following three restrictions:

• numbers are treated as bounded integers so that hardware registers can be

properly modeled;

• unbounded recursion is not allowed; and

• dynamic memory allocation is not allowed.

It is important to note that modelC is simply a C language dialect with these

extensions and restrictions. Hardware description languages such as SystemC [66]

and Verilog [38] also can be adapted to support the formal specification following

our approach.

42

3.2 SPECIFICATION OF HW/SW INTERFACE PROTOCOLS

We demonstrate how we specify the HW/SW interface protocols through an ex-

ample. One important rule for our specification is to capture all possible HW/SW

behaviors that are allowed by interface protocols. This rule provides guidance for

our modeling, which converges through refinement processes assisted by automa-

tion tools.

As illustrated in Figure 3.1, our formal specification has: a HW/SW interface,

a hardware model, and a software model, where the hardware states are specified

using the (hardware) global variables; the software states are specified using both

the (software) global variables and stack contents of modelC programs.

Software
Model

Hardware
Model

HW/SW
Interface

Output2PortA(...)

Software routines:

......

Output2PortB(...)

Isr()

Hardware transaction
function:

atRun_DIO()

RunIsr()

From hardware to software:

WRITE_REGISTER_UCHAR(...)

From software to hardware

=> atWritePortA(...)
=> atWritePortB(...)
......

Figure 3.1: Co-specification framework.

The HW/SW interface describes how hardware and software should transition

synchronously when they interact with each other. Consider the PIO-24 digital

I/O device/driver interface (see Section 2.5): when software writes to the hard-

ware interface registers by invoking WRITE REGISTER UCHAR, we specify how the

interface registers should be updated using hardware transaction functions such as

atWritePortA, atWritePortB, etc. In the other direction, hardware can raise an

interrupt which will cause the software to invoke an ISR to service the interrupt.

43

We model this process using a function, RunIsr.

The hardware model describes the behaviors of hardware when it transitions

asynchronously with software, i.e., when there is no HW/SW interaction. We

specify the hardware model using one hardware transaction function, atRun DIO.

The software model describes the desired operation sequences for software to

control hardware. For each functionality, we use a function to describe the opera-

tion sequences of software. For example, the function, Output2PortA, specifies the

sequence of operations that software should take in order to write to a hardware

port of the PIO-24 digital I/O device.

3.2.1 HW/SW Interface Specification

The HW/SW interface, the abstraction of the HW/SW intermediate layers (see

Figure 2.7) between the target device and driver, propagates hardware (respec-

tively, software) interface events to software (respectively, hardware). Concep-

tually, a HW/SW interface has two parts: interface states and interface events.

Interface states are state variables provided either by hardware or software and

accessible by both. Interface events have two types: hardware or software. When

hardware updates the software interface states, a hardware interface event occurs,

and vice versa. For example, when a device raises an interrupt, the HW/SW in-

terface will set the interrupt pending status and invoke the corresponding ISR to

service the interrupt. On the other hand, when a driver writes to a hardware in-

terface register, the HW/SW interface will update the related hardware registers

accordingly. In general, the HW/SW interface describes the synchronous transi-

tions of hardware and software when an interface event occurs.

Figure 3.2 illustrates a software interface event function, atWritePortA, which

is actually a hardware transaction function in response to a software register write

operation. This example describes a set of hardware state transitions when the

driver writes to the interface register, Port A, of the PIO-24 digital I/O device.

44

atomic VOID atWritePortA (UCHAR ucRegData) {

// If Port A is configured as an “input” port

if (g DIORegs.CW.CWD4 == 1) {

// Write to the output register instead of the port

g DIOState.OutputRegA.ucValue = ucRegData;

} else { // Otherwise, configured as an “output” port

// Update both the port and the output register

g DIORegs.A.ucValue = ucRegData;

g DIOState.OutputRegA.ucValue = ucRegData;

}

}

Figure 3.2: An implementation of a software interface event function in the form

of a hardware transaction function.

Figure 3.3 shows how function calls to a software write-register function (originally

provided by the OS) are related to interface event functions. A software interface

event occurs when the entry stack symbol of the interface event function is reached.

When hardware raises an interrupt, the ISR should be invoked to service this in-

terrupt. The HW/SW interface simulates this process as shown in Figure 3.4. The

variable IsrRunning represents the software status and the variable Interrupt-

Pending represents the hardware status. The function RunIsr has three steps, (1)

check/prepare the precondition before invoking the ISR; (2) invoke the ISR; and

(3) set both the hardware and software to proper status after ISR. The atomic

blocks are used to indicate that the first and third steps describe synchronous state

transitions of both hardware and software.

45

VOID WRITE REGISTER UCHAR

(PUCHAR Register, UCHAR ucRegData) {

switch (Register) {

case REG PORTA: atWritePortA(ucRegData); return;

case REG PORTB: atWritePortB(ucRegData); return;

. . .

case REG CONFIG: atWriteConfig(ucRegData); return;

case REG STATUS: atWriteStatus(ucRegData); return;

default: abort “Register address error.”; return;

}

}

Figure 3.3: Relating register calls to software interface event functions.

3.2.2 Hardware Specification

The hardware model describes the behaviors of hardware when it works asyn-

chronously with software to realize system functionalities. Consider the PIO-24

digital I/O device: when there is an input to Port A, the hardware model decides

whether an interrupt should be raised based on both the current hardware state

and the input value. Figure 3.5 illustrates an example of a hardware transaction

function, atRun DIO, that models the set of state transitions for the PIO-24 device

when this device executes asynchronously with the driver. During each execution

of the hardware transaction function, one module function (such as RunPorts or

RunInterrupt) is non-deterministically selected; therefore, only one module exe-

cutes and its related state variables get updated. The concurrency between these

modules is simulated by non-deterministic interleaving between the module func-

tions when the hardware transaction function is executed multiple times.

46

VOID RunIsr () {

atomic {

// Make sure only one ISR is invoked

if ((IsrRunning == TRUE) || (InterruptPending == FALSE))

return;

IsrRunning = TRUE;

}

DioIsr(); // Invoke the ISR

atomic {

IsrRunning = FALSE;

InterruptPending = FALSE;

}

}

Figure 3.4: Interrupt monitoring function.

atomic VOID atRun DIO() {

switch (choice()) { // non-deterministic choices

case 0: RunPorts(); break; // Port I/O Management

case 1: RunInterrupt(); break; // Interrupt Management

. . .

}

}

Figure 3.5: Hardware transaction function of the PIO-24 digital I/O card device

model.

47

3.2.3 Software Specification

The software model describes the desired operation sequences for software to con-

trol hardware. It is straightforward to specify software behaviors using modelC,

because modelC is designed based on the C semantics. In the English documents

for HW/SW interface protocols, software specifications are usually categorized by

functionality. For every functionality, a piece of English-based pseudo-code is pro-

vided to describe the desired software operations. We use a C function to replace

each of the pseudo-code pieces. Figure 3.6 illustrates an example of such a C

function for the PIO-24 driver model. This function describes the desired software

operations for outputting a byte to Port A. Conceptually, all these C functions

VOID Output2PortA (UCHAR ucRegData) {

// Write to Port A

WRITE REGISTER UCHAR(REG PORTA, ucRegData);

// Read the I/O configuration

g SWState.CW.WholeByte =

READ REGISTER UCHAR(REG CONFIG);

// If Port A is configured as “input”, set it as “output”

if (g SWState.CW.CWD4 == 1) {

g SWState.CW.CWD4 = 0;

WRITE REGISTER UCHAR(REG CONFIG,

g SWState.CW.WholeByte);

}

}

Figure 3.6: A C function for outputting to Port A.

are implemented in several concurrent driver threads (the number of threads and

48

how the functions should be assigned to the threads depend highly on implemen-

tation details). Some types of software concurrency can be captured by relative

atomicity and, therefore, represented by a single PDS. For example, the thread for

DioIsr (see Figure 3.4) should always be atomic to other driver threads, because

ISRs have the highest priority. A CPDS is necessary as the software representation

when relative atomicity is inapplicable, i.e., (1) there is more than one unbounded

stack of software threads; and (2) the context-switches between the threads are

also unbounded.

3.2.4 A Realization of Relative Atomicity

VOID Output2PortA (UCHAR ucRegData) {

⇐=

WRITE REGISTER UCHAR(REG PORTA, ucRegData);

⇐=

g SWState.CW.WholeByte =

READ REGISTER UCHAR(REG CONFIG);

⇐=

if (g SWState.CW.CWD4 == 1) {

⇐=

g SWState.CW.CWD4 = 0;

⇐=

WRITE REGISTER UCHAR(REG CONFIG,

g SWState.CW.WholeByte);

⇐=

}

}

while(choice()) {

atRun DIO();

RunIsr();

}

Figure 3.7: Execution model of relative atomicity.

Given the examples of HW/SW interface, hardware model, and software model,

Figure 3.7 illustrates how they can be combined into a single-threaded program

49

following the concept of relative atomicity. After every software statement, we non-

deterministically invoke the hardware transaction function, atRun DIO, to let the

asynchronous hardware model run. Meanwhile, since a hardware transaction may

raise an interrupt, we invoke the interrupt monitoring function, RunIsr; therefore,

ISR can be invoked if an interrupt has been raised. Note that software statements

are not really atomic in this example; however, we use this format to retain the

readability. There are two types of synchronous transitions between hardware

and software. First, when software invokes register operation functions such as

WRITE REGISTER UCHAR, the hardware transaction functions such as atWritePortA

will be invoked to update the hardware interface registers. Second, in RunIsr, the

ISR routine will be invoked if an interrupt has been raised.

3.2.5 Summary and Generalization

We have demonstrated our co-specification framework via an example. Our ap-

proach is also applicable to other common HW/SW interfaces in devices/drivers

and microcode/firmware. There are three reasons:

1. TLM is already widely used in hardware development. Hardware designers

usually specify transaction level models in order to evaluate the performance

and correctness of their designs.

2. In HW/SW interface designs, it is standard to have different execution prior-

ities for concurrent components such as software threads and hardware trans-

actions. For example, when hardware raises an interrupt, software needs to

service the interrupt in a high priority thread to prevent losing any volatile

hardware state.

3. The models constructed by co-specification can be formally represented by

BA and PDS, which are suitable formal representations for hardware and

50

software respectively (see Chapter 4). Furthermore, BA and PDS have al-

ready been successfully used in hardware and software verification.

3.3 APPLICATIONS AND EVALUATION CRITERIA

In industrial settings, hardware and software are often manufactured separately,

because their development processes require highly different expertise. English

is the de facto language for specifying HW/SW interface protocols. Since lots

of HW/SW interfaces are public standards, their English specifications have to

be self-explanatory. However, English does not have formal semantics, so these

specifications commonly contain ambiguities and inconsistencies. A single misin-

terpretation of an interface protocol can cause bugs in products, which will likely

lead to system failures. These failures are hard to diagnose especially when they

happen only in a product release as a specific combination of device and driver.

Figure 3.8: An excerpt from Intel 10/100 Mbps Ethernet Controller document.

Figure 3.8 illustrates an excerpt from the English document of the Intel 8255x

10/100Mbps Ethernet Controller Specification [39]. This excerpt describes how the

shared memory between hardware and software should be operated by hardware

when a CU/RU (Command Unit/Receive Unit) command is issued from software.

51

There are two issues: First, the content of Table 15 is inconsistent with its title

(underlined, the RU and CU difference). Second, the CU HPQ Start command is

neither defined nor mentioned in any other part of this document. This is quite

confusing when compared to the CU Start command. Such specification issues are

pervasive (see Chapter 7 for details) in various English documents for HW/SW

interfaces. These issues can cause confusion, produce bugs, and lead to product

failures.

English has four significant drawbacks as the HW/SW interface specification

language:

• First, since English lacks a formal semantics, we cannot guarantee a unique

interpretation from the same English specification.

• Second, no automatic tool can be offered to validate the correctness of an

English-based interface protocol due to lack of formal semantics.

• Third, implementation semantics of HW/SW interfaces are quite different

from the specification semantics; therefore, the implementations can signifi-

cantly deviate from their interface protocols.

• Fourth, it is not straightforward to design test cases for HW/SW interface

implementations based on English specifications. Instead of using a system-

atic approach, ad-hoc test cases are commonly used.

To address the drawbacks of English specifications, we need to describe HW/SW

interface protocols in a precise manner, so that the protocols can be specified

formally and analyzed automatically. We refer to this specification process as

HW/SW interface formalization.

In our co-specification framework, we construct formal models of HW/SW in-

terface protocols. Compared to English-based specifications, there are three ad-

vantages of our approach in specifying HW/SW interface protocols:

52

• First, our specification is exact and free of ambiguities, since a programming

language such as modelC is used to describe the HW/SW interface protocols

rather than English.

• Second, our specifications can be represented as formal models. Therefore,

automatic formal verification tools (such as CoVer presented in Chapter 6)

can be used to ensure that critical properties about HW/SW interface pro-

tocols are correctly expressed through co-specification.

• Third, the formal hardware (respectively, software) specifications can be

readily utilized in the co-verification with software (respectively, hardware)

implementations.

In this section, we first present a mechanized process to construct formal models

of HW/SW interface protocols from English specifications. This process is quite

helpful to apply our approach to legacy HW/SW interfaces, where their English

specifications already exist. Second, we discuss how to integrate our approach into

the HW/SW development process. Finally, we propose the evaluation criteria for

our approach.

3.3.1 Formalization Process from English Specifications

Specifications of HW/SW interface protocols are often presented in structured

English that describes HW/SW interface protocols in three parts:

1. Definition of hardware interface registers. Hardware uses interface registers

to receive commands from software, and in the other direction provide soft-

ware with the current hardware state. Figure 3.9 illustrates an excerpt from

the English specification of the PIO-24 device [78]. This excerpt presents the

offsets and access (read/write) modes of the 8-bit registers, where the names

from D0 to D7 represent the bits of a register. The register names such

53

Figure 3.9: Excerpt of PIO-24 specification: hardware interface registers.

as PA (a.k.a., Port A), PB (a.k.a., Port B), etc. are defined in the English

specification (omitted in the excerpt). The PIO-24 driver relies on register

offsets to access different registers. Figure 3.10 illustrates how we define

the register offset macros based on the English specification. For example,

REG PORTA corresponds to the name PA; REG CONFIG corresponds to the name

CW (a.k.a., Control Word). As another example, Figure 3.11 illustrates the

excerpt about how the I/O direction of port registers are controlled by the

value of the CW register. The hardware transaction function atWritePortA

illustrated in Figure 3.2 is specified according to this excerpt, i.e., the Port

A register is configured as “input” (respectively, “output”) if the D4 bit of

the CW register is 1 (respectively, 0). The symbol X represents that this bit is

not used, which is indicated in Figure 3.9.

2. Hardware (environment) behaviors. Mostly, hardware execution is asyn-

chronous with software, e.g., when hardware processes software commands

or inputs from the environment. Figure 3.12 illustrates the excerpt from the

English specification about how the PIO-24 device should process the input

to Port A and raise an interrupt to notify the driver. We specify this be-

havior using the module function RunInterrupt illustrated in Figure 3.13.

RunInterrupt is invoked by the hardware transaction function atRun DIO

54

#define REG PORTA BASE ADDRESS + 0

#define REG PORTB BASE ADDRESS + 1

#define REG PORTC BASE ADDRESS + 2

#define REG CONFIG BASE ADDRESS + 3

#define REG IRQ BASE ADDRESS + 4

#define REG STATUS BASE ADDRESS + 5

Figure 3.10: Macros for interface register offsets of the PIO-24 device.

Figure 3.11: Excerpt of PIO-24 specification: meaning of CW (a.k.a., the Control

Word register).

55

Figure 3.12: Excerpt of PIO-24 specification: input to Port A.

which describes the asynchronous hardware behavior in the view of software.

Based on the current hardware state and input to Port A from the envi-

ronment, RunInterrupt decides whether or not hardware should raise an

interrupt. Note that the input from the environment can be modeled by as-

signing non-deterministic values to the Port A register after every execution

of atRun DIO.

3. Recommendations for software to operate hardware. Software often needs to

follow certain rules when operating hardware. Since software implementa-

tions are more flexible than hardware, the rules are usually presented in the

form of recommendations. For example, Figure 3.14 illustrates an excerpt

that recommends the desired behaviors for software to output to the ports

of the PIO-24 device. Our software specification illustrated in Figure 3.6

captures this recommendation.

Given an English specification of a HW/SW interface protocol, we summarize

our formalization process of developing the corresponding formal model by three

steps as illustrated in Figure 3.15. First, we identify the structure of the target

56

VOID RunInterrupt() {

// If interrupt is disabled

if(g DIORegs.IRQ.IRQENn == 0) goto Exit;

// If Port A is not configured as input

if(g DIORegs.CW.CWD4 != 1) goto Exit;

. . .

// Low level triggers an interrupt

if((g DIORegs.IRQ.IRQCn == 0) && (g DIORegs.A.D0 == 0))

g DIORegs.IRQST.IRQST1 = 1;

// High level triggers an interrupt

else if((g DIORegs.IRQ.IRQCn == 1) && (g DIORegs.A.D0 == 1))

g DIORegs.IRQST.IRQST1 = 1;

// Falling edge triggers an interrupt (we assume that if this path

// is executed, falling edge just occurred)

else if(g DIORegs.IRQ.IRQCn == 2)

g DIORegs.IRQST.IRQST1 = 1;

// Rising edge triggers an interrupt (we assume that if this path

// is executed, rising edge just occurred)

else if(g DIORegs.IRQ.IRQCn == 3)

g DIORegs.IRQST.IRQST1 = 1;

Exit: return;

}

Figure 3.13: The module function, RunInterrupt, invoked by atRun DIO (see

Figure 3.5).

57

Figure 3.14: Excerpt of PIO-24 specification: a recommendation for software.

English

specification

Identify the
specification structure

HW interface
registers

HW
behaviors

SW
behaviors

English specification

HW interface
specification

HW

SW

Formal model

specification

specification

Develop

Validation tools

formal model

Passed

Failed

Release formal model

Figure 3.15: The formalization process from an English specification.

58

English specification. The goal of this step is to decide the three specification

parts of the HW/SW interface protocol: definition of hardware interface registers,

hardware behaviors, and recommendations for software behaviors. Second, we

develop the formal model from the English specification following the mappings

between the structure of the English specification and that of the formal model.

We have already discussed how to develop each part of the formal model from

the corresponding part of the English specification. For example, Figure 3.9 and

Figure 3.10 illustrate how to define the hardware interface registers’ offsets based

on the English specification. Third, we utilize automatic tools to validate the

formal model. For example, a C compiler can easily detect inconsistencies in

the formal model; CoVer can verify correctness properties of the formal model.

Issues discovered during the validation are sent back to the development process

for refinement. The formal model can be released only if no validation fails.

3.3.2 Applications in the HW/SW Development Process

A device/driver framework refers to a type of HW/SW interface as well as the

devices and drivers that both utilize this interface. Device/driver frameworks can

have different levels of abstractions. For example, the PCI device/driver framework

refers to the PCI HW/SW interface, all the PCI devices, and all the PCI drivers;

the Sealevel PIO-24 device/driver framework refers to the PIO-24 HW/SW inter-

face, the PIO-24 driver, and the PIO-24 device. Note that, although the PIO-24

HW/SW interface is built on the PCI HW/SW interface, the two interfaces de-

scribe different HW/SW interface protocols and are logically separate.

We have observed a common development process for device/driver frameworks

in industrial settings as illustrated in Figure 1.1. The process contains three stages:

Design stage. Usually, a device/driver framework is designed by a group of

hardware and software companies together. The HW/SW interface is described in

59

a draft English specification which is shared between these participant companies

for revision. Engineers from these companies proof-read the English specification

and try to identify potential problems in the HW/SW interface design. However,

there are no automatic tools that can be used to help identify specification problems

because the HW/SW interface protocols are not formally specified.

Development stage. After the English specification has been agreed upon by

the participant companies, it is made public. The companies will start to develop

their own hardware (respectively, software) products for this device/driver frame-

work based on the English specification. During this stage, other companies, who

have not participated in the design stage, may also develop their own hardware

(respectively, software) products that are compliant with this device/driver frame-

work. How well a product complies with the HW/SW interface protocol depends

greatly on the development engineers’ interpretations of the English specification.

In order to further ensure the HW/SW interface compliance, a product also needs

to be tested according to the English specification. Because test engineers from

different companies may have their own interpretations of the specification, the test

cases vary; therefore, the test coverage of different products can be significantly

different, as well as the products’ quality in terms of the HW/SW interface com-

patibilities. Figure 3.16 illustrates such an example, which contains two excerpts

respectively from a Linux driver and a Windows driver for the same hardware

device, the Intel 8255x 10/100Mbps Ethernet controller. The two C functions re-

spectively illustrated in Figure 3.16a and Figure 3.16b have the same functionality

which is to issue a software command to the device; however, the implementations

are different. Before issuing a new command, the Linux driver always waits until

the command register becomes free (this rule is indicated by the English specifica-

tion); however the Windows driver does not wait before issuing any new command

unless the parameter WaitForScb is set to be true, a performance optimization.

60

int e100 exec cmd(nic *nic, u8 cmd,

dma addr t dma addr) {

int err = 0;

. . .

spin lock irqsave(. . .);

/* Previous command is accepted when SCB clears */

for (i = 0; i < E100 WAIT SCB TIMEOUT; i++) {

/* If last command has been completed */

if (likely(!ioread8(&nic->csr->scb.cmd lo))) break;

cpu relax();

if (unlikely(i > E100 WAIT SCB FAST)) udelay(5);

}

/* If last command timeout */

if (unlikely(i == E100 WAIT SCB TIMEOUT)) {

err = -EAGAIN;

goto err unlock;

}

/* Issue a new command */

if (unlikely(cmd != cuc resume))

iowrite32(dma addr, &nic->csr->scb.gen ptr);

iowrite8(cmd, &nic->csr->scb.cmd lo);

err unlock: spin unlock irqrestore(. . .);

return err;

}

(a) Linux driver code excerpt.

NTSTATUS D100IssueScbCommand(

PFDO DATA FdoData,

PUCHAR ScbCommandLow,

BOOLEAN WaitForScb) {

// Wait for the last command to complete?

if (WaitForScb == TRUE) {

// If last command timeout

if (!WaitScb(FdoData))

return

(STATUS DEVICE DATA ERROR);

}

// Issue a new command

WRITE REGISTER UCHAR (

((PUCHAR)(FdoData->CSRAddress +

SCB COMMAND LOW BYTE),

ScbCommandLow);

return (STATUS SUCCESS);

}

(b) Windows driver code excerpt.

Figure 3.16: Excerpts from the Linux and Windows drivers for the Intel 8255x

10/100Mbps Ethernet controller.

61

Obviously, the Windows driver is more efficient, because it tries to avoid unneces-

sary checks on hardware registers. On the other hand, it is also more challenging

to maintain the driver’s correctness, because the driver developer must guaran-

tee that when D100IssueScbCommand is called with WaitForScb being FALSE, the

command register should always be free.

Post-release stage. After a product passes in-house testing, the company may

choose to ship it to market directly or send it to a third-party organization for

conformance testing. Conformance testing decides whether a hardware (respec-

tively, software) product complies with the HW/SW interface protocol. Test cases

are developed by engineers from the third-party organization based on the English

specification. The effectiveness of the test cases highly relies on the engineers’

interpretations of the specification. The product passes the certification if all the

test cases succeed.

As discussed above, English specifications serve an important role to ensure

the reliability of HW/SW interface implementations. Not only are the products

developed based on English specifications, but the validation processes also rely

on the precise understanding of English specifications.

In our approach of formalizing HW/SW interface specifications, formal mod-

els are employed to describe the HW/SW interface protocols instead of English

specifications as illustrated in Figure 1.3. Our approach improves the development

process of devices and drivers in the following four aspects:

• In the design stage of a device/driver framework, automatic verification tools

are applied to check the correctness of the formal model which describes the

HW/SW interface protocol. This is more efficient and reliable than manual

proof reading.

• During the development of a product, the formal model is referred to rather

62

than the English specification; therefore, it is easier for both development en-

gineers and test engineers to have precise understanding about how hardware

and software should interact following the HW/SW interface protocol.

• During in-house testing, because the formal model closely resembles the

implementation semantics of both hardware and software, it can be read-

ily utilized by validation techniques such as co-verification [49, 50] and co-

simulation [56] (also see Section 8.2). This not only reduces the duplicate

efforts in developing test harnesses but also provides a uniform and system-

atic platform for validation.

• In conformance testing, the formal model can also serve as the golden model.

Two types of testing can be applied. First, equivalence checking/testing [70,

84, 87] can be used to check if a hardware (respectively, software) product

complies with the hardware (respectively, software) formal model. Second, a

hardware (respectively, software) formal model can be used as the test har-

ness of the software (respectively, hardware) products. Furthermore, because

the formal model is shared between manufacturing companies and certifica-

tion organizations, product issues discovered by certification organizations

will be easier to resolve with manufacturing companies.

Among these advantages, the ability to provide a uniform and systematic plat-

form for validation is very important. In traditional testing, because devices and

drivers are manufactured separately, some failures due to interface incompatibility

only occur when a specific version of device is combined with a specific version of

driver. It is hard to pinpoint the responsibility for such failures, because both the

device and the driver are black boxes (or at least one of them is). Using formal

specifications as the uniform validation platform will greatly relieve this problem.

Although formalizing the HW/SW interface specification can significantly help

the development process and improve the product reliability, we do not expect to

63

abandon English documents completely, because there are five aspects we do not

specify in formalization:

• terminology definitions;

• introduction and architecture overview;

• non-interface-related specifications, e.g., device virtualization support;

• physical criteria, e.g., physical shapes and sizes of device interfaces; and

• timing criteria, e.g., the device initialization time (in milliseconds).

In other words, our formalization approach augments the English specifications of

HW/SW interface protocols by formal models, so that the interaction logic between

hardware and software can be precisely captured.

3.3.3 Evaluation Criteria

We propose four criteria for evaluating our approach: (1) whether a formal model is

easy to read compared to its English specification; (2) how to ensure the correctness

of the formal model, i.e., whether the HW/SW behaviors are correctly captured;

(3) how much manual effort is required in the formalization process; and (4) how

to compare the formal model with its English specification. We also present how

we categorize the English specification issues into two types.

Reference convenience. We discuss this criterion from the perspective of hard-

ware and software engineers respectively. In hardware design, it is very common

that a high-level model of a product is firstly specified using programming lan-

guages such as C or SystemC so that the correctness and performance of the

design can be evaluated by verification or simulation. After a hardware product

is actually implemented as RTL design, the high-level model can also serve as the

golden model for equivalence testing, because it is easier in practice to maintain

64

the correctness of a high-level design rather than a complicated implementation

that is optimized for performance. For software development, we have interviewed

several device driver developers, they all agree that it is easier to refer to formal

models rather than English specifications for HW/SW interface protocols. There

mainly are two reasons: (1) device driver developers are familiar with the C lan-

guage; and (2) IDEs (Integrated Development Environments) such as Microsoft

Visual Studio [58] and Eclipse CDT (C/C++ Development Tooling) [29] can be

utilized to help review the formal models.

Correctness assurance. We argue that the correctness of formal models is easier

to maintain than that of English specifications, because in addition to manual

review, we can apply all kinds of tools in order to help validate the correctness

of formal models. For example, the C compiler alone can detect a large amount

of specification inconsistencies; we can also use our co-verification tool, CoVer, to

verify the correctness of formal models (see Chapter 7). Even for manual review,

reading formal models are easier than reading English specifications with the help

of IDEs.

Manual effort. The manual effort required in the specification of a formal model

mainly depends on the complexity of the HW/SW interface protocol and the ex-

perience of the specification engineer. In general, the complexity of a HW/SW

interface protocol can be approximately quantified by the size of its English doc-

ument (i.e., the number of pages); the experience of specification engineers can

be quantified by their years of experience in hardware and software development.

More quantification about the evaluation of manual effort is discussed in Chapter 7.

Comparison with the English specification. It is important to compare for-

mal models with their English specifications. Different English specifications may

describe HW/SW interface protocols in different levels of details. However, enough

65

details must be included when specifying a formal model using our approach, be-

cause formal models are designed to closely resemble the HW/SW implementation

semantics. For example, an English specification may omit the input restrictions

on a device’s I/O port, however this detail must be specified explicitly in the for-

mal model, i.e., if the device’s input is not specified in the English specification,

non-deterministic values should be given as the input in the formal model. We

define a concept, model-document ratio, to help analyze the relation between a

formal model and its English specification. Given that the formal model has LFM

lines of modelC code and the English document has Pdoc pages of specification

about the HW/SW interface protocol, we define the model-document ratio1 as:

Definition 3.1. Model-Doc = LF M

Pdoc

When the Model-Doc ratio is high, it suggests that the HW/SW interface pro-

tocol is loosely described by the English specification; therefore, the deviations of

HW/SW interface behaviors in various products may be very high. This is a po-

tential hazard that can cause HW/SW interface incompatibility problems, because

the less information provided by the English specification, the more interpretations

development engineers have to make by their own. When the Model-Doc ratio is

low, it suggests that the English specification is elaborate, where the HW/SW in-

terface protocol is described in details. However, the lower a Model-Doc ratio is,

the higher possibility the English specification may have inconsistencies. In other

words, it is hard to maintain the consistency of an English specification when it is

elaborate (usually large) and the same rule about a HW/SW interface protocol is

described in many places.

Two types of specification issues in English documents.

1Since HW/SW interface specifications are presented in structured English, they are often
similar in format and structures (but different in the level of details). Therefore, the pages can
be used to indicate the size of the specifications.

66

• Spec-inconsistency. Multiple places of an English specification are partially

contradictory to each other. For example, the first issue illustrated in Fig-

ure 3.8 is a spec-inconsistency issue, where the name RU contradicts the name

CU.

• Spec-incompleteness. The information provided by an English specification

is not enough to guide the implementation. As a result, engineers need to de-

velop products based on their own interpretations, which can cause product

failures due to the potential incompatibility between different HW/SW inter-

face implementations. The second issue of Figure 3.8 is a spec-incomplete-

ness issue, because the description about the CU HPQ Start command is

incomplete.

The two types of specification issues commonly exist even after an English specifi-

cation has been published for years and revised for several editions (see Chapter 7

for more examples). This is a strong reason for applying our approach, so that

HW/SW interface specifications can be checked by automatic tools for correctness.

67

Chapter 4

CO-VERIFICATION MODEL

Chapter 3 has presented a co-specification framework for a system that contains

hardware, software, and a hardware/software (HW/SW) interface. The specifica-

tion cannot be formally analyzed until we provide a formal representation for it.

Automata theory, as a formal method, studies abstract machines that are useful

to represent concrete systems. These abstract machines usually capture only the

certain aspects of target systems, for example, their design logic. Therefore, anal-

ysis on abstract machines is not only more precise but also more efficient than that

on the original systems. Furthermore, the operations on abstract machines can be

studied with mathematical methods so that we can reason about the correctness

of the system designs.

Since hardware and software are designed in different approaches, they are com-

monly represented by different formal models. Because hardware has a bounded

state space, finite state machines, such as Büchi automata, are commonly used

as hardware formal models. On the other hand, software programs can have

unbounded stacks; therefore, pushdown systems are more suitable for software

compared to finite state machines. Since pushdown systems do not have input

alphabet, they cannot take inputs from hardware models. Therefore, we extend

pushdown systems to labeled pushdown systems, where each state transition of

a labeled pushdown system is labeled by a symbol defined on the states of the

hardware model.

Having separate formal models for hardware and software is cumbersome for

co-verification. A unifying model that combines the merits of Büchi automata

68

and labeled pushdown systems is desired so that hardware, software, and their

interactions can be analyzed together as an integrated system. A Büchi pushdown

system, as the Cartesian product of a Büchi automaton and a labeled pushdown

system, is such a unifying model. Büchi pushdown systems capture both the

synchronous transitions and asynchronous transitions of hardware and software.

State transitions of formal models can be described in different ways. By defini-

tion, a state transition specifies a relation between two states, i.e., the current-state

which is the model state before the state transition and the next-state which is the

model state after the state transition. We refer to such representation as an explicit

representation. It is straightforward to explain algorithms using an explicit rep-

resentation. However, the implementation of explicit representations is inefficient

in practice, because complete state graphs must be built in order to realize any

analysis algorithm. By contrast, symbolic representations describe a set of state

transitions using a few symbolic rules. A symbolic rule, similar to a mapping func-

tion, specifies a relation between two sets of states, i.e., the set of current-states

which are the possible model states before the transitions and the set of next-states

which are the possible model states after the state transitions. Symbolic represen-

tations are more efficient than explicit representations in implementation. We will

discuss both the explicit representations and the symbolic representations for the

formal models used in co-verification.

4.1 BÜCHI AUTOMATON AS HARDWARE MODEL

Formally, a hardware design can be represented as a BA B = (Σ, Q, δ, q0, F). More

specifically, the alphabet Σ is the power set of the set of propositions induced

by software interface events. In other words, the evaluation of the propositional

variables in Σ depends on whether a software interface event occurs. The set of

states Q represents the hardware states. The initial state q0 represents the initial

hardware state. The transition relation R describes the hardware behavior, i.e.,

69

B = (Σ, Q, δ, q0, F)

Σ = { ∅, {reset}, {no event}, {stop}, {reset, no event},

{no event, stop}, {reset, stop}, {reset, no event, stop} }

Q = { Init, Rst, Wrk, Idle, Intr }

δ = { t1, t2, t3, t4, t5, t6, t7, t8, t9, t10 }

t1 = Init
{reset}
−−−−−→ Rst

t2 = Wrk
{reset}
−−−−−→ Rst

t3 = Wrk
{stop}
−−−−→ Init

t4 = Rst
∅
−→ Rst

t5 = Rst
∅
−→ Wrk

t6 = Wrk
{no event}
−−−−−−−→ Idle

t7 = Wrk
{no event}
−−−−−−−→ Intr

t8 = Idle
{no event}
−−−−−−−→ Init

t9 = Init
{no event}
−−−−−−−→ Init

t10 = Intr
{no event}
−−−−−−−→ Wrk

q0 = Init

F = { Init, Wrk, Idle }

Init

Rst

Idle

reset{ }

Intr

Wrk

no_event

{ }

no_event{ }

reset{ }

st
op

{

 }

no_event{ }

no
_e
ve
nt

{

 }

Figure 4.1: A hardware design represented by BA.

how hardware should transition from current state to next state. The set of final

states (a.k.a., accepting states) F constrains the state transitions of the hardware

design in such a way that at least one of the final states should be visited infinitely

often.

Example. Figure 4.1 illustrates an example of a BA representing a hardware

design. This BA has five states: the initial state (Init), the resetting state (Rst),

the working state (Wrk), the idle state (Idle), and the interrupt triggering state

(Intr). The transitions are labeled by the sets of propositions that are induced by

software interface events. A transition is said to be enabled when all propositional

variables in its label are true. In this example, there are two software interface

events, i.e., reset and stop. The propositional variables reset and stop are true if

70

and only if their corresponding software interface events occur. The propositional

variable no event is true if and only if no software interface event occurs. The

empty set ∅ is always considered as true. If two transitions starting from the same

state can be enabled by the same condition, the transitions are referred to as non-

deterministic transitions. For example, t4 and t5 are non-deterministic transitions

from the state Rst; and t6 and t7 are non-deterministic transitions from the state

Wrk. Note that the alphabet Σ is constructed strictly following its definition as the

power set of the set of propositions induced by software interface events; there-

fore, symbols such as {reset, no event} and {no event, stop} are elements of Σ by

definition. They do not have concrete meaning in this example.

This hardware design is in the initial state, Init, by default. It requires a

reset command from software in order to transition from the initial state to the

working state, Wrk. While in the working state, the hardware can raise an interrupt

by transitioning to the interrupt triggering state, Intr; it can also transition to

the idle state, Idle, and consequently, transition to the initial state. If there is

a software interface event stop, the hardware should transition from the working

state to the initial state. If there is a software interface event reset, the hardware

should transition from the working state to the resetting state, Rst. Since the

resetting process may take time to complete, a delay is modeled by a self-loop

transition on Rst, i.e., t4. However, a resetting process should not delay infinitely.

Both the resetting state and interrupt triggering state are intermediate states that

model the resetting process and interrupt triggering event respectively. Therefore,

the two states are not in the set of final states, F . An alternative way to specify

the set of final states is via an LTL formula, i.e., GGG (FFF (Init||Wrk||Idle)), which

states that one of the final states should be repeatedly visited.

71

4.2 LABELED PUSHDOWN SYSTEM AS SOFTWARE MODEL

4.2.1 Representing Software Design

Formally, a software program can be represented as a PDS P = (G, Γ, ∆, 〈g0, ω0〉).

More specifically, the set of states G represents the states of global variables. The

set of strings Γ∗ represents the states of a stack. A configuration, denoted by

〈g, ω〉 ∈ G × Γ∗, represents a program state. The set of PDS rules ∆ represents

program statements. A PDS rule, written as 〈g, γ〉 →֒ 〈g′, ω〉 ∈ (G×Γ)× (G×Γ∗),

summarizes a set of PDS state transitions in the form of 〈g, γv〉 ⇒ 〈g′, ωv〉, where

v ∈ Γ∗. Since the stack may be unbounded, a PDS can have infinite states;

therefore, the number of PDS transitions can also be infinite. However, the number

of PDS rules is finite. In general, there are three types of PDS rules:

• 〈g, γ〉 →֒ 〈g′, γ′〉, where γ, γ′ ∈ Γ, i.e., the stack control location transitions

from γ to γ′ without a procedure call, e.g., through an assignment;

• 〈g, γ〉 →֒ 〈g′, γ′γ′′〉, where γ, γ′, γ′′ ∈ Γ, i.e., a call to a procedure f such that

γ′ represents the entry point of f and γ′′ represents the return address of the

call;

• 〈g, γ〉 →֒ 〈g′, ε〉, where γ ∈ Γ and ε denotes the empty string, i.e., a return

statement.

Example. Figure 4.2 shows how a Boolean program can be represented as a PDS

P = {G, Γ, ∆, 〈g0, ω0〉}, where

• G = {⋄, a, !a};

• Γ = {⊔, main0, main1, main2, main3, main4, main5, reset0, reset1, stop0,

stop1, NonHWRelated0, NonHWRelated1};

• ∆ is given in Figure 4.2b;

72

decl a;

void main() begin

0 reset();

1 a := 0;

2 NonHWRelated();

3 if(a) then

4 stop();

fi

5 return;

end

void reset() begin

0 skip;

1 return

end

void NonHWRelated() begin

0 skip;

1 return

end

void stop() begin

0 skip;

1 return

end

(a) Boolean program.

〈g0, ω0〉 = 〈⋄,⊔〉, i.e., the initial configuration.

〈⋄, ⊔〉 →֒ 〈!a, main0〉

〈⋄, ⊔〉 →֒ 〈a, main0〉

〈·, main0〉 →֒ 〈·, reset0 main1〉

“·” is used when the rules (1) do not modify a; and

(2) are not affected by the value of a.

〈a, main1〉 →֒ 〈!a, main2〉

〈!a, main1〉 →֒ 〈!a, main2〉

〈·, main2〉 →֒ 〈·, NonHWRelated0 main3〉

〈a, main3〉 →֒ 〈a, main4〉

〈!a, main3〉 →֒ 〈!a, main5〉

〈·, main4〉 →֒ 〈·, stop0 main5〉

〈·, main5〉 →֒ 〈·, ε〉

〈·, reset0〉 →֒ 〈·, reset1〉

〈·, reset1〉 →֒ 〈·, ε〉

〈·, NonHWRelated0〉 →֒ 〈·, NonHWRelated1〉

〈·, NonHWRelated1〉 →֒ 〈·, ε〉

〈·, stop0〉 →֒ 〈·, stop1〉

〈·, stop1〉 →֒ 〈·, ε〉

(b) Corresponding PDS rules.

Figure 4.2: Representing a Boolean program using PDS.

73

• 〈g0, ω0〉 = 〈⋄,⊔〉.

The Boolean program has a global variable a and four procedures named main,

reset, NonHWRelated, and stop. The entry point of the program is the first state-

ment of main, where the stack location is denoted by main0. For every program

statement, there are several corresponding PDS rules that model the transitions

of both the stack locations and the data (e.g., the value of a). Since the global

variable a is not initialized, there are two non-deterministic rules from the initial

configuration to the configurations 〈a, main0〉 and 〈!a, main0〉 respectively. A cen-

ter dot “·” is used to simplify the representation of the PDS rules that (1) do not

modify the data; and (2) are not affected by the value of the data.

This program is designed to operate hardware. The two procedures reset and

stop are used to reset or stop the hardware respectively. Conceptually, a software

interface event occurs when the entry stack location of such a procedure is reached.

For example, when reset0 is reached, the software interface event, reset, occurs;

therefore, the propositional variable reset (see Figure 4.1) is evaluated as true. On

the other hand, the Boolean program also can have computation steps that are

not related to any hardware operations. For example, the propositional variable

no event is true on every stack location of the procedure NonHWRelated. In other

words, the program statements in NonHWRelated do not operate hardware.

4.2.2 Accepting Inputs from Hardware

While PDS is a suitable model for programs, it is not designed to accept any

inputs. In co-verification, hardware behaviors may also affect software executions,

e.g., through an interrupt; therefore, the PDS software model should be extended

to accept inputs from the BA hardware model.

74

Definition 4.1. A Labeled Pushdown System (LPDS), an extension of a push-

down system, is denoted as P = (I, G, Γ, ∆, 〈g0, ω0〉), where I is a finite in-

put alphabet, G is a finite set of global states, Γ is a finite stack alphabet,

∆ ⊆ (G × Γ) × I × (G × Γ∗) is a finite set of transition rules, and 〈g0, ω0〉 is

the initial configuration. An LPDS rule is written as 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆.

LPDS extends PDS in such a way that a rule in ∆ is labeled by a symbol in

I. In the context of co-verification, I is defined as the power set of the set of

propositions that may hold on a state of B. In the rest of this dissertation, the

notation P represents an LPDS unless it is indicated otherwise. A path of P on

an infinite input string, τ0τ1 . . . τi . . ., is written as c0
τ0⇒ c1

τ1⇒ . . . ci
τi⇒ . . ., where

ci ∈ Conf(P), i ≥ 0. The path is also referred to as a trace if c0 = 〈g0, w0〉 is the

initial configuration. Given an input string s, the reachability relation between

two configurations c, c′ ∈ Conf(P) is written as c
s
⇒∗c′. It can also be written as

c⇒∗ c′ if the input string is irrelevant to the context.

Example. In Figure 4.1, the hardware design raises an interrupt when it transi-

tions to the interrupt triggering state, Intr. This hardware interface event should

cause a context-switch in software so that the software’s Interrupt Service Routine

(ISR) will be executed. Figure 4.3a shows the implementation of such an ISR pro-

cedure. The PDS software model illustrated in Figure 4.2 can then be extended

to an LPDS P = (I, G, Γ, ∆, 〈g0, ω0〉) in such a way that:

• I = {∅, {intr}, {no intr}, {intr, no intr}}, where the propositional variable

intr is true if and only if the BA (in Figure 4.1) is at the state Intr; otherwise

the propositional variable no intr is true. Note that {intr, no intr} is an

element of I by definition, although it does not have concrete meaning in

this example;

• G = {⋄, a, !a};

75

void isr() begin

0 a := 1;

1 return;

end

(a) ISR in Boolean program.

〈a, isr0〉 ֒
∅
−→ 〈a, isr1〉

〈!a, isr0〉 ֒
∅
−→ 〈a, isr1〉

〈·, isr1〉 ֒
∅
−→ 〈·, ε〉

(b) Corresponding LPDS rules.

Figure 4.3: An Interrupt Service Routine (ISR) procedure specified in Boolean

program and LPDS respectively.

• Γ = {⊔, main0, main1, main2, main3, main4, main5, reset0, reset1, stop0,

stop1, NonHWRelated0, NonHWRelated1, isr0, isr1};

• ∆ is given in Figure 4.3b, Figure 4.4b and Figure 4.5b, where all rules are

labeled by symbols in I;

• 〈g0, ω0〉 = 〈⋄,⊔〉.

An LPDS rule is said to be enabled when all propositional variables of its label are

evaluated as true. Since the empty set, ∅, is always true, an LPDS rule labeled by

∅ is always enabled regardless the current state of the BA. All LPDS rules for the

ISR procedure are labeled by ∅, because ISR has the highest execution priority.

When an ISR is being executed, no more hardware interrupts can be serviced by

software. On the other hand, procedures with the lower execution priority, such

as main, can be interrupted by hardware; therefore their LPDS rules are labeled

by the set {no intr}. A special kind of rule (bold in the figures) is introduced

to model the context-switch to ISR when an interrupt is raised. These rules are

all labeled by the set {intr}, i.e., when hardware raises an interrupt, ISR should

preempt the current executing procedure to service the interrupt.

76

decl a;

void main() begin

0 reset();

1 a := 0;

2 NonHWRelated();

3 if(a) then

4 stop();

fi

5 return;

end

(a) Boolean program.

〈g0, ω0〉 = 〈⋄,⊔〉, i.e., the initial configuration.

〈⋄, ⊔〉 ֒
∅
−→ 〈!a, main0〉

〈⋄, ⊔〉 ֒
∅
−→ 〈a, main0〉

〈·, main0〉 ֒
{no intr}
−−−−−−→ 〈·, reset0 main1〉

〈·, main0〉 ֒
{intr}
−−−−→ 〈·, isr0 main0〉〈·, main0〉 ֒
{intr}
−−−−→ 〈·, isr0 main0〉〈·, main0〉 ֒
{intr}
−−−−→ 〈·, isr0 main0〉

〈a, main1〉 ֒
{no intr}
−−−−−−→ 〈!a, main2〉

〈!a, main1〉 ֒
{no intr}
−−−−−−→ 〈!a, main2〉

〈·, main1〉 ֒
{intr}
−−−−→ 〈·, isr0 main1〉〈·, main1〉 ֒
{intr}
−−−−→ 〈·, isr0 main1〉〈·, main1〉 ֒
{intr}
−−−−→ 〈·, isr0 main1〉

〈·, main2〉 ֒
{no intr}
−−−−−−→ 〈·, NonHWRelated0 main3〉

〈·, main2〉 ֒
{intr}
−−−−→ 〈·, isr0 main2〉〈·, main2〉 ֒
{intr}
−−−−→ 〈·, isr0 main2〉〈·, main2〉 ֒
{intr}
−−−−→ 〈·, isr0 main2〉

〈a, main3〉 ֒
{no intr}
−−−−−−→ 〈a, main4〉

〈!a, main3〉 ֒
{no intr}
−−−−−−→ 〈!a, main5〉

〈·, main3〉 ֒
{intr}
−−−−→ 〈·, isr0 main3〉〈·, main3〉 ֒
{intr}
−−−−→ 〈·, isr0 main3〉〈·, main3〉 ֒
{intr}
−−−−→ 〈·, isr0 main3〉

〈·, main4〉 ֒
{no intr}
−−−−−−→ 〈·, stop0 main5〉

〈·, main4〉 ֒
{intr}
−−−−→ 〈·, isr0 main4〉〈·, main4〉 ֒
{intr}
−−−−→ 〈·, isr0 main4〉〈·, main4〉 ֒
{intr}
−−−−→ 〈·, isr0 main4〉

〈·, main5〉 ֒
{no intr}
−−−−−−→ 〈·, ε〉

〈·, main5〉 ֒
{intr}
−−−−→ 〈·, isr0 main5〉〈·, main5〉 ֒
{intr}
−−−−→ 〈·, isr0 main5〉〈·, main5〉 ֒
{intr}
−−−−→ 〈·, isr0 main5〉

(b) Corresponding LPDS rules.

Figure 4.4: Representing the procedure main using LPDS.

77

void reset() begin

0 skip;

1 return

end

void NonHWRelated() begin

0 skip;

1 return

end

void stop() begin

0 skip;

1 return

end

(a) Boolean program.

〈·, reset0〉 ֒
{no intr}
−−−−−−→ 〈·, reset1〉

〈·, reset0〉 ֒
{intr}
−−−−→ 〈·, isr0 reset0〉〈·, reset0〉 ֒
{intr}
−−−−→ 〈·, isr0 reset0〉〈·, reset0〉 ֒
{intr}
−−−−→ 〈·, isr0 reset0〉

〈·, reset1〉 ֒
{no intr}
−−−−−−→ 〈·, ε〉

〈·, reset1〉 ֒
{intr}
−−−−→ 〈·, isr0 reset1〉〈·, reset1〉 ֒
{intr}
−−−−→ 〈·, isr0 reset1〉〈·, reset1〉 ֒
{intr}
−−−−→ 〈·, isr0 reset1〉

〈·, NonHWRelated0〉 ֒
{no intr}
−−−−−−→ 〈·, NonHWRelated1〉

〈·, NonHWRelated0〉 ֒
{intr}
−−−−→ 〈·, isr0 NonHWRelated0〉〈·, NonHWRelated0〉 ֒
{intr}
−−−−→ 〈·, isr0 NonHWRelated0〉〈·, NonHWRelated0〉 ֒
{intr}
−−−−→ 〈·, isr0 NonHWRelated0〉

〈·, NonHWRelated1〉 ֒
{no intr}
−−−−−−→ 〈·, ε〉

〈·, NonHWRelated1〉 ֒
{intr}
−−−−→ 〈·, isr0 NonHWRelated1〉〈·, NonHWRelated1〉 ֒
{intr}
−−−−→ 〈·, isr0 NonHWRelated1〉〈·, NonHWRelated1〉 ֒
{intr}
−−−−→ 〈·, isr0 NonHWRelated1〉

〈·, stop0〉 ֒
{no intr}
−−−−−−→ 〈·, stop1〉

〈·, stop0〉 ֒
{intr}
−−−−→ 〈·, isr0 stop0〉〈·, stop0〉 ֒
{intr}
−−−−→ 〈·, isr0 stop0〉〈·, stop0〉 ֒
{intr}
−−−−→ 〈·, isr0 stop0〉

〈·, stop1〉 ֒
{no intr}
−−−−−−→ 〈·, ε〉

〈·, stop1〉 ֒
{intr}
−−−−→ 〈·, isr0 stop1〉〈·, stop1〉 ֒
{intr}
−−−−→ 〈·, isr0 stop1〉〈·, stop1〉 ֒
{intr}
−−−−→ 〈·, isr0 stop1〉

(b) Corresponding LPDS rules.

Figure 4.5: Representing the procedures reset, etc. using LPDS.

78

4.3 UNIFYING MODEL FOR CO-VERIFICATION

As discussed in the previous sections, BA is a suitable model for hardware designs

and LPDS is a suitable model for software programs. The state transitions of both

the BA and LPDS are labeled by the symbols induced by the interface events of

each other, so that the two models are synchronized. It is further desired that a

unifying model is built to combine the BA and LPDS; therefore their behaviors

can be analyzed together as an integrated system.

4.3.1 Preliminaries

Given a BA B = (Σ, Q, δ, q0, F) and an LPDS P = (I, G, Γ, ∆, 〈g0, ω0〉), we define

two labeling functions such that

• LP2B : (G × Γ) → Σ, which associates the head of an LPDS configuration

with the set of propositions that hold on it. Given a configuration c ∈

Conf(P), we write LP2B(c) instead of LP2B(head(c)) for simplicity in the

rest of this dissertation.

• LB2P : Q → I, which associates a state of B with the set of propositions

that hold on it.

Three concepts are defined using the labeling functions: enabledness, indistin-

guishability, and independence.

Enabledness

A BA transition t = q
σ
→ q′ ∈ δ is enabled by an LPDS configuration c ∈ Conf(P)

(respectively, an LPDS rule r = c
τ
→֒ c′ ∈ ∆) if and only if σ ⊆ LP2B(c); otherwise t

is disabled by c (respectively, r). On the other hand, an LPDS rule r = c
τ
→֒ c′ ∈ ∆

is enabled by a BA state q ∈ Q (respectively, a BA transition t = q
σ
→ q′ ∈ δ) if

and only if τ ⊆ LB2P(q); otherwise r is disabled by q (respectively, t).

79

Example 1. Given the following BA transition, LPDS rule, and instances of

the labeling functions:

• a BA transition, t = Rst
∅
−→ Wrk, as illustrated in Figure 4.1;

• an LPDS rule, r = 〈a, main3〉 ֒
{no intr}
−−−−−→ 〈a, main4〉, as illustrated in Fig-

ure 4.4b;

• LP2B(〈a, main3〉) = {no event};

• LB2P(Rst) = {no intr}.

Because ∅ ⊆ LP2B(〈a, main3〉), t is enabled by the LPDS rule r as well as all LPDS

configurations in the form of 〈a, main3 v〉, where v ∈ Γ∗; because {no intr} ⊆

LB2P(Rst), r is enabled by the BA transition t as well as the BA state Rst.

Example 2. Given the following BA transition, LPDS rule, and instances of

the labeling functions:

• a BA transition, t = Wrk
{stop}
−−−→ Init, as illustrated in Figure 4.1;

• an LPDS rule, r = 〈a, main0〉 ֒
{intr}
−−−→ 〈a, isr0 main0〉, as illustrated in Fig-

ure 4.4b;

• LP2B(〈a, main0〉) = {no event};

• LB2P(Wrk) = {no intr}.

Because {stop} * LP2B(〈a, main0〉), t is disabled by the LPDS rule r as well

as all LPDS configurations in the form of 〈a, main0 v〉, where v ∈ Γ∗; because

{intr} * LB2P(Wrk), r is disabled by the BA transition t as well as the BA state

Wrk.

80

Indistinguishability

Given a BA transition t = q
σ
→ q′ ∈ δ, two LPDS configurations c, c′ ∈ Conf(P)

are (respectively, an LPDS rule r = c
τ
→֒ c′ ∈ ∆ is) indistinguishable to t if

and only if σ ⊆ LP2B(c) ∩ LP2B(c′), i.e., t is enabled by both c and c′. On the

other hand, given an LPDS rule r = c
τ
→֒ c′ ∈ ∆, two BA states q, q′ ∈ Q are

(respectively, a BA transition t = q
σ
→ q′ ∈ δ is) indistinguishable to r if and only

if τ ⊆ LB2P(q) ∩ LB2P(q′), i.e., r is enabled by both q and q′.

Although the antonym of the word indistinguishable should be distinguishable,

it is not used to describe the negation of indistinguishability. This is because when

an LPDS rule r is disabled by both the BA states q and q′, it is inappropriate to

say that q and q′ are distinguishable1 to r. As an alternative, q and q′ are said to

be not indistinguishable to r.

Example 1. Given the following BA transition, LPDS rule, and instances of

the labeling functions:

• a BA transition, t = Intr
{no event}
−−−−−−→ Wrk, as illustrated in Figure 4.1;

• an LPDS rule, r = 〈a, main0〉 ֒
{intr}
−−−→ 〈a, isr0 main0〉, as illustrated in Fig-

ure 4.4b;

• LP2B(〈a, main0〉) = {no event} and LP2B(〈a, isr0〉) = {no event};

• LB2P(Intr) = {intr} and LB2P(Wrk) = {no intr}.

Because {no event} ⊆ LP2B(〈a, main0〉) ∩ LP2B(〈a, isr0〉), r is indistinguishable

to t; because {intr} * LB2P(Intr) ∩ LB2P(Wrk), t is not indistinguishable to r.

Example 2. Given the following BA transition, LPDS rule, and instances of

the labeling functions:

1The word indistinguishable is inappropriate neither, because we are interested in the relation
between a BA transition and an LPDS rule only when they enable each other.

81

• a BA transition, t = Wrk
{stop}
−−−→ Init, as illustrated in Figure 4.1;

• an LPDS rule, r = 〈!a, stop0〉 ֒
{no intr}
−−−−−→ 〈!a, stop1〉, as illustrated in Fig-

ure 4.5b;

• LP2B(〈!a, stop0〉) = {stop} and LP2B(〈!a, stop1〉) = {no event};

• LB2P(Wrk) = {no intr} and LB2P(Init) = {no intr}.

Because {stop} * LP2B(〈!a, stop0〉) ∩ LP2B(〈!a, stop1〉), r is not indistinguishable

to t; because {no intr} ⊆ LB2P(Wrk) ∩ LB2P(Init), t is indistinguishable to r.

Independence

Given a BA transition t ∈ δ and an LPDS rule r ∈ ∆, if they are indistinguishable

to each other, t and r are said to be independent; otherwise if either t or r is not

indistinguishable to the other but they still enable each other, t and r are said to

be dependent. The independence relation is symmetric.

Example 1. Given the following BA transition, LPDS rule, and instances of

the labeling functions:

• a BA transition, t = Rst
∅
−→ Wrk, as illustrated in Figure 4.1;

• an LPDS rule, r = 〈a, main3〉 ֒
{no intr}
−−−−−→ 〈a, main4〉, as illustrated in Fig-

ure 4.4b;

• LP2B(〈a, main3〉) = {no event} and LP2B(〈a, main4〉) = {no event};

• LB2P(Rst) = {no intr} and LB2P(Wrk) = {no intr}.

Because ∅ ⊆ LP2B(〈a, main3〉) ∩ LP2B(〈a, main4〉), r is indistinguishable to t;

because {no intr} ⊆ LB2P(Rst)∩LB2P(Wrk), t is indistinguishable to r. Therefore,

t and r are independent.

Example 2. Given the following BA transition, LPDS rule, and instances of

the labeling functions:

82

• a BA transition, t = Wrk
{stop}
−−−→ Init, as illustrated in Figure 4.1;

• an LPDS rule, r = 〈!a, stop0〉 ֒
{no intr}
−−−−−→ 〈!a, stop1〉, as illustrated in Fig-

ure 4.5b;

• LP2B(〈!a, stop0〉) = {stop} and LP2B(〈!a, stop1〉) = {no event};

• LB2P(Wrk) = {no intr} and LB2P(Init) = {no intr}.

Because {stop} * LP2B(〈!a, stop0〉) ∩ LP2B(〈!a, stop1〉), r is not indistinguishable

to t; because {no intr} ⊆ LB2P(Wrk) and {stop} ⊆ LP2B(〈!a, stop0〉), t and r

enable each other. Therefore, t and r are dependent.

4.3.2 Büchi Pushdown System (BPDS)

Definition 4.2. Given a BA B = (Σ, Q, δ, q0, F) and an LPDS P = (I, G, Γ, ∆,

〈g0, ω0〉), a Büchi Pushdown System (BPDS), denoted by BP , is the Cartesian

product of B and P. Formally, BP = (G×Q, Γ, ∆′, 〈(g0, q0), ω0〉, F
′), where G×Q,

as the product of G and Q, is the set of global states; Γ is the stack alphabet from

P; ∆′ is constructed by Algorithm 4.1 from δ and ∆; 〈(g0, q0), ω0〉 is the initial

configuration; 〈(g, q), γ〉 ∈ F ′ if q ∈ F , where g ∈ G and γ ∈ Γ.

Algorithm 4.1 does not create a strict Cartesian product of the transition rules

from B and P respectively. Given a BA transition t = q
σ
→ q′ from δ and an LPDS

rule r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 from ∆, the algorithm constructs BPDS rules from t and

r only if they enable each other. When t and r are dependent, B and P must tran-

sition together, which is modeled by the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉.

In such situation, the BPDS rule represents synchronous transitions of B and P.

In other words, B and P cannot transition in an interleaved manner, because one

transition may disable the other. When t and r are independent, B and P can tran-

sition asynchronously. There are three types of BPDS rules, i.e., B transitions and

P self-loops as modeled by the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉, P transitions

83

Algorithm 4.1 BPDSRules(δ ×∆)

1: ∆sycn ← ∅ ∆hori ← ∅, ∆vert ← ∅, ∆diag ← ∅

2: for all r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ do

3: for all t = q
σ
→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do

4: if r and t are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

7: else

8: {B transitions and P self-loops}

9: ∆hori ← ∆hori

⋃

{〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉}

10: {P transitions and B self-loops}

11: ∆vert ← ∆vert

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉}

12: {B and P transition together}

13: ∆diag ← ∆diag

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

14: end if

15: end for

16: end for

17: ∆′ ← ∆sync

⋃

∆hori

⋃

∆vert

⋃

∆diag

18: return ∆′

and B self-loops as modeled by the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉, and B

and P transition together as modeled by the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉.

There is one self-loop BA transition, q
σ
−→ q, used in the first BPDS rule; and there

is one self-loop LPDS rule, 〈g, γ〉 ֒
τ
−→ 〈g, γ〉, used in the second BPDS rule. These

self-loop transitions/rules may not exist in the original design of B or P; however, it

is necessary to introduce such self-loop transitions/rules so that the asynchronous

transitions between B and P can be modeled. Let Bloop denote the BA with the

self-loop transitions introduced to B and Ploop denote the LPDS with the self-loop

84

transitions introduced to P. Algorithm 4.1 actually constructs a set of BPDS rules

as the Cartesian product of the transition rules from Bloop and Ploop respectively.

The input alphabets Σ and I are used to synchronize the BA transitions and

LPDS rules. Once BP is constructed, these input alphabets are no longer useful;

therefore, they are not in the definition of BP . A configuration of BP is denoted by

〈(g, q), ω〉 ∈ (G×Q)× Γ∗. The set of all configurations is denoted by Conf(BP).

The head2 of a configuration c = 〈(g, q), γv〉 (γ ∈ Γ, v ∈ Γ∗) is 〈(g, q), γ〉 and

denoted by head(c). Similarly the head of a rule r = 〈(g, q), γ〉
τ
→֒ 〈(g′, q′), ω〉

is 〈(g, q), γ〉 and denoted by head(r). Given a BPDS rule r = 〈(g, q), γ〉 →֒BP

〈(g′, q′), ω〉 ∈ ∆′, for every v ∈ Γ∗ the configuration 〈(g, q), γv〉 is an immediate pre-

decessor of 〈(g′, q′), ωv〉, and 〈(g′, q′), ωv〉 is an immediate successor of 〈(g, q), γv〉.

The immediate successor relation in BPDS is written as 〈(g, q), γv〉 ⇒BP 〈(g
′, q′), ωv〉,

where we say this state transition follows the BPDS rule r. The reachability re-

lation, ⇒∗
BP , is the reflexive and transitive closure of the immediate successor

relation.

A path of BP , denoted φ, is a sequence of BPDS configurations, c0 ⇒BP

c1 . . . ⇒BP ci ⇒BP . . ., where i ≥ 0, ci ∈ Conf(BP), and φ(i) = ci denotes the

ith configuration on the path. The path is also referred to as a trace of BP if

c0 = 〈(g0, q0), ω0〉 is the initial configuration.

Definition 4.3. Given a BPDS path φ, the Büchi constraint of BPDS requires

that if φ is infinitely long, it should have infinite many occurrences of BPDS con-

figurations from the set { c | head(c) ∈ F ′ }.

Given a BPSD path φ, it is straightforward to infer that:

• the projection of φ on B, denoted by φB, is a path of B; and

• the projection of φ on P, denoted by φP , is a path of P.

2Note that a BPDS head can also be considered as a special type of BPDS configuration.

85

Note that φB does not contain any self-loop BA transition; and φP does not contain

any self-loop LPDS transition, as introduced by Algorithm 4.1.

Complexity analysis. For every LPDS rule, Algorithm 4.1 explores all BA

transitions to construct the BPDS rules; therefore, it takes O(|δ| × |∆|) time.

We denote the set of BPDS rules constructed by Algorithm 4.1 as ∆′ = δ × ∆.

Apparently, |δ| × |∆| 6= |δ ×∆|, since Algorithm 4.1 constructs BPDS rules based

on the information whether the LPDS rule and BA transition enable each other.

Therefore, the algorithm takes O(|δ ×∆|) space to store the new BPDS rules.

Example. A BPDS model BP = (G × Q, Γ, ∆′, 〈(g0, q0), ω0〉, F
′) is constructed

using the BA example illustrated in Section 4.1 and the LPDS example illustrated

in Section 4.2.2 as follows:

• G×Q = {(⋄, Init), (⋄, Rst), (⋄, Wrk), (⋄, Idle), (⋄, Intr), (a, Init),

(a, Rst), (a, Wrk), (a, Idle), (a, Intr), (!a, Init), (!a, Rst), (!a, Wrk),

(!a, Idle), (!a, Intr)};

• Γ = {⊔, main0, main1, main2, main3, main4, main5, reset0, reset1, stop0,

stop1, NonHWRelated0, NonHWRelated1, isr0, isr1};

• ∆′ is constructed according to Algorithm 4.1. Figure 4.6 illustrates an ex-

ample of constructing the BPDS rules;

• 〈(g0, q0), ω0〉 = 〈(⋄, Init),⊔〉;

• F = { 〈(g, Init), γ〉, 〈(g, Wrk), γ〉, 〈(g, Idle), γ〉 }, where g ∈ G and γ ∈ Γ.

Figure 4.6, item 1 demonstrates the case where the LPDS rule and BA transitions

are independent and self-loop rules/transitions are introduced to the BA or LPDS

in order to model the asynchronous transitions. Item 2 demonstrates the case

where LPDS rules and BA transitions are dependent, the BPDS rules should be

86

1. Given an LPDS rule 〈a, main1〉 ֒
{no intr}
−−−−−→ 〈!a, main2〉, for all BA transitions,

the following BPDS rules are constructed by Algorithm 4.1:

〈(a, Init), main1〉 →֒BP 〈(!a, Init), main2〉 〈(a, Rst), main1〉 →֒BP 〈(!a, Rst), main2〉

〈(a, Rst), main1〉 →֒BP 〈(!a, Wrk), main2〉 〈(a, Wrk), main1〉 →֒BP 〈(!a, Idle), main2〉

〈(a, Wrk), main1〉 →֒BP 〈(!a, Intr), main2〉 〈(a, Idle), main1〉 →֒BP 〈(!a, Init), main2〉

〈(a, Wrk), main1〉 →֒BP 〈(!a, Wrk), main2〉〈(a, Wrk), main1〉 →֒BP 〈(!a, Wrk), main2〉〈(a, Wrk), main1〉 →֒BP 〈(!a, Wrk), main2〉 〈(a, Idle), main1〉 →֒BP 〈(!a, Idle), main2〉〈(a, Idle), main1〉 →֒BP 〈(!a, Idle), main2〉〈(a, Idle), main1〉 →֒BP 〈(!a, Idle), main2〉

〈(a, Init), main1〉 →֒BP 〈(a, Init), main1〉〈(a, Init), main1〉 →֒BP 〈(a, Init), main1〉〈(a, Init), main1〉 →֒BP 〈(a, Init), main1〉 〈(a, Rst), main1〉 →֒BP 〈(a, Rst), main1〉〈(a, Rst), main1〉 →֒BP 〈(a, Rst), main1〉〈(a, Rst), main1〉 →֒BP 〈(a, Rst), main1〉

〈(a, Rst), main1〉 →֒BP 〈(a, Wrk), main1〉〈(a, Rst), main1〉 →֒BP 〈(a, Wrk), main1〉〈(a, Rst), main1〉 →֒BP 〈(a, Wrk), main1〉 〈(a, Wrk), main1〉 →֒BP 〈(a, Idle), main1〉〈(a, Wrk), main1〉 →֒BP 〈(a, Idle), main1〉〈(a, Wrk), main1〉 →֒BP 〈(a, Idle), main1〉

〈(a, Wrk), main1〉 →֒BP 〈(a, Intr), main1〉〈(a, Wrk), main1〉 →֒BP 〈(a, Intr), main1〉〈(a, Wrk), main1〉 →֒BP 〈(a, Intr), main1〉 〈(a, Idle), main1〉 →֒BP 〈(a, Init), main1〉〈(a, Idle), main1〉 →֒BP 〈(a, Init), main1〉〈(a, Idle), main1〉 →֒BP 〈(a, Init), main1〉

2. Given an LPDS rule 〈·, main1〉 ֒
{intr}
−−−→ 〈·, isr0 main1〉, for all BA transitions,

the following BPDS rule is constructed by Algorithm 4.1 (it is actually two

rules, since “.” represents a or !a):

〈(·, Intr), main1〉 →֒BP 〈(·, Wrk), isr0 main1〉

3. Given an LPDS rule 〈·, reset0〉 ֒
{no intr}
−−−−−→ 〈·, reset1〉, for all BA transitions,

the following BPDS rules are constructed by Algorithm 4.1:

〈(·, Init), reset0〉 →֒BP 〈(·, Rst), reset1〉 〈(·, Wrk), reset0〉 →֒BP 〈(·, Rst), reset1〉

〈(·, Rst), reset0〉 →֒BP 〈(·, Rst), reset1〉 〈(·, Rst), reset0〉 →֒BP 〈(·, Wrk), reset1〉

〈(·, Rst), reset0〉 →֒BP 〈(·, Rst), reset0〉〈(·, Rst), reset0〉 →֒BP 〈(·, Rst), reset0〉〈(·, Rst), reset0〉 →֒BP 〈(·, Rst), reset0〉 〈(·, Rst), reset0〉 →֒BP 〈(·, Wrk), reset0〉〈(·, Rst), reset0〉 →֒BP 〈(·, Wrk), reset0〉〈(·, Rst), reset0〉 →֒BP 〈(·, Wrk), reset0〉

Figure 4.6: Example of constructing BPDS rules. The bold rules are constructed

by introducing self-loop transitions to B or P.

87

constructed in such a way that can represent the synchronous transitions between

the BA and LPDS. For item 3, since the LPDS rule 〈·, reset0〉 ֒
{no intr}
−−−−−→ 〈·, reset1〉

is dependent with the BA transitions Init
{reset}
−−−−→ Rst and Wrk

{reset}
−−−−→ Rst, the first

two BPDS rules are constructed to represent the synchronous transitions between

the BA and LPDS. On the other hand, since the LPDS rule is independent with

the BA transitions Rst
∅
−→ Rst and Rst

∅
−→ Wrk, the rest four BPDS rules are

constructed to represent the asynchronous transitions.

4.3.3 BPDS Loop Constraint

According to the BPDS rules shown in Figure 4.6, there exists an infinite path

φ = 〈(a, Rst), main1〉 ⇒BP 〈(a, Wrk), main1〉 ⇒BP 〈(a, Idle), main1〉 ⇒BP

〈(a, Init), main1〉 ⇒BP 〈(a, Init), main1〉 Because the BA B and LPDS P

can transition asynchronously at the BPDS configurations on φ, it is possible that

B keeps on moving forward while P self-loops. However, after reaching the configu-

ration 〈(a, Init), main1〉, the BPDS BP starts to self-loop forever, where the self-

loop transition follows the BPDS rule 〈(a, Init), main1〉 →֒BP 〈(a, Init), main1〉.

This BPDS rule is constructed from the BA transition Init
{no event}
−−−−−−→ Init and

the LPDS rule 〈a, main1〉 ֒
no intr
−−−−→ 〈a, main1〉. The BA transition belongs to the

original design of B, which indicates that B can self-loop at the state Init. How-

ever, the LPDS rule is a self-loop rule introduced to P in order to model the

asynchronous transitions between B and P. This type of self-loop rule should not

affect the fairness of other rules that belong to the original design. In other words,

since P always self-loops at the configuration 〈(a, Init), main1〉, no transition

that belongs to the original design of P occurs on the path φ. Therefore, φ is not

a path of BP and should be ruled out.

Definition 4.4. BPDS loop constraint. Given any infinite BPDS path φ, it

must satisfy the requirements such that φB and φP are also infinite. In other

words, the BA (respectively, LPDS) transitions that are not self-loop transitions

88

introduced to ∆vert (respectively, ∆hori) in Algorithm 4.1 should occur infinitely

often on φ.

The BPDS loop constraint requires that the transitions from δ or ∆ repeatedly

occur on all BPDS paths. It implies the fairness between B and P, because either

B or P needs to repeatedly transition to satisfy the constraint. However, B and/or

P can still self-loop infinitely if their designs contain self-loop transitions. For

example, since the design of B contains a self-loop transition Init
{no event}
−−−−−−→ Init,

B can always self-loop at the state Init, which is not affected by the BPDS loop

constraint.

4.4 SYMBOLIC REPRESENTATIONS

Algorithm 4.1 needs to explore every BA transition and every LPDS rule in order

to construct BPDS rules. The cost of the algorithm mainly depends the number of

BA transitions and LPDS rules, i.e., |δ|×|∆|. Furthermore, as we shall demonstrate

in Chapter 5, the complexity of the algorithms for BPDS depends highly on how

well the transition rules can be represented. Therefore, it is desired that both δ

and ∆ are represented in a compact way so that analyzing algorithms for BPDS

can be carried out more efficiently.

4.4.1 Symbolic representation of BA

Given a BA B = (Σ, Q, δ, q0, F), the set of transitions δ can be divided into several

subsets such that δ = δ1 ∪ δ2 ∪ . . . ∪ δn, where

• 0 < n ≤ |δ|;

• ∀i ∈ [1, n], ∃σ ∈ Σ, ∃τ ∈ I such that δi = {t|t = q
σ
−→ q′ ∈ δ, LB2P(q) = τ}.

This condition requires that the BA transitions in each subset not only have the

same input symbol but also enable the same LPDS rules. Therefore, a subset δi

89

can be understood as a rule that describes a set of BA transitions. Normally, these

subsets are referred to as symbolic BA transition rules. This type of representation

is referred to as a symbolic representation. Given a BA state q and a symbolic

BA transition rule δi, δi(q) = q′ represents the transition q
σ
−→ q′; while δi(q) =

ε indicates that δi is not applicable to q. Since a symbolic BA transition rule

describes BA transitions labeled by the same input symbol, a label on the rule is

unnecessary.

Example. Consider the BA example illustrated in Figure 4.1, the set of transitions

δ can be written as δ = δ1 ∪ δ2 ∪ δ3 ∪ δ4 ∪ δ5, where

• δ1 = Q× {{reset}} ×Q = {t1, t2},

LB2P(Init) = LB2P(Wrk) = {no intr};

• δ2 = Q× {{stop}} ×Q = {t3},

LB2P(Wrk) = {no intr};

• δ3 = Q× {∅} ×Q = {t4, t5},

LB2P(Rst) = {no intr};

• δ4 = Q× {{no event}} ×Q = {t6, t7, t8, t9},

LB2P(Init) = LB2P(Wrk) = LB2P(Idle) = {no intr};

• δ5 = Q× {{no event}} ×Q = {t10},

LB2P(Intr) = {intr}.

Since the number of the symbolic BA transition rules, n = 5, is less than the

number of BA transitions, |δ| = 10, Algorithm 4.1 operates more efficiently on the

symbolic representation compared to the explicit representation. The rest of the

problem is how to describe these symbolic BA transition rules.

For various purposes, symbolic transition rules can be described at different

levels of abstraction. For example, a Binary Decision Diagram (BDD) [16, 53] is a

90

data structure commonly used to represent transition relations such as δ1, δ2, etc.

Because BDDs are compact and the logical operations on BDDs are efficient, model

checking algorithms usually utilize BDD representations for their target models.

Although BDD representations are efficient for automatic analysis, it is hard to

read or construct them manually.

Symbolic transition rules also can be described at a higher abstraction level

without BDD representations. Figure 4.7 illustrates an example of the symbolic

BA transition rules specified in the modelC language. The set of BA states Q is

described by the global variable Q. The five symbolic BA transition rules, δ1, δ2,

δ3, δ4, and δ5 are described by five hardware transaction functions (see definition in

Chapter 3), delta1, delta2, delta3, delta4, and delta5 respectively. Consider

ρ ⊆ Q as the current-states of BA, i.e., the BA states when entering a hardware

transaction function deltai (where 1 ≤ i ≤ 5), ρ′ ⊆ Q as the next-states of BA, i.e.,

the BA states when exiting deltai, and σ ∈ Σ as the label on δi, deltai specifies

the set of BA transitions in δi, i.e., ρ×{σ}×ρ′. Each hardware transaction function

updates the value of Q based on Q’s current value. A symbolic BA transition rule

may not be applicable to certain states. For example, δ1 should not be applied to

states other than Init or Wrk. The keyword halt signifies that if the current state

of Q is not applicable for a rule, the state transition based on this rule should halt.

Non-deterministic transitions are specified using the non-deterministic function

choice. For example, delta3 specifies two non-deterministic transitions from the

state Rst to the states Rst and Wrk respectively.

4.4.2 Symbolic representation of LPDS

The control flow of a program refers to the order in which individual statements,

instructions, or function calls are evaluated; and data flow refers to how the value

of program variables should be updated along with the execution. The symbolic

representation of LPDS is based on the control flow and data flow. Given an LPDS

91

enum { Init, Rst, Wrk, Idle, Intr } Q;

// δ1, labeled by {reset}

atomic void delta1() {

switch(Q) {

case Init: Q = Rst; break;

case Wrk: Q = Rst; break;

// halt: current state is not applicable to

// delta1, since delta1 can only be applied

// to the states Init and Wrk

default: halt;

}

}

// δ3, labeled by ∅

atomic void delta3() {

switch(Q) {

case Rst:

// model the non-deterministic

// transitions from Rst to

// Rst and Wrk respectively

if (choice()) Q = Rst;

else Q = Wrk;

break;

default: halt;

}

}

// δ2, labeled by {stop}

atomic void delta2() {

switch(Q) {

case Wrk: Q = Init; break;

default: halt;

}

}

// δ4, labeled by {no event}

atomic void delta4() {

switch(Q) {

case Wrk:

if (choice()) Q = Idle;

else Q = Intr;

break;

case Idle: Q = Init; break;

case Init: Q = Init; break;

default: halt;

}

}

// δ5, labeled by {no event}

atomic void delta5() {

switch(Q) {

case Intr: Q = Wrk; break;

default: halt;

}

}

Figure 4.7: Symbolic BA transition rules specified in modelC.

92

P = (I, G, Γ, ∆, 〈g0, ω0〉), the global states can be written as G = Gc×Gd and the

stack alphabet can be written as Γ = Γc×Γd. A symbolic LPDS rule is written as

follows:

〈g, γ〉 ֒
τ
−→
R
〈g′, γ1 . . . γn〉,

where g, g′ ∈ Gc, γ, γ1, . . . , γn ∈ Γc, and R ⊆ (Gd×Γd)× (Gd×Γn
d). Conceptually,

symbols from Gc and Γc describe the control flow of LPDS and symbols from Gd

and Γd describe the data flow of LPDS. A symbolic LPDS rule describes a set of

LPDS rules that are labeled by the same input symbol and have the same state

transition with respect to the control flow.

There are three motivations for separating the representation of control flow

and data flow. First, many properties focus on control flow instead of data flow

in software verification. For example, SLIC properties focus on the order of how

functions are entered or exited in the execution of a program. Second, the input

alphabet of BA is defined on the control flow of LPDS. For example, in Figure 4.2,

the propositional variable reset in Σ is evaluated as true when the stack location

reset0 is reached, which represents a software interface event that attempts to reset

hardware. Third, the separated representation can help the analysis of LPDS,

which will be utilized in Chapter 5 to optimize the model checking algorithm for

BPDS.

Similar to the symbolic representation of BA, the symbolic representation of

LPDS exists on different level of abstractions. BDDs are an efficient representation

for implementing model checking algorithms. However, a program can also be

considered as a symbolic representation of LPDS at a higher level of abstraction,

where each atomic statement of the program corresponding to a symbolic rule of

LPDS.

93

4.4.3 Symbolic representation of BPDS

A symbolic LPDS rule describes multiple LPDS rules that may not necessarily have

the same head; a symbolic transition rule of BA describes multiple BA transitions

that may not necessarily have the same current-state, i.e., the state on the left

side of a BA transition. Therefore, the labeling functions should be modified to

support the symbolic representations as follows:

• L′
P2B : (Gc × Γc) → Σ, which associates the control flow location of LPDS

with the set of propositions that hold on it;

• L′
B2P : 2δ → I, which associates a symbolic rule of BA with the set of

propositions that hold on it.

L′
P2B is equivalent to LP2B, since the input alphabet of BA is defined on the control

flow of LPDS. L′
B2P is equivalent to LB2P , since for all BA transitions described by

the same symbolic transition rule, their current-states should have the same label

by LB2P . After the labeling functions are defined for symbolic representations of

BA and LPDS, the indistinguishability relation and independence relation can be

defined for symbolic representations based on L′
P2B and L′

B2P .

Let BP = (G ×Q, Γ, ∆′, 〈(g0, q0), ω0〉, F
′) be a BPDS. The symbolic represen-

tation of BP is constructed from the symbolic representations of B and P. A

symbolic BPDS rule, 〈g, γ〉 −֒→
R′

BP〈g
′, ω〉 ⊆ ∆′, has two parts. First, the state

transition regarding the control flow of P is explicitly specified. Second, the tran-

sition relation R′ ⊆ (Q×Gd×Γd)× (Q×Gd×Γ
|ω|
d), associated with the symbolic

BPDS rule, describes a set of state transitions regarding both the states of B and

the data flow of P.

In order to model the asynchronous transitions between BA and LPDS, Al-

gorithm 4.1 introduces self-loop transitions to BA and LPDS respectively. For

symbolic representations, these self-loop transitions should be introduced to BA

and LPDS as well. Therefore, we need to define two self-loop transition relations:

94

• Rloop ⊆ (Gd × Γd) × (Gd × Γ∗
d) and ∀〈gd, γd〉 ∈ (Gd × Γd), Rloop(〈gd, γd〉) =

〈gd, γd〉, i.e., Rloop is a self-loop transition relation for data flow of LPDS;

• Uloop ⊆ Q×Σ×Q and ∀q ∈ Q, Uloop(q) = q, i.e., Uloop is a self-loop transition

relation for BA.

Given the set of symbolic BA transition rules δ and the set of symbolic LPDS

rules ∆, Algorithm 4.2 constructs the set of symbolic BPDS rules ∆′. Let R ⊆ ∆

Algorithm 4.2 SymbolicBPDSRules(δ ×∆)

1: ∆sycn ← ∅ ∆hori ← ∅, ∆vert ← ∅, ∆diag ← ∅

2: for all R = 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉 ⊆ ∆ do

3: for all U = Q× {σ} ×Q ⊆ δ and σ ⊆ L′
P2B(〈g, γ〉) and τ ⊆ L′

B2P(U) do

4: if R and U are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U

7: else

8: {B transitions and P self-loops}

9: ∆hori ← ∆hori

⋃

〈g, γ〉 −֒→
R′

BP〈g, γ〉, where R′ = Rloop × U

10: {P transitions and B self-loops}

11: ∆vert ← ∆vert

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× Uloop

12: {B and P transition together}

13: ∆diag ← ∆diag

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U

14: end if

15: end for

16: end for

17: ∆′ ← ∆sync

⋃

∆hori

⋃

∆vert

⋃

∆diag

18: return ∆′

and U ⊆ δ. IfR and U are dependent, B and P must transition together; therefore,

95

a symbolic BPDS rule 〈g, γ〉 −֒→
R′

BP〈g
′, ω〉 is constructed, where R′ is the Cartesian

product of U and R (the transition relation associated withR). On the other hand,

if R and U are independent, B and P can transition asynchronously; therefore,

Algorithm 4.2 introduces self-loop transitions to B or P. When a symbolic BPDS

rule, 〈g, γ〉 −֒→
R′

BP〈g, γ〉, is constructed to represent the situation that B transitions

and P self-loops, the transition relation R′ is constructed as the Cartesian product

of U and the self-loop transition relation Rloop. When a symbolic BPDS rule,

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, is constructed to represent the situation that P transitions

and B self-loops, the transition relation R′ is constructed as the Cartesian product

of the self-loop transition relation Uloop and R.

96

Chapter 5

CO-VERIFICATION ALGORITHM

Formal verification has three basic elements. First, we need a model for abstracting

the target system. A system design usually has implementation details in various

aspects, e.g., design logic, power consumption, and physical layout. A model

captures only the interested aspects to be verified. As discussed in Chapter 4,

the Büchi Pushdown System (BPDS) is the unifying model in our co-verification

framework. Second, we need a property which predicates the possible observations

that can be made of the model. A property simply has two values. If the obser-

vation of the model agrees with the predication, the property is said to be true on

the model. Otherwise, the property is said to be false on the model. Third, we

need a methodology to prove or disprove a property on the model. Model checking

is an automatic process that explores the state space of the model to verify the

property.

We commonly verify two types of properties in model checking. Safety prop-

erties are understood as “bad events never happen.” For example, a computer

system should never crash. Liveness properties are understood as “good events will

eventually happen.” For example, a program should eventually terminate. Due

to their differences, safety properties and liveness properties are usually treated

differently in verification. We will discuss the model checking algorithms for both

safety properties and liveness properties on BPDS.

Since a BPDS BP is the Cartesian product of a BA B and an LPDS P, the

size of the BP is very sensitive to how the Cartesian product is constructed. Al-

gorithm 4.1 constructs BPDS rules from the BA transitions and LPDS rules in a

97

straightforward way. However, since B and P are mostly asynchronous, some of

their transition orders do not affect the properties to be verified. If model checking

can avoid exploring these transition orders, the verification cost should be greatly

reduced. Therefore, we can improve Algorithm 4.1 so that the unnecessary transi-

tion orders between B and P will not be explored in model checking. Our approach

follows the idea of static partial order reduction, where the reduction is applied

at compile time before model checking. As a result, no modification is required in

the model checking algorithm.

As discussed in Chapter 4, explicit representations of the BA and LPDS are

inefficient in practice. In contrast, we have two benefits using symbolic represen-

tations. First, the target systems are specified using programming languages such

as C, SystemC, modelC, etc., in co-verification. It is inefficient to translate these

programs into their explicit representations in order to construct a BPDS model.

Indeed, we can treat these programs as a symbolic representation of a BA or LPDS

and apply our reduction algorithms directly to the programs. Second, it is nei-

ther necessary nor efficient to build a complete state graph (even if it is possible)

for a BPDS during model checking. Symbolic model checking algorithms encode

the transition relation of a BPDS implicitly using data structures such as BDDs.

This approach can greatly alleviate the state explosion problem in model checking.

Obviously, the two benefits of symbolic representations exist on different levels of

abstractions; however the symbolic algorithms are described in a similar manner.

In this dissertation, we will elaborate on the first type of symbolic representation,

where the algorithms work directly on the programs in order to construct reduced

BPDS models.

5.1 MODEL CHECKING PROBLEMS OF BPDS

Given a property ϕ to be verified on a model M , if we consider ϕ as some kind of

state machine, the model checking problem of ϕ on M can be generally expressed

98

as a process of checking whether the language of M is contained by the language

of ϕ, L(M) ⊆ L(ϕ). There are two types of properties:

• Safety properties refer to those critical requirements that ensure bad events

never happen. For example, SLIC rules (see Chapter 2) are all safety prop-

erties. The question of whether or not a safety property holds on a model

is equivalent to the problem of whether or not the model has a state that

violates the property and is reachable from the model’s initial state. The

second problem can be solved via reachability analysis.

• Liveness properties refer to those functional requirements that ensure good

events will eventually happen. For example, the LTL formula (see Chapter 2),

FFF a, states that the propositional variable a should eventually become true

at some time point starting from the model’s initial state. This verification

problem can be solved as two sub-problems. First, does there exist a path

from the initial state to a state on which a is evaluated as true? Second, if

the path exists, does there exist any loop on the path such that the event,

a becoming true, may be delayed infinitely? The first sub-problem can be

solved via reachability analysis and the second sub-problem can be solved

via loop computation.

In our co-verification framework, the formal model is a BPDS and the properties

are specified using SLIC rules or LTL formulae. When a property is specified using

a SLIC rule, we can solve the model checking problem through reachability analysis.

When a property is specified using an LTL formula, we need to construct a Büchi

automaton to represent the negation of the formula. The model checking problem

is to compute whether the Büchi automaton has an accepting run on a trace of

BPDS. Given a BPDS BP = (G × Q, Γ, ∆′, 〈(g0, q0), ω0〉, F
′), the following sub-

sections discuss the reachability analysis problem and the LTL checking problem

of BP respectively.

99

5.1.1 Reachability Analysis

A safety property can be specified as a label on a configuration of BP or a finite

state machine that monitors the state transition of BP . In both ways, verification

of the safety property can be solved via reachability analysis. For the first type of

safety property, the problem is to solve whether the labeled BPDS configuration

is reachable from the initial configuration. For the second type of safety property,

we can instrument BP using the property. The resulting transition system is still

considered as a BPDS, since the state machine of the property only monitors the

state transition of BP . The model checking process verifies whether a labeled

violation state in the new BPDS (due to the instrumentation) is reachable from

the initial configuration.

Definition 5.1. Given a BPDS configuration c ∈ Conf(BP), reachability analysis

computes if c is reachable from the initial configuration c0, i.e., c0 ⇒
∗
BP c.

Reachability analysis is applied in two ways: pre∗ and post∗. Given a set of

BPDS configurations C ⊆ Conf(BP),

• pre∗(C) = { p | c ∈ C and p⇒∗
BP c }, i.e., the backward reachability analysis

computes the predecessors of elements in C;

• post∗(C) = { p | c ∈ C and c⇒∗
BP p }, i.e., the forward reachability analysis

computes the successors of elements in C.

The reachability analysis problem of BPDS can be solved via the backward reach-

ability analysis algorithm by computing whether c0 ∈ pre∗({c}) or via the forward

reachability analysis algorithm by computing whether c ∈ post∗({c0}).

5.1.2 LTL Checking

Given an LTL formula ϕ and a BPDS BP , we want to compute if L(BP) ⊆ L(ϕ),

i.e., the language of BP is contained by the language of ϕ. Vardi and Wolper [86]

100

have introduced an automata-theoretic approach for LTL checking on finite state

systems. Schwoon [77] has demonstrated an automata-theoretic approach to model

checking PDS, an infinite state system. There are two observations. First, a PDS

is finitely representable. Second, there exists a labeling function that can map

from a possibly infinite state space of PDS to a finite set of symbols. These two

observations are true of BPDS as well.

Let At(ϕ) be the set of atomic propositions in ϕ. There exists a labeling

function,

Lϕ : Conf(BP)→ 2At(ϕ),

i.e., Lϕ maps a BPDS configuration to a set of propositions that are true of it.

Although Conf(BP) is an infinite set, the heads of BP belongs to a finite set, i.e.,

(G×Q)× Γ. Therefore, Lϕ can be built in such a way that it only looks into the

head of a BPDS configuration to decide the output symbol.

According to the idea of automata-theoretic approach, the two conditions,

L(BP) ⊆ L(ϕ) and L(BP) ∩ L(¬ϕ) = ∅, are equivalent. Furthermore, the second

condition can be checked via computing the accepting run of the Büchi automaton

constructed from ¬ϕ. Since there always exists a BA Bϕ = (2At(ϕ), Qϕ, δϕ, qϕ0, Fϕ)

that accepts the language L(¬ϕ), we can synthesize a transition system B2P from

BP and Bϕ using the labeling function Lϕ, where conceptually Bϕ monitors the

state transitions of BP.

Formally, B2P = (G×Q×Qϕ, Γ, ∆B2P , 〈(g0, q0, qϕ0), ω0〉, FB2P), where

• G×Q×Qϕ is the finite set of global states,

• Γ is the stack alphabet,

• ∆B2P is the finite set of transition rules,

• 〈(g0, q0, qϕ0), ω0〉 is the initial configuration, and

101

• FB2P = F ′ × Fϕ specifies the accepting states of B2P.

The transition relation ∆B2P is constructed in such a way that we add (c, qϕ) →֒B2P

(c′, q′ϕ) to ∆B2P if and only if

• c →֒BP c′ ∈ ∆′,

• qϕ
σ
→ q′ϕ ∈ δϕ, and

• σ ⊆ Lϕ(c).

The set of all configurations is denoted by Conf(B2P) ⊆ G × Q × Qϕ × Γ∗. For

the purpose of simplicity, we also write

B2P = (P, Γ, ∆B2P , FB2P),

where P = G × Q × Qϕ. Given γ ∈ Γ and v ∈ Γ∗, the head of a configuration

c = 〈p, γv〉 is 〈p, γ〉 and denoted by head(c); and the head of a rule r = 〈p, γ〉 →֒B2P

〈p′, ω〉 is 〈p, γ〉 and denoted by head(r).

Given a rule r = 〈p, γ〉 →֒B2P 〈p
′, ω〉 ∈ ∆B2P , for every v ∈ Γ∗ the configu-

ration 〈p, γv〉 is an immediate predecessor of 〈p′, ωv〉, and 〈p′, ωv〉 is an immedi-

ate successor of 〈p, γv〉. The immediate successor relation of B2P is written as

〈p, γv〉 ⇒B2P 〈p
′, ωv〉, where we say this state transition follows the rule r. The

reachability relation,⇒∗
B2P , is the reflexive and transitive closure of the immediate

successor relation.

A path of B2P, denoted by φ, is a sequence of configurations, c0 ⇒B2P c1 . . .⇒B2P

ci ⇒B2P . . ., where i ≥ 0, ci ∈ Conf(B2P), and φ(i) = ci denotes the ith configu-

ration on the path. The path is also referred to as a trace of B2P if c0 is the initial

configuration. An infinite path of B2P needs to satisfy both the Büchi constraint

and the BPDS loop constraint, which are defined for BPDS paths in Chapter 4.

It is straightforward to infer that:

• the projection of φ on Bϕ, denoted by φBϕ , is a path of Bϕ;

102

• the projection of φ on B, denoted by φB, is a path of B; and

• the projection of φ on P, denoted by φP , is a path of P.

Definition 5.2. An accepting run of B2P is an infinite trace φ such that (1) φ has

infinitely many occurrences of configurations from the set { c | head(c) ∈ FB2P },

i.e., the Büchi acceptance condition is satisfied; and (2) both φB and φP are also

infinite, i.e., the BPDS loop constraint is satisfied.

Definition 5.3. Given a BPDS BP and an LTL formula ϕ, the model checking

problem is to compute if the B2P model constructed from BP and ϕ has an

accepting run.

5.2 REACHABILITY ANALYSIS ALGORITHM

Given a BPDS BP = (G × Q, Γ, ∆′, 〈(g0, q0), ω0〉, F
′) and a configuration c ∈

Conf(BP), reachability analysis computes whether c0 ⇒
∗
BP c. Obviously, the

shortest path φ that demonstrates c0 ⇒
∗
BP c should have a finite length, because

the set of global states G×Q and the stack alphabet Γ are both finite. Therefore,

the Büchi constraint F ′ is not relevant to reachability analysis. Furthermore, since

φ is finite, the BPDS loop constraint is not applicable to φ either.

A BP without the Büchi constraint F ′ has a set of global states, a stack al-

phabet, a set of transition rules, and an initial configuration. Intuitively, if we

can convert BP to a PDS model, the reachability problem of BP can be solved

on PDS using existing algorithms [6, 50, 77]. Figure 5.1 illustrates the idea. The

reachability analysis algorithm first converts a BP to a PDS P ′ and then checks

the reachability property using model checking algorithms for PDS models. We

refer to P ′ as the verification model for BP . Compared to the LPDS P used to

construct BP , it is important to note that P ′ is a standard PDS in the sense that

P ′ does not have inputs.

103

BPDS
BPDS2PDS

PDS
Model checker

YES

NO

BP P'

Figure 5.1: Reachability analysis of BPDS.

Now, we present a straightforward conversion algorithm from BP to P ′, namely

BPDS2PDS. Given BP , we can construct P ′ = (GP ′ , ΓP ′, ∆P ′, c0) such that

• GP ′ = (G×Q),

• ΓP ′ = Γ,

• ∆P ′ = { 〈(g, q), γ〉 →֒ 〈(g′, q′), ω〉 | 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 ∈ ∆′ }, and

• c0 = 〈(g0, q0), ω0〉.

Theorem 5.1. P ′ preserves the reachability property of BP .

Proof. We use the idea of proof by construction. According to how P ′ is con-

structed, it is straightforward that: (1) the state space of P ′ equals to that of BP ;

(2) P ′ preserves all the transition rules of BP ; (3) the initial state of P ′ is the

initial state of BP ; and (4) the Büchi constraint F ′ in BP is not preserved in P ′,

since F ′ is not used for reachability checking.

A PDS rule of P ′ represents the transitions of both the BA and LPDS by simply

treating the BA transition as a part of the global state transition and keeping the

LPDS transition in its original form. When representing software using PDS, such

a transition rule, 〈g, γ〉 →֒ 〈g′, γ〉 where g 6= g′, is uncommon, since the stack

control location needs to be updated when a global state is modified. However,

this kind of rule is allowed by PDS and can be used to represent a BPDS transition

where BA executes asynchronously with LPDS.

104

Complexity analysis. In theory, the conversion algorithm, BPDS2PDS, needs

to go through every BPDS rule of BP and constructs a corresponding PDS rule

for P ′. This is unnecessary in practice, since the BPDS rules and PDS rules

are different only in concept, but indeed they can be stored using the same data

structure. BPDS2PDS should be considered as an abstract algorithm that helps

us understand the reachability analysis of BPDS. However, the algorithm does not

require an actual implementation.

With respect to the reachability analysis of PDS-equivalent models, the Be-

bop [6] model checker computes the reachability status of a Boolean program

statement (from the entry statement of the main procedure) with both the time

and space complexity of O(E×2k), where E is the number of edges in the interpro-

cedural control-flow graph of the Boolean program and k is the maximal number of

variables in scope at any program location. Compared to the PDS representation,

the edges in the interprocedural control-flow graph correspond to the transition

rules, and the number of the states of the visible Boolean variables has an upper

bound by the number of the heads of P ′. Therefore, we have E ∈ O(|∆P ′|) and

2k ∈ O(|GP ′ × ΓP ′ |).

The Moped model checker [77] provides the reachability analysis of PDS in

two ways: pre∗ and post∗. Let c0 be the initial configuration of P ′. Given a

configuration c ∈ Conf(P ′), the backward reachability analysis algorithm, pre∗,

computes whether c0 ∈ pre∗({c}) using O(|GP ′|2 × |∆P ′|) in time and O(|GP ′| ×

|∆P ′|) in space; while the forward reachability analysis algorithm, post∗, computes

whether c ∈ post∗({c0}) using O((|GP ′|+ |∆P ′|)3) in both time and space.

5.3 LTL CHECKING ALGORITHM

According to Definition 5.2 and Definition 5.3, the LTL checking of BP has two

steps. First, we need to compute some kind of loops in the state graph of B2P,

where each loop should satisfy both the Büchi acceptance condition and the BPDS

105

loop constraint. Second, we need to check if the loops are reachable from the initial

configuration of B2P.

Definition 5.4. In order to identify those loops that satisfy our requirement, we

define a binary relation ⇒r
B2P
⇒r

B2P⇒r
B2P between two configurations of B2P. Given two

configurations c and c′, we write c⇒r
B2P c′ if and only if ∃〈p, γ〉 ∈ FB2P such that

c ⇒∗
B2P 〈p, γω〉 ⇒+

B2P c′, where ω ∈ Γ∗. A head 〈p, γ〉 is repeating if ∃v ∈ Γ∗ for

some 〈p, γ〉 ⇒r
B2P 〈p, γv〉. The set of repeating heads is denoted by Rep(B2P). We

refer to the path that demonstrates a repeating head as a repeating path.

Based on Definition 5.4, given a repeating head 〈p, γ〉 and v, ω ∈ Γ∗, there must

exist a path that transitions from 〈p, γv〉 to 〈p, γωv〉 without touching the stack

content v. In other words, no transition on the path pops the stack content v.

There may be more than one repeating path for a repeating head.

Proposition 5.1. Given the initial configuration c0, B
2P has an accepting run if

and only if (1) ∃c0 ⇒
∗
B2P c′ such that head(c′) ∈ Rep(B2P); and (2) a repeating

path φs of head(c′) satisfies the condition that |φB
s | 6= 0 and |φP

s | 6= 0.

Proof. “⇒⇒⇒”: Let φ be an accepting run of B2P. We know that φ has an infinite

length. Since the set of heads in B2P is finite, there must be at least one head

〈p, γ〉 ∈ P × Γ that occurs on φ infinitely often. Furthermore, we can always find

a sequence of positive integers 0 = i0 < i1 < i2 < . . . such that

φs = 〈p, γv〉 ⇒∗
B2P 〈p

′, γ′ω′v〉 ⇒+
B2P 〈p, γωv〉 = 〈p, γv〉 ⇒r

B2P 〈p, γωv〉,

where

1. φ(ik) = 〈p, γv〉, φ(ik+1) = 〈p, γωv〉, k ≥ 0, v, ω, ω′ ∈ Γ∗;

2. 〈p′, γ′〉 ∈ FB2P ; and

3. |φB
s | 6= 0 and |φP

s | 6= 0, since a run of B2P must satisfy the BPDS loop

constraint.

106

Therefore, we have proven this direction of the proposition.

“⇐⇐⇐”: Let 〈p, γ〉 = head(c′) ∈ Rep(B2P). Based on the hypothesis we have

φs = (c′ : 〈p, γv〉)⇒r
B2P 〈p, γωv〉,

where v, ω ∈ Γ∗, |φB
s | 6= 0, and |φP

s | 6= 0. Using φs, we can construct an infinite

trace such that

φ = c0 ⇒
∗
B2P (c′ : 〈p, γv〉)⇒r

B2P 〈p, γωv〉 ⇒r
B2P 〈p, γωωv〉 ⇒r

B2P

Because paths in the form of φs repeatedly occurs on φ, both the acceptance

condition and BPDS loop constraint are satisfied on φ. Therefore, φ is an accepting

run of B2P.

Proposition 5.1 presents a practical strategy for us to check LTL properties on

BPDS. As illustrated in Figure 5.2, there are two phases. First, we need to compute

a special set of repeating heads, R ⊆ Rep(B2P), where the repeating paths of the

heads satisfy the BPDS loop constraint. Second, we need to check if there exists a

path of B2P that leads from the initial configuration c0 to a configuration c such

that head(c) ∈ R.

Computing

B P
2

Repeating Heads

Repeating Heads, R

Reachability analsys

using pre* algorithm

 = ∅ No accepting
run found

Accepting
run found

post*({c0 }) ∩ { c | head(c) R }∈

= ? = ∅

Figure 5.2: Computing the accepting run of B2P (c0 is the initial configuration).

107

5.3.1 Computing the Repeating Heads

As an important observation, when computing the repeating heads, we are looking

for a path between 〈p, γ〉 and 〈p, γv〉. However, the actual content of v is not

interested. Therefore, we can compute the repeating heads solely based on the

information about which heads are reachable from each other and whether the

accepting requirements (i.e., the Büchi acceptance condition and the BPDS loop

constraint) on the paths between these heads are satisfied. Such kind of informa-

tion can be encoded into a finite graph and the repeating heads can be computed

by detecting the strongly connected components that satisfy the accepting require-

ments.

Before constructing the graph, we need to define the notions about how an

edge of the graph can satisfy the accepting requirements. Therefore, we define

three labeling functions on the rules of B2P:

1. FB2P : ∆B2P → {0, 1}, where given r ∈ ∆B2P , FB2P(r) = 1 if head(r) ∈ FB2P

and FB2P(r) = 0 if otherwise;

2. RB(r) : ∆B2P → {0, 1}, where given r ∈ ∆B2P , RB(r) = 1 if r is constructed

using a BA transition from δ (defined for checking the BPDS loop constraint)

and RB(r) = 0 if otherwise;

3. RP(r) : ∆B2P → {0, 1}, where given r ∈ ∆B2P , RP(r) = 1 if r is constructed

using an LPDS rule from ∆ (defined for checking the BPDS loop constraint)

and RP(r) = 0 if otherwise.

Definition 5.5. The head reachability graph of B2P is a directed labeled graph

G = ((P × Γ), E), where the set of nodes are the heads of B2P, the set of edges

E ⊆ (P × Γ) × {0, 1}3 × (P × Γ) denotes the reachability relation between the

heads. Let p, p′, p′′ ∈ P , γ, γ′ ∈ Γ, v1, v2 ∈ Γ∗, and ε be the empty string. An edge

(〈p, γ〉, (b1, b2, b3), 〈p
′, γ′〉)(〈p, γ〉, (b1, b2, b3), 〈p
′, γ′〉)(〈p, γ〉, (b1, b2, b3), 〈p
′, γ′〉) belongs to E under the following conditions:

108

• ∃r = 〈p, γ〉 →֒B2P 〈p
′′, v1γ

′v2〉;

• ∃φ = 〈p′′, v1〉 ⇒
∗
B2P 〈p

′, ε〉;

• b1 = 1, if and only if FB2P(r) = 1 or 〈p′′, v1〉 ⇒
r
B2P 〈p

′, ε〉;

• b2 = 1, if and only if RB(r) = 1 or |φB| 6= 0;

• b3 = 1, if and only if RP(r) = 1 or |φP | 6= 0.

Definition 5.5 is based on the idea of backward reachability computation. Given

the head 〈p′, ε〉 reachable from 〈p′′, v1〉, if there exits a rule to indicate that 〈p′′, v1γ
′〉

is reachable from 〈p, γ〉, then we know that the head 〈p′, γ′〉 (a.k.a., 〈p′, εγ′〉) is

reachable from the head 〈p, γ〉. During such a computation process, we use the

three labels, b1, b2, and b3 to record the information whether a path between the

heads contains an accepting state in FB2P and satisfies the BPDS loop constraint.

The set of repeating heads, R, can be computed by exploiting the fact that a

head 〈p, γ〉 is repeating and the repeating path satisfies the BPDS loop constraint

if and only if

• 〈p, γ〉 is part of a strongly connected component of G; and

• this strongly connected component has internal edges labeled by (1, ∗, ∗),

(∗, 1, ∗), and (∗, ∗, 1), where ∗ represents 0 or 1.

Algorithm 5.1, RepHeads, takes B2P as input in order to compute the set of

repeating heads, R. The algorithm has two parts. First, it computes the head

reachability graph of B2P using three steps as follows:

1. Between line 4 and line 6, it constructs edges of the head reachability graph

from ∆B2P . We refer to such edges as direct reachability edges, because

reachability between the heads are satisfied through only one transition.

109

2. At line 8, it invokes the algorithm, HeadReachability, to compute the

indirect reachability relation between heads, i.e., reachability through more

than one transitions. As illustrated in Algorithm 5.2, HeadReachability

(see below for discussion) utilizes the backward reachability analysis algo-

rithm pre∗ presented in [77] to compute a set of labeled transition rules

(see Definition 5.5), ∆label, that describes the indirect reachability relation

between heads.

3. Between line 10 and line 12, it constructs edges of the head reachability graph

based on ∆label. We refer to these edges as indirect reachability edges.

Second, between line 15 and line 21, Algorithm 5.1 computes strongly connected

components of the head reachability graph G and checks whether there exists

strongly connected components that satisfy the accepting requirements. If a strongly

connected component satisfies the accepting requirements, all the heads on it are

added to the set R.

Algorithm 5.2, HeadReachability, computes a set of labeled transition rules

∆label, that describes the indirect reachability relation between heads. The algo-

rithm utilizes the pre∗ algorithm [77]. Given ∆B2P , pre∗ finds a special set of rules

trans ⊆ ∆B2P such that trans has rules all in the form of 〈p, γ〉 →֒B2P 〈p
′, ε〉, also

written as (p, γ, p′) for simplicity. With the three labels defined on BPDS rules,

we can further write a rule in trans as (p, [γ, b1, b2, b3], p
′). Given such a rule, the

algorithm between line 7 and 25 computes the reachability relation between heads,

where rel stores the processed rules from trans. Specifically,

• At line 11 or line 14, when we see a rule 〈p1, γ1〉 →֒B2P 〈p, γ〉, we know 〈p′, ε〉

is reachable from 〈p1, γ1〉; therefore, we add a new rule 〈p1, γ1〉 →֒B2P 〈p
′, ε〉

to trans;

• At line 17, when we see a rule 〈p1, γ1〉 →֒B2P 〈p, γγ2〉 , we know 〈p′, γ2〉 is

110

Algorithm 5.1 RepHeads(B2P = (P, Γ, ∆B2P , FB2P))

1: R← ∅, E ← ∅

2: {First, compute the set of edges, E, of the head reachability graph from B2P}

3: {Direct reachability between two heads, i.e., indicated by a rule of B2P}

4: for all r = 〈p, γ〉 →֒B2P 〈p
′, γ′v〉 ∈ ∆B2P , where v ∈ Γ∗ do

5: E ← E
⋃

{(〈p, γ〉, (FB2P(r), RB(r), RP(r)), 〈p′, γ′〉)}

6: end for

7: {Compute the indirect reachability relation between heads, see Algorithm 5.2.}

8: ∆label ← HeadReachability(∆B2P)

9: {Indirect reachability between two heads, computed by HeadReachability}

10: for all 〈p, γ〉
l
→֒B2P 〈p

′, γ′〉 ∈ ∆label do

11: E ← E
⋃

{(〈p, γ〉, l, 〈p′, γ′〉)}

12: end for

13:

14: {Second, find R in G}

15: Find strongly connected components, SCC, in G = ((P × Γ), E)

16: for all C ∈ SCC do

17: if C has internal edges labeled by (1, ∗, ∗), (∗, 1, ∗), and (∗, ∗, 1), where ∗

represents 0 or 1 then

18: {C contains a set of repeating heads whose repeating paths satisfy the

BPDS loop constraint}

19: R← R
⋃

{the heads in C}

20: end if

21: end for

22: return R

111

Algorithm 5.2 HeadReachability(∆B2P)

1: ∆label ← ∅, rel← ∅, trans← ∅

2: {Compute the head reachability graph of B2P using the pre∗ algorithm}

3: for all r = 〈p, γ〉 →֒B2P 〈p
′, ε〉 ∈ ∆B2P do

4: {Add the labeled rule r (written in a simplified form) to trans}

5: trans← trans
⋃

{ (p, [γ, FB2P(r), RB(r), RP(r)], p′) }

6: end for

7: while trans 6= ∅ do

8: pop t = (p, [γ, b1, b2, b3], p
′) from trans;

9: if t /∈ rel then

10: rel← rel
⋃

{t};

11: for all r = 〈p1, γ1〉 →֒B2P 〈p, γ〉 ∈ ∆B2P do

12: trans← trans
⋃

{ (p1, [γ1, b1
∨

FB2P(r), b2
∨

RB(r), b3
∨

RP(r)], p′) }

13: end for

14: for all 〈p1, γ1〉
l
→֒B2P 〈p, γ〉 ∈ ∆label, l = (b′1, b

′
2, b

′
3) do

15: trans← trans
⋃

{ (p1, [γ1, b1
∨

b′1, b2
∨

b′2, b3
∨

b′3], p′) }

16: end for

17: for all r = 〈p1, γ1〉 →֒B2P 〈p, γγ2〉 ∈ ∆B2P do

18: ∆label ← ∆label

⋃

{〈p1, γ1〉
l
→֒B2P 〈p

′, γ2〉}, where

l = (b1
∨

FB2P(r), b2
∨

RB(r), b3
∨

RP(r))

19: {Match the new rule with the rules that have been processed}

20: for all (p′, [γ2, b
′
1, b

′
2, b

′
3], p

′′) ∈ rel do

21: trans← trans
⋃

{ (p1, [γ1, b1
∨

b′1
∨

FB2P(r),

b2
∨

b′2
∨

RB(r), b3
∨

b′3
∨

RP(r)], p′′) }

22: end for

23: end for

24: end if

25: end while

26: return ∆label

112

reachable from 〈p1, γ1〉; therefore, we add a new rule 〈p1, γ1〉 →֒B2P 〈p
′, γ2〉

to ∆label.

• Between line 20 and line 22, since there is a new rule 〈p1, γ1〉 →֒B2P 〈p
′, γ2〉

generated, we need to go through the set rel in order to check if the new rule

can be combined with any processed rules. If there is a rule 〈p′, γ2〉 →֒B2P

〈p′′, ε〉 in rel, a new rule 〈p1, γ1〉 →֒B2P 〈p
′′, ε〉 should be added to trans.

During this process, we also use the labels to record the information whether the

Büchi acceptance condition and the BPDS loop constraint can be satisfied by

repeating the path between two heads.

Complexity analysis. Algorithm 5.2 is actually a pre∗ algorithm which takes

O(|P |2|∆B2P |) time and O(|P ||∆B2P |) space [77]. In Algorithm 5.1, the first

part generates the head reachability graph G which takes O(|P |2|∆B2P |) time and

O(|P ||∆B2P |) space by invoking Algorithm 5.2. The second part computes strongly

connected components in G which is a linear time computation with respect to the

size of G. The rules of ∆B2P contribute O(|∆B2P |) nodes and edges to the size

of G. Since the size of ∆label is O(|P ||∆B2P |), the total size of G is O(|P ||∆B2P |).

Obviously, the first part of the algorithm dominates the complexity; therefore Al-

gorithm 5.1 takes O(|P |2|∆B2P |) time and O(|P ||∆B2P |) space.

5.3.2 Computing the Reachability of Repeating Heads

After R is computed, we need to decide whether post∗({c0})
⋂

{c|head(c) ∈ R} = ∅,

i.e., given the initial configuration c0, if there exits c0 ⇒
∗ c for some head(c) ∈

R. Similar to the reachability analysis algorithm discussed in Section 5.2, a B2P

model can also be converted into a PDS model for reachability analysis, where the

complexity of the conversion is O(|B2P|).

The forward reachability algorithms, post∗, for PDS-equivalent models have

been well studied. We utilize Schwoon’s algorithm [77] in our LTL checking of

113

BPDS, where the complexity of the algorithm is O((|P |+ |∆B2P |)
3).

5.3.3 Summary

Given a BPDS BP and an LTL property ϕ, we can construct a transition sys-

tem B2P as the Cartesian product of BP and a BA Bϕ that recognizes ϕ. The

model checking problem is then reduced to computing if B2P has an accepting

run. There are two parts in computing the accepting run of B2P. First, we need

to detect a special set of repeating heads in B2P such that their repeating paths

can help satisfy the BPDS loop constraint. Algorithm 5.1 solves this problem us-

ing O(|P |2|∆B2P |) time and O(|P ||∆B2P |) space. Second, we need to check if a

repeating head is reachable from the initial configuration of B2P. This problem

can be solved using O((|P | + |∆B2P |)
3) time and space. In conclusion, the LTL

model checking of BPDS has the complexity of O((|P |+ |∆B2P |)
3).

5.4 OPTIMIZATION OF REACHABILITY ANALYSIS

5.4.1 Reduction Algorithm

As discussed in Chapter 4, a BPDS BP is constructed from a BA B and an LPDS

P using a Cartesian product. It is näıve to verify such a BPDS model, since

we may not need all the information from a model to prove a specific type of

property. Instead, it is a common practice to automatically prune the model

according to the property to be verified. For example, the set of BPDS rules is the

product of δ that belongs to B and ∆ that belongs to P in the näıve approach.

However, with respect to reachability analysis, a complete product is unnecessary

when B and P are asynchronous (i.e., when the BA transitions and LPDS rules

are independent), since their transition orders usually do not matter. Without

affecting the verification result, static partial order reduction can be applied to

reduce the BPDS rules generated by the product. The reduced BPDS model BPr

114

will have a smaller set of transition rules ∆′
r ⊆ ∆′ and fewer state transition traces

while still preserving the reachability properties of BP . Figure 5.3 illustrates the

verification process that supports the reduction. When constructing the BPDS

BPDSRULES

PDS
Model

YES

NO

with Static Partial

Order Reduction
P'r checker

BPDS2PDS
BPDS

Reduced

BPr

LPDS P

BBA

Figure 5.3: Reachability analysis of BPDS with static partial order reduction.

BPr from B and P, static partial order reduction is applied to reduce the BPDS

rules that are generated. Since there are fewer BPDS rules to be explored in

verification, the reachability analysis is more efficient with reduction than that of

the näıve approach.

Our reduction [49] is based on the observation that when B and P transition

asynchronously, one can run continuously while the other one loops. Figure 5.4

illustrates the idea of reducing a BPDS state transition graph that starts from

the configuration c0,0. Figure 5.4a is a complete state transition graph. There are

three types of transition edges:

• a horizontal edge represents a transition when B transitions and P self-loops,

which follows a BPDS rule in the form of 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉;

• a vertical edge represents a transition when P transitions and B self-loops,

which follows a BPDS rule in the form of 〈(g, q), γ〉 →֒BP 〈(g
′, q), w〉; and

• a diagonal edge represents a transition when B and P transition together,

which follows a BPDS rule in the form of 〈(g, q), γ〉 →֒BP 〈(g
′, q′), w〉.

For every configuration ci,j = 〈(g, q), γv〉 (0 ≤ i ≤ m and 0 ≤ j ≤ n) as well as

the BA transition t = q
σ
→ q′ and the LPDS rule r = 〈g, γ〉

τ
→֒ 〈g′, ω〉 that are

115

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(a) Complete transition graph

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(b) Reduce hori./diag. edges

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n

(c) Reduce vert./diag. edges

Figure 5.4: An example of static partial order reduction on BPDS transitions.

State transition edges are reduced without affecting the reachability from c0,0 when

BA and LPDS are asynchronous.

both enabled on ci,j, if t and r are independent, we can reduce a large set of state

transitions in Figure 5.4a without affecting the reachability from c0,0 to other con-

figurations in the graph. Figure 5.4b and Figure 5.4c illustrate two types of static

partial order reductions that reduce horizontal/diagonal transition edges and ver-

tical/diagonal transition edges respectively. The reduction can significantly reduce

the transition rules of BP , when BA transitions and LPDS rules are independent.

Now we present an optimization of Algorithm 4.1, where the reduction is ap-

plied during the rule generation of the BPDS model BPr. In the reduction pro-

cess, we need to identify those situations when BPDS rules can be reduced. Since

the reduction is applied only if the transitions of B and P are independent, a

straightforward approach needs to maintain all independent BA transitions and

LPDS rules as the reducible candidates. However, such an approach is inefficient.

Because B and P are asynchronous in most of their transitions, there are many

independent BA transitions and LPDS rules. Therefore, we try to identify the

situations when BA transitions and LPDS rules are dependent so that we know

what BPDS rules cannot be reduced instead of what BPDS can be reduced. Note

that both reduction approaches should have the same effect. We define a set of

LPDS heads, SensitiveSet, on Conf(P) as follows:

116

Definition 5.6. SensitiveSet = { head(〈g0, ω0〉) }
⋃

{ head(c′) | ∃r = c
τ
→֒ c′ ∈

∆, ∃t ∈ δ, r and t are dependent }, where 〈g0, ω0〉 is the initial configuration of P.

The concept of SensitiveSet is similar to that of sleep set [33]. However, instead

of identifying transitions that are unnecessary to be executed (i.e., reducible) at

a state, SensitiveSet identifies transitions that should be preserved (i.e., irre-

ducible).

Algorithm 5.3 applies the reduction following the idea illustrated in Figure 5.4b,

where the horizontal/diagonal edges are reduced.

• At line 6, since the LPDS rule r and the BA transition t are dependent,

B and P must transition together; therefore, we construct a BPDS rule

〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉;

• At line 9, we construct a vertical rule 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 to represent

the asynchronous situation when P transitions and B self-loops. Since Al-

gorithm 5.3 follows the reduction demonstrated in Figure 5.4b, all vertical

BPDS rules are preserved;

• At line 12, we construct a horizontal rule 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 to repre-

sent the asynchronous situation when B transitions and P self-loops, if and

only if head(r) belongs to SensitiveSet.

Complexity analysis. Same to Algorithm 4.1, Algorithm 5.3 takes O(|δ| × |∆|)

time and O(|δ×∆|) space, where |δ×∆| denotes the size of BPDS rules that can

be constructed without the reduction.

Let nSR be the number of LPDS rules (in ∆) whose heads belong to SensitiveSet,

and nsync be the number of BPDS rules (in ∆′) where the corresponding BA tran-

sitions and LPDS rules are dependent. We have |∆hori| = nSR × |δ| and |∆sync| =

nsync. As illustrated in Figure 5.4, asynchronous transitions can be organized as

117

Algorithm 5.3 BPDSRulesViaSPOR(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅

2: for all r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ do

3: for all t = q
σ
→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do

4: if r and t are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

7: else

8: {Vertical edges (see Figure 5.4b), when P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉}

10: if 〈g, γ〉 ∈ SensitiveSet then

11: {Horizontal edges (see Figure 5.4b), when B transitions P self-loops}

12: ∆hori ← ∆hori

⋃

{〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉}

13: end if

14: end if

15: end for

16: end for

17: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

18: return ∆′
r

118

triples where each one includes a vertical transition, a horizontal transition, and a

diagonal transition, so we have |∆vert| =
|δ×∆|−nsync

3
. The number of rules generated

in Algorithm 5.3 is |∆′
r| = nsync+

|δ×∆|−nsync

3
+nSR×|δ| =

2
3
nsync+

|δ×∆|
3

+nSR×|δ|.

The number of transition rules reduced is |∆′|−|∆′
r| =

2
3
|δ×∆|− 2

3
nsync−nSR×|δ|.

We can infer from this expression that the fewer dependent transitions of B and

P the more BPDS rules Algorithm 5.3 can reduce.

5.4.2 Correctness Argument

In Algorithm 5.3, a diagonal rule is reduced if the corresponding BA transition

and LPDS rule are independent. This kind of reduction does not affect any reach-

ability property, because the diagonal rule can be represented by one horizontal

rule and one vertical rule respectively. A horizontal rule is reduced if the head of

the corresponding LPDS rule in P does not belong to SensitiveSet. There is a

special set of heads,

DivideSet = { h | h ∈ SensitiveSet, ∀r = c
τ
→֒ c′ ∈ ∆ and ∀t ∈ δ, if head(c) = h

then r and t are not dependent }.

Informally, DivideSet describes a set of configurations that can be considered

as divide-lines (in the traces of P projected from the traces of BP) for two ad-

jacent LPDS transitions that are respectively dependent and independent with

the BA transitions. Given a trace of BPr in the form of 〈(g0, q0), ω0〉 ⇒BP

. . . ⇒BP 〈(gj, qj), ωj〉 ⇒BP . . . ⇒BP 〈(gk, qk), ωk〉 ⇒BP . . . (0 ≤ j < k), if

head(〈gj, ωj〉) ∈ DivideSet and 〈(gk, qk), ωk〉 is the first configuration satisfying

head(〈gk, ωk〉) ∈ SensitiveSet after 〈(gj, qj), ωj〉, we can infer that no horizontal

transition occurs between 〈(gj, qj), ωj〉 and 〈(gk−1, qk−1), ωk−1〉 in the trace (i.e.,

qj = qk−1), because the horizontal transitions have been reduced.

Theorem 5.2. BPr preserves the reachability of BP from the initial configuration.

Proof. It is easy to observe that BPr and BP have the same state space and initial

119

configuration, so the question is to prove that (1) given a trace of BP in the form

of φ = c0 ⇒BP c1 . . . ⇒BP c, there is a corresponding trace of BPr such that

φ′ = c0 ⇒BP c′1 . . .⇒BP c; and (2) vice versa.

“⇒⇒⇒”: Two types of transitions are reduced in BPr, compared to BP . As explained

above, the reduction of diagonal transitions does not affect any reachability prop-

erty. We prove that the reduction of horizontal transitions does not affect the

correctness of (1) by mathematical induction.

Basis. If |φ| = 0, i.e., c = c0, the reachability trivially holds on BPr. If |φ| = 1,

because there is no horizontal transition reduced on the initial configuration, for

any transition c0 ⇒BP c of BP there must be a corresponding trace of BPr that

preserves the reachability.

Inductive step. Given a trace φ = c0 ⇒BP c1 . . . ⇒BP ci ⇒BP c′ (i ≥ 0) of BP

where |φ| = i + 1, if there exists a trace φ′ = c0 ⇒BP c′1 . . .⇒BP c′j ⇒BP c′ (j ≥ 0)

of BPr where |φ′| = j + 1, we show that for every t = c′ ⇒BP c of BP , there

is a trace of BPr such that c0 ⇒
∗
BP c. Recall that the horizontal transitions are

reduced in BPr except at configurations whose heads belong to SensitiveSet, so

we need to prove that this reduction does not affect the reachability if t involves a

horizontal transition that is reduced in BPr. In the trace φ′, we can always find a

configuration

c′k = 〈(gk, qk), ωk〉, 0 ≤ k ≤ j,

such that c′k is the last configuration satisfying head(〈gk, ωk〉) ∈ SensitiveSet.

Thus, the path from c′k to c′ has the form of

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk+1, qk), ωk+1〉 ⇒BP . . .⇒BP (c′ : 〈(gj+1, qk), ωj+1〉),

where B always loops at the state qk after c′k. Because the horizontal transitions

are reduced on the configurations after c′k, BPr cannot directly have the transition

(c′ : 〈(gj+1, qk), ωj+1〉) ⇒BP (c : 〈(gj+1, qk+1), ωj+1〉), i.e., the corresponding BPDS

120

rule 〈(gj+1, qk), γj+1〉) →֒BP 〈(gj+1, qk+1), γj+1〉 (γj+1 is the top stack symbol of

ωj+1) does not exist after the reduction. However, since the BA transitions and

LPDS transitions are independent on the path from c′k to c′, we can shift the

horizontal transition backward to the position right after c′k where the horizontal

transitions are not reduced. In this case, the path is

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk, qk+1), ωk〉 ⇒BP 〈(gk+1, qk+1), ωk+1〉 ⇒BP . . .⇒BP (c :

〈(gj+1, qk+1), ωj+1〉).

Therefore, we have proven that there exists a trace of BPr such that c0 ⇒
∗
BP c.

“⇐⇐⇐”: The other direction always holds because ∆′
r ⊆ ∆′. For every rule of BPr,

BP has the same rule. Thus, for every trace of BPr, BP has the same trace.

Theorem 5.3. BPr is optimal with respect to static partial order reduction.

Proof. Since static partial order reduction is applied on the model before model

checking, information available only during the model checking process cannot be

utilized. For example, given two LPDS rules: r1 = c ֒
τ
−→ c′ that is dependent

with at least one BA transition and r2 = c′′ ֒
τ ′

−→ c′ that is independent with all

BA transitions. A transition path through r2 clearly does not need to explore a

horizontal transition at c′ in order to preserve the reachability. However, unless in

the model checking process, we cannot know how c′ is reached, i.e., via r1 or r2.

Therefore, head(c′) should be added to SensitiveSet and horizontal BPDS rules

should not be reduced if they are related to head(c′).

We prove the theorem by demonstrating that any BPDS rule constructed by

Algorithm 5.3 cannot be reduced without affecting the reachability properties to

be verified.

• At line 6, if the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 is reduced, the con-

figuration 〈(g′, q′), ω〉 may not be reachable anymore, since B and P must

121

transition together at dependent transitions. Furthermore, any BPDS con-

figuration that is reachable from 〈(g′, q′), ω〉 may also be affected. Note that

〈(g′, q′), ω〉 may still be reachable through other BPDS paths even if the rule

is reduced, but we cannot know this unless in the model checking process.

Therefore, we should not reduce the rule;

• At line 9, if 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 is reduced, the configuration 〈(g′, q), ω〉

may not be reachable anymore. For example, in Figure 5.4b, reduce any

vertical transition may affect the reachability to some BPDS configurations;

• At line 12, if 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 is reduced, the configuration 〈(g, q′), γ〉

may not be reachable anymore. For example, in Figure 5.4b, reduce any hor-

izontal transition may affect the reachability to some BPDS configurations.

With the information available in static partial order reduction, we cannot ensure

reducing any rule constructed by Algorithm 5.3 without affecting the reachability

properties; therefore, we have proven that BPr is optimal.

Example 1. Given a BA transition, t = Wrk
{no event}
−−−−−−→ Idle, illustrated in Fig-

ure 4.1 and an LPDS rule, r = 〈a, main1〉 ֒
{no intr}
−−−−−→ 〈!a, main2〉, illustrated in

Figure 4.4, Algorithm 4.1 constructed the following BPDS rules:

• 〈(a, Wrk), main1〉 →֒BP 〈(a, Idle), main1〉, i.e., B transitions and P self-

loops;

• 〈(a, Wrk), main1〉 →֒BP 〈(!a, Wrk), main2〉, i.e., P transitions and B self-

loops; and

• 〈(a, Wrk), main1〉 →֒BP 〈(!a, Idle), main2〉, i.e., B and P transitions to-

gether.

122

Since t and r are independent, B and P do not need to transition together.

Furthermore, the LPDS head 〈a, main1〉 is not in SensitiveSet, since there is

no BA transition dependent with an LPDS rule that transition to 〈a, main1〉.

Therefore, Algorithm 5.3 only constructs one BPDS rule 〈(a, Wrk), main1〉 →֒BP

〈(!a, Wrk), main2〉, while the first and third BPDS rules are reduced.

Example 2. Given a BA transition t = Init
{reset}
−−−−→ Rst and an LPDS rule r =

〈a, reset0〉 ֒
{no intr}
−−−−−→ 〈a, reset1〉, since t and r are dependent, both Algorithm 4.1

and Algorithm 5.3 need to construct the BPDS rule 〈(a, Init), reset0〉 →֒BP

〈(a, Rst), reset1〉 to represent the synchronous transition of B and P.

Example 3. Given a BA transition t = Intr
{no event}
−−−−−−→ Wrk and an LPDS rule

r = 〈a, NonHWRelated1〉 ֒
{intr}
−−−→ 〈a, isr0 NonHWRelated1〉, since t and r are

dependent, both Algorithm 4.1 and Algorithm 5.3 need to construct the BPDS

rule 〈(a, Intr), NonHWRelated1〉 →֒BP 〈(a, Wrk), isr0 NonHWRelated1〉 to rep-

resent the synchronous transition of B and P. However, this BPDS rule is actually

unnecessary. Since the procedure NonHWRelated neither operates the hardware

nor accesses any software global variable, interrupting NonHWRelated to execute

the ISR will not affect the verification results.

Reducing ISR calls. Example 3 demonstrates that ISR calls are unnecessary af-

ter some LPDS transitions; therefore, these ISR calls should be reduced. Following

the idea of relative atomicity (see Chapter 3), we can understand the execution of

ISR as an atomic transition with respect to other lower-priority software routines.

A statement of the lower-priority routines is dependent with such an ISR transition

if and only if the statement operates hardware or accesses software global variables;

otherwise, the statement is independent with the ISR transition. Based on this

observation, the idea similar to Algorithm 5.3 can also be applied to reduced the

ISR calls introduced to LPDS. Chapter 6 will further discuss the reduction of ISR

calls combined with Algorithm 5.3 in implementation.

123

5.5 OPTIMIZATION OF LTL CHECKING

5.5.1 Reduction Algorithm

When verifying an LTL property on a BPDS BP , some transition orders between

the BA B and the LPDS P can also be reduced without affecting the verification

result. In this section, we present how to utilize the concept of static partial order

reduction in the LTL checking of BPDS. We denote the reduced BPDS model as

BPr. Let ∆′
r be the set of BPDS rules of BPr and ∆′ be the set of BPDS rules

of BP . We have ∆′
r ⊆ ∆′, i.e., BPr has a smaller set of BPDS rules compared to

BP .

In reachability analysis, we have demonstrated that static partial order reduc-

tion can be applied on BPDS without affecting the reachability from the initial

configuration to any other configurations. This reduction is conservative, since

there always exists at least one trace that preserves the reachability to certain

configuration. However, LTL checking is different, since we not only need to know

whether a configuration is reachable, but also need to know how the configuration

is reached. In other words, without the knowledge about what LTL property to

verify, a reachability-preserving trace may not be able to preserve the LTL prop-

erty. Therefore, we need to consider the LTL property in our reduction algorithm.

As discussed in Chapter 2, there are five temporal operators that are commonly

used to specify LTL properties. Partial order reduction cannot be effectively ap-

plied with the next operator, XXX. Intuitively, next operator states the relation

between two propositions within one state transition, which can make all tran-

sition orders between B and P matter to the verification result. Therefore, we

apply static partial order reduction with LTL properties that do not use the next

operator. This type of LTL property is denoted as LTL−X .

Definition 5.7. Given an LTL−X formula ϕ to be verified on BP , a BPDS rule

c →֒BP c′ is invisible to ϕ if and only if Lϕ(c) = Lϕ(c′), i.e., all state transitions

124

that follow this BPDS rule do not change the value of the propositional variables

in At(ϕ); otherwise the rule is visible to ϕ. If all the transitions on a BPDS path

are invisible to ϕ, the path is also invisible to ϕ.

Definition 5.8. Given a BPDS rule rBP , V isProp(rBP) denotes the set of propo-

sitional variables whose value is affected by the BPDS rule rBP . Obviously, if

V isProp(rBP) = ∅, rBP is invisible.

• Given t = q
σ
−→ q′ ∈ δ and a ∈ 2At(ϕ), for every rBP = 〈(g, q), γ〉 →֒BP

〈(g, q′), γ〉 ∈ ∆′, if V isProp(rBP) = a 6= ∅, t is said to be horizontally visible.

• Given r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ and a ∈ 2At(ϕ), for every rBP = 〈(g, q), γ〉 →֒BP

〈(g′, q), ω〉 ∈ ∆′, if V isProp(rBP) = a 6= ∅, r is said to be vertically visible.

Intuitively, horizontal visibility describes the situation when some propositional

variables are evaluated only based on the states of BA; vertical visibility describes

the situation when some propositional variables are evaluated only based on the

states of LPDS. This kind of classification, as quite useful in symbolic represen-

tations (see Section 5.6), can help us reduce many visible BPDS rules without

affecting the LTL−X properties to be verified.

Given a BA transition t and an LPDS rule r, Algorithm 5.4 decides whether

the corresponding diagonal/horizontal BPDS rules are reducible candidates. We

should assume that t and r are independent; otherwise, since B and P must tran-

sition together when t and r are dependent, no BPDS rule can be reduced.

• Between line 8 and line 9, if there is no visible BPDS rule, both the horizontal

rule r1 and the diagonal rule r3 are reducible candidates;

• Between line 11 and line 13, the diagonal rule r3 is a reducible candidate if it

is replaceable by a horizontal rule and a vertical rule. Lemma 5.3 will discuss

the correctness of this reduction;

125

Algorithm 5.4 ReducibleBPDSRules(t ∈ δ, r ∈ ∆)

Require: t and r are independent.

1: ReduceDiag ← FALSE, ReduceHori← FALSE

2: Let t = q
σ
−→ q′

3: r = 〈g, γ〉
τ
→֒ 〈g′, ω〉

4: r1 = 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 {Horizontal BPDS rules, see Figure 5.4a}

5: r2 = 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 {Vertical BPDS rules, see Figure 5.4a}

6: r3 = 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 {Diagonal BPDS rules, see Figure 5.4a}

7: if V isProp(r1) = ∅ and V isProp(r2) = ∅ and V isProp(r3) = ∅ then

8: {If r1, r2, and r3 are all invisible}

9: ReduceDiag ← TRUE, ReduceHori← TRUE

10: else

11: if V isProp(r1) = V isProp(r3) or V isProp(r2) = V isProp(r3) or

V isProp(r1) = ∅ or V isProp(r2) = ∅ then

12: ReduceDiag ← TRUE

13: end if

14: if r1 is invisible or t is horizontally visible then

15: ReduceHori← TRUE

16: end if

17: end if

18: return (ReduceDiag, ReduceHori)

126

• Between line 14 and line 16, the horizontal rule r1 is a reducible candidate if

it is either invisible or constructed from a BA transition (i.e., t) that is hor-

izontally visible. Theorem 5.5 will discuss the correctness of this reduction.

Definition 5.9. Similar to the reduction applied in reachability analysis, we need

to decide which BPDS rules cannot be reduced. Therefore, we identify three sets

of heads, SensitiveSet, V isibleSet, and LoopSet on Conf(P) as follows:

• SensitiveSet = { head(〈g0, ω0〉) }
⋃

{ head(c′) | ∃r = c
τ
→֒ c′ ∈ ∆, ∃t ∈ δ, r

and t are dependent }, where 〈g0, ω0〉 is the initial configuration of P;

• V isbileSet = { head(〈g′, ω〉) | ∃r = 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 ∈ ∆′ that is

visible to ϕ; and r is irreducible according to Algorithm 5.4 };

• LoopSet = { h | for every strongly connected component C in GP , pick a

head h from C }, where GP is the head reachability graph of P and there is

no preference on how h is selected from C.

SensitiveSet is necessary to preserve the reachability from the initial configuration

to other configurations; the concept of V isibleSet is similar to that of SensitiveSet,

i.e., preserving the reachability of BPDS paths right after a visible transition that

cannot be reduced according to Algorithm 5.4; LoopSet, similar to the concept

of cycle closing condition [44], is introduced to satisfy the BPDS loop constraint

when a loop of P is involved in the accepting run of B2P.

Algorithm 5.5 applies the reduction following the idea illustrated in Figure 5.4b,

where the horizontal/diagonal edges are reduced.

• At line 6, since the LPDS rule r and the BA transition t are dependent,

B and P must transition together; therefore, we construct a BPDS rule

〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉;

127

Algorithm 5.5 BPDSRulesViaSPOR LTL(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅, ∆diag ← ∅

2: for all r = 〈g, γ〉
τ
→֒ 〈g′, ω〉 ∈ ∆ do

3: for all t = q
σ
→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do

4: if r and t are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

7: else

8: {P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉}

10: (ReduceDiag, ReduceHori)← ReducibleBPDSRules(t, r)

11: if ReduceDiag = FALSE then

12: {B and P transition together}

13: ∆diag ← ∆diag

⋃

{〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉}

14: end if

15: if ReduceHori = FALSE or

〈g, γ〉 ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet then

16: {B transitions and P self-loops}

17: ∆hori ← ∆hori

⋃

{〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉}

18: end if

19: end if

20: end for

21: end for

22: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

⋃

∆diag

23: return ∆′
r

128

• At line 9, we construct a vertical rule 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 to represent

the asynchronous situation when P transitions and B self-loops. Since Al-

gorithm 5.5 follows the reduction demonstrated in Figure 5.4b, all vertical

BPDS rules are preserved;

• At line 10, we invoke Algorithm 5.4, i.e., ReducibleBPDSRules, to decide

if the horizontal/diagonal BPDS rules are reducible candidates;

• Between line 11 and line 14, we construct a diagonal BPDS rule if necessary;

• Between line 15 and line 18, we construct a horizontal BPDS rule if necessary;

Note that even if ReducibleBPDSRules returns TRUE for ReduceHori,

we still have to preserve this horizontal BPDS rule if head(r) belongs to

SensitiveSet, V isibleSet, or LoopSet.

Complexity analysis. Algorithm 5.5 takes O(|δ|×|∆|) time and O(|δ×∆|) space,

where |δ×∆| denotes the size of BPDS rules that can be constructed without the

reduction.

Let nsync be the number of BPDS rules that are generated from dependent BA

transitions and LPDS rules (at line 6), nv be the number of BPDS rules related to

visible transitions (i.e., when Algorithm 5.4 returns ReduceDiag or ReduceHori as

FALSE), nsvl be the number of BPDS rules associated to SensitiveSet, V isibleSet,

and LoopSet (at line 17 when ReduceHori is TRUE). We have |∆hori

⋃

∆diag| = nv+

nsvl and |∆sync| = nsync. As illustrated in Figure 5.4, asynchronous transitions can

be organized as triples where each one includes a vertical transition, a horizontal

transition, and a diagonal transition, so we have |∆vert| =
|δ×∆|−nsync

3
. The number

of rules generated by Algorithm 5.5 is |∆′
r
| = nsync + |δ×∆|−nsync

3
+ nv + nsvl =

2
3
nsync + |δ×∆|

3
+ nv + nsvl. The number of transition rules reduced is |∆′| − |∆′

r| =

2
3
|δ×∆|−nv−

2
3
nsync−nsvl. Therefore, our reduction is effective when the following

criteria have small sizes:

129

• BPDS rules visible to ϕ;

• dependent transitions of B and P; and

• loops in P.

5.5.2 Correctness Argument

We prove the correctness of the reduction by two steps. First, we assume that

no visible BPDS rule (including the related invisible BPDS rules) is reduced by

Algorithm 5.5. More specifically, the pseudo code between line 10 and line 17 of

Algorithm 5.4 is not used in this case. Based on this assumption, let the reduced

BPDS model be BP ′
r. We prove that any LTL−X property is invariant on BP and

BP ′
r. Second, let the reduced BPDS model without the assumption be BPr. We

prove that any LTL−X property is invariant on BP ′
r and BPr.

First, any LTL−X property is invariant on BP and BP ′
r. There are several

concepts that can help our proof.

Definition 5.10. Given a labeling function L, two infinite paths φ1 = s0 → s1 →

. . . and φ2 = q0 → q1 → . . . are stuttering equivalent, written as φ1 ∼st φ2, if

there are two infinite sequences of positive integers 0 = i0 < i1 < i2 < . . . and

0 = j0 < j1 < j2 < . . . such that for every k ≥ 0, L(sik) = L(sik+1) = . . . =

L(sik+1−1) = L(qjk
) = L(qjk+1) = . . . = L(qjk+1−1).

Definition 5.11. We define a transition block as a BPDS path K = c⇒∗
BP c′ such

that K is invisible, where for c = 〈(g, q), ω〉, head(〈g, ω〉) ∈ V isibleSet. K can be

considered as an invisible path right after a visible transition. Given two transition

blocks K = c ⇒∗
BP c′ and K ′ = c′′ ⇒∗

BP c′′′, they are referred to as corresponding

transition blocks if c = c′′ and c′ = c′′′. Obviously, K ∼st K ′.

Lemma 5.1. If BP has a transition block K = c0 ⇒BP c1 ⇒BP . . . ⇒BP c, BP ′
r

always has a corresponding transition block K ′ = c0 ⇒BP c′1 ⇒BP . . .⇒BP c.

130

Proof. Two types of transitions are reduced in BP ′
r: diagonal and horizontal.

First, the reduction of diagonal transitions does not affect this lemma. Given any

invisible diagonal transition t = c ⇒BP c′, if it is reduced by Algorithm 5.5, all

transitions starting from c must be invisible. Therefore, we can always use an

invisible path, (c : 〈(g, q), γv〉) ⇒BP (c′′ : 〈(g, q′), γv〉) ⇒BP (c′ : 〈(g′, q′), ωv〉), to

replace t, where Lϕ(c) = Lϕ(c′′) = Lϕ(c′), γ ∈ Γ, and v, ω ∈ Γ∗.

Second, we prove that the reduction of horizontal transitions does not affect this

lemma by mathematical induction.

Basis. When |K| = 0, i.e., c = c0, the lemma trivially holds. When |K| = 1, since

no horizontal edges are reduced at c0, the lemma also holds.

Inductive step. Given K = c0 ⇒BP c1 . . . ⇒BP ci−1 ⇒BP c′, where |K| = i > 0,

if BP ′
r has a transition block K ′ = c0 ⇒BP c′1 . . . ⇒BP c′j−1 ⇒BP c′ where |K ′| =

j > 0, we show that for every invisible transition t = c′ ⇒BP c of BP , there is a

transition block of BP ′
r such that c0 ⇒

∗
BP c.

In K ′, we can always find a configuration c′k = 〈(gk, qk), ωk〉 (0 ≤ k < j) such

that c′k is the last configuration satisfying

head(〈gk, ωk〉) ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet.

Thus, the path from c′k to c′ has the form of

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk+1, qk), ωk+1〉 ⇒BP . . .⇒BP (c′ : 〈(gj, qk), ωj〉),

where B always loops at the state qk after c′k. Because the horizontal transitions

are reduced on the configurations after c′k, BP
′
r cannot have a horizontal transition

from c′ to c. However, since the BA transitions and LPDS transitions are inde-

pendent on the path from c′k to c′, we can shift the horizontal transition backward

to the position right after c′k where the horizontal transitions are not reduced. In

this case, the path is

131

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk, qk+1), ωk〉 ⇒BP 〈(gk+1, qk+1), ωk+1〉 ⇒BP . . .⇒BP (c :

〈(gj, qk+1), ωj〉).

Note that, this path is invisible, because BP ′
r does not have any visible transitions

on the paths between c′k and c. Otherwise, there must be a configuration, 〈(g, q), ω〉

after c′k on path K ′, such that head(〈g, ω〉) ∈ V isibleSet. Therefore, BP ′
r has a

transition block c0 ⇒
∗
BP c.

Lemma 5.2. Any LTL−X property is invariant under stuttering [22].

Theorem 5.4. Any LTL−X property is invariant on BP and BP ′
r.

Proof. We prove that if BP has a trace φ, BP ′
r always has a trace φ′ that is

stuttering equivalent to φ; and vice versa.

“⇒⇒⇒”: φ can be written as a sequence of transition blocks such that K0 ⇒BP

K1 ⇒BP . . ., where only the transitions between the transition blocks are visible.

Since no visible transition is reduced, BP ′
r has the same transitions that connect

these transition blocks in φ. Lemma 5.1 has already proven that ∀i ≥ 0, BP ′
r has

K ′
i corresponding to Ki. Therefore, BP ′

r has a trace φ′ such that φ ∼st φ′.

“⇐⇐⇐”: For every rule of BP ′
r, BP has the same rule; therefore, for every trace of

BP ′
r, BP has the same trace.

Second, any LTL−X property is invariant on BP ′
r and BPr.

Lemma 5.3. Any diagonal BPDS rule (written as 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉)

reduced according to Algorithm 5.4 can be replaced by a horizontal BPDS rule and

a vertical BPDS rule.

Proof. The diagonal BPDS rule can be either visible or invisible. As illustrated in

Figure 5.5, a visible diagonal BPDS rule is reduced in the following four conditions:

132

VisProp(r1) = VisProp(r3)

r1

r3 r'

VisProp(r2) = VisProp(r3)

r3

r'

r2

r1

r3 r' r3

r'

r2

VisProp(r1) = VisProp(r2) =

Legend:

Dashed line: visible rule

Solid line: invisible rule

Figure 5.5: Reducible visible diagonal BPDS rules.

• For V isProp(r1) = V isProp(r3), we know that r′ = 〈(g, q′), γ〉 →֒BP 〈(g
′, q′), ω〉

must be invisible; therefore r3 can be replaced by r1 and r′ without affecting

the stuttering equivalence between the paths of BP ′
r and BPr.

• For V isProp(r2) = V isProp(r3), we know that r′ = 〈(g′, q), γ′〉 →֒BP 〈(g
′, q′), γ′〉

must be invisible, where γ′ is the top stack symbol in ω; therefore r3 can be

replaced by r2 and r′.

• For V isProp(r1) = ∅, given r′ = 〈(g, q′), γ〉 →֒BP 〈(g
′, q′), ω〉, we know that

V isProp(r′) = V isProp(r3); therefore r3 can be replaced by r1 and r′.

• For V isProp(r2) = ∅, given r′ = 〈(g′, q), γ′〉 →֒BP 〈(g
′, q′), γ′〉, where γ′ is the

top stack symbol in ω, we know that V isProp(r′) = V isProp(r3); therefore

r3 can be replaced by r2 and r′.

As illustrated in Figure 5.6, an invisible diagonal BPDS rule is reducible in the

following two conditions:

• For V isProp(r1) = V isProp(r3) or V isProp(r1) = ∅, we know that r′ =

〈(g, q′), γ〉 →֒BP 〈(g
′, q′), ω〉 must be invisible; therefore r3 can be replaced by

133

VisProp(r1) = VisProp(r3)

r1

r3 r'

VisProp(r2) = VisProp(r3)

r3

r'

r2

VisProp(r1) = VisProp(r2) =
OR OR

Figure 5.6: Reducible invisible diagonal BPDS rules.

r1 and r′ without affecting the stuttering equivalence between the paths of

BP ′
r and BPr.

• For V isProp(r2) = V isProp(r3) or V isProp(r2) = ∅, we know that r′ =

〈(g′, q), γ′〉 →֒BP 〈(g
′, q′), γ′〉 must be invisible, where γ′ is the top stack

symbol in ω; therefore r3 can be replaced by r2 and r′.

Theorem 5.5. Any LTL−X property is invariant on BP ′
r and BPr.

Proof. We prove that given a trace of BP ′
r in the form of φ′ = c0 ⇒BP c′1 . . .⇒BP c,

there is a trace of BPr in the form of φ = c0 ⇒BP c1 . . . ⇒BP c, such that φ′ and

φ are stuttering equivalent; and (2) vice versa.

“⇒⇒⇒”: Lemma 5.3 has demonstrated that the reduction of diagonal BPDS rules

according to Algorithm 5.4 does not affect the stuttering equivalence between any

traces of BP ′
r and BPr. Therefore, we only need to prove that the reduction

of horizontal BPDS rules does not affect the stuttering equivalence neither. In

Algorithm 5.4, a horizontal BPDS rule is considered as a reducible candidate if it

is either invisible or constructed from a BA transition that is horizontally visible.

In both ways, the horizontal transition can be shifted backward on the BPDS trace

without affecting the stuttering equivalence requirement. We prove this direction

of the theorem by mathematical induction.

134

Basis. If |φ′| = 0, i.e., c = c0, our argument trivially holds. If |φ′| = 1, be-

cause there is no horizontal transition reduced on the initial configuration, for any

transition c0 ⇒BP c of BP ′
r, there must be a stuttering equivalent trace of BPr.

Inductive step. Given a trace φ′ = c0 ⇒BP c′1 . . . ⇒BP c′j ⇒BP c′ (j ≥ 0) of

BP ′
r where |φ′| = j + 1, if there exists a trace φ = c0 ⇒BP c1 . . . ⇒BP ci ⇒BP c′

(i ≥ 0) of BPr where |φ| = i + 1, we show that for every t = c′ ⇒BP c of BP ′
r,

there is a trace of BPr such that c0 ⇒
∗
BP c. Furthermore, if φ′ and φ are stuttering

equivalent, the new traces of BP ′
r and BPr are also stuttering equivalent.

In the trace φ, we can always find a configuration

ck = 〈(gk, qk), ωk〉, 0 ≤ k ≤ i,

such that ck is the last configuration satisfying

head(〈gk, ωk〉) ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet.

Thus, the path from ck to c′ has the form of

(ck : 〈(gk, qk), ωk〉)⇒BP 〈(gk+1, qk), ωk+1〉 ⇒BP . . .⇒BP (c′ : 〈(gi+1, qk), ωi+1〉),

where B always loops at the state qk after ck. Because the horizontal transitions

are reduced on the configurations after ck, BPr cannot directly have the transition

(c′ : 〈(gi+1, qk), ωi+1〉) ⇒BP (c : 〈(gi+1, qk+1), ωi+1〉), i.e., the corresponding BPDS

rule 〈(gi+1, qk), γi+1〉) →֒BP 〈(gi+1, qk+1), γi+1〉 (γi+1 is the top stack symbol of ωi+1)

does not exist after the reduction. However, we can shift the horizontal transition

backward to the position right after ck where the horizontal transitions are not

reduced. No matter whether the transition is invisible or horizontally visible (as the

two types of reducible horizontal BPDS rules according Algorithm 5.4), the paths

before and after the shift operation are stuttering equivalent. We can construct

the new path as

(c′k : 〈(gk, qk), ωk〉)⇒BP 〈(gk, qk+1), ωk〉 ⇒BP 〈(gk+1, qk+1), ωk+1〉 ⇒BP . . .⇒BP (c :

〈(gi+1, qk+1), ωi+1〉).

135

Therefore, we have proven this direction of the theorem.

“⇐⇐⇐”: the other direction trivially holds because BP ′
r has all the BPDS rules of

BPr.

Theorem 5.6. Algorithm 5.5 preserves all LTL−X properties to be verified on BP.

Proof. This theorem holds, as the result of Theorem 5.4 and Theorem 5.5.

Theorem 5.7. BPr is optimal with respect to static partial order reduction.

Proof. Similar to the proof of Theorem 5.3, we demonstrate that any BPDS rule

constructed by Algorithm 5.5 cannot be reduced without affecting the LTL−X

property to be verified.

• At line 6, if the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 is reduced, the con-

figuration 〈(g′, q′), ω〉 may not be reachable anymore, since B and P must

transition together at dependent transitions. Furthermore, any BPDS con-

figuration that is reachable from 〈(g′, q′), ω〉 may also be affected. Since we

do not know whether the reachability to 〈(g′, q′), ω〉 can affect the LTL−X

property without going through a model checking process, the BPDS rule

should not be reduced;

• At line 9, if 〈(g, q), γ〉 →֒BP 〈(g
′, q), ω〉 is reduced, the configuration 〈(g′, q), ω〉

may not be reachable anymore. For example, in Figure 5.4b, reduce any

vertical transition may affect the reachability to some BPDS configurations;

• At line 13, the diagonal rule 〈(g, q), γ〉 →֒BP 〈(g
′, q′), ω〉 is constructed only

in two possibilities as illustrated in Figure 5.7. In a general point of view,

the BPDS rule cannot be reduced in either way (see Section 5.6.2 for further

discussion);

• At line 17, the BPDS rule 〈(g, q), γ〉 →֒BP 〈(g, q′), γ〉 is not reduced. When

ReduceHori = FALSE, reducing the rule may eliminate the traces of BPr

136

Legend:

Dashed line: visible rule

Solid line: invisible rule
r1

r2 r3

r1'

r2'

Figure 5.7: Irreducible diagonal BPDS rules.

that are stuttering equivalent with a trace of BP ′
r; when the BPDS rule

is related to SensitiveSet, reducing the rule can affect the reachability to

〈(g, q′), γ〉; when the BPDS rule is related to V isibleSet, reducing the rule

can either affect invisible paths after visible transitions or eliminate all hor-

izontally visible transitions after visible transitions; when the BPDS rule is

related to LoopSet, reducing the rule can simply remove all BPDS traces,

because the BPDS loop constraint may not be satisfied.

With the information available in static partial order reduction, we cannot be

sure to reduce any rule constructed by Algorithm 5.5 without affecting the LTL−X

property to be verified; therefore, we have proven that BPr is optimal.

5.6 SYMBOLIC ALGORITHMS

A system design can have an enormous number of states; therefore, it is almost

impossible to specify the design explicitly in practice, where the transition relation

between every two states is described by a separate rule. It is also inefficient

to analyze an explicit representation, because most analysis algorithms need to

explore all the transition rules.

Symbolic representation is a compact way to specify system designs. A symbolic

rule describes the transition relation between two sets of states. In a general point

of view, we can consider a hardware transaction function in modelC (see Chapter 3)

137

as a symbolic rule of BA or a C statement in software programs as a symbolic rule

of LPDS, because both of them describe the transition relation between two sets

of states. Therefore, we can apply our static partial order reduction algorithms

directly on the programs specified using C, modelC, etc. On the other hand, data

structures such as BDD can be utilized to encode the transition rules of BPDS

during model checking. Symbolic model checking that operates on these symbolic

BPDS rules are more efficient than model checking on explicit BPDS rules. In

this section, we will discuss the symbolic algorithms for the first type of symbolic

representation, where the algorithms work directly on the programs in order to

construct reduced BPDS models.

5.6.1 Reduction Algorithm for Reachability Analysis

Given the symbolic representations of BPDS discussed in Section 4.4, we present

Algorithm 5.6 as the symbolic version of Algorithm 5.3. Algorithm 5.6 is similar

to Algorithm 5.3, except that Algorithm 5.6 operates on symbolic rules of BA and

LPDS in order to construct symbolic rules of BPDS. We have two observations on

Algorithm 5.6:

• B and P need to transition together only when their transitions are depen-

dent; and

• B and P can transition in an interleaved manner when their transitions are

independent.

The two observations tell us how BP can be constructed from B and P so that only

the necessary BPDS rules are included. Since a modelC program can be considered

as the symbolic representation of BA and a C program can be considered as the

symbolic representation of LPDS, we can construct a BPDS model by instrument

the C program using the modelC program. If we drop the acceptance condition

138

Algorithm 5.6 SymbolicBPDSRulesViaSPOR(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅

2: for all R = 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉 ⊆ ∆ do

3: for all U = Q× {σ} ×Q ⊆ δ and σ ⊆ L′
P2B(〈g, γ〉) and τ ⊆ L′

B2P(U) do

4: if R and U are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U

7: else

8: {Vertical edges (see Figure 5.4b), when P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× Uloop

10: if 〈g, γ〉 ∈ SensitiveSet then

11: {Horizontal edges (see Figure 5.4b), when B transitions P self-loops}

12: ∆hori ← ∆hori

⋃

〈g, γ〉 −֒→
R′

BP〈g, γ〉, where R′ = Rloop × U

13: end if

14: end if

15: end for

16: end for

17: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

18: return ∆′
r

139

of the BPDS model, the resulting program actually corresponds to the PDS ver-

ification model, P ′
r; therefore, we can utilize existing model checkers to solve our

reachability problems of BPDS. Chapter 6 will discuss the details regarding the

implementation aspect of Algorithm 5.6.

5.6.2 Reduction Algorithm for LTL Checking

As discussed in Section 4.4, a symbolic LPDS rule, 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉, describes a set

of LPDS rules that are not only labeled by the same input symbol but also have

the same state transition with respect to the control flow. The transition relation

R describes a set of data-flow transitions with respect to the same control-flow

transition. It is inefficient (also unnecessary) to specify an LTL property on both

the control flow and the data flow of LPDS; otherwise, all symbolic BPDS rules can

be visible (due to some visible data-flow transition). Without loss of generality,

we assume that the labeling function Lϕ is defined based on the BA states and

the LPDS states that are only related to the control flow. Furthermore, we extend

the function V isProp to take symbolic BPDS rules as the input. Algorithm 5.7

and Algorithm 5.8 are the symbolic version of Algorithm 5.4 and Algorithm 5.5

respectively. We have the following observations:

• A symbolic BA transition rule describes a set of BA transitions. There may

exist some visible BPDS rules that are constructed from such BA transi-

tions. Assuming that we are not allowed to reduce any visible BPDS rule,

in the worst case, if every symbolic BA transition rule describes some BA

transitions that are horizontally visible, we will not be able to reduce any of

the horizontal symbolic BPDS rules. This is the motivation for us to reduce

visible BPDS rules based on how the property is specified.

• As illustrated in Figure 5.7, diagonal BPDS rules are irreducible only if the

related horizontal and vertical BPDS rules are all visible.

140

Algorithm 5.7 ReducibleSymbolicBPDSRules(U ⊆ δ,R ⊆ ∆)

Require: U and R are independent.

1: ReduceDiag ← FALSE, ReduceHori← FALSE

2: Let U = Q× {σ} ×Q

3: R = 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉

4: R1 = 〈g, γ〉 −֒→
R′

BP〈g, γ〉, where R′ = Rloop × U {Horizontal BPDS rules}

5: R2 = 〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× Uloop {Vertical BPDS rules}

6: R3 = 〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U {Diagonal BPDS rules}

7: if V isProp(R1) = ∅ and V isProp(R2) = ∅ and V isProp(R3) = ∅ then

8: {If R1, R2, and R3 are all invisible}

9: ReduceDiag ← TRUE, ReduceHori← TRUE

10: else

11: if V isProp(R1) = V isProp(R3) or V isProp(R2) = V isProp(R3) or

V isProp(R1) = ∅ or V isProp(R2) = ∅ then

12: ReduceDiag ← TRUE

13: end if

14: if R1 is invisible or U is horizontally visible then

15: ReduceHori← TRUE

16: end if

17: end if

18: return (ReduceDiag, ReduceHori)

141

Algorithm 5.8 SymbolicBPDSRulesViaSPOR LTL(δ ×∆)

1: ∆sync ← ∅, ∆vert ← ∅, ∆hori ← ∅, ∆diag ← ∅

2: for all R = 〈g, γ〉 ֒
τ
−→
R
〈g′, ω〉 ⊆ ∆ do

3: for all U = Q× {σ} ×Q ⊆ δ and σ ⊆ L′
P2B(〈g, γ〉) and τ ⊆ L′

B2P(U) do

4: if R and U are dependent then

5: {B and P must transition together}

6: ∆sync ← ∆sync

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× U

7: else

8: {P transitions and B self-loops}

9: ∆vert ← ∆vert

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R× Uloop

10: (ReduceDiag, ReduceHori)← ReducibleBPDSRules(U,R)

11: if ReduceDiag = FALSE then

12: {B and P transition together}

13: ∆diag ← ∆diag

⋃

〈g, γ〉 −֒→
R′

BP〈g
′, ω〉, where R′ = R × U

14: end if

15: if ReduceHori = FALSE or

〈g, γ〉 ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet then

16: {B transitions and P self-loops}

17: ∆hori ← ∆hori

⋃

〈g, γ〉 −֒→
R′

BP〈g, γ〉, where R′ = Rloop × U

18: end if

19: end if

20: end for

21: end for

22: ∆′
r ← ∆sync

⋃

∆vert

⋃

∆hori

⋃

∆diag

23: return ∆′
r

142

• The first type of irreducible diagonal BPDS rule, as demonstrated on the left

side of Figure 5.7 requires the LTL properties being specified on an explicit

BPDS configuration. However, in symbolic representations, properties are

specified on control-flow locations, where each control-follow location corre-

sponds to a set of BPDS configurations. If a vertical transition is visible, the

related diagonal transition should also be visible. Therefore, such irreducible

diagonal BPDS rules do not exist in symbolic representations.

• In practice, the second type of irreducible diagonal BPDS rule, as demon-

strated on the right side of Figure 5.7, is reducible under certain conditions.

The rule r3 can be replaced by r1 and r′2 if

1. V isProp(r1)
⋃

V isProp(r′2) = V isProp(r3); and

2. the propositional variables respectively from V isProp(r1) and V isProp(r′2)

do not occur in the same Boolean expression (i.e., excluding the tem-

poral operators) of the LTL property.

r3 can be replaced by r2 and r′1 if

1. V isProp(r2)
⋃

V isProp(r′1) = V isProp(r3); and

2. the propositional variables respectively from V isProp(r2) and V isProp(r′1)

do not occur in the same Boolean expression of the LTL property.

143

Chapter 6

IMPLEMENTATION

In our approach, hardware and software can be specified using different languages

such as C or SystemC. These specification languages need to be converted to

a uniform format acceptable by the model checking engine. A straightforward

conversion preserves the state space of the specification; however, it usually suffers

from the state explosion problem. Therefore, a counterexample-guided abstraction

refinement process is commonly applied to alleviate this problem, where the process

starts with a highly abstracted conversion and then asymptotically introduces more

details to the abstraction based on infeasible counterexamples given by the model

checking engine.

For safety property verification, counterexample-guided abstraction refinement

has been widely applied to software implementations such as C programs. Accord-

ing to the discussions in Chapter 5, BPDS models can be specified in C/modelC

programs and then converted into a C program for checking safety properties.

Therefore, the SLAM verification engine can be utilized to solve our verification

problems. SLAM accepts properties specified in SLIC, a property specification

language designed for software. As for our co-verification framework, property

specification on hardware behaviors also is desired. We demonstrate how SLIC

can be adapted to specify hardware properties.

For liveness property verification, one major challenge is loop computation,

i.e., checking whether or not there exists a loop in the design that may not termi-

nate. Loop computation is often inefficient in counterexample-guided abstraction

refinement, because a loop needs to be completely unrolled in order to check its

144

termination properties. Such unrolling itself may not even terminate when the

specification language has the power to describe a Turing machine. Therefore,

verification of liveness properties on C programs requires different techniques than

safety properties. In this chapter, we will discuss verification of liveness properties

on BPDS models specified using Boolean programs. The general concept of our

approach also is applicable to BPDS models specified using C/modelC programs

when a liveness verification engine for C programs (such as Terminator [25]) is

available.

Considering a hardware BA model and a software LPDS model, we discuss

the implementation in three steps: First, we need to construct a BPDS model

from the BA and LPDS models. Second, we want to specify the properties that

should be observed on the target model in verification. Third, we should apply

our reduction algorithms at a proper phase of our implementation so that the size

of the BPDS model can be reduced with a low cost. The rest of this chapter is

organized as follows: Section 6.1 and Section 6.2 discuss the implementation of

reachability analysis and LTL checking for co-verification respectively. Section 6.3

discusses our co-verification tool, CoVer.

6.1 REACHABILITY ANALYSIS

As discussed in Chapter 4, a symbolic BPDS model can be constructed directly

from a symbolic BA model and a symbolic LPDS model. In co-specification, we

have designed a language, modelC, to formally specify the device behaviors from

the view of a driver, namely a formal device model (also referred to as a hardware

interface model [49]). A Formal Device Model (FDM) includes both the HW/SW

interface specification and hardware specification (see Chapter 3). Conceptually,

the hardware behaviors described by a FDM can be represented by a symbolic BA

model, where a hardware transaction function describes a set of BA transitions

labeled by the same input symbol. Our goal is to verify a driver implementation

145

with its FDM, where the driver’s C code can be considered as a symbolic LPDS

model and an atomic software statement describes a set of LPDS rules labeled

by the same input symbol. We can then construct a symbolic BPDS model from

the symbolic BA model and the symbolic LPDS model. The Cartesian product is

carried out via code instrumentation, i.e., instrument the driver’s C code with the

device’s modelC code. The symbolic BPDS model, as the result of the product,

is actually a C program with non-determinism and a Büchi constraint. We can

safely drop the Büchi constraint, since it is irrelevant to reachability analysis.

Therefore, the non-deterministic C program can be verified by the SLAM engine [4]

for reachability properties.

SLAM takes SLIC [10] as the property specification language. Since SLIC was

designed for software verification, the language constructs of SLIC mainly focus

on the control flow of C programs. This is different from hardware designs, where

the data flow is more interesting. We demonstrate that the properties regarding

hardware behaviors can also be specified using the SLIC language within our co-

verification framework.

A straightforward product of the BA and LPDS will construct BPDS rules

that are unnecessary for reachability analysis. In Chapter 5, we presented a static

partial order reduction algorithm to reduce BPDS rules while constructing the

BPDS model. Since the reduction is applied during the compilation phase of co-

verification, no modification is necessary to the model checker. This is very helpful

in practice, because verification engines with industrial strength, such as SLAM,

can thus be readily utilized.

6.1.1 Cartesian Product via Code Instrumentation

There are two types of BPDS rules. First, synchronous BPDS rules are constructed

from dependent BA transitions and LPDS rules. Second, asynchronous BPDS rules

are constructed from independent BA transitions and LPDS rules.

146

In co-specification, the synchronous BPDS rules are specified in HW/SW inter-

face. For example, when a driver invokes a function, WRITE REGISTER UCHAR (see

Figure 3.1), to update device interface registers, the corresponding hardware trans-

action functions, e.g., atWritePortA, are invoked subsequently1. This sequence of

operations can be understood as a synchronous (a.k.a., dependent) transition of the

driver and device, where the driver executes the function, WRITE REGISTER UCHAR,

and at the same time the device executes the hardware transaction function,

atWritePortA. In the other direction, when device raises an interrupt, the driver

should invoke ISR to service the interrupt. The function RunIsr, illustrated in

Figure 3.4, models such a process. There are two atomic blocks in RunIsr. The

first atomic block checks the states of both device and driver to decide if an ISR

should be invoked; and the second atomic block sets the device and driver to the

proper state after the ISR returns. The two atomic blocks should be considered as

two synchronous transitions of the device and driver.

With respect to asynchronous BPDS rules, there are three types of asyn-

chronous transitions, i.e., BA transitions and LPDS self-loops, LPDS transitions

and BA self-loops, and BA and LPDS transition together. The three types of

asynchronous BPDS rules can be modeled as interleaved executions between the

driver statements and the hardware transaction function of the hardware model.

Hardware instrumentation function. As illustrated in Figure 6.1, a hardware

instrumentation function implements a non-deterministic loop to invoke atRun DIO

and RunIsr in sequence. If an interrupt is raised due to a hardware state transition

by executing atRun DIO, the context-switch to the ISR is modeled as a function

call, where the execution switches back to the interrupted thread only after the

ISR returns. This approach is correct to simulate the context-switches because

1In verification, the implementation of WRITE REGISTER UCHAR is replaced by the glue code
illustrated in Figure 3.3. The replacement is carried out automatically by Static Driver Verifier
(SDV) [4], the working environment of SLAM.

147

VOID HWInstr () {

while(choice()) { // Non-deterministic choices

atRun DIO(); // Run hardware transaction function

RunIsr(); // If interrupt has been raised

}

}

Figure 6.1: The hardware instrumentation function.

ISRs are relatively atomic to other driver routines.

Code instrumentation. We insert the hardware instrumentation function, HWIn-

str, after every atomic driver statement to construct asynchronous BPDS rules.

The idea is based on the concept of relative atomicity as illustrated in Figure 3.7.

The non-deterministic while-loop simulates the delays of either software or hard-

ware, i.e., BA transitions and LPDS self-loops or LPDS transitions and BA self-

loops. The situation when hardware (i.e., BA) and software (i.e., LPDS) transition

together can be replaced by continuous executions of a driver statement and the

hardware transaction function, atRun DIO.

6.1.2 Specification of SLIC rules

Hardware and software are different in nature. When specifying the properties

to be verified on hardware and/or software, their differences must be explored

to ensure that the unique behaviors of hardware and software can be precisely

captured. In general, hardware is data-flow-centric, where the state change of

registers by hardware transactions is interested; software is control-flow-centric,

where the execution sequences of program statements are interested. These design

features must be considered in the property specifications of co-verification.

Control flow refers to the order in which individual statements, instructions, or

148

// InvalidRead: the driver should never complete an I/O read request using

// STATUS SUCCESS without actually reading any data from the device.

// Declare the state variable used by this rule

state { enum { INIT, DPCSch } s = INIT; }

[atReadPortA, atReadPortB, atReadPortC].entry {

halt; // Stop the current execution if any data is read from hardware

}

WdfInterruptQueueDpcForIsr.entry {

s = DPCSch; // DPC is scheduled in the ISR

}

DioDpc.entry {

// Stop the current execution if DPC is not scheduled in the ISR

if (s == INIT) halt;

}

WdfRequestCompleteWithInformation.entry {

// If the I/O request is completed with STATUS SUCCESS but no data

// is actually read, raise an alarm.

if((s == DPCSch) && ($2 == STATUS SUCCESS))

abort “Input request is successfully completed with no read operation.”;

}

Figure 6.2: The SLIC rule InvalidRead for the PIO-24 digital I/O card driver.

The driver source code is discussed in Section 2.5. We implemented a test harness,

as illustrated in Figure 6.3, to model the OS environment on how the driver should

be called.

149

function calls of an imperative or a declarative program are executed or evaluated.

The SLIC language allows temporal properties to be specified on the order of func-

tion calls/returns. Commonly, there are two types of events that can be specified

on a function: entry and exit. The two events identify the program points in the

function immediately before its first statement and immediately before it returns

control to the caller. Meanwhile, the states of the program can be specified by

referring to function parameters and global variables at the events. The value of

the nth formal parameter in a function is referred to as $n. The return value of a

function is referred to as $return.

Figure 6.2 illustrates an example of a SLIC rule that checks whether the driver

will ever complete an I/O read request using STATUS SUCCESS without actually

reading any data from the device. The halt statement signals that the analysis

of the current execution path should stop. We halt the verification when a port

(A, B, or C) is read by the driver, which satisfies the rule immediately; otherwise

when the function, WdfRequestCompleteWithInformation, is invoked with the

second formal parameter equal to STATUS SUCCESS, we raise an alarm using the

statement, abort.

Figure 6.3 illustrates the test harness that models the OS environment for invok-

ing the driver. Instead of directly invoking the dispatch routines that are provided

by the PIO-24 digital I/O card driver, we invoke the role type functions. A role

type function corresponds to those dispatch routines that service the same type of

request in Windows. Such dispatch routines should have the same function type;

however, they may be defined under different names in various driver implementa-

tions. Therefore, role type functions help us to attain the portability of verification

over different driver implementations. The tool that matches role type functions

to driver dispatch routines is provided by Static Driver Verifier (SDV) [4]. For ex-

ample, the role type function, fun WDF IO QUEUE IO DEVICE CONTROL, corresponds

to the dispatch routine, DioEvtDeviceControl, in the PIO-24 driver and the role

150

void main() {

// Non-deterministically invoke the role type functions for different requests

switch(choice()) {

case 0: fun WDF IO QUEUE IO READ(. . .); break;

case 1: fun WDF IO QUEUE IO WRITE(. . .); break;

default: fun WDF IO QUEUE IO DEVICE CONTROL(. . .); break;

}

// Invoke DPC to complete the request

fun WDF DPC(. . .);

}

Figure 6.3: The test harness for InvalidRead.

type function, fun WDF DPC, corresponds to the dispatch routine, DioDpc, in the

driver. As an execution scenario, the two dispatch routines DioEvtDeviceControl

and DioDpc can be invoked in sequence by the harness. Meanwhile, the hardware

instrumentation function, HWInstr, is invoked after every driver statement due to

the code instrumentation. If the device model raises an interrupt, the ISR routine,

DioIsr, will be invoked via HWInstr. At last, although the test harness invokes

the DPC routine, DioDpc, it will not be executed in verification unless DioIsr has

requested for a DPC routine (at the line P3 of Figure 2.8b). This is guaranteed

by the SLIC rule, InvalidRead, where the rule halts verification at the entry of

DioDpc if no DPC routine was requested by DioIsr.

Data flow refers to the order in which the values of variables are changed. For

example, in a clock-driven hardware design, the values of registers are updated

along with every clock cycle. How the registers should be updated depends on the

current state of the registers and the design of the hardware (i.e., the transition

rules specified). Property specifications based on data flow usually monitor the

151

changes of register values along with clock cycles. In our approach, clock cycles

are abstracted away. Instead, we use hardware transaction functions to describe

the state transition rules of hardware. Because hardware transaction functions

are atomic in the view of software, we do not need to monitor the intermediate

hardware state within a transaction. Because software cannot directly update

the hardware state without going through hardware transaction functions, we do

not need to monitor the hardware state when a program statement is executed.

As a result, we monitor the hardware states at the exits of hardware transaction

functions, because conceptually these exit events occur when hardware states are

updated. Figure 6.4 illustrates a SLIC rule that checks whether the hardware

// InvalidHWInterrupt: formal device model should not raise an interrupt when

// it is in an interrupt disabled state.

// Check the hardware state at the exit of a hardware transaction function

atRun DIO.exit {

// If hardware raises an interrupt when it is in an interrupt disabled state

if(($g DIORegs.IRQST.IRQST1==1) && ($g DIORegs.IRQ.IRQENn!=1)) {

abort “Interrupt is raised when the Interrupt Enable (IE) register is 0.”;

}

Figure 6.4: The SLIC rule InvalidHWInterrupt for the PIO-24 digital I/O card

device model.

model of the PIO-24 digital I/O card will ever raise an interrupt when its interrupt

status is disabled. This rule is useful to validate the correctness of our formal

device/driver models in co-specification.

152

6.1.3 Reduction

In Chapter 5, we demonstrated an approach to efficient reachability analysis of

BPDS models. The process that reduces a BPDS model BP is presented in Algo-

rithm 5.3 and the symbolic version is presented in Algorithm 5.6. As the key idea

of the reduction, we observe that the BA B and the LPDS P can run separately

when their state transitions are independent. This allows the reduction of many

transition rules of BP without affecting the verification result. Following the con-

cept of static partial order reduction, these reducible transition rules need not be

included when constructing the BPDS model.

Software synchronization points. With respect to static partial order reduc-

tion, a key concept is SensitiveSet, defined to identify the BPDS rules that are

necessary in reachability analysis. As the concrete counterpart of the SensitiveSet

concept in implementation, we define software synchronization points as a set of

program locations1 where the program statements right before these locations may

be dependent with some of the hardware state transitions. In general, there are

three types of software synchronization points:

1. the point where the program is initialized;

2. those points right after software reads/writes hardware interface registers;

3. those points where hardware interrupts may affect the software execution.

The first and second types are straightforward for hardware and software to tran-

sition synchronously. We may understand the third type in such a way that the

effect of interrupts (by executing ISRs) may influence certain program statements,

e.g., the statements that access global variables. For example, in Figure 2.8b, the

program reads hardware interface registers by READ REGISTER UCHAR. There is a

1Assuming the program is preprocessed to ensure that every statement is atomic from the view of hardware.

153

software synchronization point right after the function call. There is another soft-

ware synchronization point right before the statement P1 of Figure 2.8a, because

a global variable CurrentRequest is accessed in the previous statement.

To construct the reduced BPDS model, BPr, according to Algorithm 5.6, we

instrument the driver code by HWInstr in such a way that HWInstr is invoked

at every software synchronization point. Conceptually, the instrumentation lets

hardware run after every HW/SW synchronous transition. Compared to the triv-

ial approach that inserts HWInstr after every software statement to simulate the

concurrent state transitions of hardware and software, our algorithm can signif-

icantly reduce the complexity of the verification model, because the number of

software synchronization points are usually very small in common applications.

6.2 LTL CHECKING

We have implemented the LTL checking algorithm for BPDS, where the LPDS P is

specified using Boolean programs and the BA B is specified using Boolean programs

with the semantic extension of relative atomicity, i.e., hardware transitions are

modeled as atomic to software. In this section, we first present an example of a

BPDS model specified in Boolean programs. Second, we illustrate how we specify

LTL properties on such a BPDS model. Third, we elaborate on how we generate

a reduced BPDS model for the verification of an LTL−X formula.

6.2.1 A BPDS Model specified using Boolean programs

We specify B and P using our co-specification approach as described in Chapter 3.

Figure 6.5 demonstrates such an example. The states of B are represented by

global variables. All the functions labeled by the keyword atomic are hardware

transaction functions that describe the state transitions of B. The function main

is the program entry of P, where main has three steps:

154

void main() begin

decl v0,v1,v2 := 1,1,1;

reset();

// wait for the reset to complete

v1,v0 := status();

while(!v1|v0) do v1,v0 := status(); od

// wait for the counter to increase

v2,v1,v0 := rd reg();

while(!v2) do v2,v1,v0 := rd reg(); od

// if the return value is valid

if (v1|v0) then

error: skip;

fi

exit: return;

end

atomic void inc reg()

begin

if (!c0) then c0 := 1;

elsif (!c1) then c1,c0 := 1,0;

elsif (!c2) then

c2,c1,c0 := 1,0,0; fi

end

// represent hardware registers

decl c0, c1, c2, r, s;

atomic void reset()

begin reset cmd: r := 1; end

atomic bool<3> rd reg()

begin return c2,c1,c0; end

atomic bool<2> status()

begin return s,r; end

// hardware instrumentation function

void HWInstr() begin

while(∗) do HWModel(); od

end

// asynchronous hardware model

atomic void HWModel() begin

if (r) then

reset act: c2,c1,c0,r,s := 0,0,0,0,1;

elsif(s) then inc reg(); fi

end

Figure 6.5: An example of BA B and LPDS P both specified in Boolean programs.

155

1. resets the state of B by invoking the function reset;

2. waits for the reset to complete;

3. waits for the counter of B to increase above 4, i.e., v2==1.

When a hardware transaction function, such as reset or rd reg, is invoked from

P, it represents a dependent (a.k.a., synchronous) transition between B and P.

On the other hand, the hardware transaction function HWModel represents inde-

pendent (a.k.a., asynchronous) transitions of B with respect to P. In this example,

since the dependent transitions of B and P are already specified as direct function

calls, the rest of the Cartesian product is to instrument P with the independent

transitions of B, i.e., add function call to HWInstr after each statement in main.

Such instrumentation only models two types of asynchronous BPDS rules when B

transitions and P self-loops or P transitions and B self-loops. The BPDS rules

when B and P transition together are not directly modeled by code instrumen-

tation. Sometimes, these types of BPDS rules are not necessary to the checked

LTL property; therefore, they can be replaced by interleaved transitions of B and

P (Note that the transition order between B and P does not matter here). Oth-

erwise, when these types of BPDS rules may affect the LTL property, we need to

apply some restrictions on how the propositional variables are evaluated during

verification, in order to reduce the BPDS rules. The next sub-section will discuss

the details about what LTL properties require the asynchronous BPDS rules for

B and P to transition together as well as how we can satisfy such requirements in

verification.

6.2.2 Specification of LTL Properties

Without loss of generality, we specify LTL properties on the statement labels of

Boolean programs. Formally, such labels are considered as propositional variables

that evaluate to true at those BPDS configurations right after the execution of the

156

labeled statements. For example, we write an LTL formula, F exit, which asserts

that the function main always terminates. This property is asserted on a common

scenario: when software waits for hardware to respond, the waiting thread should

not hang. As illustrated in Figure 6.5, the hardware transaction function, HWModel,

describes a hardware model that responds to software reset immediately; therefore,

the first while-loop in main will not loop for ever. Since hardware increments its

register after reset, the second while-loop in main also will terminate. Therefore, F

exit holds. Note that the non-deterministic while-loop in HWInstr will repeatedly

call HWModel, which is guaranteed by the BPDS loop constraint and the fairness

between hardware state transitions (i.e., transitions specified by HWModel should

not be starved by self-loop transitions introduced when constructing a BPDS).

There may exist a hardware design that cannot guarantee immediate responses

to software reset commands. Therefore, delays should be represented in the hard-

ware model. Figure 6.6 illustrates a hardware transaction function, HWModelSlow,

which describes a hardware design that cannot guarantee immediate responses

to reset commands. The property, F exit, fails on the BPDS model that uses

atomic void HWModelSlow() begin

if (r) then

if (∗) then reset act: c2,c1,c0,r,s := 0,0,0,0,1; fi

elsif(s) then inc reg(); fi

end

Figure 6.6: Hardware does not respond to reset immediately.

HWModelSlow for hardware, since the hardware can delay the reset operation in-

finitely. In practice, design engineers may want to assume that hardware can delay

the reset operation; therefore, software should wait for reset completion; however

hardware should not delay the reset operation for ever. Such assumptions also

157

can be specified as LTL formulae. Under the assumption, G (reset cmd → (F

reset act)), the property, F exit, will hold on the BPDS model.

As another example, we write an LTL formula, G !error, asserting that the

labeled statement, error, in main is not reachable. The verification of G !error

fails on the BPDS model in Figure 6.5. Since hardware is asynchronous with

software when incrementing the register, it is impossible for software to control

how fast the register is incremented. Therefore, when software breaks from the

second while-loop, the hardware register may have already been incremented to 5,

i.e., (v2==1)&&(v1==0)&&(v0==1).

B and P transition together in an asynchronous BPDS rule. The property

G !(error && reset ack) specifies that BPDS does not contain states such that the

hardware model acknowledges the reset command at the same time that P is

executing the software statement labeled by error. Despite the usefulness of such

kind of rule, they put a requirement on how the propositional variables should be

evaluated during verification. In this case, the BPDS rules for B and P to transition

together cannot be easily reduced; otherwise, the propositional variables, error and

reset ack, will not be evaluated as true at the same time. To solve this problem,

we let the propositional variable, error, stay true when B executes and P self-

loops; therefore, error and reset ack can be evaluated as true at the same time

even when the asynchronous BPDS rules for B and P to transition together are

reduced.

6.2.3 Reduction

In order to construct the Cartesian product of B and P, we need to add a function

call to HWInstr after every software statement. As discussed in Chapter 5, some

BPDS rules are unnecessary to be generated for such a product. In other words, it

is only necessary to call HWInstr after certain software statements in order to verify

158

an LTL−X property. There are three types of program locations of P necessary

for instrumentation. Except for the software synchronization points as defined in

Section 6.1, we define the other two types of program locations:

Software visible points. Corresponding to V isibleSet, we define software visible

points as a set of program locations right after the program statements whose labels

are used in the LTL property. For example, in Figure 6.5 the program location

right after the statement, error, can be a software visible point. However, the

location right after the statement, reset act, cannot be a software visible point,

since this statement is in a hardware transaction function of B.

Software loop points. Corresponding to LoopSet, we define software loop points

as a set of program locations involved in program loops. The precise detection

of those loops needs to explore the program’s state graph, which is inefficient.

Therefore, we try to identify a super set LoopSet′ ⊇ LoopSet using heuristics.

A program location is included into the super set if it is at (1) the point right

before the first statement of a while loop; (2) the point right before a backward

goto statement; or (3) the entry of a recursive function, which can be detected by

analyzing the call graph between functions.

As for implementation, we first detect the software synchronization points, vis-

ible points, and loop points in the Boolean program of P and then inserts function

calls to HWInstr only at those detected points. Conceptually, the instrumenta-

tion lets hardware run for all the possibilities at those instrumentation points.

Note that some transitions described by HWModel (called via HWInstr) may be

visible when a statement label in HWModel is used in the LTL formula, e.g., F

reset act. However, such BA transitions are horizontally visible, since reset act

is not affected by any transition of P. This is why function calls to HWInstr can

be reduced without affecting the LTL properties even if HWModel describes visible

transitions. Compared to the trivial approach that inserts HWInstr after every

159

software statement to simulate the concurrent state transitions of hardware and

software, our reduction can significantly reduce the complexity of the model to be

verified, since the number of the instrumentation points are usually very small in

common applications.

6.3 CO-VERIFICATION TOOL, COVER

We have created a co-verification tool, CoVer, which provides two options for

reachability analysis and LTL property verification respectively.

Reachability analysis. Figure 6.7 illustrates the implementation for reachabil-

ity analysis. CoVer has two steps. First, the frontend automatically instruments

Driver code
Co-verification

SLAM

YES

NOinstrumentation
frontend

C program
Formal Device
Model (FDM)

SLIC rule

Figure 6.7: CoVer implementation for reachability analysis.

the driver with the formal device model to generate the verification model, a C

program. Static partial order reduction is applied during this step in order to

reduce function calls to the hardware instrumentation function, HWInstr. Sec-

ond, the SLAM engine checks the reachability property (in the form of a SLIC

rule) on the C program. As proven in Chapter 5, the reachability properties sat-

isfied/disatisfied on the verification model will also be satisfied/disatisfied on the

original device/driver model.

It is important to note that our approach is not restricted by the verification

engine, SLAM. Any verification engine that supports: (1) the verification of C

programs; (2) non-determinism; and (3) property specification languages similar

to SLIC, can be readily utilized in our co-verification approach.

160

LTL property verification. As illustrated in Figure 6.8, we have realized the

LTL checking algorithm for BPDS as well as the static partial order reduction

algorithm in our co-verification tool, CoVer. The implementation is based on the

Moped model checker [77]. CoVer takes three inputs: First, the LTL assertions and

Software LPDS model
Co-verification

YES

NO

instrumentation
frontend

Boolean program

LTL assertions

Hardware BA model

Büchi constraint

Model checker
based on Moped

LTL assumptions
+ LTL2BA

BA

+

Figure 6.8: CoVer implementation for LTL checking.

assumptions. Second, the software LPDS model specified using Boolean programs.

Third, the hardware BA model specified using Boolean programs with relative

atomicity.

There are three steps in verification: First, the LTL formulae are converted

into a BA using the LTL2BA tool [31]. Second, the software LPDS model is

instrumented with the hardware BA model to generate a Boolean program with

the Büchi constraint. Third, this Boolean program is verified for the LTL formulae

using the model checker implemented based on Moped. The static partial order

reduction is implemented in the second step, and the Moped model checker is

extended in order to support the BPDS loop constraint.

161

Chapter 7

EVALUATION

In practice, our approach has two phases: First, we need to formally specify the

HW/SW interface protocols, i.e., co-specification. Second, we can utilize the formal

models, as constructed in the co-specification process, in co-verification of driver

implementations. Since our specifications closely resemble the implementation

semantics of HW/SW interfaces, the formal models can be used, without any

modification, as the test harness in co-verification. When a formal model is used

as the test harness for a driver implementation, we refer to such a test harness as

a Formal Device Model (FDM), because it describes the device behaviors in the

view of the driver.

We applied our approach to four device/driver frameworks. One of the de-

vice/driver frameworks is still under development, while the other three have ex-

isted for many years. Following the mechanized process presented in Chapter 3, we

constructed four formal models from the English documents of the device/driver

frameworks. Although the quality of the English documents varies, the formal

models are specified under the same criteria. For example, hardware behaviors

visible to software should be clearly specified, and vice versa. We also applied au-

tomatic tools, such as CoVer, to validate our formal models. This is a significant

benefit of formal models, because they can be analyzed by automatic tools. In

total, there are fifteen specification issues in the English documents discovered

during our formal specification process. Such specification issues can mislead de-

velopment engineers and cause product failures. Given the fact that some of the

English documents have existed for many years and been revised several times, our

162

formalization approach is rather effective.

Co-verification is evaluated in reachability analysis and LTL checking respec-

tively. For reachability analysis, CoVer is able to co-verify driver implementations

with their FDMs. Both the driver implementations and the FDMs are directly used

without any modification. There are five Windows drivers developed for the four

device/driver frameworks: one Microsoft in-house driver, one Open Systems Re-

sources (OSR) sample driver published by OSR online [67], and three drivers pub-

lished in Microsoft Windows Driver Kit (WDK) as the sample drivers [59, 61, 63].

Except for the Microsoft in-house driver, which is a prototype currently under de-

velopment, all other drivers are fully functional and well tested; however, utilizing

our co-verification tool, CoVer, we have still discovered twelve real bugs. All of

these bugs, which could cause serious system failures including data loss, interrupt

storm, device hang, etc., were previously unknown to the driver developers. For

LTL checking, we have designed a synthetic BPDS template to generate BPDS

models with various complexities. The template mimics the common scenarios of

HW/SW interactions. The evaluation illustrates that our reduction algorithm is

very effective in both reachability analysis and LTL checking. The average reduc-

tion of the verification cost is 70% in time usage and 30% in memory usage.

7.1 CO-SPECIFICATION

As discussed in Chapter 3, the development process of a device/driver framework

contains three stages: design, development, and certification. We have applied our

approach to the first two stages.

First, for the design stage, we have applied our approach to the next generation

of a pervasively used industry standard. Our approach has led to the detection of

five issues in the draft English HW/SW interface document. One of the issues is a

spec-inconsistency in an algorithm pseudo-code that describes the hardware-side

interface protocol. This finding has triggered a discussion between two companies

163

who participated in the design of this HW/SW interface protocol. Our formal

model has 4781 lines of modelC code that covers about 277 pages of the English

document. Therefore, the Model-Doc ratio is 17.26, which indicates that the

draft English document is considerably elaborate compared with the other case

studies (see below). The Model-Doc ratio is an important criteria to compare

the formal model with its document. Specifically, Model-Doc is the ratio between

the size of the formal model and the size of the document portion that is actually

modeled.

Second, for the development stage, we have applied our approach to three long-

existing device/driver frameworks:

• the Sealevel PIO-24 digital I/O device/driver framework, a.k.a., PIO-24 [78];

• the Intel 8255x 10/100Mbps Ethernet controller device/driver framework,

a.k.a., Ethernet controller [39]; and

• the USB 2.0 device/driver framework, a.k.a., USB 2.0 [23, 57].

Our HW/SW interface formalization process (i.e., co-specification) has led to the

detection of ten issues in the English documents.

PIO-24 device/driver framework. We use two sets of tables to present the eval-

uation of our formalization process. Table 7.1 illustrates the overall statistics about

the formalization for the PIO-24 device/driver framework. The statistics are gath-

ered before and after the formalization respectively. We require the specification

engineer1 to give an estimation of the manual effort necessary for formalization,

so that we can compare how well interface documents with different complexities

can be handled by an engineer. We also take the specification engineer’s experi-

ence into consideration, where three areas of the experience may largely affect the

1The author is the specification engineer in this dissertation research.

164

Table 7.1: Formalization of the PIO-24 device/driver framework.

Gathered before the formalization process

HW/SW interface doc. (document) size (pages) 20

The portion of the doc. for the HW/SW interface protocol (pages) 10

The portion of the doc. that cannot be modeled (pages) 10

Specification engineer’s experience in driver development (years) 2

Specification engineer’s experience in hardware design (years) 1

Specification engineer’s experience in formal verification (years) 3

Specification engineer estimated manual effort (person-day) 7

Gathered after the formalization process

The actual manual effort (person-day) 3

Specification issues found in the English document 2

Size of the modelC code in formal model (lines) 773

Size of the comments in formal model (lines) 577

Model-Doc ratio as 773/10

(lines of the modelC code)/(pages of the modeled doc.) = 77.3

result of the formalization. Two specification issues have been discovered in the

HW/SW interface document for the PIO-24 device/driver framework: one spec-

inconsistency and one spec-incompleteness. Taking the spec-incompleteness issue

as an example, the document does not mention the default value of the interrupt

pending register (which is usually disabled by default in many English documents

for HW/SW interface specifications); therefore, we assign a non-deterministic ini-

tialization value to this register in our formal specification. Coincidentally, the

Windows driver of this device does not clear the interrupt pending register during

the driver initialization. This uninitialized register affects the driver’s interrupt

handling process, which can lead to data loss (see rule ProperISR2 in Table 7.7 for

165

Table 7.2: Formal model of the PIO-24 device/driver framework. (Com.: com-

ments, Doc.: document)

File name
of lines Doc.

Description
Com. Code pages

DIODefs.h 63 151 2 Data structures

DIO.c 210 192 1 Hardware transaction function

DIODrv.c 37 76 1 software-side protocol

Global∼.c 21 15 N/A Global variables for both

hardware and software models

DIORegs.c 146 270 3 Registers, HW/SW interface events

Environ∼.c 100 69 3 Simulate inputs to Port A, B, and C

more details about this driver bug). We consider this driver bug partially caused

by the spec-incompleteness issue, because the document should at least warn driver

developers that the interrupt pending register is not initialized by default.

Table 7.2 illustrates the detailed statistics about the formal model for the PIO-

24 HW/SW interface protocol. The formal model, as implemented in six files, has

577 lines of comments and 773 lines of modelC code. This corresponds to 10 pages

of the English document. In the form of comments, we have added references that

point to the corresponding document positions; therefore, the formal model can be

related back to the original document. The file “Global∼.c” defines all the global

variables that represent hardware and software states; therefore, we are not able

to determine the exact number of corresponding pages in the document.

Ethernet controller device/driver framework. The statistics about formal-

izing the Ethernet controller device/driver framework are presented in Table 7.3

and Table 7.4 respectively. Compared to the English document of the PIO-24

device/driver framework, the English document of Ethernet controller is more

166

Table 7.3: Formalization of the Ethernet controller device/driver framework.

Gathered before the formalization process

HW/SW interface doc. (document) size (pages) 175

The portion of the doc. for the HW/SW interface protocol (pages) 136

The portion of the doc. that cannot be modeled (pages) 39

Specification engineer’s experience in driver development (years) 2

Specification engineer’s experience in hardware design (years) 1

Specification engineer’s experience in formal verification (years) 3

Specification engineer estimated manual effort (person-day) 14

Gathered after the formalization process

The actual manual effort (person-day) 21

Specification issues found in the English document 6

Size of the modelC code in formal model (lines) 2370

Size of the comments in formal model (lines) 1446

Model-Doc ratio as 2370/136

(lines of the modelC code)/(pages of the modeled doc.) = 17.43

elaborate. This can be inferred from the major difference between their Model-

Doc ratios, where the Model-Doc ratio of PIO-24 is much higher. Because the

semantics of formal models closely resemble the HW/SW implementation seman-

tics, necessary details must be specified. Therefore, the size of formal models can

be considered as a standard measurement of the HW/SW interface complexities.

During our formalization process, we have detected six specification issues in the

Ethernet controller English document. One example of the issues is already illus-

trated in Figure 3.8. Given that this document has been published for seven years

and revised three times, we were surprised. We have also observed an interesting

difference between the manual effort estimations: it is clear that engineers have a

167

Table 7.4: Formal model of the Ethernet controller device/driver framework.

(Com.: comments, Doc.: document)

File name
of lines Doc.

Description
Com. Code pages

E100Defs.h 203 768 14 Data structures

E100.c 182 197 15 Hardware transaction function

E100Drv.c 48 182 9 software-side protocol

Global∼.c 20 15 N/A Global variables for both

hardware and software models

E100Regs.c 173 492 35 Registers, HW/SW interface events

Port.c 170 151 5 Handle software commands to

PORT interface registers

CmdUnit.c 410 329 26 Process the Command Unit (CU)

RcvUnit.c 133 134 25 Process the Receive Unit (RU)

Environ∼.c 107 102 7 Simulate the inputs to the device

better control over English documents that are less complicated.

USB 2.0 device/driver framework. The USB 2.0 device/driver framework is

different from the previous device/driver frameworks such as PIO-24 and Ethernet

controller in the sense that USB 2.0 devices use the USB bus instead of the PCI

bus. Therefore, their HW/SW interfaces are quite different. Nevertheless, our

approach has also been successfully applied to the USB 2.0 device/driver frame-

work. The statistics are presented in Table 7.5 and Table 7.6 respectively. The

formal model has 2304 lines of modelC code, which corresponds to 60 pages of

the USB 2.0 document [23] and 70 pages (by estimation) of the Microsoft online

document [57]. Therefore, the Model-Doc ratio is 17.72. We have discovered

two spec-incompleteness problems in the Microsoft online document. Windows

168

Table 7.5: Formalization of the USB 2.0 device/driver framework.

Gathered before the formalization process

HW/SW interface doc. (document) size (pages) 650 + 120

= 770

The portion of the doc. for the HW/SW interface protocol (pages) 60 + 70

= 130

The portion of the doc. that cannot be modeled (pages) 640

Specification engineer’s experience in driver development (years) 2

Specification engineer’s experience in hardware design (years) 1

Specification engineer’s experience in formal verification (years) 3

Specification engineer estimated manual effort (person-day) 16

Gathered after the formalization process

The actual manual effort (person-day) 20

Specification issues found in the English document 2

Size of the modelC code in formal model (lines) 2304

Size of the comments in formal model (lines) 1016

Model-Doc ratio as 2304/130

(lines of the modelC code)/(pages of the modeled doc.) = 17.72

provides a set of programming interfaces for operating USB devices. However,

some programming rules are not specified, which has confused driver developers.

We have discovered such programming problems in driver implementations using

CoVer. For example, one of the problems is caused by redundant function calls

from driver to stop a USB device2.

Because formal models are manually specified, it is impossible to guarantee that

2Note that such problems are not reported as bugs in co-verification statistics; however, they
can also be considered as bugs in a stricter standard.

169

Table 7.6: Formal model of the USB 2.0 device/driver framework. (Com.: com-

ments, Doc.: document)

File name
of lines Doc.

Description
Com. Code pages

USBDef.h 52 128 20 Data structures

USB.c 186 178 20 Hardware transaction function

USBDrv.c 112 140 20 software-side protocol

Global∼.c 9 8 N/A Global variables for both

hardware and software models

wdfintfs.c 393 1394 50 Registers, HW/SW interface events

device.c 244 445 15 USB device state machine

Environ∼.c 20 11 5 Simulate the inputs to USB devices

no error is made by the specification engineer. However, we are able to validate

our formal models using automatic tools. For example, a C compiler has helped

discover quite a few specification inconsistencies in our formal models, because

most inconsistencies fail the syntax/semantic checking right away. Furthermore,

CoVer has helped discover thirteen errors in our formal models. The errors are

mostly introduced by code copy-paste and misunderstandings of the English speci-

fications. In our approach, the ability to utilize automatic tools in formal HW/SW

interface specifications is a significant advantage over English specifications.

7.2 CO-VERIFICATION

Co-verification is evaluated in reachability analysis and LTL checking respectively,

where real driver programs are verified in reachability analysis and synthetic BPDS

models are used as the benchmark in LTL checking. All evaluation experiments run

on a Lenovo ThinkPad notebook with Dual Core 2.66GHz CPU and 4GB memory.

170

The timeout threshold is set as 3000 seconds for both reachability analysis and LTL

checking. For reachability analysis, the spaceout threshold is set as 2000MB, which

is enforced by the SLAM engine. For LTL checking, the spaceout threshold is not

explicitly specified, i.e., a maximum of 4000MB memory may be used.

7.2.1 Reachability Analysis

In reachability analysis, the properties to be verified can be classified into two

categories:

1. whether a driver callback function3 accesses the hardware interface registers

in correct ways, e.g., a command should not be issued when hardware is

busy;

2. whether a driver callback function can cause an out-of-synchronization be-

tween the driver and device. For example, we check if the return value of a

driver callback function correctly indicates the current hardware state.

We have applied CoVer to co-verification of a Microsoft in-house driver with

its FDM developed in co-specification. This in-house driver is a prototype with

the functionalities partially implemented. However, CoVer can still be applied to

analyze the implemented portion of the driver. As a result, two real bugs were

discovered. This is an advantage over runtime validation where most functional-

ities of the driver need to be implemented before any comprehensive test can be

conducted.

We have also applied CoVer to four fully functional Windows device drivers

with their FDMs:

• OSR PIO-24 driver [67];

3 Windows OS invokes predefined driver callback functions to service the I/O requests from
user applications.

171

• Microsoft Ethernet controller driver [61];

• OSR USB 2.0 OSRUSBFX2 driver [59]; and

• Microsoft USB 2.0 USBSAMP driver [63].

Because the source code of the drivers has been provided to public as samples

for years, we did not expect to find many bugs. However, utilizing CoVer, we

discovered ten real bugs. All of these bugs, which could cause serious system

failures including data loss, interrupt storm, device hang, etc., were previously

unknown to the driver developers.

PIO-24 driver by OSR. Table 7.7 presents the statistics on the verification

of the PIO-24 driver with its FDM. We discovered four bugs and proved two

Table 7.7: Statistics on the co-verification of the PIO-24 device/driver.

Size of the driver (# of lines) 1724

Size of the formal device model (# of lines) 1237

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0Entry

Driver and device will not go

out-of-synchronization when 391.3 293 214.3 181 Passed

starting.

DevD0Exit

Driver and device will not go

out-of-synchronization when 71.1 69 38.4 43 Passed

stopping.

IsrCallDpc
ISR will not queue DPC without

Timeout N/A 700.5 218 Failed
reading the hardware registers.

InvalidRead
Driver will not read any invalid

589.4 132 91.3 66 Failed
input data.

ProperISR1
ISR will clear device interrupt-

58.9 58 35.2 43 Failed
pending status before return.

ProperISR2
ISR will not acknowledge the

74.1 62 28.7 37 Failed
interrupt raised by other devices.

properties of the driver using CoVer. For example, the code excerpt in Figure 2.8

172

contains one bug, which violates the rule InvalidRead (illustrated in Figure 6.2)

and will cause the driver return invalid data to user applications. This “invalid

read” bug occurs when the ISR routine DioIsr interrupts the device driver control

routine DioEvtDeviceControl at P1, where the variables CurrentRequest and

AwaitingInt become inconsistent. DioIsr will not execute the if block at P2

because AwaitingInt is FALSE. Later the DPC routine DioDpc is requested at P3.

After both DioIsr and DioEvtDeviceControl have returned, DioDpc starts to

run. At P4, the data is read from PortAValueAInt which has never been written

in DioIsr; therefore, the data is invalid. However, DioIsr still sends the invalid

data back to user application with STATUS SUCCESS at P5.

Another serious bug (discovered using the rule ProperISR1) of this driver can

cause an interrupt storm. The design of the device allows interrupts being repeat-

edly generated in certain configuration; however the driver does not handle the

interrupts correctly which will cause interrupts being raised more frequently than

that can be consumed, i.e., interrupt storm. This bug also reveals a problem of

the device document. Since the assumption on device input is not well defined in

the document, our formal model has to simulate all possible input. On the other

hand, the driver fails to handle one of the possibilities. As a solution to fix this

bug, the driver can disable the interrupt in ISR first and re-enable it later after

interrupt processing is completed.

Ethernet controller driver by Microsoft. Table 7.8 presents the statistics

on the verification of the Intel 82557/82558 based Ethernet controller driver with

its FDM. We discovered three bugs and proved five properties of the driver using

CoVer. For example, CoVer helps discover a bug that violates the rule DevD0Entry

and reports an error trace where the callback function EvtDeviceD0Entry returns

TRUE even if the driver fails to initialize the device correctly. This is a direct

violation of Windows device driver programming standards and will cause the

173

Table 7.8: Statistics on the co-verification of the Ethernet controller device/driver.

Size of the driver (# of lines) 14406

Size of the device formal model (# of lines) 3586

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0Entry

Driver and device will not go

out-of-synchronization when 1328.3 758 367.1 182 Failed

starting.

DevD0Exit

Driver and device will not go

out-of-synchronization when Timeout N/A 206.6 143 Failed

stopping.

IsrCallDpc

ISR will not queue DPC

64.1 99 39.9 79 Passedwithout reading the

hardware registers.

ProperISR1
ISR will clear device interrupt-

48.9 59 32.6 52 Passed
pending status before return.

ProperISR2
ISR will not acknowledge the

779.3 291 407.4 199 Passed
interrupt raised by other devices.

DoubleCUC
Driver will not issue a command

Timeout N/A 602.4 238 Failed
while the command unit is busy.

DoubleRUC
Driver will not issue a command

N/A Spaceout 1797.3 231 Passed
while the receiving unit is busy.

ProperReset
Driver uses a correct sequence

Timeout N/A 86.9 71 Passed
to reset the device.

device to become unusable without the OS being notified. The error trace also

illustrates that the driver continues its attempts to initialize the device even after

the previous device operations have failed. This may cause the device to become

permanently unaccessible.

Another bug that violates the rule DoubleCUC is illustrated in Figure 3.16b,

where the function D100IssueScbCommand waits before issuing a new command

only if the function parameter WaitForScb is TRUE. This kind of design is due to

a performance optimization. Since there are some program locations where the

driver knows that the device command register is free, it is unnecessary to check

174

Table 7.9: Statistics on the co-verification of the USB 2.0 OSRUSBFX2 de-

vice/driver.
Size of the driver (# of lines) 2892

Size of the device formal model (# of lines) 3068

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

StopIO
I/O on interrupt pipe should be

Timeout N/A 2755.6 340 Passed
stopped during powering down

ResetDevice

All I/O on all pipes should be

318.0 150 126.2 82 Failedstopped before resetting

the device.

ResetPipe
Driver must stop the pipe before

0.9 28 0.6 28 Passed
resetting it.

DevIORead
A read request should fail if the

221.4 133 54.6 60 Passed
device is in an invalid state.

DevIOWrite
A write request should fail if the

200.3 132 87.6 71 Passed
device is in an invalid state.

the register before issuing a new command. However, CoVer has demonstrated that

in some program execution path, a command is issued by the driver even when

the device command register is busy. This is a typical example of performance

optimization creating bugs. Since optimized code is often more complex than the

original code, it very important to use automatic tools, such as CoVer, in order to

ensure the correctness of the optimization.

USB 2.0 device drivers by Microsoft and OSR. Table 7.9 presents the statis-

tics on co-verification of the OSR OSRUSBFX2 driver implementation. We discov-

ered one real bug in this driver using CoVer. The SLIC rule ResetDevice checks

that I/O on all pipes should be stopped before a resetting command; however, the

driver fails to follow this rule in certain execution paths. As for the SLIC rule

ResetPipe, the verification cost is very low. Because CoVer (actually, SLAM)

decides that the error routine (i.e., function that contains the reachability label)

175

Table 7.10: Statistics on the co-verification of the USB 2.0 USBSAMP de-

vice/driver.
Size of the driver (# of lines) 3969

Size of the device formal model (# of lines) 3068

No reduction Reduction

Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

StopIO
I/O on interrupt pipe should be

105.8 81 98.2 72 Passed
stopped during powering down

ResetDevice
All I/O on all pipes should be

200.1 100 110.3 65 Failed
stopped before resetting

the device.

ResetPipe
Driver must stop the pipe before

54.2 51 31.6 40 Failed
resetting it.

DevIORead
A read request should fail if the

70.1 63 38.4 48 Passed
device is in an invalid state.

DevIOWrite
A write request should fail if the

68.5 63 34.7 48 Passed
device is in an invalid state.

is not reachable in the call graph of the instrumented program, verification stops

with a rule pass right after compilation; therefore, no model checking is necessary

for ResetPipe. Table 7.10 presents the statistics on co-verification of the Microsoft

USBSAMP driver implementation. We discovered two real bugs in this driver us-

ing CoVer. Other than ResetDevice, the SLIC rule ResetPipe is also violated

by USBSAMP driver, where the driver does not stop the I/O on a pipe before

resetting. Such bug may cause data loss in I/O operations. Note that verification

of the OSRUSBFX2 driver costs much more time and memory than that of the

USBSAMP driver, because OSRUSBFX2 implements iterations on operating mul-

tiple USB device pipes. These iterations need to be fully unrolled in verification.

Effectiveness of reduction. We have also compared the differences of co-

verification performance on whether our reduction algorithm is applied. It is clear

176

that our reduction algorithm can significantly scale co-verification, especially when

the target system is complex. For example, when no reduction is applied, there is

only one non-useful result in Table 7.7, however half of the verification cannot com-

plete in Table 7.8. This is because the Ethernet controller device/driver have more

comprehensive functionalities and implementation than the PIO-24 device/driver.

7.2.2 LTL Checking

We designed a synthetic BPDS template BPDS<N> for N > 0 to evaluate our

algorithms. As illustrated in Figure 7.1, this template is similar to the BPDS

model in Figure 6.5. The major difference is between the models of P. BPDS<N>

has two function templates level<N> and gcd<N> for P, where each of the function

templates has N instances. For 0 < i ≤ N , level<i> calls gcd<i> which is the ith

instance of gcd<N> that computes the greatest common divisor (implementation

of gcd<N> is omitted). For 0 < j < N , the instance of <stmt> in the body of the

function level<j> is replaced by a call to level<j+1>. The instance of <stmt>

in the body of level<N> is replaced by skip. The design of BPDS<N> mimics

the common scenarios in co-verification: since hardware and software are mostly

asynchronous, there are many software statements independent with hardware

transitions.

Table 7.11 presents the statistics for the verification of five LTL formulae on

the BPDS models generated from BPDS<N>, where some of the LTL formulae are

discussed as the examples in Chapter 6.

Table 7.12 presents the statistics for the verification of BPDS models generated

from BPDS Slow<N>, a template that differs from BPDS<N> only in the hardware

model. BPDS Slow<N> uses the hardware model illustrated in Figure 6.6. As dis-

cussed in Chapter 6, verification of the properties A1 and A2 will fail on the BPDS

models generated from BPDS Slow<N>, since the hardware cannot guarantee an im-

mediate response to the software reset command. However, by assuming A2, the

177

decl c0, c1, c2, r, s; // hardware registers

decl g; // software global variable

void main() begin

decl v0,v1,v2 := 1,1,1;

reset();

v1,v0 := status();

while(!v1|v0) do v1, v0 := status(); od

// call the first level

level<1>();

v2,v1,v0 := rd reg();

while(!v2) do v2,v1,v0 := rd reg(); od

if (v1|v0) then error: skip; fi

exit: return;

end

void level<i>()

begin

decl v0,v1,v2,v3,v4,v5;

v2,v1,v0 := rd reg();

v5,v4,v3 := rd reg();

v2,v1,v0 :=

gcd<i>(v5,v4,v3,v2,v1,v0);

if(*) then reset(); fi

if(g) then

g := (v3 != v0);

<stmt>;

fi

end

Figure 7.1: The BPDS template BPDS<N> for evaluation.

verification of A1 should pass. Obviously, the verification of this property, denoted

by ϕ (including both A1 and A2), costs more time and memory compared to other

properties, because ϕ is more complex than other properties.

We can infer from the two tables that our reduction algorithm is very effective

in reducing the verification cost. For example, without the reduction, verification

of the property ϕ gets a spaceout failure for N = 2000, i.e., CoVer fails to allocate

more memory from the Operating System. The statistics suggest that our reduc-

tion algorithm can reduce the verification cost by 80% in time usage and 35% in

memory usage on average.

178

Table 7.11: Statistics on the LTL checking of BPDS<N>. (NoR.: No Reduction.

Red.: Reduction)

LTL Property
N

500 1000 2000

F exit
NoR. 177.9sec/49.1MB 606.8sec/98.1MB 1951.5sec/196.3MB

Red. 55.6sec/27.8MB 100.9sec/55.6MB 231.5sec/111.2MB

G(reset cmd → NoR. 100.8sec/51.1MB 439.0sec/102.1MB 1742.1sec/204.3MB

(F reset act)) Red. 19.2sec/31.6MB 37.2sec/63.2MB 115.0sec/126.5MB

F level N
NoR. 165.3sec/49.1MB 524.1sec/98.1MB 1934.1sec/196.3MB

Red. 52.9sec/27.8MB 99.8sec/55.6MB 230.7sec/111.2MB

G !level N
NoR. 94.8sec/43.4MB 404.0sec/86.2MB 1728.9sec/172.5MB

Red. 10.7sec/25.0MB 22.3sec/49.9MB 84.5sec/99.9MB

G !error
NoR. 96.6sec/42.4MB 402.6sec/84.8MB 1719.9sec/169.8MB

Red. 10.1sec/24.8MB 21.2sec/49.2MB 81.5sec/98.5MB

7.3 SUMMARY

Summary of the bug discovery by co-verification. Consider the twelve bugs

discovered using co-verification in Windows driver implementations:

• All the bugs involve interactions between drivers and devices.

• One bug happens when a driver does not initialize its device correctly, i.e.,

a default device state is not considered during the initialization process.

• Three bugs happen when devices interrupt their drivers. It is a restricted

version of concurrency checking.

• Four bugs are due to the out-of-synchronization between drivers and devices.

For example, a driver issues a command while its device is busy.

179

Table 7.12: Statistics on the LTL checking of BPDS Slow<N> which uses the hard-

ware model of Figure 6.6. (NoR.: No Reduction. Red.: Reduction)

LTL Property
N

500 1000 2000

A1:F exit
NoR. 186.5sec/49.1MB 576.4sec/98.1MB 1913.5sec/196.3MB

Red. 38.1sec/27.8MB 98.5sec/55.6MB 207.1sec/111.2MB

A2:G(reset cmd NoR. 143.1sec/61.0MB 587.1sec/122.0MB 1778.7sec/203.5MB

→ (F reset act)) Red. 28.3sec/35.5MB 64.3sec/71.0MB 164.1sec/142.0MB

A1 using A2 as NoR. 1264.0sec/223.4MB 3750.3sec/446.7MB N/A/spaceout

the assumption Red. 255.8sec/109.5MB 565.6sec/218.9MB 1260.8sec/437.7MB

F level N
NoR. 181.9sec/49.1MB 588.6sec/98.1MB 1908.4sec/196.3MB

Red. 42.2sec/27.8MB 90.8sec/55.6MB 198.6sec/111.2MB

G !level N
NoR. 96.7sec/43.4MB 414.6sec/86.2MB 1679.7sec/172.5MB

Red. 12.1sec/25.0MB 26.9sec/49.9MB 91.5sec/99.9MB

G !error
NoR. 95.0sec/42.5MB 414.2sec/84.8MB 1672.6sec/169.8MB

Red. 11.5sec/24.8MB 25.3sec/49.2MB 88.9sec/98.5MB

• Four bugs happen when drivers mishandle their device failures. For example,

a driver returns SUCCESS when its device actually fails.

Summary of evaluation. We have five observations through evaluation:

• First, our co-specification approach is very effective in detecting the specifica-

tion issues of English documents. We have discovered fifteen specification

issues in four English documents, where some of the issues have existed for

many years.

• Second, the formal models developed in co-specification can precisely capture

the HW/SW interface behaviors regardless of the English documents’ quality.

180

• Third, the correctness of the formal models can be easily analyzed by auto-

matic tools.

• Fourth, our co-verification algorithm is effective in discovering sophisticated

bugs of HW/SW interface implementations in driver programs. Utilizing

CoVer, we have discovered twelve real bugs in five Windows driver im-

plementations. All these bugs are previously unknown to driver developers,

even after comprehensive testing.

• Fifth, our reduction algorithm is efficient in alleviating the verification cost.

For both reachability analysis and LTL checking, the average reduction of

the verification cost is 70% in time usage and 30% in memory usage.

181

Chapter 8

CONCLUSION AND FUTURE RESEARCH

8.1 CONCLUSION

HW/SW interfaces exist in all kinds of computer systems ranging from embedded

systems to personal computers. These systems are often expected to be reliable.

However, the intrinsic complexity in HW/SW interface designs have always been

a challenge to this goal. It is challenging to specify HW/SW interface protocols

in a manner that is clear and precise to both hardware and software engineers;

it is challenging to synthesize a unifying formal model for HW/SW interfaces,

since hardware and software have different implementation semantics; it is also

challenging to develop effective tools for HW/SW co-verification, where the design

features of HW/SW interfaces are well exploited.

Throughout this dissertation, we have demonstrated that co-verification of

HW/SW interface protocols can be effectively achieved via formal specification

and model checking.

Co-specification. It is possible to formally specify HW/SW interface protocols

in such a way that closely resembles the implementation semantics of hardware

and software. Our specification language, modelC, is designed based on the C

semantics with three restrictions to achieve finite state and two extensions to sup-

port non-determinism and relative atomicity. The hardware behaviors are specified

using TLM, a common approach in hardware specification. In order to specify a

hardware-side interface protocol in modelC, one should model the hardware states

182

using global variables; and describe the hardware behaviors using hardware trans-

action functions. A hardware transaction function is an atomic C function that

describes the transition rule with respect to the state change of (hardware) global

variables. The concurrency in a hardware design is modeled via interleaved exe-

cutions of hardware transaction functions and non-deterministic choices made on

the control flow of each hardware transaction function. On the other hand, it is

straightforward to specify a software-side interface protocol using modelC. Dif-

ferent from hardware, software states are maintained by both (software) global

variables and local variables. In software specification, an atomic program state-

ment describes a set of software state transitions.

Except for the purpose of co-verification, formal models constructed by co-

specification can also be utilized in the development process of devices and drivers,

as the formal HW/SW interface specifications. Compared with English specifica-

tions, formal models are clear, precise, and easy for development engineers to

understand. Furthermore, formal models can serve as the basis of a uniform plat-

form for co-verification, co-simulation, conformance testing, etc. Section 8.2 will

discuss how to apply the formal models to co-simulation and conformance testing

respectively.

Co-specification is very effective to help identify specification issues of HW/SW

interface protocols. As discussed in Chapter 7, the formalization process of four

device/driver interface protocols has led to the detection of fifteen specification

issues, given the fact that some of the specifications have existed as the industry

standards for many years.

Co-verification model. BPDS is a suitable formal model for HW/SW interfaces.

A BPDS model is the Cartesian product of a BA and an LPDS, where BA is a

suitable representation for hardware which is finite state; and LPDS is a suitable

representation for software which is often infinite state. The input alphabets of BA

183

and LPDS are induced on the states of each other, so that BA transitions and LPDS

rules can be combined into BPDS rules. BPDS has a synchronous execution mode,

i.e., both the BA and LPDS must transition at the same time in order to make one

BPDS transition. In synchronous execution mode, it is straightforward to model

the situation when hardware and software transition simultaneously. However,

they may also be interleaving, which is modeled by introducing self-loop transitions

to both BA and LPDS.

Co-verification algorithms. The verification problem of BPDS for either safety

properties or liveness properties is solvable in cubic time and space with respect

to the size of the BPDS model and the property to be checked. For reachability

analysis (i.e., safety properties only), BPDS is converted into PDS so that existing

model checkers for PDS can be readily utilized to solve the problem. For LTL

checking (including safety properties and liveness properties), an LTL property is

first negated and then represented as a BA. The BA is combined with BPDS in

such a way that the BA monitors the state transitions of the BPDS. The LTL

property fails if the BA has an accepting run on the BPDS; otherwise, the LTL

property passes.

The verification cost can be greatly alleviated via reducing the size of BPDS.

Since hardware and software are mostly asynchronous, their transition orders are

often unnecessary to be explored during verification. Therefore, many BPDS rules

can be pruned in the compilation phrase while constructing a BPDS from a BA

and an LPDS. Such reduction is very useful in practice, since it does not require

any modification to the model checker. Therefore, model checkers with industry

strength, such as SLAM, can be readily utilized. Interestingly, our reduction al-

gorithm is also useful as the formal foundation for those reductions applied with

runtime techniques. For example, the reduction method used in Device Driver

Tester (DDT) [46] is actually one kind of static partial order reduction for HW/SW

184

interfaces. The motivation and correctness of such reduction have been thoroughly

discussed in this dissertation.

Our co-verification tool, CoVer, has been applied to five Windows drivers with

their Formal Device Models (FDMs). Some of the drivers are fully functional,

well tested, and used as sample drivers for many years. However, utilizing CoVer,

we have still discovered real bugs in each of the drivers and the total bug count

is twelve. All of these bugs, which could cause serious system failures including

data loss, interrupt storm, device hang, etc., were previously unknown to the

driver developers. Furthermore, evaluation suggests that the average reduction of

verification cost is 70% in time usage and 30% in memory usage.

8.2 FUTURE RESEARCH

This dissertation has presented a useful approach to improve the reliability of

HW/SW interface implementations; however, it is only the tip of the iceberg.

There are other interesting research that needs to be explored.

8.2.1 Co-verification of Liveness Properties on Driver Code

We demonstrate the verification of liveness properties on BPDS models specified

using Boolean programs. In practice, it is desired that co-verification of liveness

properties can be applied to driver implementations. For example, developers may

want to know whether their drivers may hang on device operations. Co-verification

of liveness properties on driver implementations can be realized based on liveness

verification engines for C programs, such as Terminator [24, 25].

As illustrated in Figure 8.1, given a liveness property, a driver implementation,

and a FDM, we can implement a co-verification frontend that converts the input

into a C program with some liveness constraints, where the idea of the conversion

is presented in Algorithm 5.8. Therefore, the verification problem can be solved

185

Driver code Terminator

YES

NOFormal Device
Model (FDM)

Liveness
property

Co-verification
instrumentation

frontend

C program
with liveness

constraints

Figure 8.1: Co-verification of liveness properties on driver implementations.

by Terminator.

8.2.2 Co-simulation

Although we can discover sophisticated bugs using co-verification, co-simulation,

i.e., simulating a driver with its device model, is also highly desired in practice.

Simulation can help discover shallow bugs with a low cost and is often used to

evaluate the efficiency of implementations.

As illustrated in Figure 8.2, a FDM constructed by co-specification can also

be used in co-simulation, where the FDM interface is a thin layer that adapts

OS ecosystem

Driver

I/O

Lower level
driver statck Symbolic Execution

Environment (SEE)

Formal Device
Model (FDM)

FDM interface

SEE interface

. . .

. . .

.

Figure 8.2: Co-simulation using formal device model.

the interface of the FDM to simulation environment. One major challenge to

186

co-simulation is how to support relative atomicity and non-determinism without

changing the FDM. We need to implement two modules: a Symbolic Execution

Environment (SEE) and a SEE interface.

Symbolic Execution Environment executes a FDM via the FDM interface.

Note that non-determinism can be easily supported by symbolic execution.

SEE interface has three functions:

• First, it intercepts the communications between the driver and its underline

stack in order to reroute the I/O to SEE.

• Second, it ensures the relative atomicity. For example, hardware transaction

functions should be atomic to each other; and some driver operations such

as kernel API calls should be atomic to hardware transaction functions.

• Third, it serves as the boundary between symbolic execution and concrete

execution, i.e., how a symbolic value can be passed to concrete system en-

vironment; and how a concrete system call can be translated into symbolic

values.

Although related work can be found in DDT [46] with a technique called selec-

tive symbolic execution [18], the challenges are still open on how to simulate a

comprehensive FDM (instead of a shallow symbolic device model used in DDT);

how to ensure that the interface states of the FDM are always consistent in the

view of the driver, which is not guaranteed by selective symbolic execution; and

how to optimize the simulation since symbolic execution also suffers from the state

explosion problem.

8.2.3 Co-monitoring

An approach to protocol conformance validation is monitoring, where the behav-

iors of a system is observed and compared to the golden model that describes

187

the protocol. With respect to HW/SW interfaces, the behaviors of a device and

its driver should be monitored together, i.e., co-monitoring. The formal model

developed in co-specification can be used as the golden model for co-monitoring.

Figure 8.3 illustrates the framework of co-monitoring, which is different from

co-simulation in four aspects:

OS ecosystem

Driver

I/O

Lower level
driver statck Symbolic Execution

Environment (SEE)

Formal Device
Model (FDM)

FDM interface

CoM interface

. . .

. . .

.

Hardware Abstraction Layer (HAL)

Software

Hardware

Device

. . .

Upper level device stack

Figure 8.3: Co-monitoring using formal device model.

• First, there is a real hardware device interacting with the driver.

• Second, it only monitors the communications between the driver and the

lower level driver stack; therefore, the communications should be affected as

little as possible.

• Third, it symbolically executes the FDM according to the monitored com-

munications, which makes the FDM a mirror of the device with respect to

their states.

188

• Fourth, it raises an alarm when a protocol violation is detected.

One key part of co-monitoring is the CoM (Co-Monitoring) interface, which serves

three functions:

• First, it monitors the communications between the driver and its underline

stack in order to constrain the symbolic execution of the FDM.

• Second, it ensures the relative atomicity inside the FDM, i.e., hardware trans-

action functions should be atomic to each other.

• Third, it monitors the execution of the FDM and raises an alarm if the

FDM’s state indicates a protocol violation by either the driver or the device.

Essentially, co-monitoring does two things: deduces the device’s states based on

the monitored communications; and raises an alarm if a violation is detected by

analyzing the FDM’s states with the communications.

8.2.4 Formal-model-guided Automatic Test Case Generation

It is a common practice that a higher level design, a.k.a., a golden model, is

developed before a system is actually implemented. Such a golden model is very

useful to evaluate the correctness and efficiency of the design. After the system is

implemented, it is also desired that the golden model can be used to guide the test

case generation.

As illustrated in Figure 8.4, we can utilize a FDM as the golden model to

generated test cases for its hardware device. There are three steps for automatic

test case generation:

• First, it utilizes symbolic path exploring tools such as KLEE [17] to generate

path constraints for the FDM. Path constraints describe the condition that

must hold on execution of a path.

189

OS ecosystem
Test Driver

Lower level
driver statck

Symbolic Path
Explorer (SPE)

Formal Device
Model (FDM)

FDM interface

. . .

.

Hardware Abstraction Layer (HAL)

Software

Hardware

Device

. . .

Upper level device stack

a test harness for
device()

Path contraint solver

Test code generator
+

path contraints

test code

Figure 8.4: Automatic test case generation based on formal device model.

• Second, it implements a path constraint solver, which, given a path con-

straint, generates concrete input to the FDM in order to execute the path.

It also implements a test code generator, which generates a test harness using

the concrete input.

• Third, it loads the test harness, as a driver of the device, into the driver

stack; therefore, automatic testing is conducted as if a driver operates its

device.

Following this approach, test cases can be generated automatically and the device

functionality can be covered by these test cases in a low cost, because the device

is logically similar to its FDM and the symbolic path explorer often can generate

path constraints in such a way that guarantees a high path coverage on the FDM.

This approach can also be combined with co-monitoring; therefore, any protocol

violation by the device can be automatically detected during testing.

190

REFERENCES

[1] Accellera. Property Specification Language – Reference Manual, 1.1 edition,

June 9 2004.

[2] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic

verification of embedded systems. IEEE Transactions on Software Engineering

(TSE), 22(3):181–201, March 1996.

[3] Felice Balarin, Harry Hsieh, Attila Jurecska, Luciano Lavagno, and Alberto L.

Sangiovanni-Vincentelli. Formal verification of embedded systems based on

CFSM networks. In Proceedings of the 33st Design Automation Conference

(DAC), pages 568–571, New York, NY, USA, 1996. ACM.

[4] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichten-

berg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah

Ustuner. Thorough static analysis of device drivers. In Proceedings of the

1st ACM SIGOPS/EuroSys European Conference on Computer Systems (Eu-

roSys), pages 73–85, New York, NY, USA, April 18-21 2006. ACM.

[5] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.

Automatic predicate abstraction of C programs. In Proceedings of the 2001

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), pages 203–213, New York, NY, USA, June 20-22 2001.

ACM.

[6] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for

boolean programs. In Proceedings of the 7th international SPIN conference on

191

Model checking software, volume 1885 of Lecture Notes in Computer Science,

pages 113–130. Springer, August 30 - September 1 2000.

[7] Thomas Ball and Sriram K. Rajamani. Boolean programs: A model and

process for software analysis. Technical Report MSR-TR-2000-14, Microsoft

Research, Microsoft Corporation, One Microsoft Way Redmond, WA 98052,

February 2000.

[8] Thomas Ball and Sriram K. Rajamani. Generating abstract explanations of

spurious counterexamples in C programs. Technical Report MSR-TR-2002-09,

Microsoft Research, January 2002.

[9] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system

software via static analysis. In Proceedings of the 29th SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), pages 1–3, New

York, NY, USA, January 16-18 2002. ACM.

[10] Thomas Ball and Sriram K. Rajamani. SLIC: a Specification Language for

Interface Checking (of C). Technical Report MSR-TR-2001-21, Microsoft Re-

search, Microsoft Corporation, One Microsoft Way Redmond, WA 98052, Jan-

uary 2002.

[11] David Becker, Raj K. Singh, and Stephen G. Tell. An engineering environ-

ment for hardware/software co-simulation. In Proceedings of the 29th Design

Automation Conference (DAC), pages 129–134, Los Alamitos, CA, USA, June

8-12 1992. IEEE Computer Society.

[12] Berkeley. Ptolemy project. http://ptolemy.eecs.berkeley.edu/index.htm, Oc-

tober 2010.

[13] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Ru-

pak Majumdar. The BLAST query language for software verification. In

192

Proceedings of the 11th International Static Analysis Symposium (SAS), vol-

ume 3148 of Lecture Notes in Computer Science, pages 2–18. Springer, August

26-28 2004.

[14] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The

software model checker BLAST. International Journal on Software Tools for

Technology Transfer (STTT), 9(5-6):505–525, September 2007.

[15] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of

pushdown automata: Application to model-checking. In Proceedings of the 8th

International Conference on Concurrency Theory (CONCUR), volume 1243

of Lecture Notes in Computer Science, pages 135–150. Springer, July 1-4 1997.

[16] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, August 1986.

[17] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and

automatic generation of high-coverage tests for complex systems programs. In

Proceedings of the 8th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pages 209–224, Berkeley, CA, USA, December 8-10

2008. USENIX Association.

[18] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. Se-

lective symbolic execution. In Proceedings of the 5th Workshop on Hot Topics

in System Dependability (HotDep), June 29 2009.

[19] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson En-

gler. An empirical study of operating systems errors. In Proceedings of the

eighteenth ACM symposium on Operating systems principles (SOSP), pages

73–88, New York, NY, USA, October 21-24 2001. ACM.

193

[20] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking.

Journal of the ACM (JACM), 50(5):752–794, September 2003.

[21] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-

nization skeletons using branching-time temporal logic. In Proceedings of Logic

of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71,

London, UK, May 1981. Springer.

[22] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.

MIT Press, Cambridge, MA, USA, 1999.

[23] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips. Uni-

versal Serial Bus Specification, 2.0 edition, April 27 2000.

[24] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and

Moshe Y. Vardi. Proving that programs eventually do something good. In

Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), pages 265–276, New York, NY, USA,

January 17-19 2007. ACM.

[25] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs

for systems code. In Proceedings of the 2006 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 415–426,

New York, NY, USA, June 11-14 2006. ACM.

[26] Luis Alejandro Cortes, Petru Eles, and Zebo Peng. Formal coverification of

embedded systems using model checking. In Proceedings of the 26th EU-

ROMICRO Conference, pages 1106–1113, Washington, DC, USA, September

5-7 2000. IEEE Computer Society.

194

[27] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceed-

ings of the Joint 8th European Software Engineering Conference (ESEC) and

9th ACM SIGSOFT Symposium on the Foundations of Software Engineering

(FSE), pages 109–120, New York, NY, USA, September 10-14 2001. ACM.

[28] David A. Duffy. Principles of automated theorem proving. John Wiley & Sons,

Inc., New York, NY, USA, 1991.

[29] Eclipse Foundation. Eclipse. http://www.eclipse.org, October 2010.

[30] Alessandro Forin, Behnam Neekzad, and Nathaniel L. Lynch. Giano: The

two-headed system simulator. Technical Report MSR-TR-2006-130, Microsoft

Research, September 2006.

[31] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation.

In Proceedings of the 13th International Conference on Computer Aided Ver-

ification (CAV), volume 2102 of Lecture Notes in Computer Science, pages

53–65, London, UK, July 18-22 2001. Springer.

[32] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tar-

rodaychik, and O. Yamamo. A hardware-software co-simulator for embed-

ded system design and debugging. In Proceedings of Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 155–164, New York, NY,

USA, August 29 - September 1 1995. ACM.

[33] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems - An Approach to the State-Explosion Problem. PhD thesis, Univer-

sity of Liege, November 1994.

[34] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with

PVS. In Proceedings of the 9th International Conference on Computer Aided

195

Verification (CAV), volume 1254 of Lecture Notes in Computer Science, pages

72–83, London, UK, June 22-25 1997. Springer.

[35] Daniel Groβe, Ulrich Kühne, and Rolf Drechsler. HW/SW co-verification of

embedded systems using bounded model checking. In Proceedings of ACM

Great Lakes Symposium on VLSI (GLSVLSI), pages 43–48, New York, NY,

USA, April 30 - May 1 2006. ACM.

[36] Rajesh Gupta, Claudionor Coelho, and Giovanni De Micheli. Synthesis

and simulation of digital systems containing interacting hardware and soft-

ware components. In Proceedings of the 29th Design Automation Conference

(DAC), pages 225–230, Los Alamitos, CA, USA, June 8-12 1992. IEEE Com-

puter Society.

[37] Andreas Hoffmann, Tim Kogel, and Heinrich Meyr. A framework for fast

hardware-software co-simulation. In Proceedings of the Conference on Design,

Automation and Test in Europe (DATE), pages 760–765, Piscataway, NJ,

USA, March 12 - 16 2001. IEEE Press.

[38] IEEE. IEEE Standard for Verilog (IEEE Std 1364-2005). IEEE, 2005.

[39] Intel. Intel 8255x 10/100 Mbps Ethernet Controller Family – Open Source

Software Developer Manual, 1.3 edition, January 2006.

[40] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-

Aided Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA,

USA, 2000.

[41] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware

design: a survey. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 4(2):123–193, April 1999.

196

[42] Daniel Kroening and Natasha Sharygina. Formal verification of systemc

by automatic hardware/software partitioning. In Proceedings of the 2nd

ACM/IEEE International Conference on Formal Methods and Models for Co-

Design (MEMOCODE), pages 101–110, Washington, DC, USA, July 11-14

2005. IEEE Computer Society.

[43] Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes:

The Automata-Theoretic Approach. Princeton University Press, Princeton,

New Jersey, USA, 1994.

[44] Robert P. Kurshan, Vladdimir Levin, Marius Minea, Doron Peled, and Hüsnü

Yenigün. Static partial order reduction. In Proceedings of the 4th International

Conference on Tools and Algorithms for Construction and Analysis of Systems

(TACAS), volume 1384 of Lecture Notes in Computer Science, pages 345–357,

London, UK, March 28 - April 4 1998. Springer.

[45] Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron Peled, and Hüsnü

Yenigün. Combining software and hardware verification techniques. Formal

Methods in System Design (FMSD), 21(3):251–280, November 2002.

[46] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source binary

device drivers with DDT. In Proceedings of the 2010 USENIX annual technical

conference (USENIXATC), pages 12–12, Berkeley, CA, USA, June 22C25

2010. USENIX Association.

[47] Juncao Li, Nicholas T. Pilkington, Fei Xie, and Qiang Liu. Embedded ar-

chitecture description language. Journal of Systems and Software (JSS),

83(2):235–252, February 2010.

[48] Juncao Li, Xiuli Sun, Fei Xie, and Xiaoyu Song. Component-based abstrac-

tion and refinement. In Proceedings of the 10th International Conference on

197

Software Reuse (ICSR), volume 5030 of Lecture Notes in Computer Science,

pages 39–51, Berlin, Heidelberg, May 25-29 2008. Springer.

[49] Juncao Li, Fei Xie, Thomas Ball, and Vladimir Levin. Efficient reachability

analysis of Büchi pushdown systems for hardware/software co-verification. In

Proceedings of the 22nd International Conference on Computer Aided Ver-

ification (CAV), volume 6174 of Lecture Notes in Computer Science, pages

339–353. Springer, July 15-19 2010.

[50] Juncao Li, Fei Xie, Thomas Ball, Vladimir Levin, and Con McGarvey. An

automata-theoretic approach to hardware/software co-verification. In Pro-

ceedings of the 13th International Conference on Fundamental Approaches to

Software Engineering (FASE), volume 6013 of Lecture Notes in Computer

Science, pages 248–262. Springer, March 20-28 2010.

[51] Juncao Li, Fei Xie, and Huaiyu Liu. Guiding component-based hard-

ware/software co-verification with patterns. In Proceedings of the 33rd EU-

ROMICRO Conference on Software Engineering and Advanced Applications

(EUROMICRO-SEAA), pages 67–74, Washington, DC, USA, August 28-31

2007. IEEE Computer Society.

[52] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for

distributed algorithms. In Proceedings of the 6th Annual ACM Symposium on

Principles of Distributed Computing (PODC), pages 137–151, New York, NY,

USA, August 10-12 1987. ACM.

[53] Kenneth L. McMillan. Symbolic Model-Checking: an approach to the state

explosion problem. PhD thesis, Carnegie Mellon University, May 1992.

[54] Kenneth L. McMillan. The SMV System. Carnegie Mellon University, Novem-

ber 6 2000.

198

[55] Mentor Graphics. Seamless. http://www.mentor.com, October 2010.

[56] Microsoft. Device simulation framework design guide. MSDN:

http://msdn.microsoft.com/en-us/library/ff538293.aspx, October 2010.

[57] Microsoft. Framework USB reference. MSDN: http://msdn.microsoft.com/en-

us/library/ff543092(VS.85).aspx, October 2010.

[58] Microsoft. Microsoft visual studio. http://www.microsoft.com/visualstudio/en-

us/default.mspx, October 2010.

[59] Microsoft. OSRUSBFX2: sample WDF driver for USB 2.0 devices.

MSDN: http://msdn.microsoft.com/en-us/library/ff544368(VS.85).aspx, Oc-

tober 2010.

[60] Microsoft. Programming techniques for framework-based drivers. MSDN:

http://msdn.microsoft.com/en-us/library/ff544546.aspx, October 2010.

[61] Microsoft. Sample WDF driver for Intel 8255x 10/100 Mbps Ethernet con-

troller. MSDN: http://msdn.microsoft.com/en-us/library/ff544373.aspx, Oc-

tober 2010.

[62] Microsoft. Synchronizing interrupt code. MSDN:

http://msdn.microsoft.com/en-us/library/ff544728.aspx, October 2010.

[63] Microsoft. USBSAMP: sample WDF driver for USB 2.0 devices.

MSDN: http://msdn.microsoft.com/en-us/library/ff544747(VS.85).aspx, Oc-

tober 2010.

[64] David Monniaux. Verification of device drivers and intelligent controllers: a

case study. In Proceedings of the 7th ACM & IEEE International conference on

Embedded Software (EMSOFT), pages 30–36, New York, NY, USA, September

30 - October 3 2007. ACM.

199

[65] Brendan Murphy and Mario R. Garzia. Software reliability engineering for

mass market products. Software Reliabilty Engineering, 8(1), December 2004.

[66] Open SystemC Initiative (OSCI). http://www.systemc.org/, October 6 2010.

[67] OSR. Sample WDF driver for Sealevel digital I/O kit. OSR:

http://www.osronline.com/article.cfm?article=403, April 17 2007.

[68] Claudio Passerone, Luciano Lavagno, Massimiliano Chiodo, and Alberto L.

Sangiovanni-Vincentelli. Fast hardware/software co-simulation for virtual pro-

totyping and trade-off analysis. In Proceedings of the 34st Design Automation

Conference (DAC), pages 389–394, New York, NY, USA, June 9-13 1997.

ACM.

[69] Doron Peled. Combining partial order reductions with on-the-fly model-

checking. Formal Methods in System Design (FMSD), 8(1):39–64, January

1996.

[70] Carl Pixley. Introduction to a computational theory and implementation of se-

quential hardware equivalence. In Proceedings of the 2nd International Work-

shop, on Computer Aided Verification (CAV), volume 531 of Lecture Notes in

Computer Science, pages 54–64, London, UK, June 18-21 1990. Springer.

[71] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE

Annual Symposium on Foundations of Computer Science (FOCS), pages 46–

57, Washington, DC, USA, October 31 - November 2 1977. IEEE Computer

Society.

[72] Amir Pnueli. Applications of temporal logic to the specification and verifi-

cation of reactive systems: A survey of current trends. In Current Trends

in Concurrency, volume 224 of Lecture Notes in Computer Science, pages

510–584. Springer, New York, NY, USA, 1986.

200

[73] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent

software. In Proceedings of the 11th International Conference on Tools and

Algorithms for Construction and Analysis of Systems (TACAS), volume 3440

of Lecture Notes in Computer Science, pages 93–107. Springer, April 4-8 2005.

[74] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-

current systems in CESAR. In Proceedings of the 5th Colloquium on Interna-

tional Symposium on Programming, volume 137 of Lecture Notes in Computer

Science, pages 337–351, London, UK, April 6-8 1982. Springer.

[75] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is un-

decidable. ACM Transactions on Programming Languages and Systems

(TOPLAS), 22(2):416–430, March 2000.

[76] James A. Rowson. Hardware/software co-simulation. In Proceedings of the

31st Design Automation Conference (DAC), pages 439–440, New York, NY,

USA, June 6-10 1994. ACM.

[77] Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische

Universität München, Institut für Informatik, June 2002.

[78] Sealevel Systems, Inc. PIO-24.LPCI User Manual, July 2006.

[79] Luc Semeria and Abhijit Ghosh. Methodology for hardware/software co-

verification in C/C++. In Proceedings of Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 405–408, New York, NY, USA,

January 26 - 28 2000. ACM.

[80] Peter Shier. Using the device simulation framework for software simulation

of USB devices. http://download.microsoft.com/download/5/b/9/5b97017b-

e28a-4bae-ba48-174cf47d23cd/DEV098 WH06.ppt, 2006.

201

[81] Alok Sinha. Windows driver quality signature.

http://download.microsoft.com/download/9/8/f/98f3fe47-dfc3-4e74-92a3-

088782200fe7/TWDE05008 WinHEC05.ppt, February 2005.

[82] David A. Solomon. Inside Windows NT. Microsoft Press, 2 edition, 1998.

[83] Michael M. Swift. Improving the Reliability of Commodity Operating Systems.

PhD thesis, University of Washington, October 2005.

[84] Jan Tretmans. A formal approach to conformance testing. PhD thesis, Uni-

versity of Twente, December 1992.

[85] Peter H. J. van Eijk, Chris A. Vissers, and Michel Diaz, editors. The formal

description technique LOTOS. Elsevier Science Inc., New York, NY, USA,

1989.

[86] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal

logics of programs. Journal of Computer and System Sciences (JCSS),

32(2):183–221, April 1986.

[87] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence

checking of static affine programs using widening to handle recurrences. In

Proceedings of the 21st International Conference on Computer Aided Veri-

fication (CAV), volume 5643 of Lecture Notes in Computer Science, pages

599–613, Berlin, Heidelberg, June 26 - July 2 2009. Springer.

[88] Fei Xie and Huaiyu Liu. Unified property specification for hardware/software

co-verification. In Proceedings of the 31st Annual International Computer

Software and Applications Conference (COMPSAC), pages 483–490, Wash-

ington, DC, USA, July 24-27 2007. IEEE Computer Society.

[89] Fei Xie, Guowu Yang, and Xiaoyu Song. Component-based hardware/software

202

co-verification for building trustworthy embedded systems. Journal of Systems

and Software (JSS), 80(5):643–654, May 2007.

	An Automata-Theoretic Approach to Hardware/Software Co-verification
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation and Problem Statement
	Motivation
	Problem Statement
	The Device/Driver Scenario

	Contributions
	Our Approach
	Device/Driver Development using Our Approach

	Related Work
	Dissertation Outline

	Background
	State Transition Systems
	Büchi Automaton
	Pushdown System
	Concurrent System

	Property Specification Languages
	Linear Temporal Logic (LTL) Formula
	Specification Language for Interface Checking (SLIC)

	Model Checking
	SLAM Engine for C Programs
	Moped Engine for Pushdown Systems

	Partial Order Reduction
	Windows Device/Driver Stack

	Co-specification
	Specification Techniques for HW/SW Interfaces
	Concurrency in a System
	Transaction Level Modeling (TLM) of Hardware
	Relative Atomicity
	Non-determinism in Co-specification
	The modelC Language

	Specification of HW/SW Interface Protocols
	HW/SW Interface Specification
	Hardware Specification
	Software Specification
	A Realization of Relative Atomicity
	Summary and Generalization

	Applications and Evaluation Criteria
	Formalization Process from English Specifications
	Applications in the HW/SW Development Process
	Evaluation Criteria

	Co-verification Model
	Büchi Automaton as Hardware Model
	Labeled Pushdown System as Software Model
	Representing Software Design
	Accepting Inputs from Hardware

	Unifying Model for Co-verification
	Preliminaries
	Büchi Pushdown System (BPDS)
	BPDS Loop Constraint

	Symbolic Representations
	Symbolic representation of BA
	Symbolic representation of LPDS
	Symbolic representation of BPDS

	Co-verification Algorithm
	Model Checking Problems of BPDS
	Reachability Analysis
	LTL Checking

	Reachability Analysis Algorithm
	LTL Checking Algorithm
	Computing the Repeating Heads
	Computing the Reachability of Repeating Heads
	Summary

	Optimization of Reachability Analysis
	Reduction Algorithm
	Correctness Argument

	Optimization of LTL Checking
	Reduction Algorithm
	Correctness Argument

	Symbolic Algorithms
	Reduction Algorithm for Reachability Analysis
	Reduction Algorithm for LTL Checking

	Implementation
	Reachability Analysis
	Cartesian Product via Code Instrumentation
	Specification of SLIC rules
	Reduction

	LTL Checking
	A BPDS Model specified using Boolean programs
	Specification of LTL Properties
	Reduction

	Co-verification Tool, CoVer

	Evaluation
	Co-specification
	Co-verification
	Reachability Analysis
	LTL Checking

	Summary

	Conclusion and Future Research
	Conclusion
	Future Research
	Co-verification of Liveness Properties on Driver Code
	Co-simulation
	Co-monitoring
	Formal-model-guided Automatic Test Case Generation

	References

