
Portland State University Portland State University 

PDXScholar PDXScholar 

Economics Faculty Publications and 
Presentations Economics 

4-1-2009 

Research Choice and Finance in University Research Choice and Finance in University 

Bioscience Bioscience 

David E. Ervin 
Portland State University 

Steven T. Buccola 
Oregon State University 

Hui Yang 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/econ_fac 

 Part of the Finance Commons, and the Laboratory and Basic Science Research Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Buccola, S., Ervin, D., and Yang, H. (2009). Research Choice and Finance in University Bioscience. 
Southern Economic Journal, 75(4), 1238-1255. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Economics Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/econ_fac
https://pdxscholar.library.pdx.edu/econ_fac
https://pdxscholar.library.pdx.edu/econ
https://pdxscholar.library.pdx.edu/econ_fac?utm_source=pdxscholar.library.pdx.edu%2Fecon_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/345?utm_source=pdxscholar.library.pdx.edu%2Fecon_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/812?utm_source=pdxscholar.library.pdx.edu%2Fecon_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/econ_fac/13
mailto:pdxscholar@pdx.edu


Research Choice and Finance in
University Bioscience

Steven Buccola,* David Ervin,{ and Hui Yang{

Academic ;bioscience’s rising importance for downstream technology and growing private
sector relationships have evoked substantial policy attention. We contribute to the scrutiny by
asking how university bioscientists design and finance their research, with particular attention
to the mutuality of research portfolio choice and funding success. The analysis requires
consideration of other major influences on academic science, including scientific norms, human
capital, and institutional environment. Drawing on a national survey of university bioscientists,
we find that public financial support encourages more basic investigation and private support
encourages more applied investigation. Yet downstream research is only moderately more
excludable than upstream. Once research basicness and other program factors are accounted
for, neither the next public nor the next private dollar brings significantly more excludable
laboratory discoveries. Public money is attracted to applied and excludable research, and
private and public funding crowd each other out at the margin. Professional norms have
substantial impacts on the research pursued and financing obtained.

JEL Classification: O31, O32, O33, O34, O38

1. Introduction

Much of the economics of science is concerned with factors underlying the direction and

productivity of laboratory work. The factors are highly varied, including alternative

elaborations of the scientist’s incentive structure, human capital and training, specialty field

and scientific opportunities, laboratory infrastructure and assistance, professional network and

culture, and institutional reputation and support. Policy implications include research

institution design (Holmstrom 1989), administrative structure (Landry and Amara 1998),

reporting protocols (Levitt and Snyder 1997), strength and structure of intellectual property

rights (Thursby and Thursby 2003; Dillon 2005), and size and allocation of public funding

(Cockburn and Henderson 1998; David, Hall, and Toole 1999; Diamond 1999).
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The importance of such work lies in the broad social controversy over whether, and if so

how, publics ought to intervene in the traditionally autonomous character of scientific

communities; for example, by encouraging greater exposure to market forces. Dasgupta and

David (1994) argue that economic forces normally conducive to dynamic efficiency are

unavailable in the relations between university-based open science and commercial research

and development (R&D). Perhaps as a result, popular opinion about scientific work reflects

widely divergent opinions ranging from an awe of science’s obvious technological power to a

suspicion that it has betrayed the social good by selling itself to commercial interests (Sheldon

2003).

A major obstacle in evaluating these concerns, and in guiding public policy, is the partly

ineffable nature of scientific knowledge. Scientific inputs and outputs are difficult for third

parties to monitor or measure, so scientists have substantial control over how and whether their

results are disseminated. And science often is pursued—at least in academia—for nonmonetary

rewards that are difficult to elucidate, quantify, or observe (Dasgupta and Maskin 1987;

Rosenberg and Nelson 1994; Stephan 1996). Price-mediated supply and demand models are, in

particular, largely inappropriate to upstream scientific inquiry. Following Merton (1973),

analysis instead has focused on how scientists’ choices are influenced by their norms, reward

structures, and institutional environments. Much empirical work is confined to subsets of

factors for which data are available and which illuminate selected topics (Breschi, Lissoni, and

Montobbio 2005; Walsh, Cho, and Cohen 2005; Azoulay, Ding, and Stuart 2007). Cohen,

Nelson, and Walsh (2002) trace impacts of public research on industry R&D success. Agrawal

and Henderson (2002) and Geuna et al. (2004) examine faculty-industry program and funding

relationships in a single university. Others concentrate on generic differences in the way

upstream and downstream research is best managed (Aghion, Dewatripont, and Stein 2005).

We contribute to this literature by developing and estimating a bench-level model of how a

subset of university bioscientists design, finance, and communicate their research. The model

enables us to address in a new way some of the fundamental questions in public science policy:

Does private support steer university research toward more applied or privately appropriable

inventions and thus away from publicly accessible knowledge? In this Bayh-Dole era, is basic

research still substantially less excludable than applied research? Does private funding facilitate

public funding or vice-versa? How do investigators’ professional norms affect what they study?

These topics cannot adequately be addressed without considering other major influences on

academic science, including human capital, institutional environment, and in-kind contract

terms (Xie and Shauman 1998).

We draw on literature in both the time-series and cross-sectional dimensions. The time-

series tradition has focused on aggregate scientific effort and outcome, embodied in research

input-output relations and factor demands (Jaffe 1989; Griliches 1990; Jaffe, Trajtenberg, and

Henderson 1993) or scientific labor supplies (Levin and Stephan 1991; Ehrenberg 1992; Leslie

and Oaxaca 1993). The cross-sectional tradition instead has concentrated on research programs

themselves, allowing a detailed look at scientists’ objectives, funding sources, and institutional

environments. Studies of university-industry relationships by Blumenthal et al. (1986, 1996),

Curry and Kenney (1990), Campbell and Bendavid (2003), Breschi, Lissoni, and Montobbio

(2005), and Walsh, Cho, and Cohen (2005) fall in this genre. So do Mansfield’s (1995, 1998)

surveys of research firms’ university relationships; Hall, Link, and Scott’s (2003) analysis of

commercial research projects; and Zucker, Darby, and Brewer’s (1998) and Toole and

Czarnitzki’s (2005) focus on the influence of leading academic scientists. Huffman and Evenson
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(1993) have characterized the culture and institutional environment of university agricultural

research in particular.

We assume markets are indeed present in academic bioresearch in an implicit sense.

Funding agents provide support to university bioscientists in exchange for research with certain

goals. Scientists pursue research plans in exchange for monetary and in-kind support and for

the journal publications that enhance their professional careers.1 Scientists’ laboratory plans

depend on the financial support they attract and on the scientists’ human capital, professional

norms, research discipline, and university environment.

Our 2003–2004 survey of university bioscientists conducting agriculturally related work

gives insight into relationships as yet unexamined in the literature. For example, less patentable

or excludable research tends to be more basic, and more basic research less excludable,

suggesting policies that strengthen intellectual property rights promote applied research at the

expense of basic research. However, the relationship between basicness and nonexcludability is,

controlling for other factors, rather weak. Furthermore, public funding encourages a research

that is more basic but, likely on account of Bayh-Dole influences, more excludable as well.

Private funding promotes work that is more applied and more excludable. The volume of public

and private support to an individual scientist militate each other.

2. Research Program Choice

University scientists are motivated by a variety of interests, among them prestige, scientific

curiosity, money for themselves and their laboratories, and professional or ethical norms

(Merton 1973). Achieving one depends partly on the others. Curiosity is indulged directly

through the type of research conducted. Prestige depends on the type of research, on

publication success, and on grant performance, the last depending in turn on research type,

publishing record and grantsmanship effort, and university infrastructure.

Decision Elements

To express these relationships more schematically, consider a scientist with utility

U ~ U C, G; X, Nð Þ, ð1Þ

where C is the vector of research program characteristics; G is its research budgets distinguished

by funding source; N is the scientist’s professional norms; and X is other variables such as the

scientist’s human capital and her university’s culture and infrastructure. Equation 1 allows,

through N, an explicit representation of the scientist’s utility preferences about the substance

and conduct of academic research. We assume she chooses research program characteristics C

that maximize Equation 1, with first-order conditions

Ci ~ Ci Cj = i, G; X, NCi

� �
, Vi, j, ð2Þ

where i, j index the elements of C, and NCi
are the scientist’s professional norms relevant to the

ith research characteristic.
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In a long-run setting, the scientist does not take financing opportunities G in Equation 1 as

given. Rather, they depend on research program choices C, on human capital and other

exogenous factors X, and on unobservable efforts the scientist and her university devote to

winning grants from particular sources. Denoting such efforts EGm
, we may specify the grant-

effort success functions as Gm 5 Gm(Gn?m, C ; X, EGm
), where m, n index funding sources.

Grant-writing effort is related to the utility importance the scientist and university attach to

grants. Letting NGm
be the subset of professional norms associated with preferences for grant

support from the mth agency, we can rewrite the scientist’s grant successes in estimable form

Gm ~ Gm Gn = m, C; X, NGm
ð Þ Vm, n, ð3Þ

where NGm
is an observable proxy for EGm

. Equation 3 expresses potential jointness among

research funding successes, often called crowd-in or crowd-out effects. The scientist’s long-run

optimization problem consists of solving the first-order conditions in Equation 2 simulta-

neously with the funding-success relations in Equation 3.

Measures of professional or business norms, sometimes called propensities, have been

employed extensively in models of scientific behavior (e.g., Merton 1973; Jaffe 1986; Harter

1994; Hall, Jaffe, and Trajtenberg 2001; Thursby and Thursby 2002; Campbell and Bendavid

2003; Stern 2004; Walsh, Cho, and Cohen 2005). Only broad proxies to such preferences are

normally possible with aggregate time series, while more direct observations can be obtained

with individual scientist data. In any event, allowing directly for professional norms seems

particularly important in scientist-level studies, because variations in utility parameters and

thus unobservable effort would not otherwise be taken into account (Green 2003). Equations 2

and 3 make that explicit.

Two characteristics of scientific research are especially important from a policy

standpoint: how basic the research is and how privately appropriable are its findings. Basic

research is an investment in future applied discoveries, while applied work leads to more

immediate economic gain. Socially optimal combinations of basic and applied effort therefore

turn on such issues as the rate of time discount, spillovers between science and technology, and

government’s proper place on the basic-applied continuum (Dasgupta and David 1994).

Optimal mixes of private- and public-good knowledge instead turn on questions of access and

incentive. The more publicly appropriable the research findings, the more quickly they may be

disseminated but the weaker the incentive to produce them. As scientific knowledge is largely

nonrival (Romer 1990), we concentrate on its excludability: the legal and economic feasibility of

preventing others from exploiting it without the scientist’s and university’s permission.

A principal issue in the science policy debate is the appropriate role of the private sector in

university research funding. Many argue industry and other private finance unduly influence

the university research agenda, skewing it toward more applied and excludable inventions,

unfairly extracting rents from tax-financed research, and undermining the culture of free

scientific inquiry (e.g., Bok 2003). Proponents say private finance facilitates the economic

exploitation of academic innovations and supplements scarce government funds for academic

research (e.g., Dillon 2005). Empirical work on this question has been substantial. Blumenthal

et al. (1986, 1996), for example, find industry support boosts publishing and patenting rates but

encourages greater research secrecy. Curry and Kenney (1990) conclude that industry funding

is associated with relatively low academic output. Campbell and Bendavid (2003) show that

industry contracts tend to delay the reporting of laboratory results. Breschi, Lissoni, and

Southern Economic Journal soec-75-04-10.3d 22/1/09 20:46:47 4 Cust # 20077157
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Montobbio (2005) find that while laboratory productivity is strengthened by industry contacts,

basic research boosts, rather than competes with, applied research.

More generally, both the literature and our own conversations with university bioscientists

suggest, ceteris paribus, that (i) basic investigation tends to involve less excludable findings than

does applied investigation; (ii) better-published and more commercially oriented academic

scientists attract more funds than others do; and (iii) government research sponsorship attracts

industry sponsorship. Impacts of research funding source on laboratory objectives are more

controversial. All such hypotheses might be sensitive to research topic area, finance contract

terms, and synergies between basic molecular results and downstream drug and plant

discoveries.

3. Survey Data and Econometric Model

National Survey

Our national survey targeted academic investigators conducting basic or applied research

at the molecular or cellular level with implications for agricultural, forestry, or aquaculture

biotechnologies. The survey was conducted October 2003 through March 2004, followed by

database development in 2005–2006. A five-step process was used in constructing the sample

frame.

(a) Universities listed under the 2000 Carnegie Classification’s ‘‘Research Universities—

Extensive’’ category were divided into Land Grant (LGU), public non–Land-Grant

(non-LGU), and private. Twenty universities initially were randomly sampled from

each stratum.

(b) Departments identified by website as potentially involved in agriculturally related

biotechnology were organized into subject categories, 36 among LGUs and 28 among

non-LGUs. These categories were then reviewed independently by six bioscientists,

each selecting the 15 most likely to contain the highest concentrations of our target

population. Using only the categories four or more scientists agreed upon, 9 were

identified in the non-LGU strata and 11 in the LGU stratum. Final department

categories among the LGUs were agronomy, animal science, aquaculture, biotech-

nology, botany, cell and molecular biology, crop sciences, forestry, horticulture,

pathology, and physiology. Among the non-LGUs, they consisted of biochemistry,

biotechnology, biology, botany, cell and molecular biology, fisheries, forestry,

genetics, and microbiology. Non-LGU departments included a large number of

medical schools, whose work in pathology, pharmacology, neurology, microbiology,

and immunology frequently has agricultural implications. Hence, our sample frame

extends well beyond departments with specifically agricultural orientations.

(c) Chairs of the selected departments were asked to identify their faculty satisfying the

target population definition. Chair response rate was 75.7% among LGUs, 71.0%

among public non-LGUs, and 73.5% among private universities.

(d) Of these, 595 faculty were randomly sampled from those identified by LGU

department chairs. All 280 public non-LGU faculty and all 250 private university

faculty were maintained in the sample.

Southern Economic Journal soec-75-04-10.3d 22/1/09 20:46:47 5 Cust # 20077157
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(e) Because of the relatively low target population densities in non-LGU universities, an

additional 10 institutions were each drawn randomly from the public non-LGU and

private university strata.2 From this second sampling stage, we added 220 faculty to

the public non-LGU stratum and 96 to the private university stratum, bringing the

total sample to 1441 scientists.

The survey was constructed following the tailored design method (Dillman 2000) in

collaboration with the Social and Economic Research Center at Washington State University.

Cognitive pre-tests, a focus group of nonsample bioscientists, and sample pre-tests were used to

refine the instrument structure and content. A letter was sent to potential respondents directing

them to our online survey instrument, together with a $5 cash payment to indicate the

seriousness of the request. Response rate was 63.8%.3

The survey instrument asked scientists to indicate, on a 1–6 Likert scale, the degree of

basicness of their research program and the nonexcludability of a typical research finding. It

then asked for the percentages of the scientist’s program allocated to basic and applied

research, and the percentages devoted to excludable and nonexcludable outcomes. ‘‘Basic’’ was

defined as referring to how fundamental are the expected discoveries, and ‘‘applied’’ to how

oriented they are toward product development. Excludability refers instead to the expected

legal and economic feasibility of excluding anyone from using the results. See the Appendix for

the survey definitions and examples of these concepts provided to survey respondents.4

Analysis in the present paper is drawn from the percentage of program responses. ‘‘Program’’ is

defined to include all the scientist’s projects, whether or not separately identifiable in funding

source or time allocation.

Other data requested were (i) annualized budgets by funding source; (ii) intensities of view

on a range of motivating norms in professional life; (iii) laboratory assistance, divided into

postdoctoral fellows, graduate students, and technicians; (iv) academic rank and professional

experience; (v) in-kind contributions: materials (cell lines and reagents), capital (laboratory

equipment, genomic databases, and software), services (student training and staff support), or

other support; (vi) mean annual journal article output5; (vii) university assistance with funding

and technology transfer; and (viii) the scientist’s biological discipline (biochemistry, genetics,

cell/molecular biology, physiology/pathology, ecology, or other), and field (plant and animal

characteristics and protection, human health and nutrition, natural resources and environment,

or microbes).

Table 1 displays the relevant survey variables and Table 2 their sample statistics. The

mean respondent devotes 67% of his program to basic and 85% to nonexcludable research. But

the high associated standard deviations (31% and 21%), respectively, suggest research basicness

Southern Economic Journal soec-75-04-10.3d 22/1/09 20:46:48 6 Cust # 20077157
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and nonexcludability are distributed broadly.6 Emphasis on research with agricultural

implications does little, therefore, to limit the sample to applied or patentable work.

A scientist’s mean annual public (federal and state) support was $229,000, and mean

private (industry and foundation) support was $51,000. On average, 42% of federal support

was from the National Institutes of Health (NIH), 23% from the National Science Foundation

(NSF), and 24% from the U.S. Department of Agriculture. The high NIH shares confirm

findings from patent analysis that pharmaceutical and agricultural research have become

deeply intertwined (Pray, Oehmke, and Naseem 2005; Xia and Buccola 2005). State funding

constituted 19% of federal and state money. Forty-one percent of private support was from

biotechnology firms and trade associations, 36% from private foundations, and the remainder
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6 These percent-of-program responses were consistent with the scientists’ Likert-scale responses. On a 6-point scale in

which 1 indicated their research program was ‘‘purely basic’’ and 6 ‘‘purely applied,’’ the mean response was 2.67 and

standard deviation 1.35. On a 6-point scale in which 1 indicated the program was ‘‘completely nonexcludable’’ and 6

‘‘completely excludable,’’ the mean was 1.92 and standard deviation 1.06. That is, programs tend to the basic and

nonexcludable ends of the spectra, although a substantial number are applied and excludable.

Table 1. Definitions of Variables

Variable Definition

Research program characteristics
Basic% Percentage of research program allocated to basic research
NExcl% Percentage of research program allocated to nonexcludable research

Research funding categories
GPublic Annual research funding from federal and state sources
GPrivate Annual research funding from industry (firm and trade association)

and foundation sources

Scientist’s norms
Extent of scientist’s agreement, on a Likert scale, that the following

norms are important in her choice of research goals and money
sources. Unasterisked norms were measured on a 7-point scale in
which 1 indicates ‘‘not important’’ and 7 ‘‘very important.’’
Asterisked norms are on a 6-point scale in which 1 indicates
‘‘disagree’’ and 6 ‘‘agree.’’

NTheory Contributes to scientific theory
NCuriosity Appeals to scientific curiosity
NProbPatent Provides opportunities to patent and license
NNexcl Benef Provides opportunities to produce nonexcludable benefits*
NPanel Agenda Scientist panels should determine research agenda*
NPublic Funding Involves availability of public funding
NIndustry Agenda Industry should influence research agenda*
NPrivate Funding Involves availability of private or corporate funding

Scientist’s rank and output
Prof, Assoc, and Assis Zero/one variables respectively indicating whether the scientist is a

professor, associate professor, or assistant professor
Publ Rate Annual number of articles published between January 2000 and

December 2004

Characteristics of Scientist’s University
LG, PNLG, Private Zero/one variables indicating whether scientist’s university is a

LGU, public non-LGU, or private university, respectively.
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from other private sources.7 However, as the standard deviations indicate, scientists’ budgets

varied widely. About one-third of respondents had total annual support of $100,000 or less,

37% had between $100,000 and $250,000, and 10% had over $500,000.

Scientists tended to value theoretical contributions and scientific curiosity highly (means

6.0 and 6.4, respectively, on a 7-point scale). They cared rather less about patenting (mean 2.0

on a 7-point scale) and typically believed publicly supported scientists should focus on

knowledge with nonexcludable benefits (mean 5.0 on a 6-point scale). Their tendency was to

regard public funding as important to science (5.6 on a 7-point scale) and private funding less

so (3.2 on a 7-point scale). Most leaned toward thinking science panels should determine

university research agendas (4.5 on a 6-point scale); fewer thought industry should have a

significant hand in them (2.9 on 6-point scale). However, dispersions around these means—

particularly in industry’s proper role in the research agenda—are moderately high, with

standard deviations ranging from 0.9 to 2.1. The average scientist had published 3.75 journal

articles per year since January 2000; but as one would expect, publication rates varied widely

and were strongly right-skewed.8 Forty-nine percent held professor rank. In short, substantial
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7 Industry, including firms and trade associations, provides just under 10% of assistance to the mean scientist in our
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(National Science Foundation 2004).
8 Twenty-four percent of respondents receive research materials as part of their grant, contract, or gift; 40% receive
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Table 2. Sample Statistics

Variable Units Mean Standard Deviation

Research program characteristics

Basic% % of program 67.40 30.78
NExcl% % of program 85.15 20.67

Research funding categories

GPublic $000/year 229.33 343.43
GPrivate $000/year 50.59 121.48

Scientist’s norms

NTheory 1 not, 7 very 6.06 1.44
NCuriosity 1 not, 7 very 6.43 0.93
NProb patenting 1 not, 7 very 2.00 1.47
NNexcl Benefit 1 disagree, 6 agree 4.97 1.06
NPanel Agenda 1 disagree, 6 agree 4.49 1.26
NPublic Funding 1 not, 7 very 5.56 1.71
NIndustry Agenda 1 disagree, 6 agree 2.94 1.03
NPrivate Funding 1 not, 7 very 3.17 2.10

Scientist’s rank and output

Professor 0 or 1 0.49 0.50
Associate Professor 0 or 1 0.25 0.43
Assistant Professor 0 or 1 0.26 0.44
Publication Rate annual pubs since 01/2000 3.75 3.15

Characteristics of scientist’s university

LG 0 or 1 0.47 0.50
PNLG 0 or 1 0.35 0.48
Private 0 or 1 0.18 0.36
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sample variety is apparent in scientists’ research designs and objectives, budgets, productivities,

and professional norms.

Econometric Model

Our interest is in the interdependencies between academic bioresearch programs and the

public and private support provided to them. Scientists supply research and demand funding;

funders demand research and supply funding. Nevertheless, although science characteristics

(Equation 2) and funding (Equation 3) are derived from the scientist’s utility function,

Equation 2 is econometrically identified as a set of supplies and Equation 3 as a set of demands

only to the extent that control factors X, NCi
, and NGm

depict scientists’ rather than funders’

costs and preferences. Much of the information obtainable in cross-sectional surveys about

scientists’ institutional and human capital—such as rank, publication record, discipline, and

university characteristics—is relevant to and can be observed by the funder as well as by the

scientist and econometrician. As observed by the scientist, they represent perceptions of

research cost; as observed by the funder, they represent perceptions of research quality. Such

common variables thus serve to give Equations 2 and 3 both a supply and demand force.

Furthermore, many—like scientist rank—are relevant to decisions about both science

characteristics and science funding decisions.

However, because our data on scientist norms, NCi
, are specific to particular research

dimensions i, j and funding sources m, n, and change little within the one- to five-year time

horizons of most science projects and grants, they are especially suitable for identification

purposes. Indicators of scientists’ ethical views about, for example, public research funding,

serve as proxies for federal and state grant effort and thus identify the relationship between

research basicness and public funding as a public-funding-success equation, provided that

comparably unique effort proxies are included in the remaining equations. Because norms

about private funding, research excludability, and basicness have no direct bearing on those

about public funding, their exclusion from the basicness equation provides the random

variation tracing out fundings’ impacts on basicness.

With these considerations in mind, we specify the following set of simultaneous equations:

Research Characteristics

Basic% ~ g1 NExcl%, Gpublic, GPrivate; X, NBasic, eb

� �
, ð4Þ

NExcl% ~ g2 Basic%, GPublic, GPrivate; X, NNExcl , enð Þ, ð5Þ

Grant Funding

GPublic ~ g3 GPrivate, Basic%, NExcl%; X, NPublic, epu

� �
, ð6Þ

GPrivate ~ g4 GPublic, Basic%, NExcl%; X, NPrivate, epr

� �
, ð7Þ

in which C 5 Basic%, NExcl%, G 5 GPublic, GPrivate (see Table 1) are endogenous; X is the

vector of exogenous human and institutional capital variables observed by both scientist and

funder; NCi
~ NBasic, NNExclð Þ and NCi

~ NPublic, NPrivate, NPrivate are the excluded instruments
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indicating, respectively, the scientist’s professional norms regarding basic and nonexcludable

research and public and private funding; and eba, ene, epu, and epr are zero-mean error terms

independent of X and N.

We use the scientist’s academic rank (full, associate, or assistant professor) and university

type (LGU, public non-LGU, and private) to model the commonly observable human and

institutional capital variables X. University type and academic rank were, respectively,

nonsignificant in the nonexcludability and funding equations and were excluded from those

equations. Biological discipline, biological field, laboratory staff configuration, and in-kind

contract provisions also are natural candidates for capital factors but had rather weak impacts

in Equations 4–7 and were, in the interest of parsimony, eliminated from both the regressions

and instruments.9 The surveyed norm indicators relevant to Equations 4–7 are defined in

Table 1: theory and curiosity norms bearing on the program’s basicness, patenting and

nonexcludability norms on its excludability, panel-style agenda control and public-financing

norms affecting efforts to secure public funding, and industry agenda control and corporate-

financing norms affecting efforts to secure private funding. Because the scientist’s publication

record presumably offers funders important information about a proposed project’s quality, we

also include it as an explanatory factor in public and private funding success in Equations 6

and 7.

Two issues stand out in the choice of estimator for Equations 4–7: endogenous variable

truncation and missing common effects. The truncation issue is that some respondents reported

no public support and others no private support, so that error terms in linear fits of Equations 6

and 7 probably are not exactly normally distributed. The common effects problem is that one

ought to account not only for endogenous variables’ mutual impacts on one another, but for

the influences on each that are unaccounted for in the model. Although two-stage logit

procedures might be constructed on an equation-by-equation basis to model any individual

error truncation, it is impractical in a four-equation system to proceed to a third stage

incorporating systemwide effects.10 Particularly with scientist-level cross section data, in which

the number of missing variables and, hence, magnitude of the common-effects problem likely is

substantial, we judged it more important to focus on the system than on the truncation issue.

We therefore jointly estimated Equations 4–7 in linear form with three stage least squares (SAS

Institute 2005).

4. Results

First-stage estimates, in which endogenous variables Basic%, NExcl%, GPublic, and GPrivate

were each regressed against instruments (X, N), had respective R2s 0.45, 0.25, 0.23, and 0.18,

not inconsiderable for cross-sectional data, but indicating a comparative difficulty in modeling

private funding success. F-statistics of the joint significance of the excluded instruments in these
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regressions were 17.23, 6.33, 2.60, and 4.67, respectively, compared to the tabled values F(9,

733) 5 2.41, F(8, 679) 5 2.51, F(8, 679) 5 2.51, and F(7, 679) 5 2.64, at 1% significance.

The third-stage 3SLS estimates, shown in Table 3, were robust to specification changes,

including disaggregation of the two grant-funding equations into three, aggregation into one, and

use of Likert-scale rather than percentage-of-scientist-time measures of basicness and nonexclud-

ability in Equations 4 and 5. An interesting source of additional robustness testing is that, despite

filling out our survey, 30% of respondents said their research is not conducted at the molecular level

or has no implications for agriculture, forestry, or aquaculture. Coefficients obtained by removing

this 30% subset and re-estimating differed insignificantly in Wald tests from those drawn from the

full sample, suggesting the results apply to a comparatively broad range of bioscientific work.

Research Basicness and Excludability

An important first insight from Table 3 is that, although a scientist’s supply of basic

research boosts her supply of nonexcludable research and vice versa, the impacts are only
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Table 3. System Estimates: Determinants of Life-Science Research Characteristics and
Funding Sourcesa

Variable

Basicness

(Basic%)

Non-Excludability

(NExcl%)

Public Funding

(GPublic)

Private Funding

(GPrivate)

Parameter t Parameter t Parameter t Parameter t

Intercept 26.68 20.48 75.60 5.47 638.79 3.11 227.51 3.46

Research program characteristics

Basic% 0.16 3.29 22.10 21.82 20.90 22.40
NExcl% 0.27 2.11 23.06 21.65 20.99 21.48

Research funding

GPublic 0.03 2.99 20.01 20.93 20.31 25.18
GPrivate 20.16 25.85 0.03 1.31 22.21 24.46

Scientist’s norms

NTheory 6.60 7.35
NCuriosity 4.12 3.42
NProb Patenting 25.72 211.56
NNExcl Benef 1.65 2.55
NPanel Agenda 7.70 1.59
NPublic Funding 2.72 0.44
NIndustry Agenda 3.67 1.53
NPrivate Funding 3.19 2.05

Scientist’s rank and productivity

Prof 24.31 21.57 4.99 2.61
Assoc (base group:

Assist. Prof) 22.01 20.75 5.63 2.83
Publ. Rate 23.14 8.97 8.32 7.65

University characteristics

LG 218.00 24.66 2263.27 24.67 296.37 24.49
PNLG (base group:

Private Univ) 26.18 21.61 2179.64 23.57 261.73 23.06
a Coefficients of endogenous variables are shown in italics (N 5 672).
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moderate and are far from symmetric. A one-percentage-point rise in the nonexcludable

portion of the research program boosts the basic portion by 0.27 percentage points (t 5 2.11),

while a one-point rise in basicness boosts nonexcludability by only 0.16 points (t 5 3.29).

Nonexcludability’s impact on basicness likely was enhanced—and the latter’s influence on the

former reduced—by the 1980 Bayh-Dole Act and related court rulings, which in permitting

federally funded scientists to patent living organisms allowed a wider range of basic molecular

research to become excludable. But asymmetry between basicness and nonexcludability is more

than an artifact of intellectual property scope. The Patent Office’s ‘‘new, non-obvious, and

useful’’ hurdle remains, even after 1980, easier to surmount in more applied settings for the

simple reason that the potential number of applied innovations remains greater than that of

basic ones.

Consistent with Blumenthal et al. (1986), but contrary to suggestions in Thursby and

Thursby (2003), research basicness appears to be affected by the sources and magnitudes of

grant funds. Boosting federal and state monetary support by $1000 induces a 0.03 percentage-

point increase in the basic portion of the scientist’s research portfolio (t 5 3.0). Boosting

industry and foundation support by $1000 acts in the opposite direction, increasing the

program’s applied portion by 0.16 percentage points (t 5 25.8). That is, the marginal public

(private) dollar encourages more basic (applied) research even when the excludability of the

findings and the scientist’s professional norms and university culture are held constant. The

canonical perception that the presence of government money in the university laboratory

encourages basic research while the presence of industry money encourages applied research is

verified under strong ceteris paribus conditions.

It is revealing to examine these money-source effects in proportional terms. At sample

means, a 10% increase in public funding lifts program basicness by 1.0%, and a 10% increase in

private funding reduces basicness by 1.2%. Expressed as elasticities, in other words, public

funding’s impacts on a research program’s basic-versus-applied content are greater relative to

private funding’s impacts than they would be had they been expressed in marginal terms, since

the large total size of public funds means a given dollar increase represents a comparatively

small proportional rise. Funding elasticities of program basicness in the range of 0.10 to 0.12

are substantial considering that scientists often can switch the organisms, disease types, or other

topics on which they focus while continuing to work at a given level of basicness and

excludability. Higher elasticities, in other words, likely would have been encountered had more

specific program metrics, such as laboratory organism, been studied instead.

In contrast, neither public nor private funding have, in the aggregate, a statistically

significant effect on research excludability. The nonsignificance of any public funding impact

appears to undermine the notion of a Bayh-Dole phenomenon, namely that public agencies

encourage the university scientists they fund to propose projects with patenting, variety

certification, or other exclusionary goals. Yet if public money did significantly discourage

excludable research in pre–Bayh-Dole days, present nonsignificance of the average public-

money effect does represent an important change. Furthermore, applied federal research

agencies, such as the NIH, presumably encourage more excludable investigation than does, for

example, the NSF.11 The nonsignificance of private-source impacts on research excludability is

understandable in several respects. First, private sources in this study include not-for-profit
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foundations as well as for-profit firms. Second, even industry sponsors tell us they do not

necessarily condition their support on promises of an exclusive license to the academic’s

findings. Some sponsorships are to pay for product-testing services, which universities are

uniquely positioned to offer. Others are intended to buy broad access to the professor’s tacit

knowledge, network, and students rather than to property rights to a specific invention.

As Aghion, Dewatripont, and Stein (2005) suppose, freedom is one of the principal

attractions of academic life. Up to promotion and salary considerations, professors study what

they like and thus give weight to their personal utilities. Evidence in the sociological literature

(see, for example, Thursby and Thursby 2002; Walsh, Cho, and Cohen 2005; and Stuart and Ding

2006) for the importance of professional norms in academic research is confirmed in Table 3. The

more our respondents say they value theoretical contributions (t 5 7.3) and scientific curiosity (t

5 3.4) in their program choice, the more they opt to pursue basic research themselves, controlling

for financial, human capital, and university culture considerations. The lower their declared

regard for patenting (t 5 211.6) and the greater it is for producing nonexcludable social benefits

(t 5 2.5), the more they opt for nonexcludable discoveries in their own laboratories. The effects

are moderately large. At sample means, a 10% increment in the Likert indicator of an

investigator’s valuation of scientific curiosity boosts research basicness by 4%.12

Advancing professorial rank leads to successively more applied but more nonexcludable

research. All else constant, professors devote 4.3 percentage points more of their work to

applied research (t 5 21.6), and 5.0 points more to nonexcludable work (t 5 2.6) than do

assistant professors. A career trend toward applied research likely reflects deteriorating

comparative advantage at basic investigation. That likely is a vintage effect, induced through

the passage of time. The greater orientation toward nonexcludability might instead reflect

utility preferences not captured in the norm variables. If so, it would more likely be a

generational than a vintage phenomenon, reflecting how older scientists had been trained in

their craft in their early years. Stuart and Ding (2006) provide corroborating evidence of a

generational trend toward commercially oriented academic science.

In strong evidence of the impact of university culture on individual scientist behavior,

faculty at LGUs operate substantially more applied programs than do those at private

universities, even after funding source, measured norms, and rank are controlled for. LGU

bioscientists allocate 18 percentage points (t 5 24.7) more of their program to applied research

than do private university bioscientists, holding funding volumes, excludability, norms, and

rank constant. This is consistent with the technological orientation of the Land-Grant system,

and to Stuart and Ding’s (2006) evidence of university-culture influences in science. University

type had, however, nonsignificant effects on research excludability. Universities’ total federally

and industry-financed grant budgets, proxying for their preferences over research orientation,

also were statistically nonsignificant, suggesting budget sizes alone are weak measures of

university culture.

Grant Success

While the laboratory’s use of public money encourages basic research, Table 3 shows that

programs with more applied and excludable orientations are moderately more successful in
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attracting public money than are basic and nonexcludable programs. A one-percentage-point

rise in a bioscience program’s applied component brings $2,100 more annual public funding (t

5 21.8; elasticity 20.6), and a one-percentage-point rise in its excludable component brings

$3,060 more public funding (t 5 21.6; elasticity 21.1). In its proclivity to fund, therefore, the

typical federal and state agency does reveal a preference for applied and excludable, and

potentially commercializable, research, even if—as Thursby and Thursby (2003) discuss—there

are no plans to sell exclusive licenses to the finding. Unsurprisingly, the more applied and

excludable the research, the greater is the industry and foundation money attracted as well. A

one-percentage-point boost in a program’s applied component brings $900 more private

funding (t 5 22.4; elasticity 21.2). The effect of boosting the excludability of one’s research is

similar, although with lower statistical significance (t 5 21.5). In sum, complementarities

between industry finance and academic research are found more at the applied and excludable

than at the basic and nonexcludable ends of the academic research spectrum.

An issue of great importance to science policy and the endogenous growth literature is the

extent of complementarity or substitutability between industry and government research. Much

evidence suggests government-sponsored R&D encourages or ‘‘crowds-in’’ industry-sponsored

R&D (e.g., Levy and Terleckyj 1983; Leyden and Link 1991; Robson 1993; Ward and Dranove

1995; Diamond 1999), while other evidence suggests a nonsignificant (Lichtenberg 1984) or

negative (Lichtenberg 1988) influence. Because basic investigation enhances downstream

discovery, crowding-in would be expected primarily when the government sponsorship is for

basic research, the private sponsorship is for applied research, and the two expenditure streams

are aggregated together (David, Mowery, and Steinmueller 1992; Cockburn and Henderson

1998; Azoulay, Ding, and Stuart 2007). Crowd-in therefore would especially be observed in

data that, unlike our own, combine upstream and downstream expenditures (David, Hall, and

Toole 2000). Thus also, the depiction in Table 3 (columns 3 and 4) of how public and private

spending affect one another provides an acid test of the crowding-in hypothesis, inasmuch as

research basicness and excludability are—along with scientist and university characteristics—

held fixed.

The present results clearly suggest that public and private money crowd one another out.

Raising the scientist’s industry and foundation support by $1000 reduces his government

support by $2,210 (t 5 24.5). And raising his industry and foundation support by $1000

reduces his government support by $310 (t 5 25.2). That is, more than the entire private

finance, and 31% of the public finance, leaks out. These leakages are to be understood in a net

sense; that is, once financing’s impact on basicness and excludability, and the latters’ reverse

impacts on financing, are taken into account. We need also recall that Equations 4–7 reflect the

scientist’s demand as well as agency’s supply of research money. Any funding leakages

identified in it must therefore at least partly be self-induced: controlling for their professional-

norm-related effort allocations, the crowding-out in Table 3 implies that scientists who

cultivate public funding sources tend to neglect private sources, and vice versa. Studies

concluding that public and private monies crowd each other in instead of out generally have not

been conducted in such a controlled context.

Scientist norms in the public and private funding relationships in Table 3 have, like those

in the basicness and nonexcludability relationships, the expected signs. Scientists draw more

money from private sources to the degree they believe industry ought to have a substantial say

in the university science agenda (t 5 1.5) and that they consider private-funding prospects when

making research plans (t 5 2.0). They draw more money from government sources to the
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degree they believe (primarily public) scientific panels should determine the academic research

agenda (t 5 1.6).

Publication rate is a very strong predictor of grantsmanship. One more scientific article per

year in the scientist’s previous four-year resume brings $23,140 more in annual government

grants (t 5 9.0) and $8320 more in annual private grants (t 5 7.6). Scientists at private

universities raise significantly more money, from both public and private sources, than do those

in public universities; and scientists at public non-LGUs raise more than do those at public

LGUs. Since rank, publication record, and research basicness and excludability are accounted

for in these effects, private universities appear to employ more successful researchers, demand

fewer nonresearch activities from them, and provide a more entrepreneurial culture than do

public universities. Institutions’ national biological and agricultural program rankings did not

significantly explain grant success.

5. Conclusions

We have inquired into the laboratories of academic bioscientists whose work has

agricultural implications, focusing on the interactions between research portfolios and research

funding. We find, under rather stringent ceteris paribus conditions, that federal and state

support does encourage more basic research. This is consistent with a government that

complements the private sector by supporting work that industry and foundations will not.

That is, a pro basic-research policy seems a rational use of public money, since the study of

basic molecular mechanisms—themselves public goods—fosters subsequent plant and drug

development by reducing search costs. At the same time, industry and foundation support lead

significantly to more applied investigation. A dollar of private money has, indeed, five times the

leverage in moving research toward the applied direction as has a dollar of public money in

moving it toward the basic direction.

Taken as an average across individual funding agencies, neither government nor private

finance appears significantly to lead university research toward a patentable or otherwise

excludable direction. On the other hand, bioscientists doing more applied work have more

success than those doing basic work—and those promising more excludable discoveries greater

success than those promising less excludable—in securing government funding. Indeed,

academic scientists seeking the potential for intellectual property rights appear at least as well

off looking for government as for industry and foundation money. This implied government

pressure to foster more excludable discoveries is potentially troublesome. Although some

university patenting is intended to prevent rather than facilitate private appropriation,

university ownership of federally financed genes and platform technologies has contributed to

tie-ups of laboratory intellectual property (Atkinson et al. 2003; National Academy of Sciences

2005). Creative institutions are needed to ameliorate these information blockages and, more

generally, to promote public intellectual property use for nonmarket as well as commercial

objectives.

An especially important factor in the scientist’s ability to attract federal and state grants is

her publication record. Government grant support responds, for example, three times more

strongly than does industry and foundation support to another journal article in the scientist’s

resume. More broadly, scientists’ professional norms play a major part in influencing research
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orientations, and successfully representing such norms in an econometric model is quite

feasible. Indeed, parameter estimates arguably are biased in their absence, as variations in

utility preferences, correlated with research program characterizations, otherwise would be

present in error terms. Sizes of professional-norm parameters suggest that norms rival funding

sources and university culture in influencing the types of research conducted and the sources of

funding obtained. Dasgupta and David’s (1994) emphasis on scientists’ professional values

appears to be well justified.

Appendix: Research Basicness and Nonexcludability

In our on-campus interviews, we found scientists to have a rather clear and consistent notion of research basicness,

and a general but somewhat less distinct notion of the economists’ meaning of research excludability. In the survey

document, therefore, both terms were defined, but with greater attention to excludability. Care was taken that

respondents recognize the difference between the two concepts, and in particular that a range of excludability can be

encountered in either basic or applied research.

The survey document described basicness as follows:

By ‘‘purely basic,’’ we mean experimental or theoretical discoveries that add to fundamental science and engineering

knowledge (for example, fundamental genomics).

By ‘‘purely applied,’’ we mean research that draws from basic or other applied research to create new products (for

example, a transgenic plant).

The document described excludability as follows:

By ‘‘completely nonexcludable,’’ we mean it is infeasible to exclude anyone from using the findings from your

research. Examples from basic research include results that are not patentable and which you publish instead in a

professional journal or other public outlet. Examples from applied research include processes which are patentable, but

whose benefits are not legally or economically restrictable to paying parties (as in a salt-tolerance gene in a minor

crop in a developing country).

By completely excludable, we mean it is fully feasible to exclude anyone from using the findings of your research.

Examples from basic research include results which are patentable and for which users must obtain a license from the

patent-holder. Examples from applied research include processes that are patentable and whose benefits are restrictable

to paying parties (as in a gene for insect resistance in a major crop licensed for use in a developed country).
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