Portland State University

PDXScholar

Environmental Science and Management Professional Master's Project Reports

Environmental Science and Management

Summer 2010

Climate Change, Its Effect on Migration Patterns of the Cackling Goose and White-Fronted Goose in the Willamette Valley, and Implications for Goose Management

Kelly Warren Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mem_gradprojects

Part of the Environmental Indicators and Impact Assessment Commons, and the Natural Resources and Conservation Commons

Let us know how access to this document benefits you.

Recommended Citation

Warren, Kelly, "Climate Change, Its Effect on Migration Patterns of the Cackling Goose and White-Fronted Goose in the Willamette Valley, and Implications for Goose Management" (2010). *Environmental Science and Management Professional Master's Project Reports*. 16. https://pdxscholar.library.pdx.edu/mem_gradprojects/16 https://doi.org/10.15760/mem.22

This Project is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Professional Master's Project Reports by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Climate Change, Its Effect on Migration Patterns of the Cackling Goose and White-Fronted Goose in the Willamette Valley, and Implications for Goose Management

By Kelly Warren

Prepared for The Pacific Flyway Council

September 1, 2010

Table of Contents

1. Introduction	.1
2. Background	. 2
2.1 Geese in the Pacific Flyway	
2.1.1 Cackling Geese	
Migration and Breeding Areas	3
Wintering Areas	5
Population History	
2.1.2 Pacific White-Fronted Geese	
Breeding Areas	
Migration and Wintering Areas	
Population History	
2.2 Goose Management	
2.2.1 Pacific Flyway Council	
2.2.2 Management of Cackling Geese and White-Fronted Geese	
Cackler Management	
Management of White-Fronted Geese	10
3. Study Methods	17
3.1 Literature Review	17
3.1.1 Historical Breeding and Wintering Surveys	
3.1.2 Historical Breeding Ground Information	
3.1.3 Banding Data	
3.1.4 Harvest Data	
3.1.5 Radio Transmitter Data	
3.1.6 Interpretation Aerial and Still Photographs	
3.1.7 Agricultural Data	
3.1.8 Climate and Weather Data	
3.2 Field Studies	
3.3 Breeding Surveys	24
4. Results	26
4.1 Wintering and Breeding Ground Surveys	
4.2 Bird Banding Data	28
4.3 Harvest Data	
4.4 Agricultural Data	
4.5 Weather and Climate Data	
4.6 Interpretation of Aerial Photographs	33
5. Conclusions	34
5.1 Other Examples of Waterfowl Migration Change	37
5.1.1 Black Brant	
5.1.2 Northern Pintail	37
6. Recommendations	39
7. References	40

Appendices

Appendix A – Forms

A1. Breeding Ground Nest Cards A2. Wintering Ground Survey Sheet

A3. Band Data Request Form

Appendix B – Harvest Data

Washington Permit Zone Harvest Data

Appendix C – Temperature Data

C1. Average Temperature Data for Willamette Valley by Month 1980-Present

C2. Average Temperature in the Willamette Valley and Southwest Washington 1971-2010

C3. Top 5 Warmest and Coldest Months, Years, and Seasons in Portland, Oregon

C4. Portland Airport, Oregon: Normals, Means and Extremes

C5. California State Mean Temperature, 1900-2005

C6. Redding, California: Normals, Means and Extremes

List of Tables

1.	Permit Zone Harvest Data for Cacklers and White-Fronts, 1985-2009	. 35
2.	Average Winter Temperature in Oregon and California 1986-2010	. 52
	Three-Month-Average Snowpacks in El Niño vs. La Niña Years	

List of Figures

1. Yukon Delta National Wildlife Refuge	11
2. Important Fall Staging Areas for Cackling Canada Geese	12
3. Skagit Flats in Washington State	13
4. Central Valley, California	
5. Distribution of Cackling Geese	15
6. Total and Regional Cackler Population	16
7. Important Staging and Wintering Areas for White-Fronted Geese	
8. Total Population of White-Fronted Geese 1979-2010	23
9. NW Permit Zone	
10. Areas Surveyed for Wintering Geese, 2008/09 and 2009/10	38
11. Nest Plot Survey Area, 2010	42
12. Departure Data of Cacklers from Wintering Grounds 1999-2010	
13. September Sightings of Cacklers in the Willamette Valley, 1999-2010	46
14. Number of Cackler Band Returns in Washington State, 1995-2010	47
15. U.S. Wheat Prices, 1998-2009	50
16. Average Temperature in the Northwest, Observed and Modeled	54

Acknowledgments

I would like to thank my committee: Mark Sytsma, Joe Maser, and Julian Fischer. Each has gone beyond in assisting me on my project. Thank you for all your guidance, advice, and support. Special thanks go to staff of U.S. Fish and Wildlife Service (USFWS) Regions 4 and Region 7, who welcomed me and challenged me to make this project reach its full potential.

Thank you to my family for introducing me to the outdoors and supporting my passion to learn as much as possible about its splendor. Thanks go to Julia who graciously put up with my absence during my surveys and Alaska trips. These people supported me throughout this project in numerous ways including reading drafts, asking questions, and offering constructive comments. I am grateful to you all for your generous support.

This thesis is dedicated to my grandfather, Charles E. Warren, who made me the person I am today and inspired my passion for waterfowl.

Thank you also to my community partner who played a significant role in the formation of this document: USFWS Regions 7 and 4 provided the opportunity to participate in breeding ground and wintering ground surveys. This experience allowed me to see first-hand the habitat changes taking place on the Yukon Delta National Wildlife Refuge and the Willamette Valley. I was also able to gather data specific to the subject of this thesis. USFWS personnel also were generous with their time in answering my many questions and provided me with much of the important data that formed the basis for the results and conclusions contained in this thesis. This project could not have been accomplished without the assistance and support of the USFWS personnel.

Abstract

This thesis considers the question of whether climate change is affecting the migration patterns of geese in the Pacific Flyway, specifically cackling geese (*Branta hutchinsii minima*) and Pacific white-fronted geese (*Anser albifrons frontalis*). Ancillary questions that are considered are as follows:

- If global warming is affecting these species, what is the nature of the effects?
- How are the changes affecting the human environment and what can be done about these effects?

In 1994, the majority of the cackler population in the Pacific Flyway began to winter in Oregon's Willamette Valley rather than in their historical wintering areas in California's Central Valley. In recent years, the Pacific white-fronted goose has shown a change in behavior similar to that of cacklers just before their major shift. The reasons for this shift have not been clear, though climate change, agricultural shifts, or competition with other species were thought to be possible causes.

Analyses of historical breeding and wintering surveys, bird band data, harvest data, agricultural data, and climate and weather data were undertaken in the course of this thesis to see if the cause or causes could be identified. The results showed that climate and weather data, i.e. an increase in average annual temperature coupled with occasional severe winters, most closely correlated with the cacklers' shift northward. The data comparison revealed that there is a direct relationship between cacklers and a warming shift seen on the wintering grounds. There also was a secondary correlation between the northward shift and recent changes in agricultural crops in the Willamette Valley. Substantially less data are available for white-fronts, and the relationship between their recent migration changes and climate and/or other factors is much less clear.

The following recommendations for management and further study are aimed at more completely understanding the scope and causes of migration shifts and formulating well-founded management plans for geese in the Pacific Flyway:

- Continue research to determine if climate change is causing changes in goose population numbers and behavior.
- Expand breeding ground flight surveys to include cacklers and habitat preference to learn how habitat change on the Y-K Delta is altering cackler behavior and breeding success.
- Expand radio transmitter studies and collar programs for cacklers in Oregon and Washington to verify northerly wintering shifts.
- Expand collar programs for cacklers wintering in the Willamette Valley to determine if the population is continuing to shift northward.
- Expand banding programs for white-fronted geese to gather more data about migration patterns.
- Develop models that will allow researchers and managers to correlate migration behavior with various environmental factors including climate change in order to: 1) determine which factors are causing migration changes in specific waterfowl populations and 2) allow managers to make changes to management plans in advance of rapid changes.

- Inform the public about how it can assist in collar surveys or volunteer for the U.S. Fish and Wildlife Service (USFWS). This will enable USFWS to have more concrete data and give the public an opportunity gain a greater understanding of geese and goose management.
- Expand research on urban cackling geese to determine the nature and scope of their effect on the human environment and to devise management strategies.
- Research energetics in migrating geese to determine whether the shift in migration patterns has its basis in climate change.
- Increase data exchange and coordination among agencies.
- Formulate and implement plans at the city and county levels to manage growing numbers of geese in urban areas.
- Recognize and anticipate the possibility that goose populations may move into new wintering areas and formulate plans for management of those species.
- Implement low cost techniques, such as more liberal bag limits and seasons, hazing, etc., to assist agricultural landowners in decreasing goose-related crop damage.

1. INTRODUCTION

Until recently, very few geese used western Oregon and southwest Washington for wintering. California was the primary wintering ground for goose subspecies such as cackling geese (*Branta hutchinsii minima*), white-fronted geese (*Anser albifrons frontalis*), Taverner's geese (*Branta hutchinsii taverni*) and lesser Canada geese (*Branta canadensis parvipes*). Within the last 25 years, geese have been rapidly shifting from traditional wintering areas in California to western Oregon and southwest Washington (Warren 2007). Increased winter temperatures may be a major contributor to this change. Over the last 20 years, average fall and winter temperatures have increased 1.89°F in the Willamette Valley (Flowers 2010). This phenomenon has had, and is expected to continue to have, a significant impact on goose behavior and, consequently, management of goose populations in the Willamette Valley.

This thesis considers the question of whether climate change is affecting the migration patterns of geese in the Pacific Flyway, specifically cackling geese (cacklers) and Pacific white-fronted geese (white-fronts). Ancillary questions that are considered are as follows:

- If global warming is having an effect on these species, what is the nature of the effects?
- How are the changes affecting the human environment and what can be done about these effects?

Indications are that these goose species have altered their migration timing and wintering areas in recent years. The changes are presenting challenges to waterfowl managers, farmers, and hunters.

Background information containing pertinent information about goose behavior, migration routes, wintering areas, habitat, behavior, and management is presented in Section 2. Section 3 describes the methods employed in the study. Data was obtained from both existing literature and original data collection. In Section 4, the results of the data collection are presented. Sections 5 and 6 contain a discussion of the information obtained, conclusions, and recommendations. A reference list appears in Section 7.

2. BACKGROUND

Anthropological data have shown that the Willamette Valley has been an important wintering area for geese since the end of the last Ice Age nearly 15,000 years ago (Pacific Flyway Council 1999a). Bellrose (1981) indicates that the wintering population and numbers appeared to be quite stable. The main species wintering in the valley was the dusky Canada goose; an average of approximately 19,000 duskies overwintered annually in the Willamette Valley (Pacific Flyway Council 2008a). Remnants of geese found by archeologists as well as fossil records indicate that only the dusky wintered in the Willamette Valley in the past; there is no evidence that cacklers or other subspecies of Canada goose wintered in the valley. However, beginning in the 1980s, greater numbers of cacklers began to show up in the Willamette Valley as that species shifted northward from traditional wintering grounds in California. This shift has continued at a rapid pace until, today, nearly 90 percent of the geese that overwinter in the Willamette Valley are cacklers.

In addition to the cacklers, four other goose subspecies appear to have shifted, or to be in the process of shifting, their traditional wintering grounds to the Willamette Valley and the Oregon coast. These four subspecies are Taverner's, Aleutian (*Branta hutchinsii leucopariea*), Lesser, and Western (*Branta canadensis moffitti*). White-fronted geese are beginning to exhibit the same signs exhibited in the 1980s by cacklers prior to their shift.

This thesis focuses on the cackling goose and the Pacific white-fronted goose. These species were chosen because they make up the majority of the goose populations within the Pacific Flyway. If these species begin to winter farther north, the natural and human environments and goose management in the Pacific Flyway will be greatly affected.

The reasons for the changes have not been precisely determined, but it is hypothesized that climate change is a major contributor. For example, surveys on the Yukon-Kuskokwim Delta (Y-K Delta) in western Alaska have shown that river channels that used to be around 10 feet wide have grown to nearly 50 feet in width due to increased erosion. Erosion of river channels was, until recently, kept in check by the underlying layers of permafrost on the Delta. However, average summer temperatures have risen in Alaska, which has resulted in melting of exposed permafrost. This has caused river channels to widen and has shortened the length of time water is held in potholes in the Delta's wetlands. In turn, the nesting success of waterfowl species that are more dependent on a large quantity of water has been adversely affected. Birds that nest in upland areas, however, appear to be more successful (C. Dau, USFWS, personal communication, June 2009).

Within the past 15 years, the number of geese wintering in the Willamette Valley has increased from about 100,000 to about 400,000 (Pacific Flyway Council 2009). The shift of wintering goose populations into western Oregon has posed a number of management problems for the U.S. Fish and Wildlife Service (USFWS) and the Oregon Department of Fish and Wildlife (ODFW). The geese feed upon Willamette Valley grain and grass fields, which are an important component of Oregon's agricultural economy. Larger numbers of geese mean greater depredation of the fields and requests by farmers for help controlling the damage.

2.1 GEESE IN THE PACIFIC FLYWAY

2.1.1 Cackling Geese

Migration and Breeding Areas

Cackling geese migrate north in the spring to the Y-K Delta (Figure 1), stopping in the intertidal marshes of Cook Inlet to rest and increase energy reserves for breeding. They also use the pastures and other agricultural lands near Palmer, Alaska. Nearly all of the primary spring habitats in Cook Inlet are within protected state wildlife refuges. Cacklers are an important subsistence harvest species for Alaska Natives.

Nesting occurs in the extensive pond and meadow mosaic habitats of the outer Y-K Delta (Mickelson 1975; Ely et al. 1996). Most nests are established on small islands in pothole ponds; nest densities are somewhat "clumped." Cacklers also make extensive use of wet tundra and river/slough bank meadows of *Carex* sp. and other wetland vegetation (Babcock and Ely 1994).

Cacklers nest somewhat earlier than other goose species. Placement of nests on the small islands allows them to escape from terrestrial predators and to distance themselves from the nests of more aggressive goose species and subspecies. Cacklers also remain fairly close to water during the nesting season; they are rarely found more than 30 yards from water and, if threatened, will go to the water to escape the threat.

Cacklers leave the breeding grounds in mid-October. Migration appears to coincide with the onset of fall storms and associated strong northwest winds in western Alaska (Gill et al. 1997). The intertidal marshes and coastal wetlands, particularly Ugashik Bay on the north side of the Alaska Peninsula, are vital fall staging habitats (Figure 2). Cacklers use these areas, grazing on pond shorelines, to build up body mass for the southward migration. Roosting occurs mostly on exposed intertidal bars (Gill, Bollinger, and Petersen 1986; Sedinger and Bollinger 1987). Most of the primary use areas in Ugashik Bay are in protected status as are portions of cackler habitat within the Cinder River Critical Habitat Area.

Figure 1: Yukon Delta National Wildlife Refuge (USFWS 2003)

Figure 2: Important Fall Staging Areas in Alaska for Cackling Canada Geese (Pacific Flyway 2003)

In some years, e.g. 1987, large portions of the population may bypass traditional Alaskan staging grounds and fly directly to wintering grounds (Gill et al. 1997). It appears that cacklers can fly non-stop from the Alaska Peninsula to the lower Columbia River.¹ Occasionally, cacklers are sighted in northern Puget Sound (primarily Skagit Flats (Figure 3)), the northern Olympic Peninsula, and eastern Washington during fall migration.

Figure 3: Skagit Flats in Washington State

The geese generally begin to arrive in southwest Washington and northwest Oregon in mid- to late October, with the peak of the population arriving between October 25 and November 7. In some years, the population arrives early. In 2009, for example, a majority of cacklers were recorded in late September. Cacklers are an important species for sport hunters in Washington and Oregon.

Wintering Areas

Historically, most cackling geese wintered in central California (Figure 4) (Nelson and Hansen 1959; King and Lensink 1971; Raveling 1984). Banding and marking studies were conducted between 1982 and 1984 on the Y-K Delta and in northern California. Subsequent observations of these geese in 1984 and 1985 illustrated the typical winter distribution prior to the population increase and geographic shifts of the 1990s.

¹ Gill et al. (1997) documented 11 marked birds that departed the Alaska Peninsula and arrived in the Klamath Basin within 48 to 72 hours.

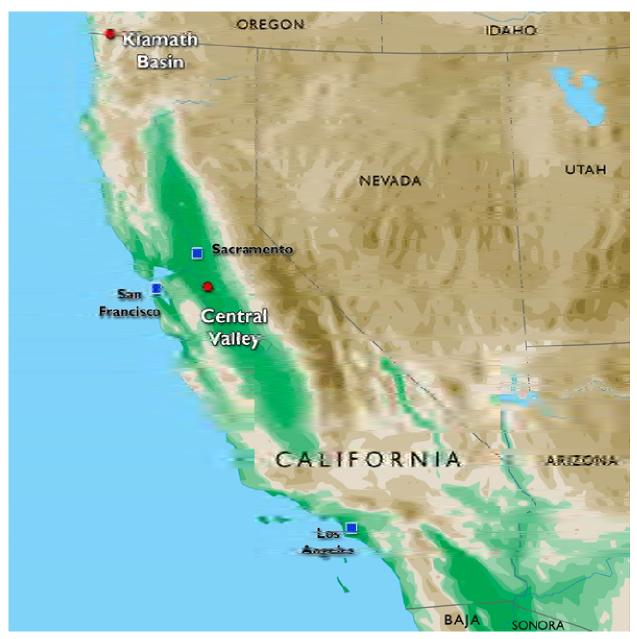


Figure 4: Central Valley, California

The winter distribution of Cackling geese has shifted markedly northward in recent years. Since 1985, all banding and marking has occurred on the Y-K Delta and none has been done in California. Nonetheless, banding data (Section 3.1.3) illustrate the dramatic change in winter distribution in the 1990s. During the 10-year period between 1988 and 1997, observations of marked cackling geese in southern Oregon and California dropped to very low levels. Concurrently, the number of geese observed in the Willamette Valley to Lower Columbia River region of Washington and Oregon has increased greatly (Figure 5).

Figure 5: Distribution of Cackling Geese (Warren 2007)

This shift coincided with drought conditions in California between 1986 and 1992, which may have affected winter habitat quality and, consequently, use by cacklers. The average winter temperature in the Willamette Valley was also nearly four degrees higher in the mid-1990s than 50 years ago (Flowers 2010). Since 1993, the majority of cackling geese have wintered in Oregon and Washington. Starting in 2006, cacklers have been seen in areas of southern British Columbia as late as December. In the fall of 2008 and 2009, cacklers established a small wintering population in southern British Columbia (J. Fischer, USFWS, personal communication, February 2010).

Population History

The cackler population numbered around 400,000 birds in the late 1960s, but dropped to around 20,000 in the mid-1980s. This decline was thought to be due to a combination of effects from subsistence harvest in Alaska and sport harvest on the wintering grounds, especially in California (Pacific Flyway Council 2008). However, it is now known that the decline was likely a combination of low population numbers and a geographic shift in wintering. The geese formerly were found primarily in the Klamath Basin and Central Valley during the winter where they were routinely counted in wintering ground surveys. They were not specifically included in Willamette Valley counts, so were not recorded until the shift northward became more apparent (B. Bales, ODFW, personal communication, December 2009). Populations rebounded following harvest restrictions implemented in 1979 and concerted flyway-wide restoration efforts that started in 1983 (Pamplin 1986). Figure 6 shows the 20-year decrease in cackler numbers on their staging grounds in Central Valley and the Klamath Basin due to their shift to the Willamette Valley.

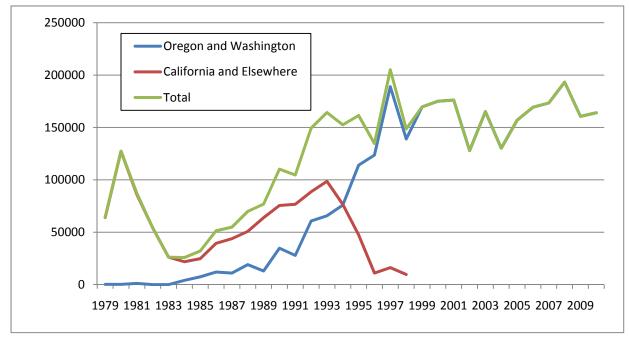
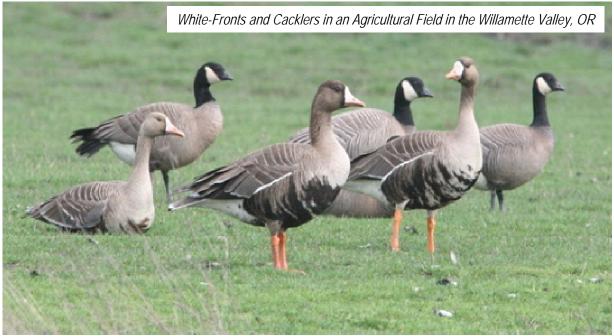



Figure 6: Total and Regional Cackler Population (Pacific Flyway Council 2010)

Prior to the 1990s, the cackler was an infrequent resident in the Willamette Valley and lower Columbia River, spending staging in the Klamath Basin and wintering in California's Central Valley (Figures 4 and 5). Now, 95 percent of the cackler population winters in Oregon. The shift to wintering grounds in Oregon coincided with a population rebound; by 1997, there were about 200,000 geese wintering in the Willamette Valley and lower Columbia River (Pacific Flyway Council 1999). Since then, the number has fluctuated, but has remained between 150,000 and 200,000 birds. The overall trend currently is for continued increases in the cackler population.

The 2010 estimate projected by USFWS is 188,000. The three-year average estimate is 180,000, which is the highest three-year trend in many decades (B. Reishus, ODFW, personal communication, July 2010). However, the population has fluctuated over the past five years, making it difficult to identify a long-term population trend. The population is still below management objectives and, therefore, is being carefully managed in order to eventually meet the management objective set by the Pacific Flyway Council (Section 2.2.1).

2.1.2 Pacific White-Fronted Geese

Breeding Areas

Nearly all Pacific white-fronts breed from the Alaska Peninsula north to the Yukon River, with the majority nesting on the Y-K Delta (Palmer 1976; Timm and Dau 1979). Aerial surveys, which are usually conducted in June, indicate that the Y-K Delta has hosted an average of nearly 97 percent of Pacific white-fronts over the past 10 years (Eldridge and Dau 2002; Conant and Groves 2002). About 75 percent of the population breeds in the narrow coastal zone while another 22 percent are dispersed across the interior of the Delta. The remainder nest in Bristol Bay and the Innoko River basin.

Migration and Wintering Areas

The fall migration of Bristol Bay Pacific white-fronts begins in early to mid-August. Geese that migrate along the Alaska Gulf Coast in late August and early September and pass through Cook Inlet and the Copper River Delta (Figure 2) before the hunting season opens may be of Bristol Bay origin (Hawkings 1982, Ely and Dzubin 1994); this assumption is based on a few band recoveries from Cook Inlet. The Y-K Delta Pacific white-fronts, unlike cackling geese, do not usually aggregate in concentrated staging areas. They apparently remain on the Y-K Delta or east of the Delta until late September (Figure 7) (Ely and Dzubin 1994).

The numbers shown in Figure 7 denote the primary wintering and staging spots of white-fronts and are in order of importance with "1" being high importance and "12" being lesser importance (Ely and Takekawa 1996). Fewer than 10,000 Pacific white-fronts winter in the Klamath Basin of northeastern California and southeastern Oregon; several hundred Pacific white-fronts overwinter in the lower Columbia River.

Alaska's Copper River Delta (Figure 2) is the last known major use area north of the Klamath Basin (Figure 4). There have been only two band recoveries in Southeast Alaska and one in British Columbia. As the population has increased, more Pacific white-fronts have been observed in western Washington and Oregon during September.

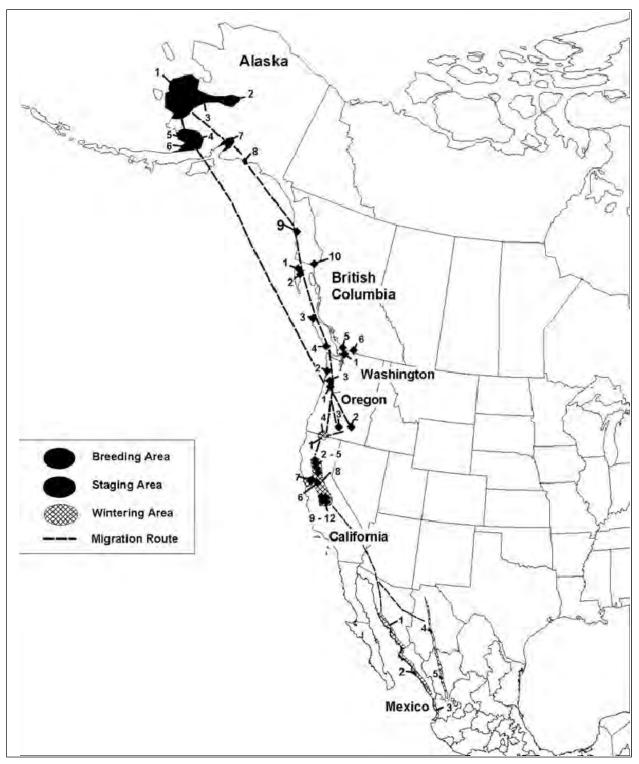


Figure 7: Important Staging and Wintering Areas for White-Fronted Geese (Pacific Flyway Council 1999)

It appears that most Pacific white-fronts move nonstop from the Y-K Delta to the mouth of the Columbia River, migrating through central and eastern Oregon in October before arriving at wintering grounds in the Klamath Basin and Sacramento Valley. The geese move through the same area again in January and February before heading northward to the breeding grounds in Alaska. In recent years, however, most of

the population apparently has bypassed the traditional Klamath Basin staging area in the fall, migrating directly to the Central Valley of California. When migrating north however, white-fronts have increased in number in the Klamath Basin. The geese mainly concentrate on national wildlife refuges on the west side of the Sacramento Valley in the early fall because other habitats are limited. Increasing urbanization, changes in agriculture, hunting pressure and the large influx of Pacific white-fronts has limited habitat and resources in their wintering area.

As the fall and winter progresses, the Pacific white-fronts disperse into other parts of the Sacramento Valley and the Sacramento-San Joaquin River Delta. Recent trends (1998-2002) show significant numbers of Pacific white-fronts arriving in the Sacramento Valley by late September, with 100,000-200,000 present by the first week in October. Although diminished in numbers from past years, the first arrivals in the Klamath Basin are seen about the end of August with the peak occurring in mid-October (USFWS 1999). These arrival dates are still true today according to USFWS surveys. A small percentage of Pacific white-fronts, mostly from Bristol Bay, migrate early through the Klamath Basin in September, overfly the Sacramento Valley, and winter in the northern highlands of Mexico (see below) (Ely and Takekawa 1996).

Recoveries from Pacific white-fronts banded in Alaska show a relationship between breeding and wintering areas (Lensink 1969). It appears that birds from the Y-K Delta stage and winter in the Pacific Flyway. The majority of recoveries from the three banding regions on the Y-K Delta occurred in California (Pacific Flyway Council 1987).² Only 7 percent of the Pacific white-fronts banded in the Innoko River basin (Figure 2) have been recovered in California. These are likely "molt migrants"³ and comprise both Pacific white-fronts from the Y-K Delta and Tule white-fronts from Cook Inlet. The Innoko River basin hosts Pacific Flyway white-fronts, Mid-Continent white-fronts, and Tule white-fronts during the molt. The westernmost banding sites in the Innoko basin have produced the highest proportion of California band recoveries (>20 percent), which is congruent with the distribution of molting Tule white-fronts in the region.

Past banding in the Klamath Basin has indicated that Pacific white-fronts migrating through the Klamath Basin in September and early October were apt to be recovered in Mexico, whereas geese banded after 15 October are rarely recovered there (C. Ely, USGS, personal communication, 2010). The earlier birds are now known to be primarily from the Bristol Bay group (Ely and Takekawa 1996). At least 10,000 Pacific white-fronts winter in Mexico. Winter survey counts in Mexico conducted every third year by the USFWS indicate that the numbers of wintering geese range from 10,000 to more than 20,000 (USFWS 2001). Band recovery data indicate that the propensity of Pacific white-fronts to winter in Mexico is highest in birds from the southern part of the breeding grounds, particularly Bristol Bay. Bird banding data showed that over 90 percent of Pacific white-fronts from Bristol Bay wintered in the interior of Mexico (Ely and Takekawa 1996).

Recoveries in Mexico varied among geese banded in the north Y-K Delta (none in Mexico), middle Y-K Delta (2.5 percent), and south Y-K Delta (23 percent). Analyses of historical banding have shown that 9 to 10 percent of birds from the primary Y-K Delta breeding grounds are recovered in Mexico, primarily from the states of Sinaloa, Nayarit, and Sonora (Lensink 1969, 1986). Between 20 percent and 25 percent

² Bands recovered in California were as follows: 70.0 percent from the south Y-K Delta region, 90.5 percent were from the middle Y-K Delta region, and 84.6 percent were from the north Y-K Delta region.

³ Molt migrants are defined as non-breeding yearlings that migrate to unfamiliar areas to clear habitat for young of that year.

of band recoveries are from the interior highlands of Chihuahua and Durango. Ely and Dzubin (1994) suggest that the Pacific Flyway white-fronts wintering in the interior highlands may not be sympatric with Mid-Continent birds using areas further south and east in Mexico.

Population History

There are two subspecies of white-fronted geese that breed in Alaska and winter mainly in California: the greater white-fronted goose (*A. albifrons frontalis*), also called the Pacific Flyway Population of Greater White-Fronted geese, or Pacific white-front, and the Tule greater white-fronted goose (*A. a. gambelli*). Each of these subspecies is managed through different plans in the Pacific Flyway (Section 2.2).

In addition to the Pacific Flyway Population of white-fronted geese, there is a Mid-Continent Population of white-fronted geese (another population of *A. a. frontalis*). Some of the geese from Mid-Continent Population breed in interior and northern Alaska and are managed through a separate plan adopted by the Central, Mississippi, and Pacific Flyway councils in 1998.

Fall counts of Pacific white-fronts declined from a population peak estimate of 480,000 birds between 1966 and 1968 to a low of 73,100 in 1979 (O'Neill 1979; Timm and Dau 1979; Raveling 1984). Harvest restrictions instituted in the late 1970s and a conservation program begun in 1984 (Section 2.2.2) helped return the population to acceptable levels by 1996. Though growth slowed somewhat in the late 1990s, the population numbered 433,400 in 2001 and 600,000 by 2004, as determined by breeding and wintering ground surveys (Pacific Flyway Council 2004). The population this past year has grown to nearly 650,000 white-fronts (Figure 8).

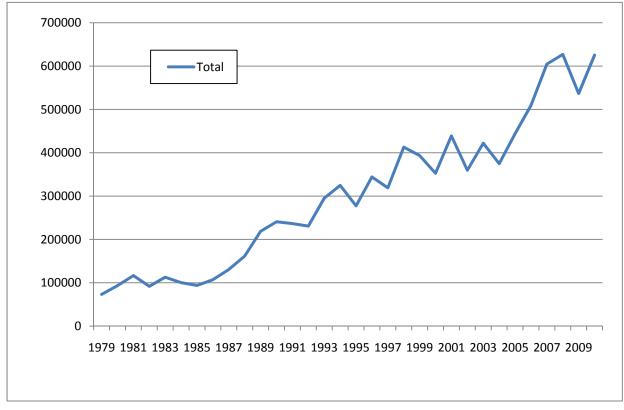


Figure 8: Total Population of White-Fronted Geese 1979-2010 (Pacific Flyway 1999)

At the present time, the white-front population is higher than it has ever been, according to USFWS surveys (J. Fischer, USFWS, personal communication, 2010; Pacific Flyway Council 2010). The estimated population is nearly 350,000 birds greater than the management objectives set by the Pacific Flyway Council (Section 2.2.1) which has resulted in large impacts on agriculture. Special hunts have been initiated in an effort to alleviate crop depredation. However, so far there has been little success in lowering the population.

Lowering the population through hunting has been hampered by the fact that protection of the Tule whitefront is a top priority. Conservative bag limits are still in place and hunt areas are closed in California to protect this species. Until the Tule rebounds, it is unlikely that hunting will be a means of controlling the white-front population. Therefore, because conditions on breeding areas have been favorable and sport hunting continues to be controlled, it is likely that the Pacific white-front population will continue to increase.

2.2 GOOSE MANAGEMENT

2.2.1 Pacific Flyway Council

The federal governments of the United States, Canada, and Mexico, under the authorities of bilateral treaties and federal legislation, are ultimately responsible for the protection and conservation of migratory birds in North America. In the United States, this responsibility has largely been delegated to the USFWS.

The Migratory Bird Treaty Act implements various treaties and conventions between the U.S. and Canada, Japan, Mexico and the former Soviet Union countries for the protection of migratory birds. Under the Act, taking, illegal killing or possessing migratory birds is unlawful. The act also states that hunting seasons must fall between September 1 and March 10. The Migratory Bird Treaty Act authorizes state governments to adopt and enforce laws and regulations protecting migratory birds, as long as they are not inconsistent with those of the federal government. That is, state authority may be more restrictive than the federal authority, but not more liberal. Each state has constitutional and legislative mandates and a body of laws and regulations that direct the conservation and public uses of migratory game birds within their borders.

Migratory birds use four major migratory routes (Pacific, Central, Mississippi, and Atlantic flyways) in North America. Because of the unique biological characteristics and relative number of hunters in these regions, state and federal wildlife agencies adopted the flyway structure for administering migratory bird resources within the United States. Each flyway has its own council. In the U.S., the Pacific Flyway includes Alaska, Arizona, California, Idaho, Nevada, Oregon, Utah, Washington, and those portions of Colorado, Montana, New Mexico, and Wyoming west of the Continental Divide.

The Pacific Flyway Council is an administrative body that fosters cooperation among public wildlife agencies for the purposes of protecting and conserving migratory birds in western North America. The Council is composed of the director or an appointee from the public wildlife agency in each state and province in the western United States, Canada, and Mexico.

Each species and subspecies of waterfowl in the United States is managed separately by region. Management in each region is established by a regional council consisting of representatives from management agencies. Management strategies for waterfowl populations in the Pacific Northwest are developed by the Pacific Flyway Council. Plans are the primary tool for managing and making management decisions about individual species, subspecies, and populations. The management plans are subject to revision as new data and information about a waterfowl population are developed. Management protocols and implementation are first established by the Pacific Flyway Council and then by the USFWS and state fish and wildlife agencies. Because birds fly over more than one state in their migrations, management is handled by the federal government through the Pacific Flyway Council and the USFWS. Once protocols and strategies are agreed upon, they are incorporated into the management plan for that particular subspecies.

Scientific data is gathered annually on waterfowl populations. Changes in population dynamics and migration patterns within the Pacific Flyway require revision of management plans. These revisions, in turn, require research to determine the most effective ways to manage each goose species (J. Fischer, USFWS, personal communication, 2010). Targeting management strategies for changes in wintering and breeding areas can help forestall problems for Willamette Valley farmers while simultaneously maintaining the goals set by agency management plans for individual goose species.

The focal species for goose management in Oregon and southwest Washington is the dusky Canada goose. The dusky Canada goose is considered a "less successful" subspecies that has been displaced on wintering grounds due to the increase in cacklers (Pacific Flyway Council 2008).

In recent years, managers have had to act quickly to accommodate the dramatic increase in cackling geese in the Willamette Valley. In the 1980s and 1990s, little action was taken by the agencies because the cacklers were not expected to shift in such large numbers. When the rapid shift occurred, managers were not prepared to implement new management strategies that would accommodate cacklers in their newly chosen wintering ground. The agencies' lack of preparation resulted in larger than necessary expenditures of public funds and in actions that had little or no effect on the problem. Today, agency personnel recognize that it will be essential to plan for the worst-case scenarios in terms of migration shifts to prevent the crisis-mode actions that occurred with the rapid increase in the cackler population in the 1980s and 1990s (J. Fischer, USFWS, personal communication, 2010).

The Y-K Delta Goose Management Plan has guided conservation and harvest of the cackling goose for the past 15 years. The precursor of the Y-K Delta Management Plan was the Hooper Bay Plan, which was signed in January 1984 by representatives of the coastal states, the USFWS, and Alaska subsistence hunters. Representatives from Alaska, Washington, Oregon, and California attended a series of meetings in 1983, which led up to the 1984 agreement. The intent of the meetings was to identify critical problems with goose nesting, to agree on harvest restrictions, and to develop a broad-based conservation program (Pamplin 1986). Similar annual meetings have continued under the Y-K Delta plan to assure consistency between management plans for the Pacific Flyway and for the Y-K Delta. Through these efforts, the cackler population rose to about 192,000 birds in 2008 (J. Fischer, USFWS, personal communication, 2010).

Subsistence harvest is also covered by the Y-K Delta plan. This is a very important issue for Native people in both Alaska and Canada. Native people rely on subsistence hunting for food and as well as an important cultural activity. The Y-K Delta Goose Management Plan calls for restrictions on both the breeding and wintering grounds to protect cackling, white-fronted, and emperor geese (*Chen canagica*) as well as black brant (*Branta bernicla nigricans*). In order to ensure a viable supply of birds for subsistence harvest, the Y-K Delta Goose Management Plan calls for restrictions on hunting, egg harvest, and other activities that affect populations depended upon by subsistence users. These measures are aimed at protecting cackling, white-fronted, and emperor geese while maintaining subsistence opportunities for Alaskan and Canadian Natives. The plan requires that federal harvest management for all geese on the wintering grounds be weighed against the needs of subsistence users. The current restrictions are to ensure that the population reaches a level where harvest will have little impact on the population while still maintaining the target population objective. The plan requires that federal harvest management for all geese on the wintering grounds be weighed against the needs of subsistence users.

2.2.2 Management of Cackling Geese and White-Fronted Geese

Goose species and subspecies are defined by the USFWS both geographically and by physical characteristics. For example, a cackling goose is any goose with a culmen (bill length) of less than 32 mm that breeds on the Y-K Delta in Alaska. Separating management by region and species/subspecies means that different management strategies are instituted for each species, subspecies, and population. Management strategies are based on population status, harvest, and migration change. Of these, population level is the most important factor in management of any particular subspecies. Another significant factor that can alter management plans involves human-goose conflicts on wintering grounds. For example, as goose depredation on agricultural lands escalates, hunts are enacted to lower the goose population.

Cackler Management

The current plan Pacific Flyway Management Plan contains measures that attempt to address the complexities of having two subspecies (duskies and cacklers) occupying the same wintering area. The objectives set by the plan are as follows:

- Achieve a population of 250,000 geese as measured by a 3-year average index of indicated breeding pairs, i.e. 27,660 breeding pairs, as determined by the Y-K Delta aerial breeding goose survey
- Promote an average annual population increase of 5 percent to 10 percent
- Manage for a winter distribution that allows for no more than 20 percent of the current population in the agricultural areas of the lower Columbia River and Willamette Valley⁴
- Maintain, manage, and enhance, where feasible, nesting, migration, and wintering habitats in sufficient quantity and quality to meet population objectives and public use goals
- Manage habitats and harvest to minimize crop damage consistent with Pacific Flyway plans and policies (Pacific Flyway 1999)

Increasing numbers of cacklers may result in more liberal season dates and bag limits as the population gets closer to its objective of 250,000. The Migratory Bird Treaty states that hunting cannot extend beyond March 10 so that the birds can feed and build up fat reserves for the long migration to the breeding grounds (Flowers 2010).

As the goose population increases, so will damage to agricultural crops and encroachment into urban areas. Revised management plans must include input from the Oregon Farm Bureau, Oregon Department of Agriculture Washington Farm Bureau, and Washington Department of Fish and Wildlife. The effects on agriculture were taken into account to a certain extent in the last management plan, but with increase in cacklers and white-fronts, more attention must be focused on crop damage.

The most dramatic changes in cackler numbers on the wintering grounds occurred in 1994 and 1995. During this time, numerous meetings of the Pacific Flyway Council were held in order to formulate an emergency management plan until a more permanent approach could be established. The result was a treaty among USFWS, the states of Oregon and Washington, Alaska Department of Fish and Game, and

⁴ This objective is aimed at removing cacklers from the agricultural areas in the lower Columbia and Willamette Valley; the remaining 80 percent of birds would overwinter away from agricultural areas.

the Alaska Natives. The agreement called for collar and banding studies aimed at monitoring harvest levels so that the cackler population could be managed to ensure that it would not be overharvested in either Alaska or the Pacific Northwest.

Currently, in Oregon, farmers feel goose depredation is affecting their crops to the point that their livelihoods are at risk. Starting in fall 2010, the Agricultural Depredation Plan formulated by the Pacific Flyway Council will be re-written to reflect current impact of cacklers on new areas in Oregon and southwest Washington. The cackler management plan will also be opened and proposals will be presented to lower the population goal to a level that will not pose further risk of depredation.

In Oregon, the cackler wintering population has grown from 25,000 in the late 1970s to nearly 400,000 in 2009 (Section 2.1.1) and is continuing to increase. In the late 1980s, Oregon and the lower Columbia River were included in the cackler surveys. Adding these areas caused the overall population estimate to increase, but managers still decided to institute changes aimed at returning the cackler population to return to its historical levels.

In recent years, there have been increasing numbers of migratory geese using urban areas. For example, the number of urban geese within the city limits of Salem has increased nearly 50 percent between 2005 and 2010 (B. Bales, ODFW, personal communication, 2010). Urban areas provide safety from hunting and agricultural hazing, lower concentrations of predators, and optimal food sources such as fine grasses in golf courses and recreational fields. Increased numbers of geese in urban areas have resulted in negative effects such as water contamination and damage to athletic fields and golf courses due to large concentrations of feces that make areas cosmetically less appealing and pose human health risks.

Management of White-Fronted Geese

The Pacific Flyway Goose Management Plan contains the following management goal and objectives for Pacific white-fronted geese (Pacific Flyway Council 2003):

- Goal: Identify the needs and responsibilities necessary to cooperatively manage numbers and distribution of Pacific white-fronts in order to maintain population viability and to provide for aesthetic, educational, scientific, and hunting uses throughout their range
- Maintain a population index of 300,000 as measured by a 3-year average projected fall index derived from indicated total geese on aerial surveys covering the Y-K Delta and Bristol Bay areas
- Maintain, manage, and enhance nesting, migration, and wintering habitats in sufficient quantity and quality to meet the population objective and public use needs

White-fronts have recently been exhibiting changes in behavior that are thought to foreshadow a similar northward shift in wintering areas. For example, it has been observed that goose populations have "scout" birds that look for better habitat and food sources (Pacific Flyway Council 2008). Once the scout birds have identified a suitable wintering area, increased numbers of geese are seen in those areas during spring and fall migrations. Within a few years, the main population is staging longer in these areas and eventually will remain on the former staging grounds throughout the winter.

This is the same type of trend observed with cacklers starting in 1985. At first, several hundred cacklers started wintering in the Willamette Valley. By fall 1994 and winter 1995, the number of cacklers wintering in the valley had increased nearly 50 percent as the geese shifted from the Sacramento Valley northward (Warren 2007).

3. STUDY METHODS

Data and information for this thesis were obtained from a review of pertinent literature and unpublished data as well as from original field data.

3.1 LITERATURE REVIEW

Several types of data were analyzed in order to address the questions presented in Section 1:

- Historical breeding and wintering surveys
- Bird band data
- Harvest data
- Agricultural data
- Climate and weather data

Pertinent literature included USFWS data (published and unpublished), studies conducted by universities, ODFW data, journal articles, and some unpublished data. Of these, the most pertinent were the USFWS data. ODFW harvest data also played a significant role in addressing the project's questions and aided in identifying patterns during the comparison of climate and agricultural data (Section 4).

Only data and information from 1975 to 2010 were considered for this thesis. This time frame was chosen because it encompassed the period before, during, and after the postulated shift northward. Trends in migration changes (if any) would be evident in data generated in these years. The same time frame was used for weather and climate data also.

3.1.1 Historical Breeding and Wintering Surveys

Data from past breeding and wintering surveys between 1975 and 2005 were compared with current surveys (2005-2010) in order to detect changes in area usage, migration patterns, and timing. Very little data prior to 1975 exist. The most complete set of data is derived from annual breeding and wintering ground surveys conducted by the USFWS. USFWS began collecting these data in the 1950s from field observations and aerial surveys. Combining these data produces an average that is the most realistic population estimate for any given year. The data from USFWS current surveys are derived from the surveys conducted over several decades. All aspects of the survey method have been refined over the years so that errors are minimized and so that the surveys result in an accurate picture of the total population and any changes that may have occurred. In addition to ground surveys, USFWS uses photographic data, banding, and aerial surveys. The protocols also assure the consistency of data collected more recently.

3.1.2 Historical Breeding Ground Information

Breeding ground surveys occur in Alaska's Y-K Delta (Figure 1) where USFWS randomly samples waterfowl nests to determine annual breeding success. USFWS protocols are followed yearly on the Y-K Delta for both cacklers and Pacific white-fronts in mid- to late June. USFWS provided an opportunity to

participate in a Y-K Delta ground survey crew during the summers of 2009 and 2010. Aerial surveys were conducted in July when the geese are in molt and unable to fly. During this time, the surveys are easier to conduct because the geese tend to gather together. The colony locations are marked with GPS coordinates which ensures that they are not counted twice.

3.1.3 Banding Data

Bird banding is an important source of information about bird populations, bird longevity, and behavior (territorial behavior, territory size, fidelity to territory, and reproductive behavior), especially dispersal and migration. Banding is supervised by the Federal Bird Banding Laboratory for USFWS and the Canadian Wildlife Service. This laboratory holds the database for all band data in the U.S. and Canada. All data from birds marked with a federal band are submitted to this laboratory; 99 percent of the banded birds in North America carry federal bands. The other 1 percent includes aviary, or private collection, birds.

Banding can be accomplished with metal leg bands or with other methods that are more visible to the observer, such as a "tarsus" band⁵ or neck collar. These bands are more visible than other types of bands, which means that they can be tracked without handling the bird again. A "mark-capture" technique can be used to estimate population sizes. Birds are marked and then recaptured. The ratio of the number of birds marked originally compared to those recaptured allows the total population to be estimated.

Analysis of banding information from waterfowl is completed annually. These data are used in development of hunting regulations and for detecting changes in waterfowl populations. Banding data can be used to assess hunting pressure, estimate productivity and survival and to measure the vulnerability of the age/gender classes to hunting pressure.

Band data specific to pertinent areas were reviewed for this project. Most data were obtained from USFWS' Bird Banding Laboratory. For cacklers, the geographic area encompassed by the data used for this project extended from the southern Willamette Valley in Oregon through the State of Washington. Washington State data were included because it was speculated that it could reveal any northern shifts of this species. Data reviewed included live sightings of collared or banded geese and data reported from harvested geese or those found dead.

For white-fronts, the geographic range of the data included Washington, Oregon, and California. Because so few white-fronts have been included in banding studies in the past, any band data at all for this species were considered useful to the project.

3.1.4 Harvest Data

Harvest data were obtained from three sources: 1) wing and parts survey⁶ information, 2) Harvest Information Program (HIP) data, and 3) permit zone data. The first two types of data were obtained from USFWS. Permit zone data are collected at check stations in the Northwest Permit Zone Area (Figure 9) and were obtained from ODFW. Combining the data from these three sources was expected to show migration trends based on the number of cacklers and white-fronts harvested over the years.

⁵ A tarsus band is placed on the leg and has three characters that can be read from a distance with a spotting scope.

⁶ USFWS looks at certain features on wings and tail feathers of harvested birds. The bird "parts" are voluntarily donated to USFWS by hunters for this purpose.

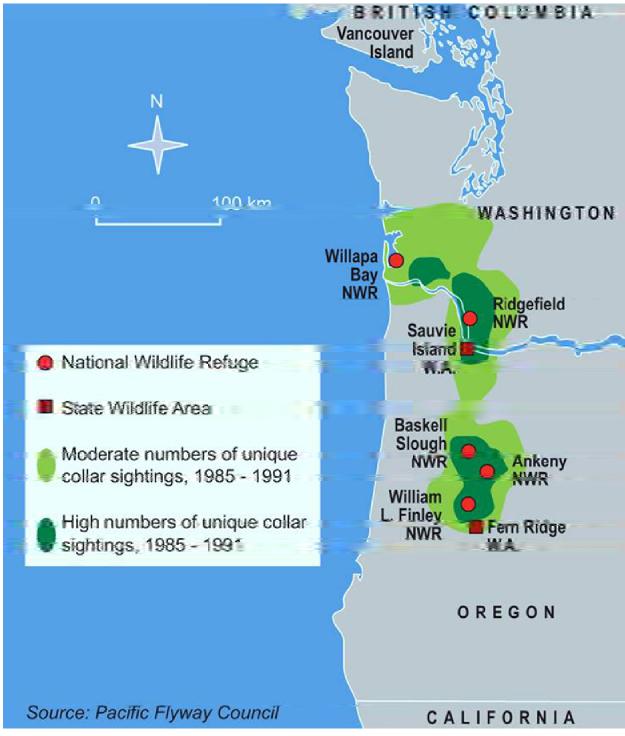


Figure 9: NW Permit Zone (Warren 2007)

USFWS conducts a voluntary "wing and part" survey on an annual basis. This information, combined with harvest rates in the HIP allows USFWS to estimate total harvest numbers for hunting zones nationwide. In addition, USFWS can determine the species and subspecies harvested by hunters.

Through HIP, state wildlife agencies and USFWS are developing more reliable estimates of all migratory birds harvested throughout the country. These estimates give biologists the information they need to make sound decisions concerning hunting seasons, bag limits, and population management. HIP is based on a voluntary survey of selected migratory bird hunters in the United States. In simplest terms, the state wildlife agencies collect the name, address, and some additional information from each migratory bird hunter in their state and send that information to USFWS. USFWS then randomly selects a sample of those hunters and asks them to provide information on the kind and number of migratory birds they harvest during the hunting season. Those hunters' reports are then used to develop reliable estimates of the total harvest of all migratory birds throughout the country.

Harvest data is also gathered from the Northwest Permit Zone in Oregon and Washington (Table 1) where, by law, all hunters must submit every goose harvested at check stations for examination to determine species and subspecies.

	Cacklers	White-Fronts
1984-85	0	not included
1985-86	8	not included
1986-87	19	not included
1987-88	54	not included
1988-89	26	not included
1989-90	16	not included
1990-91	18	not included
1991-92	42	not included
1992-93	36	not included
1993-94	72	not included
1994-95	1,220	not included
1995-96	1,758	not included
1996-97	2,503	not included
1997-98	3,446	44
1998-99	5,641	45
1999-00	7,302	18
2000-01	4,972	45
2001-02	3,676	14
2002-03	4,381	26
2003-04	3,631	16
2004-05	6,789	46
2005-06	4,734	47
2006-07	5,505	20
2007-08	5,899	50
2008-09	6,221	172
2009-10	6411	68

Table 1: Permit Zone Harvest Data for Cacklers and White-Fronts, 1985-2010 (ODFW 2010)

Checking species and subspecies is necessary in order to monitor whether or not Dusky Canada geese are inadvertently being taken. Because duskies are a "species of concern," there are limits on how many duskies can be harvested per season. If that quota is reached, hunting is closed. Check station personnel measure certain physical attributes of each goose and record species and subspecies. This further refines the data on specific numbers of Canada geese, cackling geese, and Pacific white-fronted geese.

3.1.5 Radio Transmitter Data

Data on goose movements and locations can be revealed through use of radio transmitters. Information for this thesis was obtained by placing radio transmitters on geese as part of a study being conducted by a Ph.D. candidate at Portland State University. The study focused on Benton, Linn, Lane, and Polk counties. Geese were captured on the Finley Wildlife Refuge near Monroe, Oregon, using bait traps. The radio transmitters were mounted on neck collars and placed around the necks of the geese. Approximately seventy birds were radio-collared over a two-year span. The birds were then tracked during their wintering movements using "relocators" which send a signal when an observer is near a radio-collared goose. The transmitters' batteries last about six to seven months in a radio collar. Since collaring occurred in December, January, and February, the radios cease to operate in June, July or August respectively.

3.1.6 Interpretation Aerial and Still Photographs

Historical and current aerial photographs of the Y-K Delta were obtained and topographical features analyzed for this thesis. In conjunction with other breeding ground surveys, aerial surveys are conducted to estimate nesting success and adult bird populations. Random transects are generated using a computer program (ArcGIS)⁷. The plane flies transects and "scatter shoots" the entire transect with a digital camera to ensure all waterfowl are recorded. The photographs are then analyzed to determine species and subspecies of geese. Aerial photos taken for this project were interpreted by USFWS and the data were made available to the author.

Counts of geese on the ground from still photos are often more accurate than counts made in the field (J. Fischer, USFWS, personal communication, 2010). Geese typically land in massive flocks and are constantly moving across a field while feeding. The movement can be "stopped" by taking still photos of the flock at times in sequence. The photos can then be analyzed to identify each species and subspecies, including marked birds. The number of birds of each species and subspecies in each flock can also be obtained. Though on-site viewing through a spotting scope is useful, a more definitive estimate can usually be obtained with photography.

3.1.7 Agricultural Data

Agricultural data was gathered from U.S. Department of Agriculture, Oregon Department of Agriculture, and California Food and Agriculture Department. Each provided historical, current, and future trends in agriculture. This project focused on the period between 1970 and 2010. The agricultural data reviewed included farming practices in Central Valley California and the Willamette Valley in Oregon prior to the migration shift of cacklers. Agricultural practices during and after the migratory shift were examined to identify changes in potential food sources for the geese. Records from the Oregon Department of Agriculture were reviewed to determine the crops grown in the Willamette Valley and the percentage of each crop between 1980 and 1995 (ODA 2009), the greatest period of expansion for cacklers. Analysis of

⁷ ArcGIS is a highly accurate, geography-based system designed to provide useful information for decision-makers. It allows easy production of data, maps, globes, and models that can be easily accessed by the user in the field and the office.

more recent data was expected to reveal if the northward shift of cacklers is expected to be maintained or expanded and if a similar shift based on preferred foods would be expected for white-fronts.

3.1.8 Climate and Weather Data

Analysis of weather patterns and data was an important part of determining the correlation between the cacklers' and white-fronts' northward shift and climate change. Average winter temperatures, snow levels, and frequency and severity of winter storms in the Willamette Valley, central Washington, and California's Sacramento and Central valleys were reviewed and compared to increased usage of the Willamette Valley by geese for wintering.

3.2 FIELD STUDIES

In addition to analyzing historical survey data, original data were collected in the field and were used to address the questions posed in this thesis. The data were also entered into the USFWS database. Data for both breeding grounds and wintering grounds were collected. The data were collected by the author in strict adherence with USFWS protocols, which allows the data to also be used by the Oregon Department of Fish and Wildlife and by the Pacific Flyway Council. Collected data were submitted to the USFWS database managers to assure that its acceptability for inclusion in the database.

Winter data collection occurred in coordination with USFWS' annual wintering ground surveys. The annual survey involved ground and aerial surveys as well as reading "collars." More than 400 hours were spent in the field and more than 300,000 geese were logged. Data collected during the wintering ground survey were compared to those obtained on the breeding grounds for that year. Consistency or inconsistency of the numbers gives managers important information about the welfare of the population for that particular year including, breeding success, hatching survival, percent of eggs per female, and more. This information is used in establishing sport bag limits, subsistence harvest or in identifying special needs a particular species or population might have.

Winter fieldwork for this project was carried out in two consecutive years: 2008/09 and 2009/10. The area covered extended from Eugene, Oregon, to the Ridgefield National Wildlife Refuge in southwest Washington. USFWS, ODFW and Washington Department of Fish and Wildlife staffs have certain areas in which they collect data; the fieldwork performed for this project looked at areas not already covered by biologists from those agencies.

Areas are typically broken up by county with one survey per week in each county. In addition to specific areas that are surveyed weekly, the "Oregon General Zone" was surveyed by the author for a more complete survey (Figures 9 and 10). The general zone is rarely surveyed so additional data was collected beyond what was collected within the permit zone boundaries. The General zone extends from Portland to Eugene east of the I-5 freeway. Surveys were done three days a week, each day in a different survey area (county) in both the permit and the general zone.

Surveys typically begin in early morning at roosting areas as the geese are leaving for preferred feeding areas. The birds were followed by car to the feeding areas where they were counted and species/subspecies identified. The surveys were conducted with a spotting scope and binoculars as well as a digital camera. Photographs were particularly useful because counts could be conducted later from the pictures, which served as a verification of counts done in the field, thus lowering the margin of error.

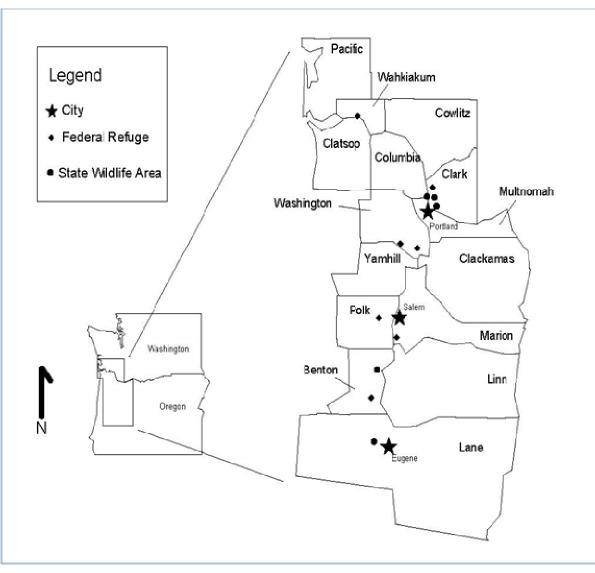


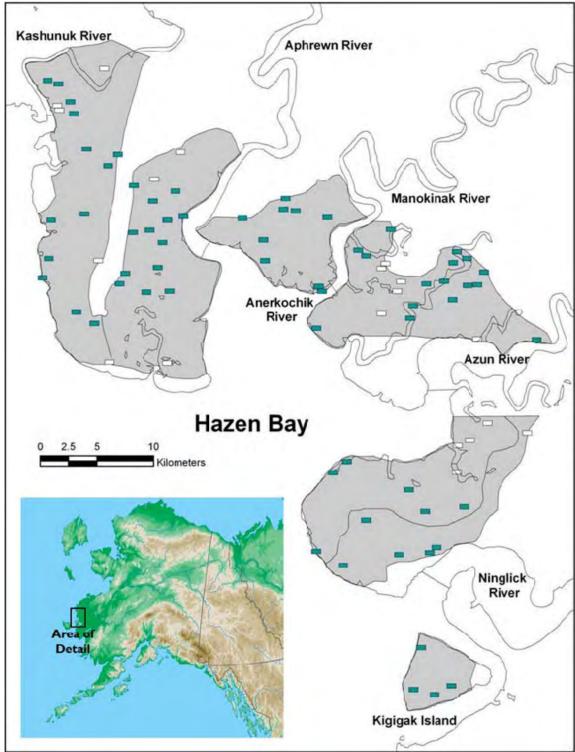
Figure 10: Areas Surveyed for Wintering Geese, 2008/09 and 2009/10

Each road in a survey area was covered to assure that the observer was seeing as many geese as possible. In some cases, access was limited because roads were private. Some areas had very few roads. This limited counts to areas that could be easily seen which meant, in some cases, that the counts were merely representative of the total number of birds in an area. In cases where roads were far from the goose flocks, it was difficult to identify species and subspecies. These limitations were noted on each data sheet. Inconclusive data sheets were eliminated from the final documentation.

A data sheet (Appendix A) was completed for each group of geese encountered. Information collected included date, time, bird location, number of birds of each subspecies, number of marked birds, name of the closest refuge, the latitude and longitude of the encounter location, and the total number of geese observed. The data were obtained from direct observation using binoculars, spotting scope, and camera with telephoto lens. The camera enabled groups of geese to be recorded for later species confirmation and, because the telephoto lens was more powerful than the spotting scope, made bird collars easier to read. This method allowed 100 percent success in reading collars on cackling geese in the 2009-2010 field season.

3.3 BREEDING SURVEYS

The USFWS conducts breeding ground surveys in Alaska's Y-K Delta. Waterfowl nests are randomly sampled to determine annual breeding success. Random sample areas are generated by computer; usually 80 to 85 sites are surveyed. A customized program within ArcGIS generates the randomized selection of 85 plots each year. Plots selected do not overlap any plots surveyed in the past 5 years. Boundaries of the survey area include lands on the Yukon Delta National Wildlife Refuge (Figure 1) containing medium and high nest densities of spectacled eiders because of their Endangered Species Act listing and geese. The nest densities are based on aerial and ground observations made between 1985 and 1993 (USFWS unpublished data). Because annual access cannot be assured, privately owned high density nesting habitat near Kokechik Bay, two parcels on south Nelson Island, and several tracts near Hazen Bay are excluded.


Between 1994 to 1997 and 2000 to 2010, plots were selected within an area 716 km square that comprised 5.6 percent of the total coastal zone of the Y-K Delta. Prior to 1994 and in 1998 and 1999, plots were selected within a slightly larger portion of the coastal zone. Each plot measures 800 m by 400 m and is surveyed on foot. The location of each nest found is recorded along with the number of eggs, egg condition, species, and estimated date of hatching.

Hatching is estimated by using historical data from past breeding ground surveys and studies that focus on incubation and hatch. During the nest plot survey, eggs are floated in water to determine hatch date. Eggs will float differently depending upon their maturity. A hatch date for the season can be determined by averaging the number of floating eggs for each species. Each species or subspecies typically will lay eggs at slightly different times, resulting in a range of hatch dates for any given season on the Delta.

Breeding surveys are time-critical and must be conducted as soon as the ice melts on the Delta, usually between May 26 and June 15. For this project, 17 nest plots within a 20-square mile area were sampled within a 15-day period. The nests occurred in a variety of habitats including upland, coastal, riparian, grassy plains, mudflats, and "pothole" ponds.

Each plot is surveyed by two people. Each person walks half the plot area following a GPS and proceeding in a zigzag manner, checking to make sure that all the area is covered. During the survey, birds flushing from nests are noted and the species identified. If unoccupied nests are found and no bird flushes, down and feathers in the nest are used to determine the species. All species of bird including waterfowl (duck, goose, swan), gulls, shorebirds, and songbirds are noted. An example of the survey form is found in Appendix A. For each nest, the following information is recorded:

- Plot number
- GPS location
- The name of the observer
- Goose species
- Nest location
- Number of eggs
- Maturity of the eggs (estimated hatching date)
- Evidence of predation in the nest
- Nest status (active or non-active)

During the 2009 and 2010 survey periods, 15 and 10 plots, respectively, were surveyed for this project. Figure 11 depicts the plots surveyed in 2010.

Figure 11: Nest Plot Survey Area, 2010 (USFWS 2010)

4. RESULTS

All data and collected from sources identified in Section 3 were reviewed and analyzed for completeness and applicability. Data that were not considered complete or accurate were excluded from the analysis. Data and information from studies that were not yet complete or appeared to be less applicable to the questions addressed by this thesis were not used in the data synthesis and analysis. For example, the radio transmitter study has not yet been concluded and the data from it were not included in this thesis.

In addition, the HIP harvest data, while helpful, was not as useful because its scale was too broad. The numbers harvested gave an idea of the overall harvest, but with a large margin of error. It also did not clearly identify where the birds were harvested, e.g. birds were identified only as having been harvested in Oregon. The USFWS data from breeding and wintering areas was much more useful because it could be used to cross-check other population estimates.

4.1 WINTERING AND BREEDING GROUND SURVEYS

Data obtained in the course of this project indicate that cacklers are arriving on the breeding grounds and nesting later than in previous years. The incubation date for broods is beginning to extend beyond the historical May 26 to June 10 "window" according to results from the nest plot survey. It is thought by USFWS biologists that this is due to the fact that cacklers and white-fronts are remaining on their wintering grounds past their historical departure dates (J. Fischer, USFWS, personal communication, 2010; USFWS 2009).

Cacklers also appear to be arriving on the wintering grounds earlier as well. This year, large flocks of cackler were sighted in the Willamette Valley during surveys in late September, nearly a month earlier than usual. This trend has been seen in years past, but this past fall was an extreme case. Data collected from surveyors corroborates this behavior (ODFW 2010). Comparison of this information with historical arrival and departure dates indicates a change in migration patterns nearly as significant as the northward shifts of the 1990s (Figure 12).

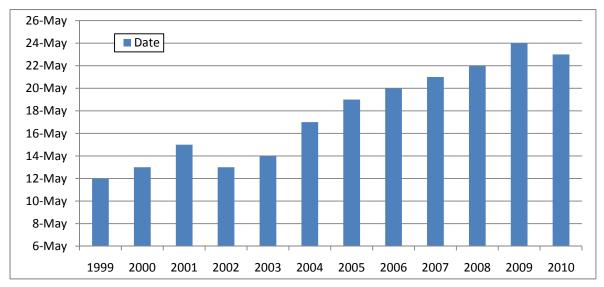


Figure 12: Departure Date of Cackling Geese from Wintering Grounds, 1999-2010

Direct observations of the breeding grounds as part of this project revealed that cacklers prefer potholes, uplands, and grass plains near a water source for nesting. White-fronts seemed to prefer uplands and grassy plains, but seemed to have little trouble nesting elsewhere as this species was observed in a variety of habitat types. According to data from nest plot surveys conducted over the past 30 years, the habitat of the Y-K Delta is changing. Winter temperatures have increased 2.2°F on the Delta between 1949 and 1998 (USFWS 2009). Substantial warming has also been documented in the Arctic, especially in the fall and winter months (USFWS 2009).

As a result, potholes appear to be holding water for a shorter time each year, likely because moisture is being lost from the ground in the Y-K Delta (USFWS 2009). This, in turn, is due to permafrost melting because of the warmer temperatures. Permafrost, i.e. permanently frozen ground, comprises soil, sediment, or rock that remains at or below 32°F for at least 2 years (USFWS 2009). North of the Brooks Range in Alaska, permafrost is continuous, extending from a few inches to nearly 1,000 feet below the ground surface (USFWS 2009). Permafrost supports the ground surface, controls soil temperature and moisture, modifies micro-topography, controls subsurface hydrology and rooting zones, and influences nutrient cycling. Recent studies have shown that permafrost is warming throughout most of the region. For example, the soil in the Arctic Coastal Plain in Alaska has warmed 5°F to 7°F over the period from 1977 to 2003 (USFWS 2009). During the 2009 and 2010 surveys on the Y-K Delta, erosion was evident on shorelines of the waterways and the Bering Sea. Because permafrost previously held them together, river banks and coastal cliffs are beginning to collapse in areas where melting has occurred. The alteration of the Delta due to permafrost melting may have significant impacts on waterfowl habitats in the future.

As mentioned in Section 2.1.2, the Pacific white-front population declined precipitously between 1966 and 1979, resulting in revised management including harvest restrictions. The population subsequently rebounded and, today, the white-front population exceeds the management objectives by more than 300,000 birds. In the last few years, USFWS ground survey crews have seen an 18 percent increase in white-front sightings in the Willamette Valley (Figure 13). These sighting have occurred mostly in early October when the geese may have been staging to migrate south. Though white-fronts previously overwintered in California, the numbers remaining through the winter in the Willamette Valley and southwest Washington are increasing. The highest count of white-fronts took place during the 2008/2009 season. During this time period, thousands, rather than the expected hundreds, of white-fronts were counted in the wintering ground surveys. The overall numbers were combined by USFWS to come up with an index of the white-front population for that winter.

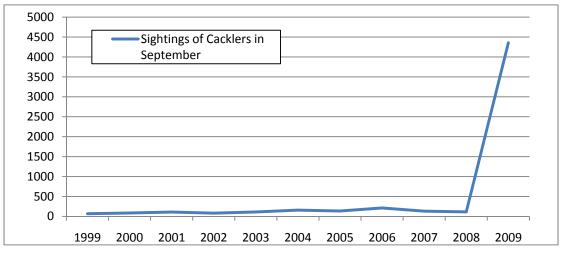


Figure 13: September Sightings of Cacklers in the Willamette Valley, 1999-2010 (Pacific Flyway Council 2010)

4.2 BIRD BANDING DATA

Bird banding data was obtained from the Bird Banding Laboratory in 2009. More than 10,000 band reports for cackling geese between 1985 and 2010 and 1,000 reports for white-fronted geese for 1995 to 2010 were analyzed for this thesis.

Correlation data analyses indicated that there was a direct relationship between temperature and the number of banded cacklers harvested in Oregon (Figure 14). Starting in the 1994-1995 season, the majority of cackler band returns have been from Oregon. Cackler band returns for California decreased at a rapid rate starting in 1994. Band data also showed that the number of bands recovered in Washington increased by 225 percent between 1999 and 2010.

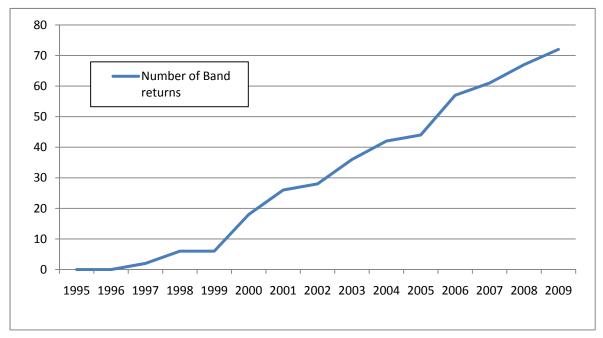


Figure 14: Number of Cackler Band Returns in Washington State, 1995-2009 (Pacific Flyway Council 2009)

In years with warmer than average winter temperatures, more banded cacklers were harvested in the Willamette Valley. In cooler winters, more bands were reported from California. A similar analysis was conducted with data from Oregon and Washington recorded over the past five years. The Pacific Northwest experienced a much more severe winter than usual in 2008-2009. Snow and unusually cold temperatures occurred over a two-week period in December 2008. USFWS data showed that, during this time, California reported the largest count of cacklers since the early 1990s (Pacific Flyway Council 2005).

In contrast to cacklers, very little banding was done with white-fronts in the past. The white-front population had remained relatively stable and there seemed little reason to expend resources in banding studies. Recently, however, there has been an increased effort to band white-fronts due the apparent increase in population. Banding data have revealed that white-fronts banded on the Y-K Delta are harvested in California, Oregon, and Texas. Also, increasing numbers have been taken from Oregon over the 2007 through 2010 hunting seasons.

4.3 HARVEST DATA

Northwest Permit zone harvest data and voluntary wing and part survey data was analyzed for this thesis. Because, by law, all hunters must submit each goose taken to a check station for identification, the data is fairly detailed and accurate. Regional counts are available for each species and subspecies of goose harvested in the Northwest Permit Zone.

In Oregon, eight cacklers were recorded during the 1986 hunting season-- the first year that cacklers were recorded in the State. The numbers of harvested cacklers dramatically increased between the 1993-1994 and 1994-1995 seasons. In 1993-1994, 72 cacklers were recorded while in 1994-1995, 1, 220 cacklers were recorded.

The data seem to indicate that cacklers are continuing to shift their migration northward into Washington and British Columbia. Wing and parts survey data have shown dramatic increases in cackling geese taken in Washington. Increasing numbers of cacklers are being harvested from Olympia northward than have been noted previously (B. Reishus, ODFW, personal communication, 2010). There is even a small wintering population of cacklers near Vancouver, B.C., according to the Canadian Fish and Wildlife Service (CWS 2010). This trend to more northerly wintering areas is expected to continue, according to the 2010 wing and parts report (D. Collins, USFWS, personal communication, 2010).

White-fronted geese have historically been harvested in eastern Oregon in October during their fall migration and again in January and February on their northward migration. In recent years, however, white-fronts have been showing up in the Willamette Valley harvest. Consistent data on white-front harvest in western Oregon were not collected until 1997. In that year, 44 white-fronts were counted in the harvest; in 2008, 172 white-fronts were recorded. It appears that this trend is similar to that exhibited by cacklers in the 1980s just before the huge increases of the 1990s (table 1).

The wing and parts surveys show that there has been a significant increase in white-front harvest in all counties in Oregon with the greatest increase (45 percent) noted in Coos County on the southern Oregon coast. The parts survey coincides directly with the harvest data of the permit zone in that there were large sums of White-fronts harvested in 08/09 and still some but less in 09/10.

4.4 AGRICULTURAL DATA

Since the early 1900s, agriculture in the Willamette Valley has primarily centered on row crops. Between 1970 and 1980, the primary crop shifted to grass seed for lawns. Grass is particularly attractive to geese because of its high nutrient content and because geese can consume great quantities of grass with little expenditure of energy.

The primary grass types grown in the valley include fescue, perennial ryegrass, and annual ryegrass. Geese prefer annual ryegrass, which must be planted annually and, therefore, produces new shoots each year. Geese prefer the fresh shoots because they are very nutritious and easy to graze. Fescue and perennial ryegrass fields are also used by geese for the first few years after they are planted, though the new shoots of these grass varieties are tougher than those of annual rye. Usage of fescue and perennial ryegrass drops off after the second year because, by this time, the roots are more mature and harder for the geese to pull up (Flowers 2010).

By the late 1980s and through the 1990s, the acreages planted to fescue and perennial ryegrass decreased and those planted to annual ryegrass increased due to market prices caused by increased demand in Japan. This shift in crops paralleled the increase in the wintering cackler population in the valley.

In recent years, grass prices have decreased and wheat prices have increased (Figure 15). This has resulted in some farmers changing crops from grass to winter wheat. A decade ago, only 30,000 acres of farm land in the Willamette Valley were planted to wheat; in 2010, about 250,000 acres of wheat will be harvested (Capital Press 2009).

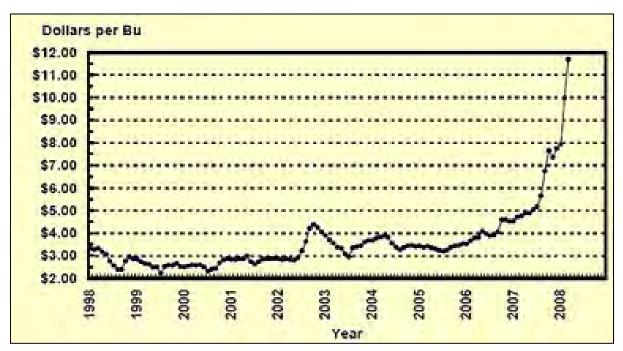


Figure 15: U.S. Wheat Prices, 1998-2009 (ODA 2009)

Winter wheat is also being targeted by geese. The crop is planted in late September and the fresh shoots appear in late October and early November—about the time when geese are arriving from Alaska. Some farmers have reported losing nearly 70 percent of their wheat crop to goose depredation. Each year, nearly a million dollars per 1,000 acres of wheat are lost due to crop damage from geese (ODA 2009). Until the grass seed market improves, it is likely that more farmers will convert to winter wheat, which will, in turn, be targeted by wintering geese, resulting in continued lost revenue. Currently, the price for annual ryegrass is about \$2.25 per bushel and wheat is \$12.00 per bushel. At \$12.00 per bushel, wheat is the most economically beneficial crop for Oregon farmers (ODA 2009).

Agriculture in the Central Valley of California has changed very little in the last 50 years. Major crops in this area include wheat and rice; the acreage planted to these crops has changed less than 10 percent in the last 25 years. The component that has changed the most, however, is the availability of water for goose habitat. Over the past 50 years, nearly 4 million acres of prime agricultural land and waterfowl habitat has been lost to urbanization (USFWS 2010). In addition, California has experienced severe drought over the past 15 years, which also has limited waterfowl habitat, especially for white-fronts.

California's population is expected to continue to grow and another 2 million acres of farm land and habitat are expected to disappear by 2030. Over this same time frame, the white-front population is expected to increase. Diminishing habitat and increased human interference may stimulate the geese to migrate to other, more suitable winter habitats.

4.5 WEATHER AND CLIMATE DATA

A comparison of temperature data shows a direct correlation between the northerly migration shifts and warming temperatures. The data show that there was a nearly 1.8°F in California change during the primary years (1991-1997) of the cackler migration change (Table 2). During this same period, the data show that there were no other major weather occurrences that could have had an effect on goose migration patterns. Since cacklers prefer cool temperatures, they may have shifted north to more suitable temperatures (Jarvis 1996). According to a study in 1996, it was found that cacklers were sensitive to warm (>65°F) and very cold conditions. Because of their small bodies they lose heat or get overheated more easily than the larger subspecies of geese (Jarvis 1996).

	Average Winte	er Temperature		Average Winte	r Temperature
Date	California	Oregon	Date	California	Oregon
1986	63.2	49.1	1999	65.7	50.4
1987	63.7	49.7	2000	65.7	50.3
1988	63.9	49.8	2001	66.1	51
1989	64.4	50.1	2002	66.5	51.3
1990	64.8	50.3	2003	66.8	51.6
1991	64.6	50.4	2004	67.3	52.1
1992	66.1	50.5	2005	66.5	51.4
1993	66.4	51	2006	66.8	51.8
1994	66.8	51.2	2007	66.5	51.5
1995	66.6	51	2008	66.9	51.4
1996	66.3	51.1	2009	67	52
1997	66.4	51.2	2010	67.1	52.1
1998	65.4	51.1			

 Table 2: Average Winter Temperatures in Oregon and California, 1986-2010 (NOAA 2010)

Weather data shows that for the period between 1993 and 1998, during the cacklers' northward shift, the average winter temperature in the Willamette Valley increased more than 2°F (Table 2). Weather in the Pacific Northwest is greatly affected by alternating conditions called "El Niño" and "La Niña." El Niño years are characterized by the appearance in December or January of unusually warm water in the Pacific Ocean. This results in warmer, wetter winters in the Willamette Valley. La Niña sequences are characterized by colder than usual ocean water, which results in unusual weather patterns including snow on the valley floor and more unpredictable weather patterns. Both La Niña and El Niño patterns typically last a year, but can last longer. These recurring weather patterns are considered evidence that climate change is occurring (NOAA 2009).

Since 1998, average temperatures have stayed fairly stable, though the storm sequences characterizing La Niña years have caused annual winter average temperatures to drop about 1°F. Snow packs in the Pacific Northwest have also declined on average (Table 3).

Year	DJF	JFM	FMA	MAM	AMJ	MJJ	JJA	JAS	ASO	SON	OND	NDJ
1975	-0.6	-0.6	-0.7	-0.8	-0.9	-1.1	-1.2	-1.3	-1.5	-1.6	-1.7	-1.7
1976	-1.6	-1.2	-0.8	-0.6	-0.5	-0.2	0.1	0.3	0.5	0.7	0.8	0.7
1977	0.6	0.5	0.2	0.2	0.2	0.4	0.4	0.4	0.5	0.6	0.7	0.7
1978	0.7	0.4	0.0	-0.3	-0.4	-0.4	-0.4	-0.4	-0.4	-0.3	-0.2	-0.1
1979	-0.1	0.0	0.1	0.1	0.1	-0.1	0.0	0.1	0.3	0.4	0.5	0.5
1980	0.5	0.3	0.2	0.2	0.3	0.3	0.2	0.0	-0.1	-0.1	0.0	-0.1
1981	-0.3	-0.5	-0.5	-0.4	-0.3	-0.3	-0.4	-0.4	-0.3	-0.2	-0.1	-0.1
1982	0.0	0.1	0.1	0.3	0.6	0.7	0.7	1.0	1.5	1.9	2.2	2.3
1983	2.3	2.0	1.5	1.2	1.0	0.6	0.2	-0.2	-0.6	-0.8	-0.9	-0.7
1984	-0.4	-0.2	-0.2	-0.3	-0.5	-0.4	-0.3	-0.2	-0.3	-0.6	-0.9	-1.1
1985	-0.9	-0.8	-0.7	-0.7	-0.7	-0.6	-0.5	-0.5	-0.5	-0.4	-0.3	-0.4
1986	-0.5	-0.4	-0.2	-0.2	-0.1	0.0	0.3	0.5	0.7	0.9	1.1	1.2
1987	1.2	1.3	1.2	1.1	1.0	1.2	1.4	1.6	1.6	1.5	1.3	1.1
1988	0.7	0.5	0.1	-0.2	-0.7	-1.2	-1.3	-1.2	-1.3	-1.6	-1.9	-1.9
1989	-1.7	-1.5	-1.1	-0.8	-0.6	-0.4	-0.3	-0.3	-0.3	-0.3	-0.2	-0.1
1990	0.1	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.4
1991	0.4	0.3	0.3	0.4	0.6	0.8	1.0	0.9	0.9	1.0	1.4	1.6
1992	1.8	1.6	1.5	1.4	1.2	0.8	0.5	0.2	0.0	-0.1	0.0	0.2
1993	0.3	0.4	0.6	0.7	0.8	0.7	0.4	0.4	0.4	0.4	0.3	0.2
1994	0.2	0.2	0.3	0.4	0.5	0.5	0.6	0.6	0.7	0.9	1.2	1.3
1995	1.2	0.9	0.7	0.4	0.3	0.2	0.0	-0.2	-0.5	-0.6	-0.7	-0.7
1996	-0.7	-0.7	-0.5	-0.3	-0.1	-0.1	0.0	-0.1	-0.1	-0.2	-0.3	-0.4
1997	-0.4	-0.3	0.0	0.4	0.8	1.3	1.7	2.0	2.2	2.4	2.5	2.5
1998	2.3	1.9	1.5	1.0	0.5	0.0	-0.5	-0.8	-1.0	-1.1	-1.3	-1.4
1999	-1.4	-1.2	-0.9	-0.8	-0.8	-0.8	-0.9	-0.9	-1.0	-1.1	-1.3	-1.6
2000	-1.6	-1.4	-1.0	-0.8	-0.6	-0.5	-0.4	-0.4	-0.4	-0.5	-0.6	-0.7
2001	-0.6	-0.5	-0.4	-0.2	-0.1	0.1	0.2	0.2	0.1	0.0	-0.1	-0.1
2002	-0.1	0.1	0.2	0.4	0.7	0.8	0.9	1.0	1.1	1.3	1.5	1.4
2003	1.2	0.9	0.5	0.1	-0.1	0.1	0.4	0.5	0.6	0.5	0.6	0.4
2004	0.4	0.3	0.2	0.2	0.3	0.5	0.7	0.8	0.9	0.8	0.8	0.8
2005	0.7	0.5	0.4	0.4	0.4	0.4	0.4	0.3	0.2	-0.1	-0.4	-0.7
2006	-0.7	-0.6	-0.4	-0.1	0.1	0.2	0.3	0.5	0.6	0.9	1.1	1.1
2007	0.8	0.4	0.1	-0.1	-0.1	-0.1	-0.1	-0.4	-0.7	-1.0	-1.1	-1.3
2008	-1.4	-1.4	-1.1	-0.8	-0.6	-0.4	-0.1	0.0	0.0	0.0	-0.3	-0.6
2009	-0.8	-0.7	-0.5	-0.1	0.2	0.6	0.7	0.8	0.9	1.2	1.5	1.8
2010	1.7	1.5	1.2	0.8	0.3	-0.2						

Table 3: Three-Month-Average Snowpacks in El Niño vs. La Niña Years (La Niña =blue and El Niño = red).

The average annual winter temperatures in central Washington and British Columbia have also increased (Figure 16) and the snow packs have declined. For example, British Columbia's snow pack has declined nearly 10 percent over the last 5 years (CWS 2010). This will have dramatic effects on water availability for human use and wildlife. These more extreme weather patterns are causing drought, significant storms, vegetation changes, increased wildfires, decreases in precipitation, increased evaporation, and decreases in snow pack.

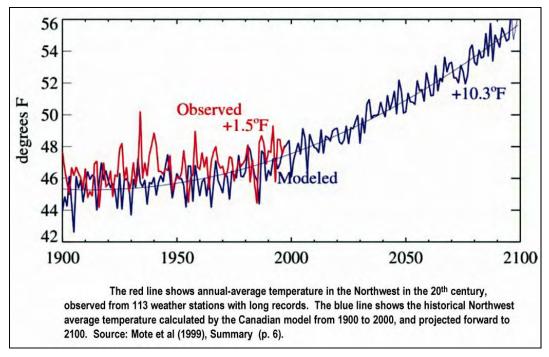


Figure 16: Average Temperatures in the Northwest, Observed and Modeled (Mote et al. 1999)

In the next 50 years, precipitation levels are projected to decrease in the southernmost regions. Conditions in California are already showing evidence of this drying trend. It is likely that continued drying will have effects on goose migrations to and through California.

During the winter storms in 2009 and 2010, cacklers have sought refuge in areas with the least amount of snow pack in Oregon. During the winter of 2008-2009, an unusually snowy winter in western Oregon and Washington, cacklers wintered at Fern Ridge Wildlife area near Eugene Oregon, which had the least amount of snow recorded in the Willamette Valley and southwest Washington at the time (Reishus 2010). Nearly 62,000 cacklers were counted on or within a 5-mile radius of the Fern Ridge Wildlife area. Some geese moved south within the valley during the severe weather; but moved back to the north after the weather warmed.

A storm during the winter of 2009-2010 dropped snow in the foothills and in the Willamette Valley. The least amount of snow was on the valley floor. During this event, Baskett Slough Wildlife Refuge near Dallas, Oregon, hosted nearly 65,000 cacklers. Because of the snow, the cacklers were pushed onto Baskett Slough, and other areas that typically contained large numbers of cacklers held very few.

During the last two winter storm periods, Southwest Washington recorded a 20 percent increase in cacklers. Ridgefield Wildlife Refuge near Ridgefield, Washington, produced the highest counts on record for cackling geese in 2007 through 2010 (USFWS 2010).

4.6 INTERPRETATION OF AERIAL PHOTOGRAPHS

Comparison of aerial photographs of the Y-K Delta taken in the 1970s with those taken in recent years reveal that river channels that were previously quite narrow are now up to 3 times wider. This is most likely due to de-stabilization of the permafrost soils. Erosion of thawed soils into river channels was observed several times during the June breeding season survey on the Y-K Delta. The river banks slough off, causing the river channel to widen.

5. CONCLUSIONS

As stated in Section 1, the questions this thesis considers are: 1) why cackling geese and Pacific whitefronted geese are shifting their migratory patterns, 2) how the shifts are affecting the natural ecosystem and human environment, and 3) how changes in migratory patterns will affect goose management.

The data presented in Section 4 clearly show that cacklers have shifted their wintering areas northward and that white-fronts are most likely also in the process of changing their migratory behaviors. Goose population data was compared with weather data as well as with agricultural data. It appeared that the northerly wintering data correlated more closely with weather data over the same time period than with agricultural data. This was determined by analyzing the farming practices at the time of the migration shift. Since the agriculture had little change during the years in which goose migrations experienced the most change, it was concluded that agricultural practices were not a major cause of the northerly shift.

Agriculture may, however, be augmenting the shift and could play a larger part in the continuation of the northerly shift. The type and quantity of available food in California has remained stable in the last 50 years. Recently, however, there has been a shift in the Willamette Valley crops. The primary farmed crop in the Willamette Valley is now winter wheat (Section 4.4). Winter wheat is a preferred food for cacklers and white-fronts according to food behavior studies conducted by OSU (USFWS 2005). With the current favorable market for wheat and the overall long-term increase in temperature, it is likely that the preferred food source for geese will be increasingly available in Oregon and southwest Washington. This will be a large draw for cacklers and other goose species to the Willamette Valley. Geese headed to traditional wintering areas in California may stop in southwest Washington and Oregon if there is ample forage available.

Population data were then compared to weather data. This comparison revealed that, during the cacklers' shift northward, significant climate and weather changes were occurring in the Pacific Northwest and Alaska, including increased average temperatures and severe storms. Goose population data and geographic data from several sources were compared with data on increased winter temperatures. The population data—taken from field surveys, band surveys⁸ and wing and parts data—revealed a probable direct correlation between increased winter temperatures and the northerly shift of cackler wintering grounds. However, the same correlation with white-fronts was not obvious because data have been consistently collected over a much shorter period. It is likely, however, that white-front populations will continue to increase in Oregon due to changes on the Alaska breeding grounds as well as in the California wintering grounds.

The two species are very different in their habitat requirements and behavior and tend not to associate much with one another. Cacklers feed in dry, open fields and go to water in the afternoons. White-fronts are highly dependent on water and prefer muddy grazing conditions (J. Fischer, USFWS, personal communication, 2010). Yet even with their differences, each population appears to be abandoning their historical wintering grounds.

⁸ Because banding of white-fronts has not been extensive or consistent, the data for this species was insufficient to conclude on the basis of this type of data alone that climate change is a cause for the birds' shift in wintering areas from California to Oregon.

Climate change is thought to be the cause of habitat changes on the nesting grounds of the Y-K Delta (Section 2.1.2). As the area dries out, nesting habitat for species and subspecies dependent upon water will be reduced and the populations will either adapt, shift to new breeding grounds or be reduced or both. Currently white-fronts, which prefer drier nesting areas, are showing a positive reaction to the decrease of water levels as formerly wet habitat converts to drier uplands.

Subsistence hunters in Alaska and sport hunters in the Pacific Northwest will be affected by changes in the numbers and species comprising wintering populations. The affect may be positive because the goose population in the Y-K Delta appears to be increasing. More birds per square mile will make finding and harvesting them easier.

Increased population numbers for one species or subspecies could mean potential problems for other species or subspecies through alteration of habitat or displacement from traditional habitats. The focal species for goose management in Oregon and southwest Washington is the dusky Canada goose. The dusky Canada goose is a "less successful" subspecies that has been displaced on wintering grounds due to the increase in cacklers (Pacific Flyway 2008). If the current management approach is continued, the revised management plans would favor the dusky. This could affect the overall population levels of cacklers. Management plans must consider all pertinent species; conservation of one species at the expense of another must be avoided. As populations of species and subspecies not previously treated by the area's management plan continue to increase, a wider perspective must be adopted before the effects of changed migration patterns becomes a problem.

Retention of good quality habitat to accommodate all goose species and subspecies in western Oregon is essential to maintaining a healthy ecosystem with species diversity. The result of decreased natural habitat could be increased depredation of agricultural crops and intrusion of geese into urban settings. Depredation caused by geese can dramatically affect a farmer's ability to sustainably farm and make a living. This is especially true with the current economy, which has increased costs to successfully raise crops. Between goose depredation and the economy, farmers struggle to keep their farms in operation. Depredation of agricultural fields can be reduced by planting refuges and other wildlife areas with crops and habitat that are attractive to wintering geese. This will help draw wintering geese away from farms.

As goose populations increase, more geese will be found in urban settings, which will present problems for wildlife managers. Geese cause damage to sports fields and golf courses, contribute to water contamination, and can cause human health risks. Funding for goose control and research into more effective techniques will need to increase.

The agencies must devise strategies to manage increasing numbers and species of geese on wintering grounds as well as the effects of geese on hunting, agriculture, and communities. In order to devise strategies, agency personnel must identify the causes of the shifts.

More research is needed to determine if, in the long term, the cackler population will be negatively impacted by the habitat changes occurring in the Y-K Delta. USFWS theorizes that the Y-K Delta will be substantially drier by 2050. If this occurs, it appears that cacklers will have more difficulty in finding suitable nesting habitat while white-fronts, which are less dependent upon water, will likely thrive. Individual goose populations may rise or fall depending upon the extent of the changes and the species' abilities to adapt to them (J. Fischer, USFWS, personal communication, 2010). Cacklers and white-fronts as well as other species and subspecies may continue to shift to new breeding and wintering areas. If cackler nesting habitat is reduced, though the northern migratory shift may continue, but the overall population may be smaller, resulting in fewer cacklers in the Willamette Valley.

Another cause of the northerly shift in goose populations could be that water levels in California are receding. Less water limits waterfowl habitat and restricts the birds to certain areas. The increase in the white-front population combined with decreasing habitat in traditional wintering areas is most likely resulting in a shift of this species northward to the Willamette Valley in an effort to find suitable habitat and food. However, without further research, it is difficult to determine whether this population's shift is occurring because of climate change or due to a combination of factors including an increasing goose population and decreased wetlands in California.

The cacklers' current migratory shifts have dramatically affected the dusky Canada goose. As cackler numbers increase, duskies are being pushed out of their primary preferred habitats and, consequently, are moving into areas they have not previously used. In some of these areas, there are no regulations against harvesting duskies (B. Bales, personal communication, 2010). The dusky is a "species of concern" indicating that its population is already stressed, and it is possible that it will not be able to withstand increases in the cackler population and subsequent loss of habitat.

It is likely that other species and subspecies will increase in number with continued mild climate conditions. Indications are that white-fronts are beginning a northerly shift. If projected trends are accurate, there will be an overall increase in geese the next 50 years (J. Fischer, personal communication, 2010). More geese over a wider area will ensure greater hunting opportunities as well as more liberal seasons and bag limits for sport hunters in the Pacific Northwest as well as for subsistence hunters in Alaska.

If the environment continues to warm, habitat type and availability will continue to change, favoring some species over others. The management agencies must be prepared to anticipate and meet these challenges as they arise. This will require a concerted cooperative effort among state and federal agencies in terms of research, data sharing, and formulation of management plans.

Computer models are good tools for formulating management plans. Currently, the primary models deal solely with population and breeding No models focusing on the effects of climate change on waterfowl behavior currently exist. In fact, the concept of researching the effects of climate change in order to predict migration changes and other effects is quite new. The migration shifts discussed in this document were not evident before 1990. Since that time, waterfowl management has had to adapt quickly to the rapid shifts of goose populations.

Most waterfowl models in existence focus on population size or foraging and breeding behavior rather than migration. Oregon State University is currently conducting a study on goose feeding behavior. The University of Nevada is conducting a hatching study to determine the success of goslings based on hatch date and foraging behavior. The literature reviewed for this thesis did not reveal any studies that included modeling relating climate and migration; nor did any models focus on cacklers or white-fronts.

Climate change has not been recognized as an environmental concern until relatively recently. Therefore, little or no data exist which could support a model focusing on the relationship between increasing temperatures and waterfowl behavior. For example, very few wintering ground surveys have been conducted for geese.

Most agencies to date have focused on breeding ground surveys rather than wintering surveys. However, as population shift becomes more evident, management issues associated with fewer geese in some areas and more in others will rise in priority. Modeling that can predict where the changes are expected to take place and their magnitude will be invaluable to waterfowl managers in the Pacific Flyway. In the future, a migration model based on climate change may play a significant role in management of shifting populations.

Energetics and migration length are factors that may be contributing to waterfowl migration changes. Though these issues were outside the scope of this thesis, they are worth considering in the overall picture of migration pattern change. Many scientists believe that geese may be altering their migration patterns simply because suitable food sources are available closer to the breeding grounds.

Migration is costly from the energy standpoint. The distance from the Y-K Delta to the Willamette Valley is 2,000 miles. Radio telemetry studies have shown that cacklers and white-fronts can fly non-stop to their designated wintering area. During this flight, a goose lose nearly a third of its body weight. Muscles mass and fat are lost and must be replenished immediately upon reaching the wintering grounds or the bird's winter survival is in jeopardy. If geese headed to California can find suitable feed several hundred miles further north, they will conserve energy and avoid potentially detrimental weight loss by stopping in the Willamette Valley or southwest Washington.

5.1 OTHER EXAMPLES OF WATERFOWL MIGRATION CHANGE

The literature reviewed revealed that two other species of goose found in the Pacific Flyway were experiencing northward migrational shifts: Black Brant and Northern Pintails. Both Sedinger and Ward (2010) and Maender (2002) concluded that the cause of the migration shift was increasing temperature. Other documents reviewed described northerly migration shifts, but did not draw clear conclusions as the reasons. All of the studies reviewed appeared to consistent with the findings of this thesis for cacklers and white-fronts.

5.1.1 Black Brant

Pacific black brant have traditionally wintered up and down the Pacific coast from Oregon to Baja, Mexico. Although records are sparse, it appears that fewer than 3,000 brant wintered in Alaska before 1977. Recently, however, at least 40,000 birds, nearly 30 percent of the Pacific black brant population, have begun to winter in Alaska. Sedinger and Ward (2010) state, "[T]his increase in wintering numbers of brant in Alaska coincides with a general warming of temperatures in the North Pacific and Bering Sea. " Sedinger and Ward (2010) concluded that their "study suggests that the growth in the brant population wintering on the Alaska Peninsula is linked to this same climate change..." USFWS (2010) estimates the total brant population at 138,000 birds. The population typically fluctuates between 110,000 and 165,000 birds and has been in a slow decline for nearly 40 years (Sedinger and Ward 2010). It appears, however, that the decline is not due to hunting pressures, but rather to the availability of food on their Alaskan feeding grounds.

Brant feed extensively on eelgrass. It appears that coastal environmental conditions for eelgrass in Alaska have improved with warming temperatures. Higher temperatures mean less coastal sea ice, making nutrient-rich eelgrass more accessible. "Undisturbed access to sufficient amounts of eelgrass is likely crucial to the winter survival of this species," according to Sedinger and Ward (2010). It is expected that the number of Pacific brant wintering in Alaska will increase if the climate continues to warm. There is concern, however, that, because the population of Pacific brant is slowly declining, birds wintering in Alaska could be adversely affected by severe cold snaps, which would thin the already dwindling population.

5.1.2 Northern Pintail

Until recently, northern pintails migrated to Mexico, southern California, and California's Central Valley. However, starting in the mid to late 1990s "biologists noticed a significant decrease in the amount of wintering pintails in southern California. In 2002 biologists put satellite radio telemetry devices on 419 female Northern Pintails to attempt to find an explanation" (Maender 2002). By tracking the females and using historical distribution data, biologists found that pintails are no longer wintering in southern California, but are shifting northward.

In southern California, climate change has increased temperatures causing a decrease in wetlands due to drought (Maender 2002). This has resulted in decreased habitat in the areas that historically provided sanctuary for pintails. Water is evaporating and cover vegetation is dying as the water subsides. The scientists found that neither contaminants nor disease accounted for the disproportionate declines in wintering pintails in the southern Central Valley, but rather, the birds had been "redistributed." Maender (2010) states that more than 80 percent of the tagged pintails "shifted each midwinter from areas in the south having less abundant habitat for food and refuge, to locales in the Sacramento Valley more favorable for their survival."

The change each winter in pintail distribution appears to be related to loss of suitable habitat, drought conditions, and the lesser-quality habitat of agricultural lands planted to cotton in the San Joaquin Valley. The San Joaquin Valley lands do not flood in the winter in contrast to the flooded rice fields of the Sacramento Valley. The environmental shifts are directly related to climate change and its effects on habitat change according to Maender (2002).

6. RECOMMENDATIONS

Analyses of observations and data have shown definite changes in wintering patterns along the Pacific Flyway. Goose data from various sources were compared to weather and temperature data as well as agricultural data. The comparison appeared to show a correlation relating to a northward shift in wintering. These types of analyses can aid agencies in altering their management programs by identifying migrational shifts and their causes. Agency plans and programs can accommodate changes that have already occurred and prepare for further changes. The following recommendations for management and further study are aimed at more completely understanding the scope and causes of migration shifts and formulating well-founded management plans for geese in the Pacific Flyway.

- Continue research to determine if climate change is causing changes in goose population numbers and behavior.
- Expand breeding ground flight surveys to include cacklers and habitat preference to learn how habitat change on the Y-K Delta is altering cackler behavior and breeding success.
- Expand radio transmitter studies and collar programs for cacklers in Oregon and Washington to verify northerly wintering shifts.
- Expand collar programs for cacklers wintering in the Willamette Valley to determine if the population is continuing to shift northward.
- Expand banding programs for white-fronted geese to gather more data about migration patterns.
- Develop models that will allow researchers and managers to correlate migration behavior with various environmental factors including climate change in order to: 1) determine which factors are causing migration changes in specific waterfowl populations and 2) allow managers to make changes to management plans in advance of rapid changes.
- Inform the public about how it can assist in collar surveys or volunteer for USFWS. This will enable USFWS to have more concrete data and give the public an opportunity gain a greater understanding of geese and goose management.
- Expand research on urban cackling geese to determine the nature and scope of their effect on the human environment and to devise management strategies.
- Research energetics in migrating geese to determine whether the shift in migration patterns has its basis in climate change.
- Increase data exchange and coordination among agencies.
- Formulate and implement plans at the city and county levels to manage growing numbers of geese in urban areas.
- Recognize and anticipate the possibility that goose populations may move into new wintering areas and formulate plans for management of those species.
- Implement low cost techniques, such as more liberal bag limits and seasons, hazing, etc., to assist agricultural landowners in decreasing goose-related crop damage.

7. REFERENCES

Babcock, C.A. and C.R. Ely. 1994. Classification of vegetation communities in which geese rear broods on the Yukon-Kuskokwim Delta, Alaska. Can. J. Bot. 72: 1294-1301.

Bellrose, F. 1981. Ducks Geese and Swans of North America. Stackpole Company, Harrisburg, PA, and Wildlife Management Institute, Washington, D.C.

Canadian Wildlife Service. 2010. Weather Patterns and its Effect on Wildlife in British Columbia. Vancouver British Columbia, Canada, 2010.

Conant, B. and D. Groves. 2002. Alaska-Yukon Waterfowl Breeding Population Survey. Unpublished Report by the U.S. Fish and Wildlife Service. Juneau, Alaska. 35 pp.

Climate Impacts Group. 2010. Climate Outlook. April 2010. Web. http://cses.washington.edu/cig/fpt/cloutlook.shtml

Eldridge, W.E. and C.P. Dau. 2002. Preliminary report to the Pacific Flyway Committee on the combined Pacific white-fronted goose surveys to estimate a breeding population index for Alaska, 1985-2002. Report by the U.S. Fish and Wildlife Service Migratory Bird Management, Anchorage. 6 pp.

Ely, C.R. and A.X. Dzubin. 1994. Greater white-fronted goose (*Anser albifrons*). *In* The Birds of North America, No. 131 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia; The American Ornithologists Union, Washington, D.C.

Ely, C.R. and J.Y. Takekawa. 1996. Geographic variation in migratory behavior of greater white-fronted geese (*Anser albifrons*). Auk 113(4):889-901.

Ely, C.R., A.C. Fowler, T. DeMaria, M. Brice, and K. Steger. 1996. Nesting ecology of geese along the Kashunuk River, Yukon-Kuskokwim Delta, Alaska. Rept. Nat. Biol. Survey, Alaska Science Ctr., Anchorage.

Flowers, Bob. 2010. Assessing Goose Depredation on Grain Seed Yields. http://oregonstate.edu/dept/range/gooseproject/about/acknowledgements.html. Accessed March 2010.

Gill, R. E., Jr., K.S. Bollinger, and M.R. Petersen. 1986. Timing, numbers, and habitat requirements of cackling Canada geese staging along the Alaska Peninsula in fall. Unpublished Report by the U.S. Fish and Wildlife Service. Anchorage. 51 pp.

Gill, R. E., Jr., K.S. Bollinger, and M.R. Petersen. 1986. Timing, numbers, and habitat requirements of cackling Canada geese staging along the Alaska Peninsula in fall. Unpublished Report by the U.S. Fish and Wildlife Service. 51 pp.

Hawkings, J.S. 1982. Migration and habitat relationships of geese on the eastern Copper River Delta, Alaska. M.S. Thesis. Univ. of Alaska, Fairbanks. 113 pp.

King, J.G. and C.S. Lensink. 1971. An evaluation of Alaskan habitat for migratory birds. Report by the Bureau of Sport, Fish and Wildlife. Anchorage. 46 pp.

Lensink, C.J. 1969. The distribution of recoveries from white-fronted geese (*Anser albifrons frontalis*) banded in North America. Report by the Bureau of Sport, Fish and Wildlife. Bethel, Alaska. 63 pp.

Lensink, C.J. 1986. Recoveries of Alaska banded white-fronted geese in Mexico. Research Information Bull. 86-32. U.S. Fish and Wildlife Service. Anchorage. 2 pp.

Maender, G. 2002. Tracking Pintail-Duck Migration to Learn More About the Species' Population Decline. USGS publication. Washington D.C.

Mickelson, P.G. 1975. Breeding biology of cackling geese and associated species on the Yukon-Kuskokwim Delta, Alaska. Wildl. Monogr. 45. 35 pp.

Nelson, U.D. and H.A. Hansen. 1959. The cackling goose, its migration and management. Trans. N. Amer. Wildl. and Nat. Resour. Conf. 24:174-186.

National Oceanic and Atmospheric Administration. Website Data base for weather and climate. 2009. http://www.wrh.noaa.gov/pgr/. Accessed November 2009.

O'Neill, E.J. 1979. Fourteen years of goose populations and trends at Klamath Basin Refuges. Pages 316-321 *In* R.L. Jarvis and J.C. Bartonek (eds.). Management and biology of Pacific Flyway geese. Oregon State Univ. Bookstores, Inc. Corvallis, OR.

Orthmeyer, D. L., J. Y. Takekawa, C. R. Ely, M. L. Wege, and W.E. Newton. 1995. Morphological differences in Pacific Coast populations of greater white-fronted geese (*A. albifrons*). Condor, 97:123-132.

Oregon Department of Agriculture. Data base and historical records. 2009. Accessed November 2009. http://oda.state.or.us/dbs/search.lasso

Oregon Economics. Wheat Prices and Oregon. 2009. <u>http://oregonecon.blogspot.com/2008/04/guest-blogger-wheat-prices-and-oregon.html</u>. Accessed February 2010.

Pacific Flyway Council. 1985. Pacific Flyway Data books, 1985. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1986. Pacific Flyway Data books, 1986. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1987. Pacific Flyway Data books, 1987. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1988. Pacific Flyway Data books, 1988. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1989. Pacific Flyway Data books, 1989. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1990. Pacific Flyway Data books, 1990. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1991. Pacific Flyway Data books, 1991. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1992. Pacific Flyway Data books, 1992. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1993. Pacific Flyway Data books, 1993. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1994. Pacific Flyway Data books, 1994. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1995. Pacific Flyway Data books, 1995. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1996. Pacific Flyway Data books, 1996. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1997. Pacific Flyway Data books, 1997. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1998. Pacific Flyway Data books, 1998. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 1998. Northwest Oregon/Southwest Washington goose depredation control plan. Compiled by State and Federal agencies within the Pacific Flyway.

Pacific Flyway Council. 1999a. Management Plan for the Cackling Goose. By the Subcommittee on the Cackling Canada Goose Pacific Flyway Study Committee. Washington D.C.

Pacific Flyway Council. 1999b. Pacific Flyway Data books, 1999. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2000. Pacific Flyway Data books, 2000. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. Pacific Flyway Data books, 2001. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2002. Pacific Flyway Data books, 2002. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2003a. Management Plan for the Pacific White-Fronted Goose. By the Subcommittee on the Pacific White-Fronted Goose Pacific Flyway Study Committee. Washington D.C.

Pacific Flyway Council. 2003b. Pacific Flyway Data books, 2003. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2004. Pacific Flyway Data books, 2004. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2005. Pacific Flyway Data books, 2005. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2006. Pacific Flyway Data books, 2006. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2007. Pacific Flyway Data books, 2007. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2008a. Management Plan for the Dusky Canada Goose. 2008. Compiled by State and Federal agencies within the Pacific Flyway.

Pacific Flyway Council. 2008b. Pacific Flyway Data books, 2008. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2009. Pacific Flyway Data books, 2009. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Pacific Flyway Council. 2010. Pacific Flyway Data books. 2010. Compiled by USFWS, Division of Migratory Bird Management. Washington D.C.

Palmer, J.M. 1976. Handbook of North American Birds. Vol. 2, Pt. 1. Yale Univ. Press, New Haven & London. 521 pp.

Pamplin, W.L., Jr. 1986. Cooperative efforts to halt population declines of geese nesting on Alaska's Yukon-Kuskokwim Delta. Trans. N. Amer. Wildl. Nat. Resour. Conf. 51: 487-506.

Raveling, D.G. 1979. The annual energy cycle of the cackling Canada goose. Pages 81-93 *in* R.L. Jarvis and J.C. Bartonek (eds). Management and biology of Pacific Flyway geese. OSU Bookstores, Inc. Corvallis, OR.

Raveling, D.G. 1983. An analysis of the decline of the cackling goose (*Branta Canadensis minima*) population based on banding data. Unpublished Report to Calif. Dept. of Fish and Game, Sacramento. Univ. of Calif., Davis

Raveling, D.G. 1984. Geese and hunters of Alaska YKD: Management problems and political dilemmas. Trans. N. Amer. Wildl. Nat. Res. Conf. 49:555-575.

Sedinger, J.S. 1988. Foraging behavior of cackling Canada goose goslings: implications for the roles of food availability and processing rate. Oecologia 75: 119-124.

Sedinger, J.S. and K.S. Bollinger. 1987. Autumn staging of cackling Canada geese on the Alaska Peninsula. Wildfowl 38: 13-18.

Sedinger, J.S. and D.G. Raveling. 1984. Dietary selectivity in relation to availability and quality of food for goslings of cackling Canada geese. Auk 101: 295-306.

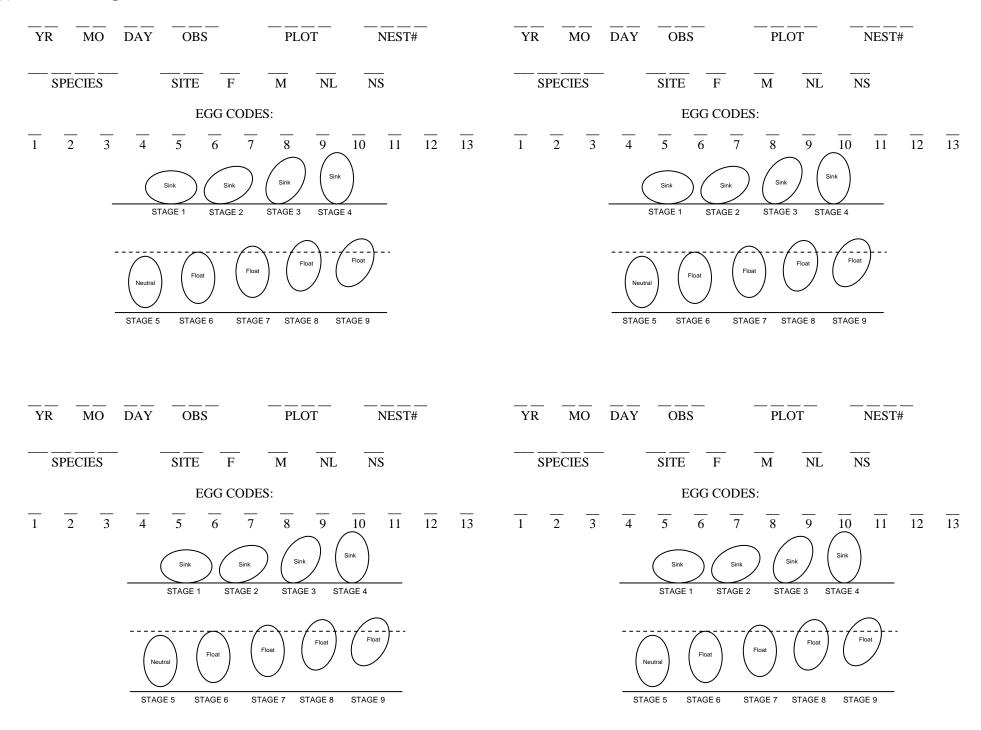
Sedinger, J.S. and D. A. Ward. 2010. Changing Climate, Changing Patterns: An Occasional Series on the Impacts of Warming Temperatures. Field of Ecology. University of Nevada.

Sterne, C. 2010. Climate Change. http://alaska.fws.gov/climate/index.htm. Accessed February _10_, 2010.

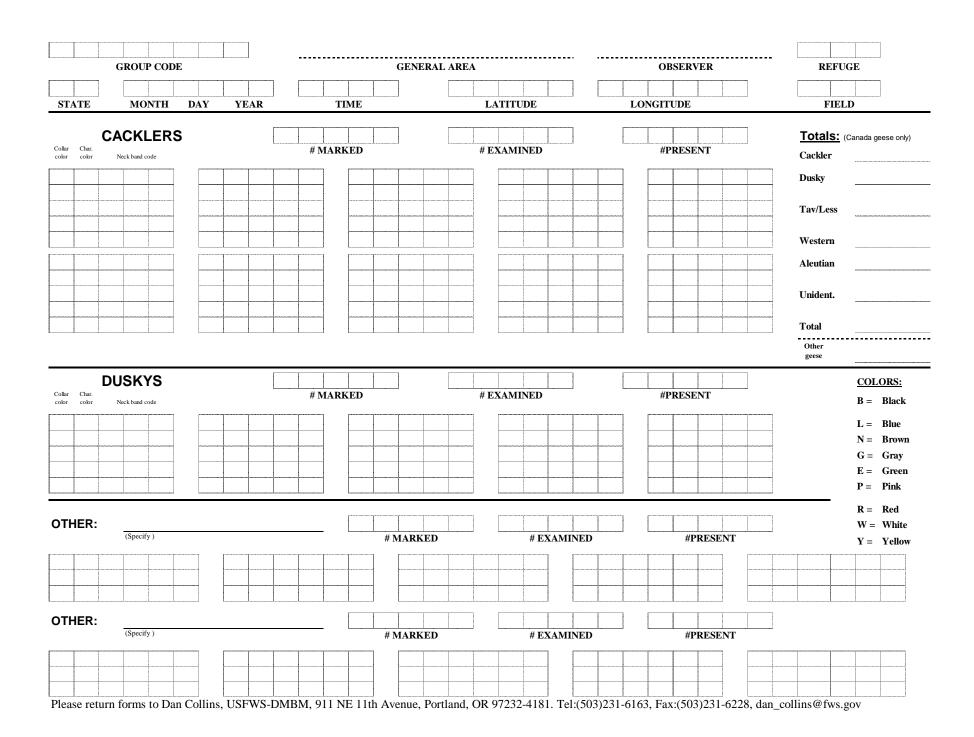
Timm, D.E. 1982. Some observations of spring migratory waterfowl during 1982. Rep. Alaska Dept. of Fish and Game, Anchorage.

Timm and C. Dau. 1979. Productivity, mortality, distribution and population status of Pacific Flyway white-fronted geese. Pages 280-298 *in* R.L. Jarvis and J.C. Bartonek, eds. Management and biology of Pacific Flyway geese. Oregon State Univ. Bookstores, Inc. Corvallis.

University of California, 2010. A Stylized history of California Agriculture from 1769-2000. Web. January 2010. <u>http://giannini.ucop.edu/pdfs/giannini04-1b.pdf Accessed: February 2010</u>.


United States Fish and Wildlife Service. 2010. Data base for waterfowl studies in the Pacific Flyway. Portland, OR Office.

United States Global Research Program. 2010. U.S. National Assessment of the Potential Consequences of Climate Variability and Change *Educational Resources* Regional Paper: Pacific Northwest. February 16, 2009.


Warren, K.E. 2007. Identification Field Guide to Geese of the Willamette Valley and Lower Columbia River. Prepared for ODFW and Washington Department of Fish and Wildlife. Salem, OR.

Appendices

Appendix A1. Breeding Ground Nest Cards

Appendix A2. Wintering Ground Survey Sheet

Appendix A3. Band Data Request Form

[NOTE – THIS TABLE IS 2 PAGES]

When requesting a BANDING data pull, here are the fields that can be included	When requesting an ENCOUNTER data pull, here are the fields that can be
here are the news that can be menucu	included
AGE CODE	B AGE CODE
AREA CODE	B AREA CODE
BAND EVENT DATE	B BAND ID
BAND ID	B BAND SIZE CODE
BAND SIZE CODE	B BAND STATUS CODE
BAND STATUS CODE	B BAND TYPE CODE
BAND TYPE CODE	B BIRD STATUS
BANDING DAY	B COMMENTS
BANDING MONTH	B COORD. PRECISION
BANDING YEAR	B DIRECTION CODE
BIRD STATUS	B EXTRA INFO CODE
COMMENTS	B FLYWAY CODE
COORD. PRECISION	B HOW AGED CODE
DIRECTION CODE	B HOW SEXED CODE
EXTRA INFO CODE	B LAT
FLYWAY CODE	B <mark>LAT FLOAT</mark>
HOW AGED CODE	B LON
HOW SEXED CODE	B LON FLOAT
LAT	B MARKER TYPE
LAT FLOAT	B PERMIT NUMBER
LON	B REMARKS
LON FLOAT	B REWARD BAND NUM
MARKER TYPE	B SEX CODE
OTHER BANDS	B SPECIES ID
PERMIT NUMBER	BANDING DATE
REMARKS	BANDING DAY
REWARD BAND NUM	BANDING MONTH
SEX CODE	BANDING YEAR
SPECIES ID	E AREA CODE
	E CERTIFICATE FLAG
	E CERTIFICATE LANGUAGE
	E COMMENTS
	E COORD. PRECISION
	E COUNTRY CODE
	E CREATE DATE
	E CREATE MONTH
	E CREATE YEAR
	E DIRECTION CODE

When requesting a BANDING data pull, here are the fields that can be included	When requesting an ENCOUNTER data pull, here are the fields that can be
nere are the neius that can be included	included
	E DIRECTION1
	E DIRECTION2
	E ENC COUNTY ORIGINAL
	E FLYWAY CODE
	E HOW OBTAINED CODE
	E HOW OBTAINED DESC
	E LAT
	E LAT FLOAT
	E LOCATION DESCRIPTION
	E LON
	E LON FLOAT
	E MARKER CODE COLOR ID
	E MARKER COLOR ID
	E MARKER DESC
	E MARKER TYPE
	E MARKER TYPE CODE
	E MILES1
	E MILES2
	E PLACE NAME
	E PRESENT CONDITION CODE
	E REMARKS
	E SPECIES NAME
	E STATE CODE
	E WHO OBTAINED CODE
	E WHY REPORTED CODE
	ENCOUNTER DATE
	ENCOUNTER DAY
	ENCOUNTER MONTH
	ENCOUNTER YEAR
	HSS OTHER DANIES
	OTHER BANDS

Appendix B. Washington Permit Zone Harvest Data

Season	Cackler	Dusky	Taverner	Lesser	Western	Vancouver	Other	Total
1984-85	0	37	63	0	20	0	0	120
1985-86	11	66	113	116	67	0	25	398
1986-87	8	36	172	51	241	0	0	508
1987-88	7	45	478	225	224	4	35	1,018
1988-89	17	43	617	136	763	0	7	1,583
1989-90	37	52	455	92	391	9	0	1,036
1990-91	28	65	555	165	383	20	3	1,219
1991-92	39	88	675	295	483	14	15	1,609
1992-93	84	91	1,340	270	722	25	2	2,534
1993-94	93	90	944	299	697	8	4	2,135
1994-95	422	77	1,011	246	704	31	6	2,497
1995-96	334	59	862	144	536	12	1	1,948
1996-97	1,030	35	1,705	475	932	18	3	4,198
1997-98	1,311	58	2,197	392	742	33	5	4,738
1998-99	1,820	46	1,877	306	833	34	9	4,925
Avg. 94-98	983	55	1,530	313	749	26	5	3,661

Canada Goose Subspecies

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1980	Jan.	High	55	51	43	42	46	39	37	45	44	35	54	57	55	50	46	51	46	41	46	42	48	49	47	46	48	34	32	30	32	34	33
1980	Jan.	Low	41	38	34	38	24	21	21	37	33	28	25	41	39	35	31	42	25	23	26	23	25	26	25	22	31	19	15	13	11	8	25
1980	Feb.	High	53	53	59	50	52	55	52	53	50	52	52	51	46	38	40	45	43	55	54	53	48	49	55	58	48	59	59	58	56	_	—
1980	Feb.	Low	32	41	39	30	36	40	32	25	26	31	28	22	25	31	31	33	37	39	40	36	29	32	38	42	43	48	50	38	32	—	—
1980	Mar.	High	53	63	55	56	48	53	55	56	57	52	48	48	49	48	45	53	52	53	54	52	55	55	53	53	60	53	55	59	52	54	49
1980	Mar.	Low	35	43	44	44	39	36	33	34	31	38	37	37	37	36	34	36	38	34	43	38	33	36	29	30	31	36	33	33	35	32	39
1980	Apr.	High	54	62	57	60	56	50	53	57	57	58	72	76	75	57	61	72	62	70	63	53	58	61	66	60	67	73	78	64	60	68	—
1980	Apr.	Low	29	27	27	36	37	35	34	47	41	35	29	35	40	44	42	34	40	40	50	47	45	39	45	38	37	47	44	44	40	32	—
1980	May.	High	75	63	73	73	66	63	68	59	58	56	60	62	59	62	62	67	74	74	72	73	62	61	59	60	57	55	64	69	68	67	72
1980	May.	Low	38	40	33	43	45	39	33	43	46	46	51	50	49	47	39	32	38	44	41	43	40	41	40	37	47	47	44	45	43	50	42
1980	Jun.	High	62	57	63	69	64	64	67	73	67	68	65	66	55	63	72	64	71	73	78	68	69	72	71	66	65	68	73	75	71	79	—
1980	Jun.	Low	43	45	45	39	42	48	51	54	46	51	52	51	52	52	51	48	47	44	44	47	44	48	50	52	43	40	51	48	45	40	—
1980	Jul.	High	83	71	60	66	70	79	87	79	70	78	75	76	82	74	84	80	80	84	81	89	101	84	80	81	86	91	96	93	86	86	88
1980	Jul.	Low	43	45	54	54	53	44	48	49	50	47	45	49	44	51	49	50	45	51	47	60	58	56	56	47	47	49	51	52	46	46	54
1980	Aug.	High	83	75	78	83	73	79	88	83	92	94	84	80	77	76	77	80	81	74	83	80	77	77	82	76	85	79	71	73	76	66	74
1980	Aug.	Low	43	54	55	42	55	42	44	48	47	51	46	48	54	45	42	56	48	50	42	45	39	41	43	49	41	40	47	36	40	50	51
1980	Sep.	High	80	72	77	84	87	81	75	88	94	90	80	73	61	75	84	86	83	63	65	68	70	74	78	78	89	82	67	77	82	75	—
1980	Sep.	Low	41	50	42	41	44	47	51	43	52	50	47	45	45	46	38	41	47	55	57	52	45	40	48	50	45	48	48	51	47	55	—
1980	Oct.	High	83	92	86	82	89	83	83	72	79	70	58	61	58	59	60	59	61	61	64	61	61	67	66	56	58	53	62	62	59	54	56
1980	Oct.	Low	44	47	47	40	45	45	45	47	40	41	38	51	48	45	38	31	35	36	38	43	33	28	31	40	41	44	38	31	32	38	46
1980	Nov.	High	61	65	65	57	65	65	62	58	57	48	50	50	48	52	54	44	54	60	60	56	55	45	50	43	54	49	59	56	56	47	—
1980	Nov.	Low	50	43	51	48	51	49	53	47	38	32	30	28	24	33	38	31	42	44	39	45	34	30	36	35	41	41	40	42	40	37	—
1980	Dec.	High	47	56	53	40	43	40	36	38	33	45	54	47	43	56	54	49	39	39	42	49	62	55	50	59	62	60	61	47	53	66	57
1980	Dec.	Low	40	41	35	35	35	32	22	20	19	29	27	28	27	35	30	33	35	37	38	40	42	46	36	45	58	55	41	37	39	48	36
1981	Jan.	High	54	50	47	51	54	53	47	45	48	48	47	47	48	47	49	44	45	55	50	50	52	53	52	51	49	54	46	43	49	49	47
1981	Jan.	Low	33	36	35	32	29	33	32	35	33	25	25	23	23	24	26	28	31	36	35	29	46	46	36	36	34	33	35	32	30	32	30
1981	Feb.	High	40	36	47	39	44	46	44	36	48	43	54	64	57	59	56	61	56	61	62	54	55	57	59	51	48	47	59	65	—	—	—
1981	Feb.	Low	30	34	28	25	31	23	22	30	32	29	31	44	47	49	48	49	45	49	38	35	31	29	35	35	28	29	33	27	—	—	—
1981	Mar.	High	65	63	50	51	51	57	56	58	66	60	62	64	60	61	53	58	57	59	56	59	55	60	58	58	60	59	59	58	52	51	49
1981	Mar.	Low	29	29	39	33	25	24	37	35	29	36	41	35	35	35	43	32	25	30	33	30	33	44	38	34	44	45	44	39	41	41	41
1981	Apr.	High	56	50	55	62	57	54	56	50	57	54	54	57	63	73	64	64	68	76	57	60	60	70	67	59	60	62	56	75	80	79	—
1981	Apr.	Low	36	33	36	40	36	34	39	40	32	36	39	32	28	33	43	38	33	37	46	44	46	51	47	36	33	39	40	51	48	52	—
1981	May.	High	63	60	57	57	56	57	61	64	65	67	66	72	73	62	58	63	62	60	60	61	60	73	76	68	68	70	73	81	74	69	72
1981	May.	Low	38	41	38	36	42	41	40	40	45	42	39	34	51	47	40	42	50	46	40	50	50	48	50	56	46	42	40	42	50	47	40
1981	Jun.	High	71	72	72	70	71	65	59	62	66	67	70	64	64	68	78	65	68	65	71	67	71	67	71	83	83	72	72	78	85	70	—
1981	Jun.	Low	41	50	51	54	49	44	46	54	53	45	38	48	47	42	40	47	44	54	55	51	52	50	51	46	48	47	40	46	47	53	—
1981	Jul.	High	75	91	91	90	79	63	68	77	71	71	74	76	74	82	88	86	79	76	80	78	77	79	78	74	89	96	98	81	76	76	81
1981	Jul.	Low	46	52	51	53	56	50	46	43	48	44	41	45	52	51	48	49	50	50	50	52	55	55	57	56	55	54	60	50	49	45	46
1981	Aug.	High	85	68	78	81	87	98	104	106	108	107	99	90	86	92	82	86	94	91	67	72	81	87	88	78	77	79	80	85	72	77	82
1981	Aug.	Low	48	50	54	55	48	53	55	58	63	62	58	54	51	54	52	48	52	54	54	49	46	45	51	57	48	44	41	46	47	49	44
1981	Sep.	High	76	78	81	76	79	95	99	90	71	80	86	84	84	89	96	86	81	81	68	67	64	64	67	67	66	59	72	66	66	70	_
1981	Sep.	Low	53	45	44	44	46	49	50	48	49	59	48	45	44	42	44	48	50	50	48	51	47	44	39	41	43	50	51	50	44	40	—

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

10 11 Oct. High Oct. Low High Nov. _ Nov. Low Dec. High Dec. Low Jan. High Jan. Low Feb. High _ _ Feb. Low Mar. High Mar. Low Apr. High _ Apr. Low High Mav. May. Low High 102 97 Jun. Jun. Low — Jul. High Jul. Low Aua. High Aug. Low Sep. High Sep. Low _ Oct. Hiah Oct. Low High 59 59 Nov. _ Nov. Low Dec. High Dec. Low Jan. High Jan. Low Feb. High _ _ Feb. Low Mar. High Mar. Low Apr. High 53 52 _ Apr. Low — May. High 60 60 May. Low High Jun. 53 44 Jun. Low

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

																																	_
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1983	Jul.	High	70	70	75	82	70	72	67	69	73	78	87	76	70	73	72	76	77	79	76	78	84	85	81	75	75	78	73	76	84	93	79
1983	Jul.	Low	55	48	45	45	50	50	54	48	40	46	50	60	50	47	50	52	52	56	60	57	47	52	56	59	59	56	60	53	45	56	57
1983	Aug.	High	79	81	80	83	79	88	86	81	83	77	80	86	93	90	84	85	86	85	81	81	85	81	73	77	82	81	83	72	71	73	76
1983	Aug.	Low	61	61	51	45	53	48	54	56	61	60	53	54	53	61	53	48	50	50	50	51	47	49	60	54	46	57	55	56	62	61	58
1983	Sep.	High	75	77	79	74	75	78	73	69	73	72	76	82	82	75	80	74	70	68	71	79	85	81	75	76	78	70	68	70	74	76	_
1983	Sep.	Low	56	54	48	51	45	43	45	45	45	55	54	46	48	50	45	46	40	43	40	36	46	48	50	50	43	49	42	34	33	33	—
1983	Oct.	High	74	66	74	70	69	67	73	68	66	71	73	71	61	67	65	63	65	59	60	63	63	63	63	63	66	66	57	51	54	64	57
1983	Oct.	Low	34	41	50	42	35	39	34	41	48	43	40	40	44	49	35	31	39	37	41	43	42	47	37	32	33	34	38	43	46	51	44
1983	Nov.	High	60	63	64	60	58	56	55	47	60	60	60	57	55	55	64	58	55	55	56	49	50	47	57	59	51	52	55	55	51	44	_
1983	Nov.	Low	52	54	51	37	35	44	35	33	44	47	46	44	45	45	51	50	47	44	45	42	35	39	44	43	42	43	48	35	34	36	_
1983	Dec.	High	45	50	45	45	49	45	50	54	55	54	49	50	55	52	49	42	43	39	44	34	25	24	27	26	40	41	44	35	36	52	55
1983	Dec.	Low	35	40	37	35	41	41	40	43	39	45	37	42	49	42	39	35	32	35	29	22	19	12	11	16	25	29	30	20	32	35	39
1984	Jan.	High	42	54	63	65	60	54	57	53	51	51	53	45	49	44	45	41	43	38	41	35	50	56	52	61	55	51	59	57	61	61	53
1984	Jan.	Low	35	37	53	51	47	48	36	38	36	42	41	33	24	25	21	16	15	19	30	20	33	47	45	52	39	35	35	35	36	29	25
1984	Feb.	High	52	50	52	64	58	62	56	61	49	50	55	55	51	50	52	53	54	57	54	55	48	46	47	46	54	50	58	59	55	_	-
1984	Feb.	Low	26	24	26	27	26	34	29	44	42	39	42	47	36	36	40	31	25	37	35	43	34	33	41	41	35	31	31	35	39	_	_
1984	Mar.	High	56	55	53	65	64	66	63	67	67	64	52	56	59	55	60	56	55	53	62	62	56	62	57	56	50	57	59	54	57	60	64
1984	Mar.	Low	41	39	30	27	28	30	35	39	43	36	33	41	44	46	45	42	41	45	47	43	44	44	37	39	39	36	34	42	33	26	44
1984	Apr.	High	57	58	57	52	56	59	54	52	50	54	55	56	57	77	55	58	60	61	58	61	59	65	59	55	55	62	66	56	56	56	-
1984	Apr.	Low	37	38	42	42	37	32	42	41	40	41	41	35	32	36	46	35	30	45	39	41	43	35	35	35	33	29	28	34	41	44	—
1984	May.	High	57	58	60	58	55	61	76	65	60	60	66	67	66	59	61	65	69	71	62	61	64	56	63	60	60	66	76	85	85	62	65
1984	May.	Low	46	46	37	33	34	30	30	42	43	42	51	50	47	42	41	42	46	41	42	40	37	41	39	37	44	44	42	43	46	45	37
1984	Jun.	High	69	67	64	62	59	62	63	61	62	66	70	73	72	78	72	67	73	75	76	59	63	76	84	84	85	69	82	77	67	72	_
1984	Jun.	Low	41	45	39	50	48	47	43	38	42	39	48	44	45	44	44	36	36	38	42	52	40	36	45	44	49	50	60	57	51	41	_
1984	Jul.	High	80	78	83	86	77	72	77	79	80	81	69	73	79	86	93	97	92	84	81	78	78	92	80	94	72	82	80	80	83	92	85
1984	Jul.	Low	44	53	48	50	50	44	39	45	49	49	44	52	44	46	51	59	54	45	45	49	46	46	52	58	53	46	47	53	48	50	55
1984	Aug.	High	78	81	80	82	76	81	90	95	94	87	81	75	79	82	87	84	83	80	82	86	86	80	76	80	88	94	79	76	85	74	69
1984	Aug.	Low	60	60	53	48	52	46	49	56	56	52	52	54	47	46	49	54	55	54	46	44	49	50	52	50	48	52	51	51	46	49	58
1984	Sep.	High	73	81	83	83	71	65	76	80	72	73	71	74	81	87	81	83	87	86	67	71	70	63	64	67	70	73	76	81	80	68	_
1984	Sep.	Low	47	39	43	46	51	51	60	63	54	44	49	47	46	45	50	49	48	50	61	56	47	44	41	35	42	42	42	39	40	49	_
1984	Oct.	High	70	73	73	68	63	75	85	76	72	59	61	62	63	55	52	55	56	50	50	48	51	53	51	55	61	53	52	56	53	53	50
1984	Oct.	Low	43	44	47	46	44	54	54	52	52	50	45	47	48	42	35	34	36	43	47	34	33	33	31	46	51	44	45	40	38	40	34
1984	Nov.	High	53	58	59	59	52	55	59	47	50	57	54	60	51	53	49	53	51	55	53	51	43	46	51	42	45	41	48	50	47	49	_
1984	Nov.	Low	37	50	46	32	31	44	34	32	42	49	49	49	34	35	31	31	30	43	43	34	33	31	33	34	35	28	39	37	41	36	_
1984	Dec.	High	40	45	47	45	44	42	42	43	45	45	41	48	47	48	40	43	41	33	30	39	46	50	52	40	37	49	45	44	45	48	40
1984	Dec.	Low	31	31	32	28	26	22	25	32	40	27	28	39	37	34	31	32	30	20	17	13	39	43	38	33	35	37	35	34	40	40	27
1985	Jan.	High	39	42	42	36	38	39	41	42	43	41	41	43	43	50	41	50	47	45	42	47	54	52	47	47	47	46	37	40	43	36	40
1985	Jan.	Low	23	24	22	20	23	30	29	25	23	20	21	23	20	28	37	30	27	27	32	35	34	26	24	24	22	20	22	23	23	20	27
1985	Feb.	High	46	34	36	33	42	48	44	43	42	46	52	47	51	58	52	49	52	51	47	49	51	58	62	56	51	53	58	58	_	_	_
1985	Feb.	Low	30	30	21	11	30	37	33	35	34	37	37	30	24	27	31	25	25	23	37	37	39	38	36	30	27	29	27	28	_	—	_
1985	Mar.	High	53	51	46	46	50	52	55	57	60	61	58	53	56	56	61	61	57	58	57	56	49	48	51	46	51	46	47	53	48	53	60
1985	Mar.	Low	30	23	34	36	32	28	23	26	29	30	25	30	26	27	27	31	31	28	32	36	36	38	38	32	33	33	36	37	32	45	50

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

High Apr. Apr. Low High May. May. Low Jun. High Jun. Low Jul. High Jul. Low Aug. High Aug. Low Sep. High Low Sep. Oct. High Oct. Low Nov. High _ Nov. Low Dec. High Dec. Low Jan. High Jan. Low Feb. High ____ _ Feb. Low Mar. High Mar. Low Apr. Hiah _ Apr. Low May. High 55 57 May. Low Jun. High Jun. Low Jul. High Jul. Low Aug. High Aug. Low Sep. High Sep. Low Oct. High Oct. Low Nov. High 63 63 _ Nov. Low _ High Dec. Dec. Low

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

High Jan. Jan. Low Feb. High _ Feb. Low Mar. High Mar. Low Apr. High 78 72 Apr. Low May. High May. Low Jun. High Jun. Low Jul High Low Jul. Aua. High Aug. Low High Sep. 95 77 Sep. Low _ High Oct. Oct. Low High Nov. Nov. Low 50 47 Dec. High Dec. Low Jan. Hiah Jan. Low High 39 41 Feb. _ _ Feb. Low _ Mar. High Mar. Low Apr. High Apr. Low May. High May. Low High Jun. Jun. Low 103 101 89 102 103 Jul. High 77 72 Jul. Low Aug. High 76 86 Aug. Low Sep. High 102 104 42 44 Sep. Low

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

• •			•		-																													
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	1988	Oct.	High	92	76	63	64	68	66	65	70	75	72	62	71	62	66	75	76	69	66	71	65	65	63	68	64	59	60	63	61	62	73	67
	1988	Oct.	Low	49	46	45	44	55	46	55	49	47	46	52	47	52	57	59	57	48	45	51	44	44	39	37	42	39	34	27	31	38	45	42
	1988	Nov.	High	56	58	61	61	65	57	50	55	50	57	56	54	50	50	54	51	51	48	48	52	54	57	47	44	50	51	50	54	48	39	_
	1988	Nov.	Low	42	53	50	48	49	38	39	44	42	43	41	41	34	42	45	43	39	41	37	46	45	43	37	37	41	33	40	37	30	31	—
	1988	Dec.	High	38	42	45	38	58	60	52	48	50	49	49	58	52	45	49	53	49	48	49	44	48	45	43	39	38	41	42	40	49	49	47
	1988	Dec.	Low	31	30	30	29	36	47	34	33	45	45	45	42	29	29	25	34	24	20	33	39	38	37	37	33	27	26	33	30	39	39	36
	1989	Jan.	High	49	50	59	50	47	42	42	48	52	46	46	50	44	42	48	50	51	55	51	50	44	45	35	43	44	40	49	49	60	57	48
	1989	Jan.	Low	40	42	44	38	35	32	33	35	42	36	36	34	33	34	41	47	46	40	35	37	37	26	24	30	27	32	29	28	33	35	33
	1989	Feb.	High	34	23	16	24	34	36	36	42	45	37	45	43	44	45	48	49	50	46	51	57	48	53	51	53	55	50	49	53	_	_	_
	1989	Feb.	Low	23	12	6	3	-1	6	8	12	24	26	33	35	34	27	23	39	45	39	39	35	35	39	38	29	33	29	28	29	—	—	—
	1989	Mar.	High	49	41	46	39	58	56	55	62	64	56	62	56	45	51	61	53	52	55	57	59	58	56	58	54	56	48	52	57	56	52	57
	1989	Mar.	Low	32	31	29	29	37	42	36	34	45	42	47	45	39	40	43	41	41	37	33	29	42	40	34	44	37	40	45	42	41	35	42
	1989	Apr.	High	55	52	58	59	70	72	69	69	78	71	71	78	78	76	64	64	72	73	75	60	61	57	62	62	59	58	64	73	80	64	_
	1989	Apr.	Low	40	34	35	45	48	43	45	39	41	45	39	40	42	50	48	42	39	49	54	48	43	41	40	46	48	38	35	34	36	43	—
	1989	May.	High	70	73	66	81	81	78	79	76	57	61	63	63	72	77	80	70	65	61	64	71	61	68	56	62	62	65	64	65	62	70	78
	1989	May.	Low	43	43	39	48	54	53	49	43	46	46	42	39	34	41	41	43	42	42	42	34	46	46	43	46	46	47	48	45	45	46	43
	1989	Jun.	High	85	86	88	90	87	76	76	73	71	79	85	64	76	65	71	70	75	74	68	71	80	80	91	96	89	73	70	69	61	67	—
	1989	Jun.	Low	48	50	48	50	50	49	42	46	52	42	47	48	56	55	52	43	44	51	50	49	47	48	56	55	55	52	49	53	53	51	—
	1989	Jul.	High	64	77	75	77	80	86	81	71	69	75	82	86	76	81	75	67	80	84	80	72	77	86	83	82	87	68	77	84	73	76	68
	1989	Jul.	Low	50	52	57	45	44	46	49	50	56	56	46	52	57	54	58	54	57	61	55	52	52	46	49	52	48	56	56	47	51	47	50
	1989	Aug.	High	64	75	76	79	88	91	90	84	77	78	80	82	80	79	78	76	77	87	78	78	74	67	74	72	78	85	82	82	74	69	73
	1989	Aug.	Low	49	54	51	57	50	53	53	57	55	49	45	49	49	50	45	48	56	49	49	58	60	57	50	51	47	50	49	54	51	53	50
	1989	Sep.	High	74	74	77	81	73	82	86	89	86	88	87	90	93	92	88	74	70	71	73	82	89	95	89	84	72	67	73	90	69	60	—
	1989	Sep.	Low	49	47	41	43	49	42	44	47	49	41	42	43	41	46	43	45	48	37	37	39	44	47	47	50	51	52	56	47	54	47	—
	1989	Oct.	High	65	69	70	69	72	70	67	74	77	72	69	69	67	62	63	64	73	62	61	65	57	65	58	55	59	57	55	53	58	52	64
	1989	Oct.	Low	49	42	36	37	43	46	45	47	45	46	38	47	50	36	32	34	35	41	51	48	51	49	44	44	42	46	39	35	30	29	33
	1989	Nov.	High	62	56	62	61	58	52	58	56	66	64	63	56	50	53	52	49	53	51	54	58	56	50	55	51	46	52	53	43	42	48	—
	1989	Nov.	Low	33	28	33	44	39	42	44	42	55	53	51	44	38	34	33	33	48	47	46	45	37	36	44	43	42	40	36	35	34	32	—
	1989	Dec.	High	50	46	60	61	54	57	55	57	53	46	47	39	40	35	38	40	35	34	38	40	39	40	58	50	46	37	39	44	45	41	51
	1989	Dec.	Low	31	31	44	50	49	41	40	36	33	33	24	28	27	31	31	33	33	32	32	31	33	33	40	29	25	23	29	33	32	36	35
	1990	Jan.	High	48	50	48	50	55	55	59	58	61	45	49	48	50	50	47	47	49	47	49	46	47	51	47	43	46	45	51	48	47	45	42
	1990	Jan.	Low	31	35	38	44	49	47	47	48	41	41	38	35	41	39	40	34	27	22	24	25	26	40	31	25	35	33	37	44	38	37	36
	1990	Feb.	High	49	52	49	47	44	39	40	48	51	54	48	38	37	34	35	39	42	45	47	47	58	51	53	58	64	65	68	68	_	_	—
	1990	Feb.	Low	35	43	36	33	35	32	32	40	46	46	32	29	21	18	32	34	30	22	21	35	45	39	36	37	38	33	34	27	—	—	—
	1990	Mar.	High	64	54	57	54	54	56	50	49	49	51	47	51	48	57	60	63	62	61	63	66	66	55	61	62	65	64	68	72	63	64	64
	1990	Mar.	Low	27	31	41	36	34	45	38	34	39	35	33	31	27	37	32	40	47	47	48	45	35	44	41	38	33	33	30	34	35	33	40
	1990	Apr.	High	70	61	71	74	72	68	54	59	68	73	69	66	78	77	81	63	60	67	62	67	65	57	56	59	62	59	55	58	59	68	—
	1990	Apr.	Low	36	39	35	36	36	35	34	36	30	36	41	34	38	43	48	49	50	48	47	50	47	47	45	41	38	38	39	39	39	32	—
	1990	May.	High	72	72	76	86	78	62	61	67	77	58	59	63	64	64	65	70	61	60	68	61	63	65	60	63	69	70	73	66	64	64	65
	1990	May.	Low	38	47	50	45	41	36	36	31	39	41	47	46	42	38	44	38	48	45	39	49	48	50	42	42	35	50	56	51	50	46	47
	1990	Jun.	High	65	74	69	67	69	62	70	71	64	65	69	63	68	80	81	65	69	80	81	83	97	80	70	80	74	79	76	80	84	78	—
1	1990	Jun.	Low	49	51	51	50	43	55	51	52	49	46	47	50	45	49	47	52	50	47	50	56	53	60	57	53	50	51	47	57	53	52	—

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

1990 Jul. High 74 70 73 82 78 75 83 89 87 92 95 98 91 91 96 85 87 91 95		22 23	24 25	26	27 28	3 29	20 21
J	00 100 0			-		5 27	30 31
		95 78	75 75	77	83 90		87 81
	52 58 5	55 51	58 54		54 50		56 54
	86 68 7	75 74	74 78		83 80		79 81
1990 Aug. Low 56 51 53 57 56 50 59 63 58 56 59 57 55 49 56 55 56 57 56	59 59 6	60 50	42 49	55	59 5	7 60	54 48
	85 95 9	95 76	70 73		76 82		75 —
	44 46 4	47 47	47 59	51	46 4	7 46	49 —
J is in the second s	56 54 5	56 61	63 66	60	67 62	2 63	53 57
1990 Oct. Low 44 44 52 50 38 34 30 32 35 36 31 50 43 39 51 36 36 40 38	36 38 3	37 40	41 41	43	43 40	5 40	50 38
1990 Nov. High 55 50 57 60 55 49 53 58 61 66 59 58 54 54 61 56 50 49 46	47 51 5	55 55	59 55		52 50		49 —
	38 43 4	48 51	54 36	34	35 3	5 39	35 —
	18 18 2	21 24	26 36		46 38	3 24	34 45
1990 Dec. Low 38 40 41 38 32 33 34 35 48 37 32 33 34 33 29 28 41 29 12	9 8	7 11	10 25	36	37 19		11 32
		49 43	48 51		46 40	5 43	48 51
	30 27 2	25 26	27 25	22	19 30) 22	24 34
1991 Feb. High 60 59 60 56 53 52 55 55 51 49 58 51 58 58 57 54 54 54 58	57 56 5	58 59	64 71	68	65 62	2 —	
	46 39 3	36 32	30 36		30 20		
1991 Mar. High 59 51 57 49 47 50 50 54 53 49 46 55 53 50 52 58 64 53 53	55 51 5	50 51	54 50	58	60 5	5 60	68 69
	29 36 3	39 35	38 31		31 34	4 30	33 42
	71 62 6	63 55	53 54	55	60 59	-	74 —
1991 Apr. Low 46 44 45 51 35 33 38 36 40 35 29 29 35 44 39 39 38 43 36	48 43 4	40 42	40 39	40	38 30	5 31	36 —
1991 May. High 74 72 67 70 57 66 58 55 58 56 59 58 63 65 67 72 50 55 55	65 68 6	64 72	64 60	64	63 60	5 57	63 68
1991 May. Low 40 41 39 35 48 51 48 38 37 45 49 49 47 32 40 44 45 46 49	50 45 4	42 41	42 42	48	42 4	5 43	40 37
1991 Jun. High 74 74 64 67 68 67 69 73 83 84 71 64 65 70 65 65 72 81 61	54 60 6	68 73	66 65	70	77 68	3 66	71 —
	50 48 4	48 50	55 54	48	43 50	5 56	52 —
		95 98	73 74		88 88		90 92
	44 47 5	56 63	59 57		57 54		56 55
	93 91 8	88 73	76 74	79	65 6		83 66
		56 55	43 42		54 5	7 58	52 52
		83 84	95 94	-	68 72		85 —
		39 51	52 52	48	48 50	5 44	47 —
	73 64 5	53 56	57 51	51	54 4	7 50	51 53
	45 40 4	44 42	46 47	39	34 38		27 29
	55 54 4	45 46	56 59	51	52 49		43 —
	42 32 3	31 33	44 50	40	35 30	5 28	27 —
1991 Dec. High 48 54 54 52 53 53 53 52 48 41 48 52 42 40 37 35 37 45 48	36 46 4	47 46	47 46	46	49 48	3 44	47 43
		42 40	42 39		41 3		36 36
		54 57	60 56		57 58		55 61
	22 37 3	36 50	42 37		45 49	9 51	47 47
J I I I I I I I I I I I I I I I I I I I	53 62 5	59 55	64 68		66 62		
	46 46 3	39 37	48 47	45	37 30	5 39	
1992 Mar. High 59 55 64 53 61 58 57 64 64 66 64 68 63 67 62 58 59 59 64	66 70 6	67 68	64 69	57	58 69	9 70	67 70
1992 Mar. Low 40 37 39 42 43 42 44 34 30 32 33 34 35 43 39 46 38 32 34	31 34 3	35 36	34 40	45	42 38	3 38	44 38

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

Apr. High Apr. Low High May. May. Low 99 105 Jun. High Jun. Low Jul. High 100 87 Jul. Low Aug. High Aug. Low Sep. High Sep. Low Oct. High Oct. Low Nov. High _____ Nov. Low High Dec. 42 46 Dec. Low Jan. High Jan. Low High Feb. _ _ Feb. Low Mar. High Mar. Low Apr. Hiah _ Apr. Low May. High 59 70 May. Low Jun. High 62 67 Jun. Low Jul. High Jul. Low Aug. High Aug. Low Sep. High Sep. Low Oct. High Oct. Low Nov. High _ Nov. Low — Dec. High Dec. Low

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

			-		-																													
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1	1994	Jan.	High	60	57	59	56	52	53	50	54	57	51	55	56	50	50	58	53	40	39	37	42	50	51	58	49	43	40	43	54	53	57	53
	1994	Jan.	Low	41	44	50	45	41	33	30	45	41	40	46	47	43	46	35	32	31	34	33	34	35	44	43	36	36	36	38	30	27	25	24
1	1994	Feb.	High	52	49	49	46	50	46	44	43	51	49	52	50	50	55	56	51	48	49	56	52	47	49	53	50	53	58	54	62	_		-
	1994	Feb.	Low	25	23	21	24	21	24	29	23	36	32	33	32	41	40	46	42	37	36	34	32	39	39	46	38	40	48	47	53	_	_	—
1	1994	Mar.	High	67	57	66	59	54	59	61	61	67	58	58	67	70	70	63	55	55	52	53	54	52	48	54	66	68	74	77	75	74	58	54
	1994	Mar.	Low	51	52	51	41	34	32	30	32	38	42	34	31	40	37	34	44	45	37	37	40	37	36	36	41	34	32	35	38	35	50	49
	1994	Apr.	High	61	62	60	59	52	58	55	57	59	62	70	62	58	61	76	78	74	74	70	74	67	66	63	62	67	64	65	70	59	64	-
	1994	Apr.	Low	43	42	40	39	33	44	44	47	47	42	36	38	37	36	38	44	47	48	44	40	46	38	42	47	47	47	45	40	43	39	—
	1994	May.	High	64	62	63	70	81	86	85	78	80	87	76	70	71	68	61	62	63	67	65	63	70	77	82	84	75	67	69	59	67	76	69
	1994	May.	Low	36	47	45	51	49	52	50	47	45	44	54	42	39	44	50	49	49	50	48	53	47	46	45	46	52	48	37	49	50	37	52
	1994	Jun.	High	71	75	75	70	64	64	69	75	82	86	83	75	64	64	69	76	70	72	83	85	83	78	73	78	73	75	88	87	80	81	-
	1994	Jun.	Low	48	45	39	53	50	48	46	40	46	49	54	54	50	49	47	42	46	43	43	48	49	58	48	41	45	54	50	48	48	50	—
	1994	Jul.	High	76	74	74	70	76	82	93	90	87	87	90	88	88	82	82	93	91	86	100	103	103	100	97	76	87	90	93	87	79	80	88
	1994	Jul.	Low	47	51	44	46	51	45	55	51	45	42	43	43	46	46	55	51	48	58	54	60	59	65	61	55	56	50	53	52	53	55	50
	1994	Aug.	High	88	90	87	78	80	84	72	74	82	88	85	86	87	82	81	82	81	81	79	79	76	79	80	80	83	83	91	80	78	85	83
	1994	Aug.	Low	50	53	55	55	53	49	52	54	53	51	52	52	52	54	52	53	53	51	57	53	52	56	53	47	48	50	50	55	50	46	51
	1994	Sep.	High	76	75	74	77	88	87	84	66	68	68	71	76	77	77	83	93	85	83	84	87	95	95	86	76	85	82	85	70	65	71	_
	1994	Sep.	Low	47	43	51	52	47	51	48	57	52	50	49	44	45	52	49	50	56	52	52	54	56	50	48	48	48	52	49	56	57	55	-
	1994	Oct.	High	76	69	72	75	74	69	68	76	76	61	64	64	61	59	61	61	55	60	66	64	64	60	63	69	65	61	60	61	48	55	56
	1994	Oct.	Low	57	45	41	42	38	46	40	39	44	43	32	39	35	41	38	34	37	34	42	50	41	34	38	36	36	57	50	39	35	43	44
	1994	Nov.	High	52	50	44	46	51	54	53	49	54	45	45	52	51	54	50	46	43	38	47	50	34	44	46	50	47	44	51	49	54	56	_
	1994	Nov.	Low	38	34	33	34	30	31	36	32	35	32	40	37	40	36	43	37	29	25	31	28	24	30	41	41	36	34	37	37	43	48	47
	1994	Dec.	High	52	45	40	39	36	41	47	42	51	46	45	48	40	45	49	56	58	53	62	63	48	46	43	52	50	57	58	51	43	50	47
	1994	Dec.	LOW	43	33	29	25	25	30	30	28	31	33	38	30	26	34	41	48	48	47 F1	49	47	41	41 F1	39	40	36	49	46	29	26	28	26
	1995	Jan.	High	43	45	46	45	38	40	44 25	56	54	56	50	54	55	52	47	50	48	51	53	59	56	51	52	53	49 32	52	51	48	59 45	62	62
	1995 1005	Jan.	LOW	33 58	31	32	29 57	30	34	35	39	45	46	43	43	47	44 36	42	33	33 53	35	35	32	30	35	37	30	32 57	35 55	38 57	43 57	45	52	56
	1995	Feb.	High		53 39	59 42	•••	56 42	56	58	62	60	52 30	55	46 27	30		44 35	49	46	65 49	67 53	64	62	55 39	63	57 37	.	36	29	31	_	_	
	1995	Feb.	Low	46 56			39		43 52	40	34	30		44		25	18		41 63			53	46 52	44		34 55		41 52	30 59	29 66	71	— 72	75	
	1995 1995	Mar. Mar.	High	25	58 35	49 39	47 39	51 32	29	55 26	55 43	66 49	54	61 45	56 40	60 48	61 42	61 43	33	61 43	59	39	53 43	49 34	53 34	30	51 38	33	29	31	31	30	75 34	41
	1995	Apr.	Low High	20 62	30 63	39 74	56	3∠ 55	63	20 55	43 49	49 55	44 57	40 60	40 57	40 55	42 54	43 60	33 66	43 53	44 54	53	43 53	54 60	34 71	30 75	30 77	33 71	29 60	53	51 65	30 64	54 68	41
	1995	Apr.	Low	36	32	37	39	41	43	44	49	38	38	44	45	40	36	37	32	42	35	33	40	37	32	38	41	37	41	39	46	46	47	_
	1995	May.	High	60	52 64	66	64	59	43 62	61	42 70	62	61	61	63	72	30 81	79	52 67	42 59	55 64	76	83	78	32 81	75	81	83	84	76	40 87	40 90	82	81
	1995	May.	Low	52	45	41	50	47	49	49	41	49	46	45	46	41	40	47	53	49	43	37	42	44	49	44	43	47	43	46	47	90 51	48	51
	1995	Jun.	High	84	77	79	71	61	60	73	81	82	40 66	71	40 69	59	65	67	68	70	61	68	42 66	69	79	87	86	85	86	40 92	93	97	40 98	
	1995	Jun.	Low	50	46	46	49	45	47	47	44	48	43	38	53	53	54	53	53	53	51	51	52	49	46	51	53	53	49	52	49	51	56	
	1995	Juli.	High	90	76	74	80	43 79	71	77	86	40 68	74	78	79	76	78	84	95	101	92	95	90	83	78	74	81	84	74	85	83	74	83	
	1995	Jul.	Low	53	55	57	57	58	51	58	59	52	49	50	47	48	53	50	59	62	61	62	58	54	61	62	60	52	61	60	54	50	46	56
	1995	Aug.	High	89	83	86	94	85	78	70	76	85	68	78	74	40	85	72	65	69	76	84	90	80	82	76	75	79	76	79	75	72	78	85
	1995	Aug.	Low	55	55	53	61	54	56	53	50	52	55	53	51	46	47	59	53	48	45	46	52	50	49	53	45	46	46	46	55	57	52	50
	1995	Sep.	High	33 89	71	68	76	74	68	72	81	32 86	84	82	84	86	88	79	67	70	76	40 82	87	86	47 87	80	78	70	40 64	70	66	67	68	50
	1995	Sep.	Low	53	54	54	51	57	53	54	53	53	54	54	54	50	53	53	58	60	48	48	53	45	43	46	49	53	53	58	55	55	48	
- 1	1775	Jup.	LOW	55	ЪТ	57	51	51	55	JT	00	55	JT	JT	57	50	55	55	50	00	10	υT	55	тЈ	тЈ	UT	т/	55	55	50	00	- 33	-10	

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1995	Oct.	High	66	70	64	66	70	65	67	60	66	64	61	61	64	71	73	65	59	61	71	61	59	53	56	55	55	62	61	60	58	56	55
1995	Oct.	Low	41	50	48	46	39	46	41	47	48	54	48	41	38	40	42	48	44	36	32	46	41	35	40	49	49	49	39	38	37	34	24
1995	Nov.	High	58	54	57	52	51	52	59	60	51	57	57	57	67	64	59	62	61	60	57	58	57	60	59	62	56	52	56	58	57	54	_
1995	Nov.	Low	28	26	25	28	44	45	52	47	42	43	48	48	52	53	54	51	51	42	38	34	40	50	52	53	43	44	47	55	53	52	—
1995	Dec.	High	53	51	53	48	44	42	47	40	36	58	55	61	50	50	47	49	44	43	47	47	48	49	47	45	43	40	40	49	55	58	55
1995	Dec.	Low	45	38	37	38	31	29	38	30	30	35	50	48	45	43	35	39	38	39	42	40	30	25	25	22	22	24	35	32	48	52	39
1996	Jan.	High	51	57	52	49	50	58	55	56	52	53	41	41	47	53	54	50	46	48	49	46	45	41	44	41	45	43	37	43	40	32	34
1996	Jan.	Low	42	46	38	39	43	49	50	47	38	36	36	37	37	45	47	34	32	31	42	41	33	33	37	35	34	35	33	35	23	19	19
1996	Feb.	High	35	35	28	35	55	57	61	62	50	59	59	60	62	61	64	55	57	58	56	56	44	47	41	45	38	41	46	50	56	—	_
1996	Feb.	Low	17	15	17	27	32	48	52	50	37	34	33	31	31	30	31	36	47	46	44	39	35	34	35	33	29	24	24	32	30		-
1996	Mar.	High	57	57	59	49	62	59	54	60	58	61	54	54	61	67	57	59	61	69	56	58	55	50	55	49	55	62	48	58	53	56	54
1996	Mar.	Low	27	27	44	38	42	45	46	45	46	49	45	45	40	36	39	31	39	34	36	34	33	37	39	35	27	25	31	30	35	36	45
1996	Apr.	High	62	54	61	68	73	76	78	72	62	55	52	52	62	71	65	54	53	53	52	53	56	58	61	59	61	58	59	68	70	68	_
1996	Apr.	LOW	48	42	34	35	42	46	49	50	48	44	44	42	41	38	48	40	37	39	40	41	41	49	50	45	39	37	38	33	44	41	
1996	May.	High	62	55	52	60	65	64	57	59	60	62	65	66	64	65	65	66	62	62	62	64	56	59	59	72	78	67	63	60	60	63	70
1996	May.	LOW	46	36	36	32	36	36	35	31	34	42	46	52	55	54	52	47	51	48	44	40	48	45	47	44	46	49	39	46	47	45	41
1996	Jun.	High	80	87	78	69	77	84	73	72	68	74	71	79	73	75	72	68	62	68	80	76	69	71	69	65	73	78	69	68	77	82	_
1996	Jun.	Low	50	53	51	50	50	48	52	49	49	43 82	47 90	43 96	47 99	45 98	43 85	45	42	45	47	46	47 82	47 96	53 98	52 95	51 95	47 95	56 92	53 80	46 91	48 95	83
1996	Jul.	High	86 E 1	83	79	72	77	86	94	86	76							78	59	67	73	76										85	52
1996	Jul.	Low	51	56	54	52 73	42 73	52	54 94	56	55	49	53 75	57	60 92	62 90	56 85	50 82	54 74	52 70	55 77	52	58	59	62 05	62	56	59 70	60 73	62 83	59 91	58	52 77
1996 1996	Aug.	High Low	79 49	71 55	74 54	73 52	73 55	81 47	94 53	95 57	97 55	99 50	75 51	87 54	92 56	90 54	85 49	82 52	46	45	45	76 54	83 49	92 51	95 52	94 58	81	72 60	55	50	54	80 56	50
1990	Aug.		49 78	73	54 75	52 66		47	00 81	37 81		58 85	82	54 66		04 61	49 66	52 64			40 68			64	52 73	56 72	61 74	79	55 82	- 50 - 82	- 54 78	70	- 00
1990	Sep. Sep.	High Low	47	46	48	46	45	45	48	50	55	48	53	54	56	56	50	50	66 48	66 43	51	66 45	65 41	42	41	41	39	45	46	49	47	52	_
1990	Oct.	High	72	72	76	74	45 65	70	78	80	81	40 67	65	61	62	57	58	53	58	53	51	45 55	54	42 55	56	59	56	40 50	56	50	53	62	58
1996	Oct.	Low	49	46	51	57	49	46	48	54	51	54	54	49	46	47	41	37	32	41	38	36	33	43	41	45	38	33	33	37	37	34	33
1996	Nov.	High	58	56	57	51	52	53	53	59	49	50	58	62	56	53	52	50	53	46	46	51	40	43	40	57	53	45	56	52	48	54	55
1996	Nov.	Low	30	32	43	36	34	37	39	38	36	40	41	50	45	44	42	44	45	34	35	34	37	27	27	39	39	40	45	40	40	45	_
1996	Dec.	High	48	44	55	54	47	44	51	48	50	52	46	49	51	41	40	43	47	41	46	50	42	44	47	51	53	53	49	38	56	54	65
1996	Dec.	Low	37	37	30	35	40	40	41	43	39	41	39	42	35	29	34	33	31	27	23	38	39	32	38	46	36	34	37	29	33	46	49
1997	Jan.	High	58	56	49	39	42	43	49	48	51	55	47	40	39	40	42	38	43	49	49	51	46	48	46	45	39	43	38	49	53	56	57
1997	Jan.	Low	52	43	35	30	36	37	36	37	41	41	38	27	19	19	19	29	35	38	41	43	38	31	32	34	34	29	28	35	35	49	48
1997	Feb.	High	50	49	45	50	49	44	39	44	45	50	47	50	49	60	54	57	55	52	52	52	51	57	59	63	52	49	46	49	_	_	_
1997	Feb.	Low	43	32	32	33	27	24	35	32	28	28	29	38	38	48	33	37	39	39	39	36	33	27	28	31	34	41	32	34	_	_	_
1997	Mar.	High	48	44	45	48	46	52	51	51	55	47	49	48	51	51	57	53	60	61	59	59	60	62	59	65	72	58	54	55	58	58	49
1997	Mar.	Low	41	37	34	35	35	45	38	29	47	40	39	36	34	36	41	48	45	46	53	39	32	38	44	36	39	36	32	32	30	37	37
1997	Apr.	High	53	59	54	56	62	62	55	56	53	56	61	58	53	57	73	66	63	56	60	60	56	61	59	59	71	71	59	54	61	57	_
1997	Apr.	Low	33	29	35	29	30	29	45	35	30	37	32	30	47	49	47	42	37	48	53	47	37	48	42	40	40	46	38	47	44	39	_
1997	May.	High	58	66	58	67	69	63	73	77	76	83	91	81	83	79	78	82	81	82	80	68	71	67	64	63	62	74	75	69	77	77	68
1997	May.	Low	38	35	49	49	50	45	40	42	45	49	51	50	46	54	57	51	50	45	45	41	42	42	46	42	41	41	60	60	62	61	52
1997	Jun.	High	66	75	68	65	69	74	69	72	80	79	65	67	74	75	82	82	71	72	71	75	63	65	67	73	74	72	73	69	74	71	_
1997	Jun.	Low	49	45	54	48	44	45	52	48	46	50	49	51	47	48	52	54	59	54	45	44	52	50	52	44	49	48	48	52	49	52	_

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

			-		-																													
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1	997	Jul.	High	71	78	88	90	79	79	80	75	69	70	74	77	83	85	80	83	75	79	88	88	75	80	83	83	81	84	89	87	80	81	81
1	997	Jul.	Low	53	47	53	57	57	58	49	58	51	52	55	49	52	56	55	55	56	54	51	57	53	51	52	51	52	49	53	55	55	57	51
1	997	Aug.	High	85	83	87	88	91	91	87	81	91	92	91	96	91	94	76	92	78	75	87	70	82	83	82	77	80	74	77	77	79	80	80
1	997	Aug.	Low	50	52	54	55	59	62	54	52	54	56	53	55	58	56	53	54	59	56	54	61	61	55	55	59	60	56	56	58	57	51	54
1	997	Sep.	High	80	83	81	80	75	77	82	93	82	74	71	72	65	73	61	64	68	68	76	81	82	81	86	88	79	65	69	74	75	66	_
1	997	Sep.	Low	61	54	58	57	55	47	46	51	57	60	57	51	49	57	54	56	55	48	46	45	45	49	50	54	54	54	50	46	53	56	_
1	997	Oct.	High	62	66	63	62	61	60	59	58	54	55	57	58	60	65	69	66	64	57	59	63	60	59	58	54	57	56	58	54	59	62	62
1	997	Oct.	Low	52	53	54	54	46	44	40	50	47	46	40	49	42	39	44	45	50	46	42	35	34	36	42	35	34	36	41	42	51	53	44
1	997	Nov.	High	61	57	62	61	63	61	55	47	62	60	55	58	52	58	57	53	55	49	51	54	56	49	56	53	56	54	54	57	50	50	—
1	997	Nov.	Low	39	36	39	49	51	50	40	37	33	40	41	38	33	37	31	35	43	36	48	46	43	44	47	45	38	34	36	47	41	37	—
1	997	Dec.	High	49	54	49	50	47	46	45	45	45	51	39	39	37	49	49	54	51	37	47	47	47	34	45	41	38	45	49	52	47	45	50
1	997	Dec.	Low	33	26	27	34	32	28	32	32	36	32	32	30	29	33	35	46	35	29	30	32	29	26	33	38	35	34	41	37	39	34	37
1	998	Jan.	High	50	44	43	47	46	47	49	38	38	39	38	45	51	51	52	56	55	53	47	51	48	51	55	50	53	53	55	54	56	57	57
1	998	Jan.	Low	40	28	34	36	41	43	29	28	27	35	30	26	44	44	39	43	48	44	43	38	37	44	46	45	41	47	43	42	43	37	31
1	998	Feb.	High	53	55	53	56	56	67	52	50	50	49	52	54	55	53	53	51	56	57	51	48	48	50	52	50	49	50	49	54		—	—
1	998	Feb.	Low	34	36	43	38	40	46	33	40	35	39	44	43	41	42	42	32	40	44	44	44	41	33	31	29	36	31	29	43	—	—	—
1	998	Mar.	High	53	51	47	50	54	52	51	51	53	51	68	59	63	65	57	57	56	63	66	68	55	61	60	60	59	52	46	50	58	50	52
1	998	Mar.	Low	47	39	36	32	28	27	26	41	38	33	47	48	49	44	48	36	31	35	33	39	43	51	44	47	40	39	34	31	30	36	40
1	998	Apr.	High	54	56	48	55	56	58	51	57	58	56	55	54	55	55	58	59	63	59	59	71	71	70	57	58	57	67	74	79	83	82	—
1	998	Apr.	Low	40	43	43	41	36	41	34	33	42	41	37	39	35	37	38	32	33	45	36	35	38	48	46	38	37	36	42	44	50	51	—
1	998	May.	High	84	68	70	69	69	71	67	54	52	55	57	51	53	57	56	50	61	66	62	55	60	60	65	60	58	60	65	76	60	65	78
1	998	May.	Low	52	51	52	54	52	52	50	45	43	48	47	46	47	45	42	45	42	42	49	48	44	44	52	45	42	38	40	42	52	51	47
	998	Jun.	High	74	68	74	64	72	80	76	73	77	65	70	75	71	73	67	68	75	62	71	80	83	71	73	68	64	68	75	83	82	67	—
1	998	Jun.	Low	49	48	46	54	51	51	50	50	51	53	52	52	51	49	51	50	45	44	51	49	52	50	53	53	52	52	47	50	50	52	—
1	998	Jul.	High	67	74	66	70	77	85	78	82	85	75	77	77	80	84	86	95	91	84	79	85	91	94	87	84	86	100	101	99	82	79	73
	998	Jul.	Low	55	56	56	57	58	56	59	53	56	55	49	54	54	55	53	57	54	55	58	53	54	57	56	57	56	62	65	60	56	57	60
	998	Aug.	High	78	90	93	94	86	81	80	86	84	86	90	93	96	91	74	75	76	75	81	81	76	80	71	78	80	77	87	92	88	88	96
	998	Aug.	Low	57	52	53	61	59	57	49	53	51	50	61	58	60	60	60	57	50	50	49	51	55	52	56	48	47	51	54	54	50	56	54
	998	Sep.	High	96	92	93	89	86	88	86	71	72	76	84	86	83	85	88	81	77	69	69	69	80	75	80	67	65	73	82	77	68	77	—
	998	Sep.	Low	58	56	58	56	50	44	53	53	44	43	50	52	49	56	52	48	49	57	51	47	48	48	47	44	45	44	49	46	45	42	—
	998	Oct.	High	63	58	61	66	69	74	76	64	55	61	62	60	64	62	59	55	59	60	69	75	75	73	51	63	63	64	59	57	43	49	51
	998	Oct.	Low	51	50	50	46	41	43	48	52	46	43	42	52	49	45	41	36	38	41	37	38	38	40	40	46	46	42	45	36	34	35	35
	998	Nov.	High	57	59	54	59	55	52	46	50	53	49	48	53	56	58	61	48	57	55	51	56	56	49	55	51	64	52	52	44	48	47	—
	998	Nov.	Low	49	43	44	48	44	41	40	35	33	43	44	42	50	45	47	42	40	40	39	50	43	42	40	43	50	44	35	32	39	40	—
	998	Dec.	High	50	51	45	45	41	42	45	45	46	48	52	61	56	49	49	46	46	41	35	25	22	30	26	43	52	47	52	52	55	58	53
	998	Dec.	Low	44	38	34	33	35	34	40	32	28	38	48	50	43	32	32	28	33	28	23	14	12	15	12	26	42	39	43	49	51	51	39
	999	Jan.	High	47	45	50	45	40	46	50	39	49	57	48	49	49	52	52	48	54	50	51	48	50	45	46	40	37	42	44	48	56	46	49
	999	Jan.	Low	31	30	26	26	27	30	32	31	34	32	31	37	38	47	43	40	42	46	44	44	44	36	37	28	30	32	35	43	43	40	37
	999	Feb.	High	49	50	49	48	46	50	46	41	43	43	47	54	50	50	54	48	50	49	52	52	47	50	53	53	46	49	55	56	_	_	—
	999	Feb.	Low	37	35	34	34	32	44	36	34	33	33	33	33	39	31	34	43	39	40	31	27	40	44	46	44	37	35	44	40	—	—	—
1	999	Mar.	High	49	48	46	46	45	50	50	51	48	54	57	50	58	50	52	52	54	57	69	59	61	61	62	53	52	49	50	47	48	46	50
1	999	Mar.	Low	35	34	36	34	33	27	31	38	33	33	27	43	44	42	36	31	38	45	36	45	44	42	36	43	42	38	34	36	38	36	34

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

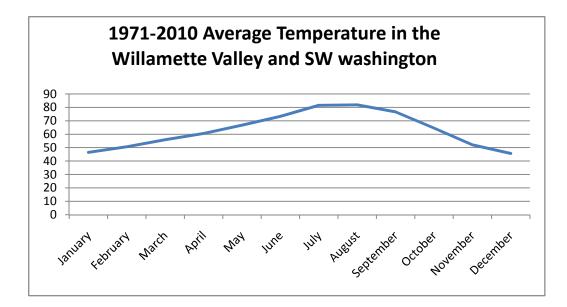
• •			U		•																													
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
ſ	1999	Apr.	High	56	56	50	48	56	59	54	51	49	55	68	55	58	70	81	80	71	61	57	57	52	62	75	79	57	54	50	58	69	68	_
	1999	Apr.	Low	29	32	35	37	37	31	37	35	34	41	36	44	42	35	38	41	50	46	42	41	41	40	40	41	44	34	37	33	35	36	—
	1999	May.	High	55	52	55	55	65	63	51	53	56	59	62	57	54	57	60	64	65	61	63	61	67	79	89	76	68	76	77	69	72	76	71
	1999	May.	Low	45	44	42	38	37	40	36	34	35	40	48	43	41	43	43	42	48	46	42	43	43	44	49	50	46	40	45	46	40	38	48
	1999	Jun.	High	59	65	69	65	64	59	55	61	67	75	83	83	85	85	69	77	76	72	72	68	68	73	82	66	65	63	68	71	82	76	—
	1999	Jun.	Low	46	41	40	47	45	42	42	45	40	41	47	56	56	55	55	53	50	51	54	49	54	55	50	48	50	49	49	47	55	57	—
	1999	Jul.	High	69	62	66	70	85	68	70	83	91	90	91	89	85	72	80	70	74	83	92	84	75	87	88	74	78	88	90	89	82	83	84
	1999	Jul.	Low	52	51	45	51	47	54	51	48	49	52	51	55	52	49	48	49	53	50	54	53	58	54	56	54	56	49	52	56	51	51	53
	1999	Aug.	High	78	89	88	86	77	70	66	78	88	89	67	79	74	70	78	88	90	78	80	83	81	89	87	89	85	89	88	84	65	67	67
	1999	Aug.	Low	52	51	56	56	61	60	58	58	54	57	56	53	56	55	50	53	57	56	59	53	56	53	54	57	57	57	59	61	57	51	48
	1999	Sep.	High	77	81	84	84	78	74	81	89	77	76	87	95	94	88	75	71	75	92	92	91	89	88	73	71	69	65	66	78	80	68	—
	1999	Sep.	Low	42	46	46	49	50	53	46	47	46	42	47	48	48	47	48	47	52	49	49	53	49	51	49	39	44	40	35	37	41	45	—
	1999	Oct.	High	76	77	77	65	65	68	70	61	63	68	70	74	73	63	59	69	71	77	77	73	71	71	60	64	58	54	57	59	61	63	58
	1999	Oct.	Low	38	40	40	38	53	51	53	50	43	39	43	42	46	38	31	32	39	39	43	37	37	37	37	44	42	34	38	45	44	38	39
	1999	Nov.	High	63	58	57	54	52	64	54	57	57	58	65	65	70	54	62	54	56	45	53	54	50	48	48	53	57	56	52	49	52	55	—
	1999	Nov.	Low	35	34	36	34	37	47	45	48	47	50	50	60	49	46	51	47	37	35	41	43	41	42	43	46	53	41	39	33	37	42	—
	1999	Dec.	High	49	50	50	45	50	50	46	47	47	46	53	51	43	47	53	54	56	53	50	48	53	56	50	48	50	51	50	45	42	42	43
	1999	Dec.	Low	42	38	33	34	43	42	39	40	41	41	45	37	36	41	46	50	48	44	37	34	35	28	28	25	27	32	27	24	23	27	32
	2000	Jan.	High	47	43	48	51	48	45	52	51	48	42	42	41	44	50	39	48	47	41	42	48	54	51	43	40	49	48	43	51	48	43	52
	2000	Jan.	Low	39	38	40	41	29	28	44	43	40	36	33	33	38	31	28	37	29	27	26	37	42	32	29	34	35	35	30	24	25	31	35
	2000	Feb.	High	55	49	61	54	50	51	51	53	50	51	46	47	43	48	52	57	50	44	50	51	53	50	51	51	46	51	55	49	52	_	_
	2000	Feb.	Low	46	40	33	39	39	41	38	35	30	28	41	33	34	40	35	33	27	31	33	30	41	41	31	30	36	41	39	42	34		—
	2000	Mar.	High	49	56	50	46	46	51	49	52	56	53	54	59	57	55	51	53	50	50	49	53	63	53	53	58	54	62	52	49	54	64	69
	2000	Mar.	Low	32	38	35	34	29	32	30	34	33	35	35	32	38	34	30	38	37	40	35	37	39	39	36	31	35	32	39	37	31	31	34
	2000	Apr.	High	74	68	76	55	55	56	68	65	56	67	72	74	57	59	57	58	69	62	60	69	66	55	53	53	58	68	61	55	62	69	-
	2000	Apr.	Low	40	40	41	38	33	39	34	40	40	35	38	51	48	48	47	47	45	40	42	42	40	38	32	30	38	38	41	37	34	44	-
	2000	May.	High	66	64	59	58	57	62	64	63	59	49	55	62	66	75	69	68	64	73	71	77	78	74	68	72	65	69	67	64	63	60	62
	2000	May.	LOW	46	49	47	45	39	33	39	50	43	41	42	38	50	48	51	48	41	45	50	48	47	53	51	48	46	51	50	52	49	46	47
	2000	Jun.	High	78	77	84	82	70	65	66	64	65	59	58	67	78	83	73	83	88	73	72	81	81	75	75	78	87	92	99 50	94	88	76	—
	2000	Jun.	LOW	42	47	45	50	50	53	55	51	44	45	49	53	51	52	50	46	54	52	52	48	53	49	46	48	50	55	52	60	51	50	
	2000	Jul.	High	71	68	66	67	76	76	83	72	75	78	75	82	75	76	85	92 51	81	75	82	87 52	87	73	81	87 51	78	78	86	84 55	89 55	94 50	89
	2000	Jul.	LOW	52	46 05	47	49	53	53	49 05	51 90	57 84	54	53 75	46 78	48	56 76	48	51	55 78	55	47	53 77	58	56	49	51	50	56	52	55 82	55 82	59 77	57 69
	2000 2000	Aug.	High	84 60	85 50	86 53	89 53	90 53	88 54	85 56	53	04 55	72 57	55	47	77 46	52	75 46	80 46	45	68 49	73 48	45	83 48	90 55	89 53	75 52	78 51	75 50	74 45	46	62 49	59	50
	2000	Aug. Sep.	LOW	70	50 64	- 53 - 67	70	72	54 74	76	- 05 65	71	68		47 85	40 89	52 84	40 74	40 75	45 78	49 83	40 78	40 80	40		- 53 74	52 78	77	81	40 79	40 71	49	73	50
	2000	Sep.	High	49	04 51	46	43	47	50	45	48		55	58	54	53	04 58	55	53	49	o3 57	60	52	56	37	32	35	40	40	44	46	57	62	_
	2000	Oct.	Low	49 65	51 64	40 66	43 69	47 78	50 80	40 77	40 73	44 59	55 54		54 57	55 60	56 62		55 70	49	57 66	63	52 61	50 58	58	52 67	30 65	40 61	40 56	44 58	40 58	57 61	02 58	— 59
	2000	Oct.	High Low	52	40	38	42	41	40	40	42	49	48	49	50	52	39	35	51	45	46	42	46	37	36	32	34	46	45	50	44	40	35	38
	2000	Nov.	High	52	40 56	58	42 58	53	40 56	40	42 53	49	40	49		48	39 48	50 51	47	40 49	40	42	40 50	50	46	52 51	54 51	40 49	45 52	53	44	40 53	55	30
	2000	Nov.	Low	44	48	46	39	43	35	35	42	36	29	25	23	32	26	29	23	22	20	21	30	26	22	27	35	39	42	29	28	38	35	
	2000	_		44	40 50	40	39 49	43 51		30 41	42	30 49	47	38	23 37	32 40	20 50	48	23 57	22 49	20 45	44	30 45	20 51	51	49	50 51	39 46	42	29 51	20 48	43	35 47	— 56
	2000	Dec. Dec.	High Low	49 31	43	33	31	28	26	25	25	34	34	30	31	40 32	34	40	40	27	43 27	36	40	32	45	49	34	32	36	37	40 32	43 28	47	42
	2000	Dec.	LUW	21	40	22	21	20	20	20	20	54	54	21	21	JZ	54	41	40	21	21	20	40	JZ	40	42	54	JZ	20	31	JZ	20	41	42

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

10 11 High Jan. Jan. Low Feb. High _ Feb. Low Mar. High 48 51 Mar. Low Apr. High Apr. Low May. High May. Low Jun. High Jun. Low Jul. High Jul. Low Aua. High Aug. Low Sep. High 77 78 Sep. Low — High Oct. Oct. Low High Nov. Nov. Low 50 47 Dec. High Dec. Low Jan. Hiah Jan. Low High Feb. 46 47 _ _ Feb. Low — — Mar. High 52 57 Mar. Low Apr. High Apr. Low May. High May. Low High Jun. Jun. Low Jul. High 74 79 Jul. Low Aug. High 84 75 104 96 Aug. Low Sep. High 49 47 Sep. Low

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2002	Oct.	High	61	66	56	65	63	65	69	68	66	64	59	72	69	77	81	83	76	64	69	64	61	64	70	58	58	58	52	59	58	52	56
2002	Oct.	Low	39	35	48	54	53	48	45	46	45	39	33	32	32	37	38	42	40	44	53	51	48	43	37	35	35	32	32	39	30	22	20
2002	Nov.	High	58	55	57	61	60	53	61	55	51	54	56	60	57	58	50	56	58	52	63	63	53	52	52	52	53	51	58	54	53	55	—
2002	Nov.	Low	22	20	25	27	36	35	42	47	46	45	46	47	47	46	37	35	41	41	46	43	42	47	48	33	27	26	28	29	29	28	—
2002	Dec.	High	43	52	41	43	51	50	48	41	46	50	55	60	55	60	54	51	47	47	46	47	49	46	42	48	53	47	54	45	47	48	52
2002	Dec.	Low	29	31	33	37	32	31	27	26	30	43	45	47	43	47	45	39	38	37	36	33	39	39	31	34	40	40	42	41	34	44	43
2003	Jan.	High	53	57	53	58	47	55	50	48	45	49	41	51	50	49	44	52	54	50	48	44	51	54	61	56	60	61	56	48	51	59	60
2003	Jan.	Low	43	49	47	37	31	28	28	24	26	36	35	41	40	31	32	29	36	32	26	32	36	42	39	48	52	45	42	41	45	50	47
2003	Feb.	High	50	52	50	47	52	58	52	53	55	51	59	59	54	59	56	51	50	54	51	49	56	54	54	48	53	50	54	45		_	—
2003	Feb.	Low	42	38	33	31	27	28	26	27	26	31	27	27	41	42	41	44	43	40	43	44	43	34	30	31	28	26	36	36	—	—	—
2003	Mar.	High	57	49	50	49	52	50	52	56	58	59	58	61	61	61	57	56	55	60	51	58	54	54	51	53	57	55	53	60	69	74	59
2003	Mar.	Low	36	31	36	37	45	45	46	45	47	46	48	51	50	48	45	37	33	38	40	46	45	43	37	29	45	38	39	38	40	42	43
2003	Apr.	High	53	50	48	51	47	55	62	68	61	59	65	62	59	56	57	60	57	56	64	61	53	58	54	53	54	57	65	59	64	64	—
2003	Apr.	Low	40	37	37	39	38	39	43	42	44	49	48	46	40	40	43	43	42	40	35	44	46	42	43	40	34	38	35	48	39	44	—
2003	May.	High	69	72	56	57	58	59	55	56	61	61	66	65	75	63	57	54	56	60	73	68	76	77	85	71	63	68	84	78	82	62	73
2003	May.	Low	39	41	41	46	41	39	41	43	47	47	44	50	43	44	41	41	37	34	37	45	47	51	52	54	52	50	45	56	52	51	47
2003	Jun.	High	75	74	81	90	96	96	89	78	68	70	74	66	65	72	77	84	84	70	66	65	66	66	63	75	84	91	90	97	86	75	—
2003	Jun.	Low	46	49	50	53	50	54	52	49	47	50	49	47	52	49	47	47	52	51	50	52	50	43	49	50	46	53	57	52	59	55	—
2003	Jul.	High	73	77	79	81	79	82	84	76	88	87	87	85	79	85	82	79	86	91	93	91	95	94	87	83	83	84	93	99	101	99	91
2003	Jul.	Low	53	48	46	51	54	55	50	56	51	54	51	54	55	51	54	59	53	52	53	56	65	63	57	54	49	51	55	58	57	58	58
2003	Aug.	High	86	74	80	87	73	80	81	81	81	82	79	80	84	92	78	81	88	90	83	84	90	69	77	85	90	78	76	84	87	92	87
2003	Aug.	Low	57	63	58	54	55	49	59	59	60	57	54	56	51	58	58	54	58	58	56	51	52	55	52	48	52	55	57	50	51	54	53
2003	Sep.	High	84	90	93	96	93	73	71	68	66	69	74	72	82	78	69	64	68	75	71	74	79	88	81	86	85	88	98	83	66	75	—
2003	Sep.	Low	46	52	57	56	55	56	54	51	53	58	58	50	48	46	43	47	46	43	55	45	49	50	49	49	50	59	54	50	52	48	—
2003	Oct.	High	77	65	70	64	67	74	68	61	63	60	55	62	61	62	60	74	77	70	69	77	80	72	62	64	70	73	74	71	55	51	48
2003	Oct.	Low	51	53	57	52	51	47	50	51	47	45	48	45	43	46	46	54	52	47	56	59	59	49	41	41	42	43	42	50	42	35	29
2003	Nov.	High	45	39	48	47	49	56	53	54	54	55	61	56	55	56	52	53	53	59	58	45	41	39	45	49	49	50	45	59	53	49	_
2003	Nov.	Low	22	32	27	35	29	32	41	38	35	41	36	33	31	47	44	47	46	52	35	34	26	24	34	36	40	35	31	40	49	43	—
2003	Dec.	High	49	56	49	51	56	50	46	50	42	48	49	51	54	46	44	50	49	50	44	53	51	46	45	48	45	43	43	44	39	35	39
2003	Dec.	Low	44	45	35	35	48	36	42	36	39	39	38	45	35	36	36	38	35	30	32	41	40	32	31	41	32	31	36	34	25	20	33
2004	Jan.	High	37	37	38	37	24	29	32	35	39	42	45	40	51	46	53	45	47	53	52	49	42	50	51	50	45	47	50	51	55	51	45
2004	Jan.	Low	30	33	33	24	19	19	28	32	32	34	30	29	34	42	40	42	41	40	40	30	27	33	45	36	36	41	42	46	51	37	36
2004	Feb.	High	43	49	48	50	46	49	50	48	46	53	60	57	43	55	58	50	51	55	52	57	56	56	57	50	53	50	51	51	48		_
2004	Feb.	Low	33	41	36	37	33	39	34	31	32	26	28	27	27	39	38	43	40	44	35	30	32	38	42	35	35	39	44	39	39	-	-
2004	Mar.	High	57	56	46	52	50	54	69	68	61	58	65	62	61	62	65	69	63	54	55	68	70	70	62	58	52	50	56	68	76	54	54
2004	Mar.	Low	41	31	34	41	41	35	46	42	40	33	44	35	38	42	36	32	41	41	38	32	40	42	37	45	43	41	38	32	38	33	30
2004	Apr.	High	58	70	73	63	56	60	60	66	75	80	81	63	60	57	52	57	58	57	56	49	58	67	60	63	78	84	72	66	76	83	—
2004	Apr.	Low	31	35	40	38	42	42	42	37	36	39	42	41	37	45	41	41	44	38	40	42	41	37	38	36	38	44	48	38	38	43	-
2004	May.	High	78	76	75	64	63	69	67	62	65	59	61	65	70	67	62	67	72	63	66	70	62	64	66	75	79	66	63	60	58	66	67
2004	May.	Low	46	47	47	50	45	37	51	42	43	43	47	43	39	52	49	47	42	53	48	44	51	50	48	43	45	55	52	49	47	49	47
2004	Jun.	High	73	76	81	82	67	62	64	66	61	60	62	67	65	68	77	87	93	89	87	90	88	65	68	73	78	77	80	84	84	84	_
2004	Jun.	Low	41	46	52	48	51	50	50	52	54	52	50	46	53	50	49	45	48	54	49	50	53	53	59	59	57	54	52	50	49	52	—


Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

		U		T								5 5																					
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2004	Jul.	High	81	79	78	78	84	83	74	74	74	73	82	92	85	87	84	87	85	89	80	82	88	99	104	99	87	85	90	91	90	83	86
2004	Jul.	Low	51	50	56	51	53	53	53	46	52	52	48	58	57	56	53	55	58	57	60	62	56	59	60	62	58	53	54	56	56	57	53
2004	Aug.	High	87	82	82	76	77	74	80	96	99	94	96	92	91	90	85	87	89	90	91	91	85	72	69	70	70	74	77	79	84	90	91
2004	Aug.	Low	54	52	52	60	55	56	51	53	56	54	58	58	55	60	55	55	55	58	58	55	57	56	55	61	59	59	56	53	57	57	56
2004	Sep.	High	74	67	73	73	76	80	80	78	71	80	71	68	71	72	70	69	64	56	62	67	69	71	75	75	68	72	81	79	65	68	_
2004	Sep.	Low	51	51	51	54	49	47	50	49	52	48	57	55	55	49	54	49	50	48	46	42	41	43	47	48	47	56	51	49	52	49	—
2004	Oct.	High	76	77	76	77	75	72	71	67	61	62	68	71	79	77	65	63	58	54	61	59	60	55	54	56	54	56	54	54	57	57	54
2004	Oct.	Low	41	43	44	42	46	58	53	51	45	42	41	45	48	48	48	48	49	47	49	48	40	46	40	40	36	41	39	41	44	43	37
2004	Nov.	High	56	59	50	56	55	49	52	46	50	53	53	49	49	54	54	56	50	54	50	44	44	48	52	59	56	46	51	38	39	48	—
2004	Nov.	Low	42	43	37	32	27	30	34	34	44	38	37	44	46	41	44	41	41	40	33	28	26	35	41	52	36	35	31	26	32	38	—
2004	Dec.	High	49	37	40	46	47	47	49	51	58	59	56	54	51	56	45	43	48	52	50	48	43	48	43	37	49	46	54	47	47	48	47
2004	Dec.	Low	32	32	35	36	36	39	40	46	48	54	44	42	37	40	34	38	38	33	32	29	29	41	36	34	34	35	35	30	36	32	31
2005	Jan.	High	44	46	44	44	39	45	43	43	43	44	40	45	44	40	32	40	59	64	63	60	56	55	52	48	47	51	54	52	50	54	57
2005	Jan.	Low	31	30	29	28	20	32	37	36	35	30	23	37	35	27	29	31	38	57	46	42	41	39	36	35	39	40	43	41	41	34	33
2005	Feb.	High	48	42	43	50	47	45	47	38	44	53	49	49	49	47	51	56	57	57	56	55	59	64	66	63	48	52	63	54	_	_	—
2005	Feb.	Low	34	32	29	33	33	35	31	30	28	29	24	34	29	27	22	28	22	29	32	36	32	30	26	29	35	38	33	44	—	—	—
2005	Mar.	High	63	57	61	60	59	66	70	72	72	71	73	70	69	68	67	55	55	56	62	57	51	50	49	48	53	53	52	51	52	53	63
2005	Mar.	Low	36	36	34	38	31	33	40	39	37	38	38	42	33	29	30	38	30	37	44	39	36	38	41	38	37	45	42	42	40	38	38
2005	Apr.	High	57	56	50	54	61	64	55	58	55	56	54	49	55	55	56	57	51	57	65	67	66	76	57	65	63	70	72	65	57	66	—
2005	Apr.	Low	43	39	40	38	42	43	37	38	33	36	39	36	36	35	40	38	38	37	34	35	40	43	48	43	50	48	45	52	51	46	—
2005	May.	High	69	69	74	70	62	61	62	65	57	58	60	70	72	75	65	60	59	65	65	62	60	63	65	72	86	91	90	68	62	74	63
2005	May.	Low	40	49	45	52	52	50	50	50	48	49	42	42	53	56	54	48	48	50	49	44	40	45	41	38	47	52	53	53	51	54	50
2005	Jun.	High	63	66	69	65	58	57	59	71	76	67	64	67	70	65	71	68	68	72	80	78	70	71	75	79	77	66	63	69	79	83	—
2005	Jun.	Low	49	52	50	42	47	47	49	45	44	47	51	47	54	51	44	53	48	47	46	49	55	55	49	47	57	53	54	56	54	54	—
2005		High	78	72	79	83	82	74	74	66	71	70	76	76	75	86	86	79	94	95	86	86	90	80	84	80	84	96	98	90	90	92	92
2005		Low	54	55	48	50	52	58	54	54	55	55	62	59	58	53	53	53	56	61	55	53	56	59	54	52	49	59	59	56	53	56	54
2005		High	77	83	94	97	94	88	86	88	87	80	80	82	94	96	92	81	78	83	89	88	84	81	75	86	92	87	87	82	70	76	82
2005		Low	58	51	50	54	55	58	55	52	53	55	53	52	55	55	56	52	57	53	53	51	52	55	52	47	48	50	49	51	51	50	52
2005		High	88	78	78	75	77	80	87	86	65	69	71	76	77	77	71	60	68	74	76	73	75	69	71	69	75	78	73	78	79	69	—
2005		Low	51	53	53	52	46	48	51	52	49	47	47	47	46	47	53	49	46	41	42	47	44	39	40	37	37	41	47	41	45	55	—
2005	Oct.	High	61	55	59	61	69	69	65	60	67	64	66	63	63	70	60	65	70	66	62	66	68	66	61	65	64	59	52	57	54	57	59
2005		Low	47	42	40	40	50	47	45	40	47	41	44	40	49	50	53	51	44	53	54	49	49	44	48	55	50	38	34	43	40	37	53
2005		High	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	—
2005		Low	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2005	Dec.	High	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	—
2005	Dec.	Low	_	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—

Appendix C1. Average Temperature Data for Willamette Valley by Month 1980-Present

Appendix C2. Average Temperature in the Willamette Valley and Southwest Washington 1971-2010

	January	February	March	April	May	June	July	August	September	October	November	December
1971-2010	46.5	50.7	55.9	60.6	66.8	73.3	81.5	81.9	76.6	64.6	52.1	45.7

Appendix C3. Top 5 Warmest and Coldest Months, Years and Seasons Portland AIRPORT (Oct 1940 through May 2009)

	Average M	AX	Average M	IN		Averag	e MEAN
	warmest	coldest	warmest	col	dest	warmest	coldest
	52.0 1953	32.8 1950	42.6 1953	21.0	1949	47.3 1953	27.0 1950
	<i>51.2</i> 1981	<i>34.6</i> 1949	40.8 2006	21.2	1950	45.5 2006	27.8 1949
_	50.7 2003	35.4 1979	38.8 2003	25.9	1957	44.7 2003	30.7 1979
January	50.5 1992	36.4 1969	38.8 1994	26.0	1979	44.4 1994	31.2 1957
	50.4 1983	36.5 1957	38.5 1995	26.3	1943	44.4 1992	31.9 1969
	Climatic Nor		Climatic Norn		1745	Climatic Norm	
	Portland Int'l		Cumune Norm	<i>uu 34.2</i>		Cumune Norm	ui 39.3
	57.8 1968	40.9 1956	42.6 1958	28.5	1989	10 0 1001	25 9 1056
	57.7 1991	40.9 1950	41.6 1961	30.6	1989	48.8 1991 48.6 1958	35.8 1956 36.0 1989
	56.2 1992	45.2 1949	41.2 1983	30.8	1904	48.2 1968	38.8 1950
February	55.3 1963	45.5 1950	40.4 1998	32.1	1950	48.1 1992	<i>39.1</i> 1930
	55.1 1965	46.9 1969	40.2 1963	32.1	1950	48.1 1992 47.8 1963	<i>39.1</i> 1949 <i>39.7</i> 1969
	Climatic Nor		Climatic Norn		1909	<i>47.8</i> 1965 <i>Climatic Norm</i>	
	Portland Int'l		Climatic Norm	<i>1al 55.9</i>		Climatic Norm	ai 43.2
		-	(2 7 1002	22.6	1054	52 2 1002	41 5 10 5 5
	63.7 1992	49.2 1955	43.7 1983	33.6	1954	52.3 1992	41.5 1955
	63.5 1941	49.4 1951	43.1 1984	33.8	1955	52.0 1941	41.9 1951
March	60.9 1994	51.5 1950	42.5 2007	34.1	1969	51.2 2004	43.7 1971
	60.5 1986	51.8 1956	42.1 2003	34.5	1951	51.2 1986	43.8 1964
	60.5 1979	51.9 1967	42.0 2004	35.4	1971	<i>51.1</i> 1984	43.8 1954
	Climatic Nor		Climatic Norm	ıal 38.6		Climatic Norm	al 47.4
	Portland Int'l						
	67.3 2004	55.0 1955	46.5 1992	37.4	1964	56.3 2004	46.5 1955
	66.8 1989	55.9 1963	45.3 2004	37.6	1967	56.0 1989	46.7 1964
April	66.0 1951	56.0 1964	45.2 1996	37.9	1955	55.4 1992	46.9 1967
April	65.8 1941	56.2 1967	45.2 1993	38.0	1975	54.5 1990	47.3 1975
	65.3 1977	56.5 1948	45.2 1989	38.2	1968	<i>54.5</i> 1941	48.0 1972
	Climatic Nor		Climatic Norm	ıal 41.9		Climatic Norm	al 51.9
	Portland Int'l	Airport Data					
	76.6 1992	<i>61.1</i> 1962	51.8 2005	41.9	1964	<i>63.1</i> 1992	52.6 1964
	<i>73.4</i> 1958	62.3 1991	51.7 2004	42.8	1955	62.2 1997	52.9 1955
May	<i>73.3</i> 1947	62.3 1977	<i>51.7</i> 1997	43.2	1950	<i>61.8</i> 1958	53.8 1977
wiay	72.6 1997	62.4 1960	50.9 1993	44.0	1965	<i>61.3</i> 1947	53.9 1962
		62.7 1998	50.4 1983	44.3	1966		53.9 1960
	Climatic Nor		Climatic Norn	ıal 47.5		Climatic Norm	al 57.8
	Portland Int'l	Airport Data					
	79.5 1992	66.2 1954	<i>57.1</i> 1948	49.0	1964	67.4 1992	57.9 1954
	<i>79.3</i> 1987	66.4 1953	56.9 1969	49.7	1965	66.5 1987	58.6 1953
June	77.9 1970	67.6 1956	56.8 1958	49.7	1954	66.5 1969	58.7 1964
June	77.5 1967	<i>68.3</i> 1991	56.4 2006	49.9	1976	66.5 1948	59.0 1956
	77.4 1986	<i>68.4</i> 1964	55.2 2004	50.4	1956	66.3 2006	59.9 1991
	Climatic Nor	mal 72.7	Climatic Norm	ıal 52.6		Climatic Norm	al 63.2
	Portland Int'l	Airport Data					
	87.5 1985	72.0 1963	61.2 1998	53.1	1964	74.1 1985	63.0 1963
	84.7 2003	72.2 1955	60.7 1985	53.5	1954	72.0 1996	63.0 1954
	84.7 1996	72.6 1954	59.9 2007	53.8	1962	71.6 2003	63.4 1955
July	84.6 1994	72.8 1993	59.6 2004	54.1	1963	71.5 2004	64.3 1993
	84.5 1941	75.0 1989	59.5 2006	54.4	1953	71.4 1941	64.5 1964
	Climatic Nor		Climatic Norn			Climatic Norm	

	Average M	AX	Average MI	N		Averag	e MEAN
	warmest	coldest	warmest	co	ldest	warmest	coldest
	<i>88.1</i> 1967	71.6 1954	60.7 2004	52.2	1964	72.9 1967	63.3 1954
	86.2 1986	74.2 1948	60.4 1997	53.4	1951	72.3 1986	63.7 1964
A 4	85.5 1981	74.3 1976	59.6 1990	53.7	1969	<i>72.1</i> 1981	64.5 1957
August	85.0 1972	75.2 1964	59.6 1971	53.7	1955	71.7 1977	65.3 1975
	<i>84.1</i> 1977	75.2 1957	59.5 1999	53.8	1959	71.7 1972	65.4 1960
	Climatic Norm	nal 79.7	Climatic Norm	al 57.3		Climatic Normal	68.5
	Portland Int'l		•				
	81.9 1974	68.8 1941	56.6 1995	46.5	1964	67.6 1994	58.4 1964
	81.4 1991	69.0 1978	56.0 1997	47.9	1965	67.4 1991	59.5 1961
a ,	80.1 1993	69.3 1959	56.0 1990	47.9	1961	67.3 1974	60.2 1954
Sept.	80.0 1967	69.7 1977	55.8 1994	48.9	1955	67.1 1995	60.3 1959
	79.7 1989	69.9 1954	55.2 1979	49.3	1950	67.0 1990	60.4 1965
	Climatic Norm		Climatic Norm			Climatic Normal	
	Portland Int'l	Airport Data					
	71.9 1987	57.6 1949	50.4 2003	39.5	1949	58.6 1952	48.5 1949
	71.8 1952	58.7 1950	49.9 2005	41.9	1972	58.5 1944	50.6 1946
	67.9 1944	58.8 1946	49.8 1988	41.9	1964	<i>58.3</i> 1988	51.7 1956
October	67.8 1974	59.0 1956	49.5 1979	42.3	1970	58.2 2003	52.0 1968
	67.7 1993	59.8 1984	<i>49.1</i> 1944	42.5	1978	58.2 1987	52.4 1971
	Climatic Norm	nal 63.3	Climatic Norm	al 45.2		Climatic Normal	54.3
	Portland Int'l	Airport Data					
	58.4 1949	42.9 1985	46.2 1995	31.2	1978	51.7 1995	37.2 1985
	<i>57.1</i> 1995	46.9 1978	44.7 1983	31.6	1985	50.1 1999	<i>39.1</i> 1978
NT 1	56.4 1981	46.9 1955	44.4 1998	31.8	1952	49.9 1949	40.7 1952
November	<i>56.1</i> 1976	47.6 1964	44.2 1999	33.8	1993	49.8 1997	41.0 1964
	56.0 1999	48.3 1994	43.7 1997	34.4	1964	49.7 1965	41.4 1955
	Climatic Norm	nal 51.8	Climatic Norm	al 39.8		Climatic Normal	45.8
	Portland Int'l	Airport Data					
	<i>51.4</i> 1950	39.2 1985	41.4 1950	26.8	1985	46.4 1950	33.0 1985
	50.2 1980	40.0 1990	39.7 1973	28.9	1978	44.7 1973	34.7 1990
December	<i>49.9</i> 1979	40.2 1983	39.5 1966	29.4	1990	44.4 1979	35.2 1978
December	<i>49.6</i> 1974	41.6 1978	38.9 1979	31.4	1964	44.2 1966	36.3 1983
	49.6 1973	42.2 1968	38.7 1999	31.7	1972	<i>44.1</i> 1974	37.0 1964
	Climatic Norm		Climatic Norm	al 35.0		Climatic Normal	40.2
	Portland Int'l	Airport Data					
	65.8 1992	58.7 1955	47.4 2004	40.8	1964	56.2 1992	<i>50.1</i> 1964
	65.2 1987	<i>59.4</i> 1964	47.4 1998	42.3	1955	55.7 2004	50.5 1955
Annual	64.7 1958	60.0 1954	47.0 2003	42.7	1949	55.7 1995	51.6 1950
Ainuai	<i>64.6</i> 1994	60.2 1956	46.9 1995	43.0	1950	55.6 2003	<i>51.7</i> 1956
	64.5 1995	60.2 1948	46.8 1983	43.1	1985	55.3 1998	<i>51.7</i> 1954
	Climatic Norm	nal 62.1	Climatic Norm	al 44.8		Climatic Normal	53.5
	Portland Int'l	Airport Data					
	66.4 1991-2	59.7 1954-5	47.5 2003-4	41.5	1963-4	56.6 1991-2	50.7 1963-4
Water	65.0 1993-4	59.8 1963-4	47.4 1997-8	42.0	1949-0	55.7 2003-4	51.1 1949-0
Year Oct 1	64.8 1986-7	60.0 1955-6	46.7 1991-2	42.6	1964-5	55.5 2002-3	<i>51.3</i> 1954-5
	64.4 2002-3	60.2 1949-0	46.6 2002-3	42.6	1948-9	55.3 1997-8	<i>51.4</i> 1948-9
to Sept 30	64.4 1980-1	60.3 1953-4	46.6 1982-3	42.8	1954-5	55.3 1993-4	51.7 1955-6
	Climatic Norm	nal 62.1	Climatic Norm	al 44.8		Climatic Normal	53.5

	Average MA	X	Average M	IN		Averag	ge MEAN
	warmest	coldest	warmest	co	ldest	warmest	coldest
	54.8 1991-2	42.8 1949-0	39.5 1982-3	29.9	1948-9	47.0 1991-2	36.3 1948-9
Winter	53.8 1980-1	42.8 1948-9	39.2 1997-8	30.1	1968-9	45.9 1982-3	36.8 1949-0
Season	53.4 1940-1	<i>44.1</i> 1968-9	39.2 1991-2	30.7	1949-0	45.7 1980-1	<i>37.1</i> 1968-9
(Dec 22-	53.0 2004-5	44.8 1956-7	39.0 2002-3	31.8	1956-7	45.4 1994-5	38.3 1956-7
Mar 21)	52.4 1982-3	45.0 1955-6	38.7 1952-3	31.8	1942-3	45.3 1940-1	<i>39.1</i> 1978-9
, i i i i i i i i i i i i i i i i i i i	average 49.1		average 35.6			average 42.3	
	Portland Int'l Ai	rport Data					
	50.3 2002-3	38.8 1948-9	39.5 1952-3	27.7	1948-9	44.8 1952-3	33.2 1948-9
Deep	50.3 1991-2	39.4 1949-0	38.8 1957-8	28.4	1949-0	44.5 1957-8	33.9 1949-0
Winter	50.3 1957-8	40.1 1968-9	38.3 1950-1	29.1	1978-9	44.1 2002-3	34.7 1978-9
(Dec 1–	50.1 1952-3	40.3 1978-9	38.2 1966-7	30.6	1968-9	44.1 1991-2	35.3 1968-9
Feb 14)	49.8 1980-1	42.4 1956-7	38.1 2005-6	30.8	1956-7	43.8 1966-7	36.6 1956-7
,	average 46.3	•	average 34.8			average 40.6	
	Portland Int'l Air	rport Data					
	71.5 1992	<i>61.0</i> 1964	<i>49.3</i> 2004	41.5	1964	60.1 1992	<i>51.2</i> 1964
Spring	68.9 2004	61.3 1955	48.7 1992	42.4	1955	59.1 2004	<i>51.9</i> 1955
Season	68.9 1987	61.7 1953	48.3 2005	43.4	1954	58.0 1994	53.0 1953
(Mar 22-	68.9 1969	62.2 2008	<i>48.3</i> 1993	43.4	1950	57.8 1987	<i>53.1</i> 1954
June 21)	<i>68.3</i> 1994	62.3 1991	48.2 2006	43.8	1966	57.7 1958	<i>53.1</i> 1950
	average 65.3		average 45.9			average 55.6	
	Portland Int'l A	Airport Data					
	83.6 1967	71.2 1954	58.8 1998	50.8	1964	69.8 1990	62.3 1954
Summer	<i>81.8</i> 1994	73.5 1955	58.6 2004	53.2	1955	69.8 1967	62.5 1964
Season	81.6 1972	73.8 1963	58.2 1997	53.3	1957	69.7 1998	63.4 1955
(June 22-	81.5 2005	74.3 1964	58.2 1990	53.3	1954	69.4 2003	<i>64.1</i> 1963
Sept 21)	<i>81.4</i> 1990	75.2 1983	57.5 1995	53.6	1951	69.3 1994	64.9 1957
	average 78.4		average 55.6			average 67.0	
	Portland Int'l Air	<u> </u>			1	1	
-	85.4 1967	72.1 1954	60.2 1998	52.6	1964	71.7 1985	63.2 1954
Deep	84.5 1972	74.3 1963	60.1 2004	54.1	1957	71.5 2004	<i>64.1</i> 1964
Summer	84.2 1985	74.7 1955	59.4 1997	54.2	1955	71.3 1972	64.4 1955
()	83.5 1996	75.2 1989	<i>59.1</i> 1985	54.2	1954	71.2 1996	64.6 1963
Aug 31)	83.4 1994	75.5 1948	59.0 1990	54.4	1969	71.1 1967	65.0 1957
	average 79.8 Portland Int'l Air	rnart Data	average 56.8			average 68.3	
			45.0.1005	265	1095	52.0.1074	44 2 1005
Autumn	<i>61.3</i> 1987	51.9 1985	45.0 1995	36.5	1985	52.0 1974 51.9 1995	44.2 1985
Autumn Season	61.3 1974 59.5 1952	<i>53.4</i> 1955 <i>54.0</i> 1984	<i>44.5</i> 2003 <i>44.4</i> 1988	37.1 37.4	1964 1978	51.9 1995 51.8 1999	<i>45.6</i> 1964 <i>46.5</i> 1978
(Sept 22-	59.4 1991	54.0 1984 54.0 1948	<i>44.4</i> 1988 <i>44.3</i> 1947	37.4	1978	<i>51.8</i> 1999 <i>51.8</i> 1987	46.6 1955
		<i>54.1</i> 1948	<i>44.3</i> 1947 <i>44.1</i> 2004	38.5	1901	51.7 2003	<i>46.1</i> 1961
Dec(21)	59 <i>4</i> 1965		77.1 2004	50.5	1/12		70.1 1901
<i>Dec 21</i>)	59.4 1965 average 56 9	<i>J</i> 4.1 1904				average 49 3	
<i>Dec</i> 21)	average 56.9		average 41.7			average 49.3	
Dec 21)	average 56.9 Portland Int'l Air	rport Data	average 41.7	44 2	1964		55 7 1949
	average 56.9 Portland Int'l Air 75.3 1952	rport Data 65.4 1956	average 41.7 52.7 2003	44.2	1964 1949	62.4 2003	55.7 1949
Early	average 56.9 Portland Int'l Air 75.3 1952 75.1 1987	65.4 1956 65.5 1946	average 41.7 52.7 2003 52.3 1979	45.3	1949	62.4 2003 62.1 1979	55.8 1964
Early Autumn	average 56.9 Portland Int'l Air 75.3 1952 75.1 1987 74.8 1974	rport Data 65.4 1956 65.5 1946 65.6 1941	average 41.7 52.7 2003 <i>52.3</i> 1979 <i>51.4</i> 2004	45.3 45.6	1949 1972	62.4 2003 62.1 1979 61.8 1987	55.8 1964 56.2 1956
Early	average 56.9 Portland Int'l Air 75.3 1952 75.1 1987	65.4 1956 65.5 1946	average 41.7 52.7 2003 52.3 1979	45.3	1949	62.4 2003 62.1 1979	55.8 1964

Portland Airport, Oregon NORMALS, MEANS, AND EXTREMES

LATITUDE: 45 Deg. 36 Min. N LONGITUDE: 122 Deg. 36 Min. W ELEVATION: FT. GRND 21 BARO 27 TIME ZONE: PACIFIC WBAN: 24229

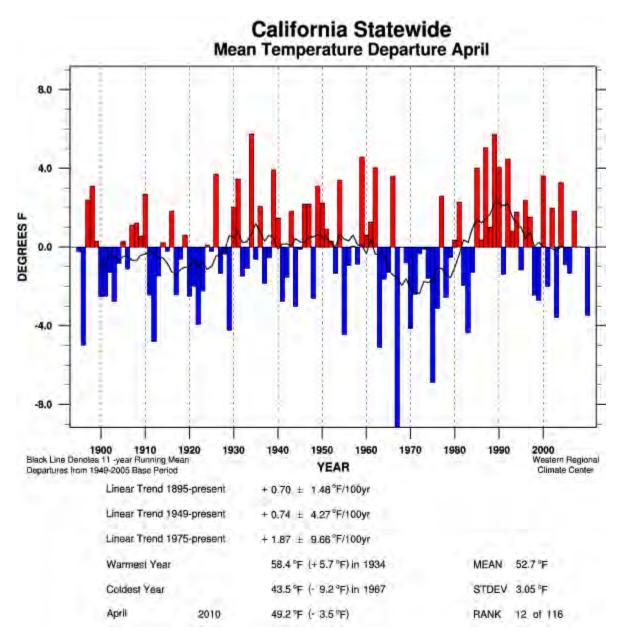
	(a)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
TEMPERATURE (Deg. F)														
Normals														
-Daily Maximum		45.4	51.0	56.0	60.6	67.1	74.0	79.9	80.3	74.6	64.0	52.6	45.6	62.6
-Daily Minimum		33.7	36.1	38.6	41.3	47.0	52.9	56.5	56.9	52.0	44.9	39.5	34.8	44.5
-Monthly		39.6	43.6	47.3	51.0	57.1	63.5	68.2	68.6	63.3	54.5	46.1	40.2	53.6
Extremes														
-Record Highest	55	63	71	80	87	100	100	107	107	105	92	73	65	107
-Year		1986	1988	1947	1957	1983	1992	1965	1981	1988	1987	1975	1993	AUG 1981
-Record Lowest	55	-2	-3	19	29	29	39	43	44	34	26	13	6	-3
-Year		1950	1950	1989	1955	1954	1966	1955	1980	1965	1971	1985	1964	FEB 1950
NORMAL DEGREE DAYS														
Heating (base 65 Deg. F)		787	599	549	420	249	91	28	35	102	326	567	769	4522
Cooling (base 65 Deg. F)		0	0	0	0	0	46	127	147	51	0	0	0	371
% OF POSSIBLE SUNSHINE	46	29	38	48	52	57	56	69	66	62	44	28	23	48
MEAN SKY COVER(tenths)														
Sunrise - Sunset	47	8.4	8.2	8.0	7.8	7.2	6.7	4.8	5.1	5.5	7.1	8.2	8.7	7.1
MEAN NUMBER OF DAYS:														
Sunrise to Sunset														
-Clear	47	2.9	2.9	3.3	3.5	5.0	6.2	12.6	11.4	10.3	5.4	2.8	2.1	68.4
-Partly Cloudy	47	3.6	3.8	4.9	5.8	7.2	7.7	8.5	9.6	8.1	7.6	4.3	3.3	74.5
-Cloudy	47	24.4	21.5	22.8	20.7	18.9	16.1	9.9	10.1	11.6	18.0	22.9	25.5	222.4
Precipitation														
.01 inches or more	55	18.0	15.6	16.9	14.4	11.8	9.2	3.9	4.9	7.5	12.3	18.0	18.7	150.9
Snow, Ice Pellets, Hail														
1.0 inches or more	55	1.0	0.3	0.1	0.0	0.*	0.0	0.0	0.0	0.0	0.0	0.1	0.5	2.1

Thunderstorms	55	0.*	0.1	0.5	0.9	1.5	0.9	0.8	1.0	0.7	0.4	0.3	0.1	7.1
Heavy Fog Visibility		0.	011	0.0	0.12	110	0.12	010	110	0.17		0.0	0.11	
1/4 mile or less	53	4.3	3.7	2.4	1.1	0.2	0.1	0.1	0.2	2.6	7.1	6.0	4.8	32.6
Temperature Deg. F														
-Maximum														
90 Deg. F and above	55	0.0	0.0	0.0	0.0	0.3	1.2	3.6	3.7	1.8	0.1	0.0	0.0	10.8
32 Deg. F and below	55	2.1	0.3	0.*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.8	3.5
-Minimum														
32 Deg. F and below	55	13.0	8.1	4.6	0.9	0.1	0.0	0.0	0.0	0.0	0.6	5.1	9.6	42.1
0 Deg. F and below	55	0.*	0.*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	*
AV. STATION PRES. (mb)	23	1018.1	1016.6	1015.2	1016.7	1016.2	1016.1	1016.2	1015.2	1015.5	1017.2	1017.2	1018.4	1016.5
RELATIVE HUMIDITY (%)														
Hour 04	55	85	86	86	86	85	84	82	94	87	90	88	87	86
Hour 10 (Local Time)	55	82	80	73	69	66	65	62	64	67	78	82	83	73
Hour 16	55	75	67	60	55	53	49	45	45	48	62	74	78	59
Hour 22	55	83	81	78	75	73	71	68	70	75	94	84	85	77
PRECIPITATION (in.)														
Water Equivalent														
-Normal		5.35	3.85	3.56	2.39	2.06	1.48	0.63	1.09	1.75	2.7	5.34	6.13	36.30
-Maximum Monthly	55	12.83	9.46	7.52	5.26	4.57	4.06	2.68	4.53	4.30	8.41	11.57	11.12	12.83
-Year		1953	1949	1957	1993	1945	1984	1.83	1968	1986	1994	1942	1968	JAN 1953
-Minimum Monthly	55	0.06	0.72	1.10	0.53	0.10	0.03	0.00	Т	Т	0.19	0.77	1.38	0.00
-Year		1985	1993	1965	1956	1992	1951	1967	1970	1993	1988	1976	1976	JUL 1967
-Maximum in 24 hrs	55	2.61	2.46	1.83	1.47	1.47	1.82	1.09	1.54	2.38	4.44	2.82	2.59	4.44
-Year		1974	1994	1943	1962	1968	1958	1978	1977	1982	1994	1995	1977	OCT 1994
Snow, Ice Pellets, Hail														
-Maximum Monthly	55	41.4	13.2	12.9	Т	0.6	Т	0.0	Т	Т	0.2	8.2	15.7	41.4
-Year		1950	194	1951	1995	1953	1995		1989	1949	19.0	1955	1968	JAN 1950
-Maximum in 24 hrs	55	10.6	6.4	7.7	Т	0.5	Т	0.0	Т	Т	0.2	7.4	8.0	10.6
-Year		1950	1993	1951	1995	1953	1995		1989	1949	1950	1977	1964	JAN 1950
WIND														
Mean Speed (mph)	47	10.0	9.2	8.3	7.4	7.1	7.2	7.6	7.1	6.5	6.5	8.6	9.6	7.9

Prevailing Direction														
through 1964		ESE	ESE	ESE	NW	NW	NW	NW	NW	NW	ESE	ESE	ESE	ESE
Fastest Mile														
-Direction(!!)	41	S	SW	S	S	SW	SW	SW	SW	S	S	SW	S	S
-Speed(mph)	41	54	61	57	60	42	40	33	29	61	88	56	57	88
-Year		1951	1958	1963	1957	1960	1958	1983	1961	1963	1962	1961	1951	OCT 1962
Peak Gust														
-Direction(!!)	12	SW	SE	S	SW	W	SW	NW	SW	Е	S	SW	17	17
-Speed(mph)	12	63	61	59	45	46	40	32	31	44	52	52	71	71
-Date		1990	1989	1995	1992	1993	1994	1992	1995	1995	1994	1984	1995	DEC 1995

(a) - Length of Record in Years, although individual months may be missing.

0.* or * - The value is between 0.0 and 0.05.


Normals - Based on the 1961 - 1990 record period.

Extremes - Dates are the most recent occurrence.

Wind Dir.- Numerals show tens of degrees clockwise from true north. "00" indicates calm.

Resultant Directions are given to whole degrees.

Appendix C5

REDDING, CALIFORNIA NORMALS, MEANS, AND EXTREMES

LATITUDE: 40 Deg. 30 Min. N LONGITUDE: 122 Deg. 18 Min. W ELEVATION: FT. GRND 502 BARO 536 TIME ZONE: PACIFIC WBAN: 24257

	(a)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
TEMPERATURE (Deg. F)														
Normals														
-Daily Maximum		55.3	61.3	62.5	69.9	80.5	90.4	98.3	95.7	89.3	77.6	62.1	54.7	74.8
-Daily Minimum		35.7	40.0	41.7	46.0	52.3	61.8	64.7	63.1	58.8	49.2	41.4	35.2	49.2
-Monthly		45.5	50.7	52.2	58.0	66.4	76.1	81.5	79.5	74.1	63.5	51.8	45.0	62.0
Extremes														
-Record Highest	9	77	83	85	94	104	111	118	115	116	105	88	74	118
-Year		1994	1992	1988	1989	1987	1987	1988	1990	1988	1991	1995	1988	JUL 1988
-Record Lowest	9	19	21	28	33	36	42	54	51	40	33	23	17	17
-Year		1991	1989	1990	1995	1988	1990	1989	1995	1986	1989	1993	1990	DEC 1990
NORMAL DEGREE DAYS														
Heating (base 65 Deg. F)		605	400	397	252	63	0	0	0	0	122	396	62	2855
Cooling (base 65 Deg. F)		0	0	0	42	107	333	512	450	278	75	0	0	1797
% OF POSSIBLE SUNSHINE	9	73	83	84	90	91	94	97	97	94	92	84	73	88
MEAN SKY COVER(tenths)														
Sunrise - Sunset	9	6.7	6.2	6.4	6.1	5.0	3.5	1.5	1.8	2.2	3.6	5.4	6.3	4.6
MEAN NUMBER OF DAYS:														
Sunrise to Sunset														
-Clear	9	8.2	8.2	7.9	8.1	11.4	16.9	25.2	24.7	22.4	17.7	11.0	9.8	171.6
-Partly Cloudy	9	5.0	6.2	6.6	8.4	9.2	8.4	4.3	4.8	4.2	6.8	7.9	5.2	77.1
-Cloudy	9	17.8	13.8	16.6	13.4	10.3	4.7	1.3	1.6	3.4	6.5	11.1	16.0	116.4
Precipitation														
.01 inches or more	9	13.1	8.7	12.3	7.9	7.2	4.0	0.6	0.9	2.1	4.1	6.8	10.2	77.9
Snow, Ice Pellets, Hail														
1.0 inches or more	9	0.2	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.9

Thunderstorms	9	0.6	0.8	2.1	1.7	2.1	1.7	0.9	1.2	0.8	0.9	0.2	0.4	13.3
Heavy Fog Visibility														
1/4 mile or less	9	5.1	1.4	0.8	0.1	0.0	0.0	0.0	0.0	0.0	0.4	1.6	5.6	15.0
Temperature Deg. F														
-Maximum														
90 Deg. F and above	9	0.0	0.0	0.0	1.1	6.2	16.2	27.6	25.4	18.6	6.7	0.0	0.0	101.9
32 Deg. F and below	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
-Minimum														
32 Deg. F and below	9	11.8	6.3	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	13.9	37.0
0 Deg. F and below	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AV. STATION PRES. (mb)	9	1002.3	1000.7	998.7	998.0	995.6	994.5	994.1	994.0	995.1	997.7	1002.2	1002.5	997.9
RELATIVE HUMIDITY (%)														
Hour 04	9	84	81	80	77	73	64	58	59	61	68	79	83	72
Hour 10 (Local Time)	9	76	66	62	51	44	37	32	32	34	42	61	75	51
Hour 16	9	58	46	48	38	33	25	19	18	22	30	45	58	37
Hour 22	9	79	72	71	64	58	48	40	40	45	56	73	78	60
PRECIPITATION (in.)														
Water Equivalent														
-Normal		6.06	4.45	4.38	2.08	1.27	0.56	0.17	0.46	0.91	2.24	5.21	5.51	33.30
-Maximum Monthly	9	22.93	10.15	14.7	4.26	6.72	1.93	0.49	1.06	4.83	6.26	10.11	10.81	22.93
-Year		1995	1992	1995	1995	1993	1995	1990	1990	1989	1992	1988	1995	JAN 1995
-Minimum Monthly	9	0.89	0.14	0.52	0.14	0.01	T	0.00	0.00	0.00	Т	0.26	0.00	0.00
-Year		1991	1988	1988	1987	1987	1987	1990	1987	1988	1995	1995	1989	JUL 1990
-Maximum in 24 hrs	9	3.96	2.14	3.18	2.33	3.79	1.24	0.49	0.83	3.15	4.09	3.23	2.99	4.09
-Year		1990	1992	1995	1993	1993	1988	1990	1993	1989	1992	1988	1995	OCT 1992
Snow, Ice Pellets, Hail														
-Maximum Monthly	9	3.2	1.4	1.8	Т	1.5	T	0.0	Т	0.0	0.0	Т	17.0	17.0
-Year		1989	1990	1987	1995	1990	1992		1993			1988	1988	DEC 1988
-Maximum in 24 hrs	9	2.0	1.4	1.8	Т	1.5	T	0.0	Т	0.0	0.0	Т	10.0	10.0
-Year		1989	1990	1987	1995	1990	1992		1993			1988	1988	DEC 1988
WIND														
Mean Speed (mph)	9	6.7	6.7	8.1	7.4	7.7	8.1	7.4	6.7	6.3	6.5	6.1	6.6	7.0

Prevailing Direction														
through 1964														
Fastest Mile														
-Direction(!!)	6	18	17	17	17	17	02	36	23	35	19	18	17	17
-Speed(mph)		56	46	53	36	29	38	23	23	29	37	35	60	60
-Year		1995	1993	1995	1993	1990	1992	1995	1990	1993	1992	1994	1995	DEC 1995
Peak Gust														
-Direction(!!)	9	S	S	S	S	S	Ν	Ν	S		S	S	S	S
-Speed(mph)	9	70	64	74	47	54	60	36	46	44	66	58	85	85
-Date		1995	1993	1995	1995	1988	1992	1995	1987	1986	1989	1988	1995	DEC 1995

(a) - Length of Record in Years, although individual months may be missing.

0.* or * - The value is between 0.0 and 0.05.

Normals - Based on the 1961 - 1990 record period.

Extremes - Dates are the most recent occurrence.

Wind Dir.- Numerals show tens of degrees clockwise from true north. "00" indicates calm.

Resultant Directions are given to whole degrees.