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Discretization of the Hellinger-Reissner Variational Form of Linear

Elasticity Equations

Kevin Sweet
sweetkev@pdx.edu

August 23, 2019

Abstract

This paper addresses the derivation of the Hellinger-Reissner Variational Form from the strong form
of a system of linear elasticity equations that are used in relation to geological phenomena. The problem
is discretized using finite element discretization as described in [1]. This allowed the creation of a program
that was used to run tests on various domains. The resultant displacement vectors for tested domains
are shown at the end of the paper.

1 Background

1.1 Motivation

Linear elasticity is used to describe small, reversible deformations to a structure. This particular set of linear
elasticity equations has an application to geological phenomena, such as landslides, but I was unable to meet
with the geologist associated with the project to learn the exact nature of the equations’ application.

1.2 Previous Work

The stablized mixed finite element method used to discretize the linear elasticity equations are introduced
and described in [1]. The work that is done to get from the strong form of the equations to the discretized
form of the Hellinger-Reissner variational form is also described in [2], which is a paper that was completed
with this project last year. This paper will additionally include information about computing the linear
system that is developed.

2 Methodology

2.1 Deriving the Hellinger-Reissner Variational Form

The work in the two following sections is described in [1] and was also done during the previous summer as
a part of this project, detailed in [2].

2.1.1 Linear Elasticity Equations

Let Ω ⊂ R3 be a domain with the boundary ∂Ω. The strong form of the problem is to find a displacement
vector ~u : Ω→ R3 and symmetric stress tensor σ : Ω→ R3×3

sym such that:{
Aσ = ε(~u) in Ω

−(∇ · σ) = f in Ω
(1)
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where R3×3
sym are the symmetric 3× 3 matrices, the function f : Ω→ R3 is given, and the symmetric gradient

ε(~u) : Ω→ R3×3
sym and compliance tensor Aσ : Ω→ R3×3

sym are defined by

ε(~u) =
1

2

(
∇~u+ (∇~u)T

)
(2)

Aσ =
1

2µ

(
σ − λ

3λ+ 2µ
tr(σ)I

)
(3)

Next, the equations from (1) are multiplied by test functions ~v : Ω→ R3 and τ : Ω→ R3×3
sym and integrated

over the domain, resulting in the following:{∫
Ω
Aσ : τ dx =

∫
Ω
ε(~u) : τ dx

−
∫

Ω
(∇ · σ) · ~v dx =

∫
Ω
f · ~v dx

(4)

The double dot product of two matrices A,B ∈ R3×3 is defined by

A : B =
3∑

i,j=1

aijbji (5)

whcih is equivalent to
∑3
i=1 aibi with symmetric matrices, such as those in this problem.

2.1.2 Integration by Parts

Using integration by parts, the following equation is derived:∫
∂Ω

~v · (τ~n) ds =

∫
Ω

∇~v : τ dx+

∫
Ω

~v · (∇ · τ) dx (6)

where ~v : Ω → R3 and τ : Ω → R3×3
sym. When the right hand side of the first equation in (4) is applied, it

results in the equation, ∫
∂Ω

~u · (τ~n) ds =

∫
Ω

ε(~u) : τ dx+

∫
Ω

~u · (∇ · τ) dx . (7)

2.1.3 The Hellinger-Reissner Variational Form

Applying the equation above to (4) and rearranging terms gives, with the assumption ~u = 0 on ∂Ω,∫
Ω

Aσ : τ dx+

∫
Ω

(∇ · τ) · ~u dx = 0

−
∫

Ω

(∇ · σ) · ~v dx =

∫
Ω

f · ~v dx .
(8)

This is equivalent to,

a(σ, τ) + b(τ, ~u) = 0

−b(σ,~v) =

∫
Ω

f · ~v dx

where

a(σ, τ) =

∫
Ω

Aσ : τ dx , b(τ,~v) =

∫
Ω

(∇ · τ) · ~v dx .
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The problem is now to find ~u ∈ L2(Ω;R3) and σ ∈ H(div,Ω;R3×3
sym) such that{

a(σ, τ) + b(τ, ~u) = 0

−b(σ,~v) =
∫

Ω
f · ~v dx

(9)

for all ~v ∈ L2(Ω;R3) and τ ∈ H(div,Ω;R3×3
sym), where

L2(Ω;R3) =

{
~v : Ω→ R3 :

∫
Ω

~v · ~v dx <∞
}
,

H(div,Ω;R3×3
sym) =

{
τ : Ω→ R3×3

sym :

∫
Ω

τ : τ dx <∞ and

∫
Ω

(∇ · τ) · (∇ · τ) dx <∞
}
.

2.2 Discretization of the Hellinger-Reissner Variational Form

2.2.1 Stablized Mixed Finite Element Method

The method described in [1] will now be applied. Let Ω ⊂ R3 be a polyhedron partitioned into a tetrahedral
mesh T = {K}, with F = {F} as the set of all triangular faces in the mesh. The goal is to find (σh, ~uh) ∈
Σh × Vh such that {

a(σh, τh) + b(τh, ~uh) = 0

−b(σh, ~vh) + c(~uh, ~vh) =
∫

Ω
f · ~vh dx

(10)

for all τh ∈ Σh and ~vh ∈ Vh. The finite dimensional spaces

Σh ⊂ H(div,Ω;R3×3
sym) , Vh ⊂ L2(Ω;R3)

are defined in the next subsection, and the jump stablization term is defined as

c(~uh, ~vh) =
∑
F∈F

hF

∫
F

[[~uh]] : [[~vh]] (11)

where hF is the longest edge on F . For a face on the boundary of Ω,

[[~w]] :=
1

2

(
~w~nT + ~n~wT

)
where ~n is the outward normal vector to the face. For an edge that is on the interior of the mesh,

[[~w]] :=
1

2

(
~w+(~n+)T + ~n+(~w+)T + ~w−(~n−)T + ~n−(~w−)T

)
where K+ and K− are adjacent tetrahedra, and ~n+ and ~n− are their respective outward normal vectors on
the face F .

2.2.2 Defining Σh and Vh

The finite dimensional spaces for ~uh and σh are defined by,

Σh = {τ ∈ C(Ω;R3×3
sym) : τ

∣∣
K
∈ P1(K;R3×3

sym) for all K ∈ T } (12)

Vh = {~v : Ω→ R3 : ~v
∣∣
K
∈ R3 for all K ∈ T } . (13)

The basis used for Vh is

{φK,j : K ∈ T and 1 ≤ j ≤ 3} where, φK,j(x) =

{
ej , x ∈ K
0, x /∈ K

,
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which has the dimension 3NT , where NT is the number of tetrahedra in the mesh. This basis will be
numbered φi : 1 ≤ i ≤ 3NT , where i = 3(K − 1) + j. The two spaces from the definition of Σh are given by

C(Ω;R3×3
sym) = {α : Ω→ R3×3

sym : αij ∈ C(Ω;R)} ,
P1(K;R3×3

sym) = {α : K → R3×3
sym : αij ∈ P1(K;R)} .

A basis of the space R3×3
sym is given by

S1 =

1 0 0
0 0 0
0 0 0

 , S2 =

0 0 0
0 1 0
0 0 0

 , S3 =

0 0 0
0 0 0
0 0 1

 ,

S4 =

0 1 0
1 0 0
0 0 0

 , S5 =

0 0 1
0 0 0
1 0 0

 , S6 =

0 0 0
0 0 1
0 1 0

 .

Each α ∈ Σh is given by a linear function `i that is associated with a single vertex zj , that is defined by its
values at adjacent vertices. This is given by

`i(zj) =

{
1, i = j

0, i 6= j
, 1 ≤ i, j ≤ 4 .

A formula that gives `i is

`i(x) = 1− (x− zi) · ~ni
hi

where hi is the perpendicular distance from zi to its opposite face and ~ni is the face’s outward normal. From
this, a basis for P1(K;R3×3

sym) is

`iSj : 1 ≤ i ≤ 4, 1 ≤ j ≤ 6

with a dimension of 24. σh(z) is given for each vertex z in the mesh, so dim(Σh) = 6NV where NV is the
number of vertices in the mesh. This basis will be denoted ψk : 1 ≤ k ≤ 6NT where k = 6(z − 1) + j.

2.2.3 The Linear System

Now, a linear system can be developed to solve for the stress tensor σh and the dispacement vector ~u. The
equations from (10) hold for all τh ∈ Σh and ~vh ∈ Vh if and only if,{

a(σh, ψi) + b(ψi, ~uh) = 0, 1 ≤ i ≤ 6NV

−b(σh, φk) + c(~uh, φk) =
∫

Ω
f · φk dx, 1 ≤ k ≤ 3NT

. (14)

Because

~uh =

3NT∑
j=1

yjφj σh =

6NV∑
j=1

xjψj (15)

for some coefficient vectors x ∈ R3NT ,y ∈ R6NV , (14) is equivalent to: find

(
x
y

)
∈ R6NV+3NT such that,

(
A BT

−B C

)(
x
y

)
=

(
0
f

)
(16)
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where A ∈ R6NV×6NV , B ∈ R3NT×6NV , C ∈ R3NT×3NT are given by

aij = a(ψj , ψi), 1 ≤ i, j ≤ 6NV

bij = b(ψj , φi), 1 ≤ i ≤ 3NT 1 ≤ j ≤ 6NV

cij = c(φj , φi), 1 ≤ i, j ≤ 3NT

(17)

and f ∈ R3NT is given by fk =
∫

Ω
f · φk dx, 1 ≤ k ≤ 3NT .

2.3 Computing the Linear System

Here begins work presented in neither [1] nor [2]. The global matrix G, defined as

(
A BT

−B C

)
, is a sparse

matrix. To compute the solution to the linear system, G is put into a compressed sparse row (CSR) format.
The matrix is split into three arrays, the values array, which contains every non-zero entry in row-major
order, the columns array, which contains the column number for each non-zero entry, and the row index,
which gives the culmative number of non-zero entries row by row. Their dimensions are as follows:

dim(values) = nnz

dim(columns) = nnz

dim(row index) = 6NT + 3NT + 1

where nnz is the number of non-zero entries in G. To allocate these arrays, matrices A,B, and C were
analyzed separately. The sum of the number of non-zeroes for each matrix, which is dependent on NV and
NT , gives nnz (i.e. nnz = nnzA+2nnzB +nnzC). To fill the global values array, local AK and BK matrices
were computed over each tetrahedron K, whose values were then added to the global values matrix.

2.3.1 Matrix A

Each matrix AK has four ` functions, one for each vertex, associated with it. Every vertex combines with
each of six components of the R3×3

sym basis, S. Hence, AK is a 24×24 (or 4(6)×4(6)) matrix. This covers every
non-zero value of the global matrix, because a function ψi can only have non-zero results when interacting
with a function ψj associated with the same vertex or an adjacent vertex, which looping over each tetrahedron
covers. For a single entry in AK ,

a6(i−1)+m,6(j−1)+n = a(`iSm, `jSn) =

∫
K

A(`iSm) : (`jSn) dx 1 ≤ i, j ≤ 4 1 ≤ m,n ≤ 6 .

The rightmost expression simplifies to

1

2µ

(
Sm : Sn −

λ

3λ+ 2µ
tr(Sm) I : Sn

)∫
K

`i`j dx

by using the equation from (3). The two parts of the of the expression result in the following values:

1

2µ

(
Sm : Sn −

λ

3λ+ 2µ
tr(Sm) I : Sn

)
=


λ+µ

µ(3λ+2µ) , 1 ≤ m,n ≤ 3 and m = n

− λ
2µ(3λ+2µ) , 1 ≤ m,n ≤ 3 and m 6= n

1
µ , 4 ≤ m,n ≤ 6 and m = n

0, else∫
K

`i`j =

{
|K|
10 , i = j
|K|
20 , i 6= j
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where |K| is the volume of the tetrahedron. Using this, a Kronecker Product can be created between the
two parts of the expression to give the local matrix AK , as seen below:

AK =
|K|
20


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⊗


λ+µ
µ(3λ+2µ) − λ

2µ(3λ+2µ) − λ
2µ(3λ+2µ) 0 0 0

− λ
2µ(3λ+2µ)

λ+µ
µ(3λ+2µ) − λ

2µ(3λ+2µ) 0 0 0

− λ
2µ(3λ+2µ) − λ

2µ(3λ+2µ)
λ+µ

µ(3λ+2µ) 0 0 0

0 0 0 1
µ 0 0

0 0 0 0 1
µ 0

0 0 0 0 0 1
µ


This gives the values to be input into matrix A from each tetrahedron. The structure of the matrix is also
revealed from this endeavor, allowing the total number of non-zero entries to be calculated. For the first
three basis functions of R3×3

sym, S1−3, associated with a vertex z on the mesh, the number of non-zero entries
in A is equal to 3v and for S4−6 the number of non-zero entries is v, where v is the number of interacting
vertices with z, including itself. Thus,

nnzA =
NV∑
z=1

12vz .

2.3.2 Matrix B

For each matrix BK , each vertex function combines with each R3×3
sym basis, and then interacts with the

three φ functions over tetrahedra. Therefore, the matrix BK is a 3 × 24 matrix. Again, looping over each
tetrahedron returns all the values for the matrix B. For a single entry in BK ,

bi,6(m−1)+j = b(`jSm, φi) =

∫
Ω

(∇ · `jSm) · φi dx 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, 1 ≤ m ≤ 6 .

When simplified, the rightmost expression equals

|K|(Sm∇`j) · φi .

This results in the following entries in BK for a single `j :

|K|


∂`j
∂x 0 0

∂`j
∂y

∂`j
∂z 0

0
∂`j
∂y 0

∂`j
∂x 0

∂`j
∂z

0 0
∂`j
∂z 0

∂`j
∂x

∂`j
∂y

 .

In addition to giving every value of the matrix B, the structure is also given. For each φ function, there are
three non-zero entries with each vertex on the tetrahedron. Hence,

nnzB =

NT∑
K=1

3(3)(4) =

NT∑
K=1

36 .

2.3.3 Matrix C

The matrix C is computed with values determined the the faces in the tetrahedral mesh. To develop the
matrix, a loop over faces determined the values for each of the three φ functions over a face for a single
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tetrahedron and, if applicable, its adjacent tetrahedron. For φ functions over K and its adjacent tetrahedron
K̂,

[[φK,i]] : [[φK,j ]] =

{
1
2 (δij + (eTi n+)(eTj n+)), i = j
1
2 (eTi n+)(eTj n+), i 6= j

[[φK,i]] : [[φK̂,j ]] =

{
− 1

2 (δij + (eTi n+)(eTj n+)), i = j

− 1
2 (eTi n+)(eTj n+), i 6= j

1 ≤ K, K̂ ≤ NT 1 ≤ i, j ≤ 3 .

Because each φ function interacts with every φ function on its own tetrahedron or adjacent tetrahedron,
there are only non-zero entries for interacting tetrahedra. Thus,

nnzC =

NT∑
K=1

9tK

where tK is the number tetrahedra that interact with tetrahedron K.

This, with nnzA and nnzB , gives the total number of non-zero entries in the global matrix, which gives
the dimensions of the values and columns arrays. The work done to give the structure of the three pieces
also gives the exact location of each non-zero value in the matrix, which allows the arrays to be filled
appropriately.

3 Results

The code that was developed did not match the reducements in error as described in [1], however it did show
similar behavior. More work would need to be done to identify why the code does not produce accurate
results, but the current results over the Fichera Corner will be shown below. First, the two tables showing
the error derived from calculations over the unit cube Ω = (0, 1)3 with λ = .3 and µ = .35, and whose exact
~u is

~u(x) = ~u(x1, x2, x3) =

24

25

26

x1(1− x1)x2(1− x2)x3(1− x3)

from which σ and f can be calculated.
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Table 1: Convergence of approximations of the stress tensor and displacement vector from [1].

h ‖σ − σh‖H(div),A order ‖~uh‖C order ‖~u− ~uh‖0 order
2−1 4.1723E+00 — 4.0747E-01 — 2.4720E-01 —
2−2 2.3595E+00 0.82 3.5554E-01 0.20 1.7403E-01 0.51
2−3 1.2849E+00 0.88 2.5527E-01 0.48 1.1168E-01 0.64
2−4 6.8023E-01 0.92 1.5243E-01 0.74 6.3889E-02 0.81
2−5 3.5167E-01 0.95 8.3310E-02 0.87 3.4309E-02 0.90

Table 2: Convergence of approximations of the stress tensor and displacement vector from our code.

h (arbritary units) ‖σ − σh‖H(div),A order ‖~uh‖C order ‖~u− ~uh‖0 order
1 5.93E+00 — 6.36E-01 — 2.99E-01 —
.5 4.71E+00 0.33 5.58E-01 0.19 2.44E-01 0.29
.25 3.42E+00 0.46 4.64E-01 0.27 1.56E-01 0.64
.125 2.66E+00 0.36 3.00E-01 0.62 8.74E-02 0.83

The code that we are currently using clearly does not match the convergence shown in [1]

8



Figure 1: The Fichera Corner cut to view different magnitudes of ~uh, as calculated by our code.
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