
Anthós Anthós

Volume 3 Issue 1 Article 3

6-2011

Embedding Parallel Computation in a Stochastic Embedding Parallel Computation in a Stochastic

Mesh Network: A Morphogenetic Approach Mesh Network: A Morphogenetic Approach

Max Orhai
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/anthos

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Orhai, Max (2011) "Embedding Parallel Computation in a Stochastic Mesh Network: A Morphogenetic
Approach," Anthós: Vol. 3: Iss. 1, Article 3.
https://doi.org/10.15760/anthos.2011.22

This open access Article is distributed under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License (CC BY-NC-SA 4.0). All documents in PDXScholar should meet accessibility
standards. If we can make this document more accessible to you, contact our team.

https://pdxscholar.library.pdx.edu/anthos
https://pdxscholar.library.pdx.edu/anthos/vol3
https://pdxscholar.library.pdx.edu/anthos/vol3/iss1
https://pdxscholar.library.pdx.edu/anthos/vol3/iss1/3
https://pdxscholar.library.pdx.edu/anthos?utm_source=pdxscholar.library.pdx.edu%2Fanthos%2Fvol3%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fanthos%2Fvol3%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/anthos/vol3/iss1/3
https://doi.org/10.15760/anthos.2011.22
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://pdxscholar.library.pdx.edu/accessibility.html
https://pdxscholar.library.pdx.edu/accessibility.html
mailto:pdxscholar@pdx.edu

Maseeh College of
Engineering and
Computer Science
Undergraduate Research
and Mentoring Program

embedding parallel computation
 in a stochastic mesh network:

a morphogenetic approach

Max OrHai
Spring 2011

simulation source code available:
http://cs.pdx.edu/orhai/mesh-sort

Many basic techniques in computer science have been founded on the assumption
that physical computing resources are scarce but orderly, and that the cost of
effective direct communication between physically distant parts of a computer
system is affordable. In ubiquitous computing systems such as sensor networks,
or in the design of nano-scale systems, these familiar assumptions may not hold.

What if we suppose instead that computing capacity is plentiful, but that only
local communication is possible, and the exact structure of the communication
network is not known in advance? This is the domain of spatial programming.

How can we program a locally connected network of randomly placed computing
nodes to do a practical computing task, while taking advantage of the inherent
parallel processing capacity of the network?

We believe that the organization and dynamics of biological processes may
offer possibilities for the design of both hardware and software under these new
conditions. This algorithm, a variation on insertion sort that is also a simplified
abstract model of morphogenetic cell sorting in the development of multicellular
organisms, explores how we might compute in this novel environment.

Each node has a spatial neighborhood which determines which other nodes it may communicate with. The size of these neighborhoods determines the
amount of connectivity in the network. Nodes are tiny computers all running the same simple program, with just enough memory to hold two numbers.

The chart above shows the performance of the parallel insertion sort. In a sequential computer,
this algorithm takes time proportional to the square of the input size. By distributing the work
spatially, we are able to complete the task in linear time!

References and related work:

Jacob Beal and Gerald Sussman. Biologically-Inspired Robust Spatial Programming. MIT
Computer Science and Artificial Intelligence Laboratory Memo 2005-001.

Neil Gershenfeld, David Dalrymple, Kailiang Chen, Ara Knaian, Forrest Green, Erik D. Demaine,
Scott Greenwald, and Peter Schmidt-Nielsen. Reconfigurable Asynchronous Logic Automata.
Proceedings of the ACM Conference on Principles of Programming Languages, 2010.

Robert Rosen. Morphogenesis in Networks. Chapter in Essays on Life Itself, Columbia
University Press, 2000.

The sequence of images below shows the algorithm in
action. As the integers from 1 to 100 in random order are
injected into the system at an arbitrarily chosen node, a
dynamic linear linkage active data structure is grown
which sorts the numbers in parallel as a length-
conserving and dead-end-avoiding path is found.

(Lower numbers are shown in darker green.)

When the sort is completed, data can be pulled
back out of the system through the linkage.

teuscher.:Lab
Emerging Computing Models and Technologies

neighbors

What can go wrong?

In too-sparse or locally over-
crowded networks it is possible for
the linkage to grow into a cul-de-
sac. Then the buffers of the nodes
in the linkage fill up with partially-
sorted numbers, which may later be
released with the addition of new
nodes to the network.

To avoid this problem, the network
size should be larger than the input
data, with sufficient connectivity.

store

operations: before after

take

push

pass

extend

swell
always picks the

inactive mutual
neighbor having the

highest number of
its own inactive

neighbors

pull
only used to
extract data if the active node is at

the end of the linkage, it
deactivates after pulling

buffer previous
nodeʼs buffer

decision tree:
This procedure is run by
an active node only when
its buffer is empty and an
input (a) is received from
the previous node in the
linear linkage. An active
node with a full buffer
informs the neighboring
node to which it points of
the contents of its buffer,
which will constitute the
input for that node.

The linkage of active
nodes which grows
through the network is an
asynchronous reactive
system that depends on a
stream of external input
consisting of either
numbers or pull requests.
Without such an input
stream, the system will
eventually pause in a
metastable state where all
numbers are sorted and
stored in a linkage of
active nodes with empty
buffers, unless the
linkage growth process
gets stuck.

is input a pull
request?

is my store
empty?

is input > my
store?

is input < my
store?

am I pointing
to another

node?

do I share
inactive

neighbors
with the node

I point to?

push

take

pass

extend

swell

pull

yesno

yesno

yesno

yesno

yesno

yesno

inactive
node

Potential future work:

What other kinds of programs can
be realized as parallel dataflow
graphs in physically realistic space?

How can these structures be made
to grow, adapt, and heal themselves
if disrupted?

How might the system be affected
by the unforeseen constraints of an
implementation technology?

nodes

http://cs.pdx.edu/orhai/mesh-sort
http://cs.pdx.edu/orhai/mesh-sort

	Embedding Parallel Computation in a Stochastic Mesh Network: A Morphogenetic Approach
	Let us know how access to this document benefits you.
	Recommended Citation

	Embedding Parallel Computation in a Stochastic Mesh Network: A Morphogenetic Approach

