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Beam propagation in
parabolically tapered graded-index waveguides

Anthony A. Tovar and Lee W. Casperson

To a good approximation, the electromagnetic-propagation characteristics of graded-index waveguides
can be written in terms of polynomial-Gaussian modes. For uniform quadratic-index waveguides the
behavior of these modes is well known. However, there are sometimes practical reasons for using
tapered waveguides, but detailed propagation solutions are known for only a few specific taper
functions. The parabolic taper is perhaps the most important special case, and the solution-generating
techniques that we generalize are used to obtain analytic solutions for this case.

1. Introduction
Since the invention of the laser, there has been
ever-increasing interest in the propagation of light in
inhomogeneous dielectric media. Research interests
in this field have increased even further with the
development of relatively inexpensive low-loss glass
fibers. By now it is well established that thin dielec-
tric fiber waveguides provide an efficient and economi-
cal means for transmission of optical signals over
large distances. A challenging problem in the devel-
opment of fiber-optic communication systems in-
volves the optimization of coupling techniques for the
input and output of optical signals from other fibers
or from thin-film waveguides. Among the many
coupling techniques that have been developed, there
are several that are based on waveguide tapering, and
slight tapering and other distortions can also some-
times occur in the fabrication process. Tapered wave-
guides may also find applications as optical power
concentrators, image-size reducers, and astigmatic
image modifiers. Accordingly it is of some impor-
tance to understand in detail the propagation of
electromagnetic modes in optical waveguides that
have z-dependent characteristics.

An analysis by Burns et al. showed that the opti-
mum shape for fiber couplers is a parabola,' and
Campbell demonstrated the fabrication of parabolic
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tapers by the use of Ag-ion exchange in soda-lime
glass. Bures et al. proposed that a parabolic model
should also be appropriate to describe the taper that
results when a fiber is heated locally and stretched.3

A schematic representation of such a stretched fiber
is shown in Fig. 1. Experimental verification of the
near-parabolic shape that resulted from fiber elonga-
tion was obtained by Burns et al.4 and Rodrigues et
al.5 Transmission loss in parabolic tapers has been
studied by Burns et al.,6 and the wavelength depen-
dence of the losses in such tapers has been explored
by Cassidy et al.7 The parabolic taper shape has
been used by Bures et al.,3 Rodrigues et al.,5 Burns
and Abebe,8 and others in studies of coupling between
parallel fibers.

Many of the fiber systems in modern communica-
tion networks are based on waveguides that have a
continuous variation of the index of refraction. An
advantage of such graded-index waveguides is their
large bandwidth. In addition, graded-index wave-
guides that have a hyperbolic secant (or in the
paraxial approximation, a quadratic) variation of the
index of refraction transverse to the fiber axis have
important image-transmitting characteristics9" 0 and
are often known as lenslike media. The primary
focus of this study is on such lenslike media that are
also tapered along the axis of propagation. A new
solution that corresponds to perhaps the most physi-
cally useful taper is discussed. This solution can be
combined with other solutions by the use of the
familiar ABCD methods of Gaussian beam theory to
obtain a description of the behavior of more complex
fiber tapers. Although the emphasis here is on
tapered waveguides for fiber-optic applications, the
results also apply to tapered gain profiles. Such
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(a)

(b)
Fig. 1. Model of a fused fiber taper (a) before and (b) after the
taper is formed.

profiles may be used, for example, for transverse-
mode discrimination in lasers.

The basic wave-equation formalism for the propaga-
tion of Gaussian beams in z-dependent quadratic-
index lenslike media is briefly reviewed in Section 2,
and it is shown that for many purposes the propaga-
tion problem reduces to solution of a single second-
order linear differential equation with nonconstant
coefficients. Techniques for generation of solutions
of this equation are reviewed and generalized in
Section 3. These solution-generating techniques are
applied to the specific and most important case of a
parabolically tapered fiber in Section 4, and new
analytical solutions are obtained.

2. Theory
The basic concepts of Gaussian beam propagation in
quadratic-index media are well known, and it is
sufficient here just to sketch some of the underlying
principles. In particular we restrict our attention to
the on-axis fundamental Gaussian beam mode. For
more details and more general solutions, the reader
may consult Refs. 11 and 12 and the further refer-
ences cited therein.

As in most previous studies, it is assumed that the
electric-field components are governed by the vector
equation

V2E'(x, y, z) + k2(x, y, z)E'(x, y, z)

= -2V [ x z) E'(x,y,z) (1)

where the prime is a reminder that Eq. (1) applies to
the complex amplitude of the temporally harmonic
electric field and the medium is assumed to be
isotropic and nonmagnetic. When the right-hand
side of Eq. (1) can be set approximately equal to 0, one
obtains the standard scalar-wave equations for the
field components. These equations are the basis for
most treatments of light-ray and Gaussian beam
propagation. This scalar approximation is valid for

the dominant transverse-field components, provided
that the propagation constant varies negligibly on a
length scale of a wavelength. This restriction would
be satisfied in the propagation direction for most
practical fiber tapers, but it could sometimes be
suspect in single-mode-fiber treatments that involve
rapid radial variations of the index of refraction.

Because of the separability of the scalar approxi-
mated version of Eq. (1), a simplified y-independent
model of the beam may usually be used without loss
of generality. For the simplest case of a light beam
traveling in the z direction in an x-dependent lenslike
medium, the quadratically varying propagation con-
stant can be written as

k2(x, z) = ko(z)[ko(z) - k2(z)x 2], (2)

where all the coefficients are in general complex.
For misaligned media one would need an additional
term in Eq. (2) that is linear in x, and for elliptical
beams in x- and y-dependent media a parallel develop-
ment of the more general field variations is straight-
forward.1"12 Equation (2) corresponds to a z-depen-
dent medium in which the quadratic gain and index
profiles may be independently specified. For an x-
polarized wave propagating primarily in the z direc-
tion, a useful substitution is

E'(x, z) = iA(x, z)exp[-i fko(z')dz'1. (3)

With this substitution and Eq. (2), Eq. (1) reduces to

a2 a _.dko(z)

- A(x, z) - 2iko(z) - A(x, z) - i d( A(x, z)ax2 az dz Axz

- ko(z)k 2(z)x 2A(x, z) = 0, (4)

where A(x, z) is assumed to vary slowly enough with z
that its second derivative can be neglected.

Equation (4) is a partial differential equation, but it
may always be reduced exactly to a set of ordinary
differential equations. For the simplest case of an
on-axis fundamental Gaussian beam, the appropriate
substitution is13

A(x, z) = Ao exp{-i[Q(z)x2/2 + P(z)]}. (5)

With slightly more general substitutions, higher-
order off-axis polynomial-Gaussian beams can also be
described.1"12 When Eq. (5) is substituted into Eq.
(4) and the terms in equal powers of x are collected,
one obtains the ordinary differential equations

Q2(z) + ko(z) dz + ko(z)k 2(z) = 0, (6)

dP(z) Q(Z)

dz 2ko(z)
(7)

For the more general modes, additional terms and
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additional equations would be obtained as discussed
in Ref. 11. It is important to note, however, that Eq.
(6) would not change in form. Indeed it has been
shown that once the beam-parameter equation (6)
has been solved for a specific taper, all other facets of
an off-axis polynomial-Gaussian beam are obtained
analytically.' 2

The complex beam parameter Q(z) is related to the
phase-front curvature R(z) and the 1/e amplitude
spot size w(z) by means of the formula

Re[ko(z)] 2i
Q(Z) = R(z) w 2(Z) (8)

The complex phase parameter P(z) measures the
relative on-axis complex phase of the propagating
beam. This is the mode-dependent complex phase
shift, excluding the plane-wave phase -ikoz, reflec-
tion losses at dielectric boundaries, unknown con-
stant phase shifts at thin lenses, etc. The real part
of P(z) represents the ordinary phase, and the imagi-
nary part represents mode-dependent amplitude varia-
tions.

Equations (6) and (7) may be solved in sequence,
and the main emphasis here is on exact solutions of
Eq. (6). The solution of Eq. (7) simply involves an
integration. Equation (6) is a Ricatti equation, and
the first step in solving it is to introduce the well-
known variable change' 4

Q(Z) ko(z) dr(z)
Q~)=r(z) dz(9

tapered media it would often be the case that the
on-axis optical properties would be unaffected by the
tapering process, so that ko would in fact be constant.
A simpler notation for Eq. (11) is

d2r(z)
dZ2 + f (z)r(z) = 0, (12)

and this form is used in some of the discussions
below. In the special case that f(z) is periodic, Eq.
(12) is known as a Hill equation.' 7

3. Generating Solutions
Equation (12) cannot be solved analytically for an
arbitrary function f(z). It is the purpose of Section 3
to demonstrate a way of generating certain solvable
equations of this type. The basic idea is to use the
reverse procedure of assuming a solution and seeing
what is obtained for the coefficient f(z). In particu-
lar, Eq. (12) can be rewritten as

1 d2r(z)
A(Z) = - ) dZ2 d (13)

Thus one may attempt to guess a form for r(z) that
leads to a useful form for f(z).

It should also be noted that if one solution to Eq.
(12) is known, the general solution can be found
directly. It can be shown by the use of direct substi-
tution that a second solution to Eq. (12) can be
written as

With this substitution the Ricatti equation is trans-
formed into a linear differential equation with noncon-
stant coefficients:

d- [io(Z) dz l + k2(z)r(z) = 0. (10)

Equation (10) has been obtained here from an exact
reduction of the paraxial wave equation. Typically,
the gain per wavelength of the optical medium is
ignored, and ko(z) is approximated to be real.15
When k2(z) is also real, this same equation is identical
in form to the paraxial ray equation. In that case
r(z) could be interpreted as the z-dependent trans-
verse displacement of a propagating light ray.

Solutions of Eq. (10) are much easier to obtain if ko
is a constant, and in that case one finds that

d2r(z) k2(Z)
~~+ -r(z) =0.

dz2 ko (11)

It is important to note, however, that with an appro-
priate change of variables Eq. (10) can always be
transformed into Eq. (11) without approximation,
and this transformation has been discussed in Ref.
16. Hence there is no loss of generality in using Eq.
(11) in place of Eq. (10). Also, in the fabrication of

r2(Z) = r )Jo rj) dz'. (14)

However, the Wronskian of r(z) and r2(z) is unity.
Therefore they are linearly independent functions,
and the general solution may be written as

z 1
r(z) = z)a +b ~dz' I (15)

where the constants a and b may be used to match
input conditions. As an example one may consider
the special case f(z) = 1 in Eq. (12). Of course, cos(z)
is one of the solutions. From Eq. (14) the other
linearly independent solution is

r2 (z) = cOS(z) co 2(z') dz' = sin(z), (16)

as expected.
There has been recent interest in solutions to the

equation

d2r(z)

dz2 + [f(z) + g(z)]r(z) = 0, (17)
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where the solution to the equation

d2u(z)
dz2 + f(z)u(z) = 0

(18)

is considered to be known. The interest in such
solutions was fueled by a study of the specific Hill
equation,

d2r(z)
dz

2

F y2G cos(yz) 1
[1 + G COS(,yz)]4 1 + G cos(,yz) r(z) =0,

(19)

with y = 2.18 Equation (19) has a variety of applica-
tions, and r(z) can be expressed solely in terms of
elementary functions. A method of constructing the
solution to Eq. (19) was shown by Wu and Shih.' 9

They also introduced a few similar but more compli-
cated solvable Hill equations. Renne pointed out
that similar construction techniques have long been
known.2 0 Takayama noted that Eq. (19) and the Wu
and Shih solutions contain singularities and demon-
strated a method of constructing singularity-free
solutions. 21 Nassar and Machado described a gener-
alized theory for construction of solutions of equa-
tions of the form2 2

d2r(z)
dZ2 + [fl(z) + f2(z) + f3(z) + . ]r(z) = 0. (20)

These authors share the point of view that Eq. (19) is
just one in a class of solvable Hill equations.
Another more general construction technique is de-
scribed below, and this technique is applied to the
problem of the parabolically tapered waveguide.

As mentioned above, the basic idea behind construc-
tion techniques is to assume a solution and see what
coefficient is obtained. With this in mind, we as-
sume a modulated sinusoidal solution of the form

r(z) = u(z])exp i v(z')dz'].

It follows that the differential equation is

d2 r(z) 1 d2 u(z) 1 du(z)
- ~+ 2i - - v(z)

dz2 [u(z) d 2 u(z) dz

- v2(z) + i dv(z) r(z) = 0,

(21)

(22)

which is of the form of Eq. (17). The coefficient in
Eq. (22) has four terms. In the special case that the
second and fourth terms cancel, v(z) can be solved for,
and the result is

v(z) = F/2/t2(Z) (23)

d2r(z)
dz2

1 d2u(z) _ F]
_u(z) dz2 u4(z) r(z)=0.

(24)

This is the fundamental idea behind the Wu and Shih
paper and the ones that followed it. In this case the
other linearly independent solution is found easily.
It is

r(z) = u(z)exp[-i Jv(z')dz , (25)

where v(z) is given by Eq. (23). In general the other
linearly independent solution can be found from Eq.
(14).

As an example of the applicability of Eq. (24) one
may consider u(z) = 1 + G cos(-yz). It is not difficult
to see that Eq. (24) becomes identical to the known
result given in Eq. (19). Because u(z) is known and
v(z) is defined in Eq. (23), r(z) may be obtained as a
linear combination of the solutions given in Eqs. (21)
and (25). As an additional example, if u(z) =
[1 + G cos(,yz)]1/ 2 , then Eq. (24) leads to coefficient 7
of Table 1, which with y = 2 is equivalent to the result
given by Wu and Shih.19

Other classes of solutions can be obtained in a
similar way. Suppose the second and third terms in
Eq. (22) add to a constant multiplied by v(z). This
happens when v(z) is given by

2i du(z)
v(z) ~ -dz F. (26)

Table 1. Taper Coefficients for Analytically Solvable Beam Equations

No. Nonconstant Coefficient f(z) Reference

F
(a + bz2)2 This paper

F
2 (1 - yz) 2 23

F
(1 - yz/2)4 23

4 F(1 + 2-yz) 23
5 a - 2q cos(2z) 24

6 F F y2G cos(-yz) 16
[1 + G cos(yz)] 4 1 + G cos(yz)

F+G
2

- 1

[1 + G cos(-yz)] 2 19

8 1 +yG K z cos(yz) + sin ) This paper
1 + G cos(-yz) [ 

9 V2 sech2(z/a) - B2 25
a

2

10 02
1 - (z/L)2 26

11 go 26
1 - (z/L) 2
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In this case Eq. (22) reduces to

d2r(z) 1 - 1 du(z) 1 d2 u(z)
+ F2 - 2iF +- _

dz2 1 u(z) dz u(z) dZ2

- 1 du(z)]2 =
- dz jjr(z) = 0.

written as

n(x, z) = no - 1/2n2(Z)X2.

(27)

Note that the term [1/u(z)][d 2u(z)/dz2] has a different
sign from that in Eq. (24).

Similarly, one can choose the third and fourth
terms in Eq. (22) to cancel. This implies that

-t
v(z) = F+z (28)

Therefore Eq. (22) reduces to

d2r(z) [ 1 d2u(z) 2 1 du(z)]
dz2

-u(z) d 2 F + z u(z) dzr4 _

(29)

As a new example suppose that u(z) = 1 + G cos(,yz),
as above. It follows from Eq. (29) that we may
obtain exact solutions to the interesting equation

d2r(z) + yG sin(z),
d~rz) cosy cos(,Yz 1 + F r~~z) = 0.dZ2 I + G cos(yz) L sz +F + z ()

(30)

The taper function in Eq. (30) is also represented as
coefficient 8 of Table 1.

4. Parabolic Taper
The focus of Section 4 is on practical optical fiber
tapers. Such tapers are often manufactured by appli-
cation of axial tension to a heated fiber, thus stretch-
ing it. As noted in Section 1, Burns et al. and others
have demonstrated experimentally that the parabolic
model is very accurate over most of the length of the
taper.4 The purpose here is to solve for propagation
in such tapers in terms of the powerful ABCD matrix
formalism. With this formalism, parabolically ta-
pered media may be incorporated into multielement
optical systems.

As mentioned above, the propagation of Gaussian
beams in typical tapered media is governed by Eq.
(11). For most fiber media the losses are negligible
and so the propagation constant is real. Thus Eq.
(11) becomes

d2 r(z) n2 (z)
dz2 + rz)=0.

(32)

If nc1 denotes the index of the fiber at the boundary
with the cladding and xcl is the inner radius of the
cladding, then it follows from Eq. (32) that these
quantities are related by

ncl = no - /2n 2 (z)xc1
2 (z). (33)

It is clear that along surfaces of constant index, x,1(z)
varies in z if n2(z) does. This variation of the fiber
radius is known as tapering. Hence x.I(z) will be
referred to as the taper function. The notation used
here describes only the tapering in the x direction,
and there exist analogous definitions for tapering in
the y direction when symmetric or astigmatic tapers
are involved.

If Eqs. (31) and (33) are combined, one obtains the
governing equation

d2r(z) 1 - ni/no .
dz 2 Xci2(z)

(34)

As mentioned above, the interest here lies in paraboli-
cally tapered media. Hence it is postulated that the
taper is described by the known taper function

xI(z) = a + bz2, (35)

where the origin of the z coordinate is at the mini-
mum of the taper. An index of refraction contour for
a typical symmetric taper is shown in Fig. 2(a). With
this substitution, Eq. (34) becomes

d2r(z) 1 - c/'o r(z) 

=~+

dz2_ (a + bZ2)2 _ = _ 

(a
I

(a)

(36)

(31)

We introduce the ABCD formalism by solving Eq. (31)
and applying appropriate boundary conditions. If
the index profile is weak, it follows from an expansion
of Eq. (2) that the refractive-index profile can be

(b)
Fig. 2. Symmetric parabolic taper. A contour of constant index
of refraction is shown in (a), and the displacement of a typical light
ray is shown in (b).
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One may show by direct substitution that the solu-
tion to Eq. (36) is

r(z) = (a + bz2)/2(c cosab + 2(1 -nl/n)]1/2

X tan- I/2)| + C2 sin|| ab

\1 al/2z/ 1

x tan (al/2z)}) (37)

where the coefficients cl and c2 are to be determined
from the initial conditions. This result can be gener-
ated by letting u = (a + bz2)1/2 in Eq. (24), redefining
the constant F, and applying Eqs. (21), (23), and (25).
It should be noted that in the limit of small b, the
solution becomes the expected undamped sinusoid.

The propagation formulas for a tapered medium
can also be written in terms of the familiar ABCD
matrix formalism. First it may be noted that Eq.
(37) can be written in the more abbreviated form

r(z) = clu(z) + C2v(Z) (38)

where the definitions of the functions u(z) and v(z) are
obvious but different from the definitions in Section
3. Similarly, the rate of change of the parameter r(z)
is

r'(z) = clu'(z) + C2V'(Z)- (39)

It follows from Eqs. (38) and (39) that the general
equations for r(z) and r'(z) can be written in the usual
matrix form

r(z) 8 A(z) B(z)l r(zl) 
\r'(z)) [C(z) D(z) r'(zl) (40)

where the matrix elements are16

A (z) u'(z1)v(z) - V'(z,)u(z) (41)

B(z) = v(1)u(z) - u(z,)v(z)' (42)
V(Z)U'(Z) - u(z1)v (Z1)

C(z) = v(z,)u'(z ) - u(z,)v'(z )' (43)

D(z) = v(z1)u'(z) - u(z,)v'(z) (44)
V(Z)U'(Z1) - u(z1)v'(Z1)

Substituting the matrix formalism of Eq. (40) into
Eq. (9) yields the well-known Kogelnik transforma-
tion' 5:

Q(z) _ C(z) + D(z)Q(z1)/ko(z1) (45)
ko(z) A(z) + B(z)Q(z1)/k 0(z1)

Thus, with the aid of Eq. (8), one may obtain the z
dependence of the spot-size and phase-front curva-

ture in such a taper or in optical systems that contain
these tapered media. In a similar manner, Eq. (7)
may be integrated and the result is 27

P(z) - P(zl) = - 2 ln[A(z) + B(z)Q(z1)/k 0 (z1)]. (46)

Because the real part of this phase parameter repre-
sents the Gaussian beam's axial phase and the imagi-
nary part represents the axial amplitude, the z depen-
dence of these beam properties may be found as well.

For a medium or an optical system that is repre-
sented by a beam matrix that consists of only real
elements, such as a lossless tapered waveguide, the
center of a Gaussian beam propagates with the same
trajectory as a paraxial light ray. In this case the ray
matrix is identical to the beam matrix28 r(z) and r'(z)
may also be interpreted as the position and slope of
the amplitude center of the Gaussian beam. Higher-
order modes and off-axis beams in complex media can
be treated by the use of well-known extensions of
these methods. In any such generalization theABCD
matrix elements are unchanged from those calculated
here. As a representative example, a plot of the
amplitude center of an off-axis Gaussian beam is
shown in Fig. 2(b), and this result was obtained with
the equations of Section 4. It is clear from Fig. 2(b)
that near the region of the minimum fiber diameter
the amplitude and period may be significantly less
than in the regions away from the diameter mini-
mum, as one might expect. Indeed, it can be seen
from Eq. (37) that the frequency of the beam's
oscillation is inversely proportional to the square of
the amplitude of beam oscillation. Interestingly,
this property is not unique to the parabolic taper.
Any solution to Eq. (11) that has the form of Eq. (24)
has this property.

The propagation formulas for the parabolic taper
that have been derived here now take their place with
the several other analytic taper solutions that have
been reported previously. Table 1 includes a listing
of several of the more elementary taper functions for
which solutions have been obtained. The form of
these solutions and other details may be obtained
from the references indicated in Table 1.

The purpose of the discussion thus far has been to
construct mathematical solutions to specific fiber
tapers of interest. Needless to say, there might be
many taper profiles that one would wish to investi-
gate but that would not be susceptible to analytical
solutions. In this case another possible approach is
to represent the taper by a sequence of shorter fiber
segments for which the transformation characteris-
tics are known. In Ref. 16, for example, it was
suggested that the propagation through a periodically
tapered fiber could be described in terms of a se-
quence of alternating uniform and linearly tapered
segments. More generally, any taper configuration
can be described in terms of such composite elements.
However, the effectiveness of such a representation is
limited by the fact that at the junction of two finite
segments one cannot obtain continuity of the first
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derivative of the index of refraction. On the other
hand, it has been demonstrated above that the para-
bolic taper function can be characterized analytically.
Therefore sequences of parabolic elements may also
be used to represent an arbitrarily tapered fiber.
An advantage of such parabolic splines is that one can
use a small number of such elements to represent an
arbitrary taper while always maintaining continuity
of the first derivative. This method could be very
effective for modeling of periodic tapers, and a sinusoi-
dally modulated index function, for example, can be
well represented by just a pair of alternating para-
bolic tapers.

5. Conclusion
In this paper a physically interesting and important
taper function has been identified, and analytic solu-
tions for the propagating fields and ray trajectories
have been obtained. In this taper function a qua-
dratic graded-index medium is tapered in such a way
that the cladding radius is a parabolic function of
position along the fiber. This tapering has been
shown to occur naturally when a fiber is heated and
drawn, and hence it is a very natural configuration for
use in practical fiber systems. It is also useful
analytically because more complex smooth tapers can
be well represented in terms of a small number of
such parabolic taper segments.

This work was supported in part by the National
Science Foundation under grant no. ECS-9014481.
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