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ABSTRACT 

Facility location problems are a used in widespread application in transportation, freight, supply 

chain, and logistics problems. Models can be developed as deterministic, where all parameters are 

known, or robust, where a parameter has uncertainty. This thesis explores a new method for 

developing robust formulation and compares the implications of assuming values for this uncertain 

parameter. Two models are solved, and both are compared against their deterministic counterparts 

using numerical analysis. By manipulating the input parameters and considering real world 

implications of the solutions, either the robust or deterministic can show better performance. 
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1 INTRODUCTION 

Transportation, supply chain, and freight systems are typically designed through maximizing 

efficiency. This paper will primarily focus on facility location problems (FLP), which have 

widespread application. Facility is used as a broad term including but not limited to factories, 

seaports, schools, public transit stops, and more. A maximum coverage FLP is used in public sector 

applications to locate facilities by maximizing the demand served. Examples of public sector 

applications include locating post offices, health clinics, ambulances, fire departments, etc. FLPs 

are also used in the private sector. Private sector applications will often use a cost minimization 

perspective as maximizing coverage is not essential. 

The FLPs which will be considered in this paper will include one public and one private sector 

application. The problems are initially deterministic, meaning that no randomness is involved to 

develop a solution. Each constraint which is accounted for in the problem is known, unchanging, 

and not affected by chance. Using deterministic problems as a basis for development poses 

concerns because many deterministic constraints are not a reality. 

A robust problem will account for uncertainty. There are multiple ways to achieve this. For our 

purposes, one parameter will be assumed to have a distribution with defined bounds. Using the 

methods from (Ghosal and Wiesemann, 2020), an equivalent parameter will be generated to 

encapsulate the uncertain parameter. The goal of this paper will be to create robust models which 

are computationally quicker and easier to solve. 

 



2 

 

2 PURPOSE 

An important theme in civil engineering problems is how much do we design for? That is, how 

can we be certain that a design will meet the criteria without using too many resources, effort, and 

labor? Designing to meet an average doesn’t work because failure occurs 50% of the time. 

Designing something to never fail is incredibly costly and overengineered. Canon 1 of The 

American Society of Civil Engineers (ASCE) Code of Ethics states that “Engineers shall hold 

paramount the safety, health, and welfare of the public and shall strive to comply with the 

principles of sustainable development in the performance of their professional duties.” (Code of 

Ethics) 

Above all else, a design should be safe and healthy to use. The most important criterion after that 

is welfare of the public. The problem we are evaluating becomes clearer. When dealing with 

uncertainty, we must be able to quantify what can be expected. From there we can ensure that 

whatever we are designing for captures safety, health, and welfare of the public. When choosing 

how to locate facilities, it is important to ensure that a decision maker can see how the uncertainty 

is quantified. By creating a stochastic model, the certainty for which a constraint will be satisfied 

can be controlled. For the purposes of this research, demand is considered as uncertain. Uncertain 

demand will be implemented into two facility location models to show how well the stochastic 

solution meets the objectives. To provide a reasonable design, the uncertain demand should be 

permitted to exceed the capacity of the facility a very small fraction of the time. In both models 

this is less than five percent of the time. A theme of this paper is to obtain a practical robust model 

which provides better performance than its deterministic counterpart. 
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3 LITERATURE REVIEW 

A plethora of work has been conducted on FLPs. (Church and ReVelle, 1974) outlines the 

maximum coverage FLP which paved the road for the continuous development of problems in this 

field. This literature review aims to illustrate the diversity of application though the following 

relevant work. (Current et al., 2002) outlines the widespread application and usefulness of 

maximum coverage FLPs. A model from (Esnaf and Küçükdeniz, 2009) shows a broader method 

of locating facilities by eliminating the set of facilities to choose from. Instead, facilities are located 

anywhere to maximize demand. (Arabani and Farahani, 2012) show the dynamics between 

different minimum cost FLPs. (Chauhan et al., 2019) applies a maximum coverage FLP to drone-

delivery and demonstrates how FLPs will be adapted to changing infrastructure. (Karatas and 

Dasci, 2020) shows how a FLP can incorporate more levels of facilities to maximize demand over 

an entire supply chain system. (Arslan, 2021) develops a solution considering the choice to locate 

a facility or route a vehicle. FLPs are incredibly diverse in their applications and continue to evolve 

with development. 

Many works also consider uncertainty. (Snyder, 2006) reviews FLP problems under uncertainty 

and shows the diversity in objectives which have been developed. A study on linear optimization 

problems by (Bertsimas and Sim, 2004) shows how robust solutions may be too conservative. 

(Wang et al., 2002) shows algorithms considering M/M/1 queueing systems met with stochastic 

demand. (Miranda and Garrido, 2004) utilize stochastic demand in their network design model 

aimed at incorporating short- and medium-term decisions. (Baron et al., 2011) and (Gülpınar et 

al., 2013) show various robust strategies for FLPs under uncertain demands. (Naoum-Sawaya and 

Elhedhli, 2013) present a stochastic optimization model applied to ambulance deployment. 

(Berglund and Kwon, 2014) present a robust FLP to minimize cost of hazardous waste 

transportation. (Lutter et al., 2017) explore robust solutions to set covering problems through 

studying mixed integer linear program problems. (Zhong et al., 2020) apply optimization to a 

facility location and vehicle routing problem. (Chauhan et al., 2020) extends the work of (Chauhan 

et al., 2019) and applies a robust optimization approach to an integer linear programming model. 

(Basciftci et al., 2021) considers stochastic demands for a two-stage decision-dependent 

optimization model. Considering uncertain parameters, particularly demand, is incredibly common 

in FLPs and other network optimization models. 
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4 MODELS 

The two models used to study the robust solution are a maximum coverage FLP and a minimum 

cost FLP. The robust models will be developed using a method proposed by (Ghosal and 

Wiesemann, 2020) 

4.1 Maximum Coverage FLP 

The objective of a maximum coverage FLP is in its name: to maximize the coverage. This type of 

FLP is more applicable in the case of public sector development. The model presented is 

capacitated and includes a coverage radius. For the purposes of maximizing infeasibility in 

numerical analysis, the model will be assumed to have an infinite coverage radius. 

4.1.1 Nomenclature 

Sets 

𝐼 Set of demand points 

𝐽 Set of potential facility locations 

Indices 

𝑖 ∈ 𝐼 

𝑗 ∈ 𝐽 

Parameters 

𝜀 Probability Parameter 

 𝛾 Deviation Parameter 

𝑎𝑗 Importance of meeting demand point j 

�̃�𝑖 Probabilistic demand of point 𝑖 

𝑑𝑖  Nominal demand of point 𝑖 

𝑈 Capacity 

𝑠 Coverage radius 

𝐿𝑖𝑗 Distance between demand point and facility location 

𝑀𝑖𝑗 1 if 𝐿𝑖𝑗 ≤ 𝑠;  ꝏ otherwise 

𝑝 Maximum number of facilities to locate 

Decision Variables 

𝑥𝑗 Binary: Equal to 1 if facility 𝑖 is opened; 0 otherwise 
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𝑦𝑖𝑗 Binary: Equal to 1 if demand point 𝑖 is serving facility 𝑗; 0 otherwise 

4.1.2 Deterministic Formulation 

The objective is to maximize the coverage across all demand points (1).  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒            ∑ ∑ 𝑎𝑖𝑦𝑖𝑗𝑗∈𝐽𝑖∈𝐼         (1) 

𝑆. 𝑇𝑜.                          ∑ 𝑀𝑖𝑗𝑑𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼 ,     ∀ 𝑗 ∈ 𝐽     (2) 

∑ 𝑀𝑖𝑗𝑦𝑖𝑗 ≤ 1,𝑗 ∈𝐽      ∀ 𝑖 ∈ 𝐼     (3) 

𝑦𝑖𝑗 ≤ 𝑥𝑗 ,     ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽    (4) 

∑ 𝑥𝑗 ≤ 𝑝𝑗∈𝐽       (5) 

𝑥𝑗 ∈ {0, 1},    ∀ 𝑗 ∈ 𝐽    (6) 

𝑦𝑖𝑗 ∈ {0, 1},    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽    (7) 

(2) ensures that demand does not exceed capacity. Constraint (3) prevents a single demand 

point from mapping to more than one facility and (4) ensures that demand points are not 

mapped to closed facilities. (5) controls how many facilities are opened and (6-7) are 

variable definitions. 

4.1.3 Robust Formulation 

We begin with the deterministic problem. The nominal demand will now be considered as 

uncertain. Letting �̃�𝑖 represent the uncertain demand, equation (8) is employed in place of (2) with 

a confidence of at least 1 − 𝜀. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒            ∑ ∑ 𝑎𝑖𝑦𝑖𝑗𝑀𝑖𝑗𝑗∈𝐽𝑖∈𝐼         (1) 

𝑆. 𝑇𝑜.        𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼 ) ≥ 1 − 𝜀,     ∀ 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ   (8) 

∑ 𝑀𝑖𝑗𝑦𝑖𝑗 ≤ 1,𝑗 ∈𝐽      ∀ 𝑖 ∈ 𝐼     (3) 

𝑦𝑖𝑗 ≤ 𝑥𝑗 ,     ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽    (4) 

∑ 𝑥𝑗 ≤ 𝑝𝑗∈𝐽       (5) 
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𝑥𝑗 ∈ {0, 1},    ∀ 𝑗 ∈ 𝐽    (6) 

𝑦𝑖𝑗 ∈ {0, 1},    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽    (7) 

Equation (8) can then be rewritten as 

sup
𝑃∈ℙ

𝑃 (∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼 ) ≥ 1 − 𝜀,     ∀ 𝑗 ∈ 𝐽  (9) 

Let VAR1−𝜀,𝑃 be the 1 − 𝜀 quantile under probability distribution P. 

VAR1−𝜀,𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗𝑖∈𝐼 ) = inf
𝑥∈ℝ

{𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑥𝑖∈𝐼 ) ≥ 1 − 𝜀}  

We know 

𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼 ) ≥ 1 − 𝜀 ⟹ VAR1−𝜀,𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗𝑖∈𝐼 ) ≤ 𝑈𝑥𝑗  

Therefore equation (9) can be rewritten as 

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗𝑖∈𝐼 ) ≤ 𝑈𝑥𝑗  

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) ≤ 𝑈𝑥𝑗  

Where 𝐼𝑗 = {𝑖 ∈ 𝐼, 𝑦𝑖𝑗 = 1} 

If the following three conditions are satisfied 

𝑃(�̃�𝑖 ∈ [ 𝑑𝑖, 𝑑𝑖]) = 1,    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ   (10) 

𝔼𝑃[�̃�𝑖] = 𝑑𝑖 ,    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ   (11) 

𝔼𝑃 [ (�̃�𝑖 − 𝑑𝑖)
2

] ≤ 𝜎𝑖
2,    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ   (12) 

Based on theorem 2 and proposition 3 of (Ghosal and Wiesemann, 2020), for all probability 

distributions 𝑃 ∈ ℙ satisfying equations (10, 11, 12), we have 

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) = ∑ sup

𝑃∈ℙ
VAR1−𝜀,𝑃 (�̃�𝑖)𝑖∈𝐼𝑗
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and 

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (�̃�𝑖) =  𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,
1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2}     ∀ 𝑖 ∈ 𝐼  

Therefore, we can substitute equation (8) with equation (13) to obtain the distributionally robust 

formulation. 

∑ 𝑀𝑖𝑗𝑑𝑖
∗𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼 ,     ∀ 𝑗 ∈ 𝐽    (13) 

where, 

𝑑𝑖
∗ =  𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,

1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2}     ∀ 𝑖 ∈ 𝐼   (14) 

𝑑𝑖 and 𝑑𝑖 are the upper and lower bounds for �̃�𝑖 determined by the deviation parameter, 𝛾 (14-15). 

Further, to simplify considering a large variety of distributions, we utilize the Bhatia-Davis 

inequality (Bhatia and Davis, 2000) shown in (16). (16) provides upper bounds for variance for 

any bounded probability distribution. For numerical analysis, the solution will be tested assuming 

a uniform distribution such that the variance will be in accordance with a uniform distribution (17), 

which is easily verified to be within the bounds of (16).  

𝑑𝑖 = (1 + 𝛾)𝑑𝑖    (14) 

𝑑𝑖 = (1 − 𝛾)𝑑𝑖    (15) 

Bhatia-Davis inequality:      𝜎𝑖
2 ≤ (𝑑𝑖 − 𝑑𝑖)(𝑑𝑖 − 𝑑𝑖)   (16) 

𝜎𝑖
2 =

1

3
𝛾2𝑑𝑖

2     (17) 

4.2 Minimum Cost FLP 

The minimum cost facility location model utilizes a capacitated model presented by (Beasley, 

1988). The objective of minimizing cost is more applicable to the private sector. 

4.2.1 Nomenclature 

Sets 

𝐼 Set of demand points 
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𝐽 Set of potential facility locations 

Indices 

𝑖 ∈ 𝐼 

𝑗 ∈ 𝐽 

Parameters 

𝑑𝑖  Demand of point 𝑖 

𝑓𝑗  Fixed cost for establishing facility at point 𝑗 

𝑢𝑗  Capacity of facility of location 𝑗 

𝑑𝑖  Cost of meeting demand at point 𝑖 from facility 𝑗 

Decision Variables 

𝑦𝑗   Binary: Equal to 1 if a facility is located at 𝑗; 0 otherwise 

𝑥𝑖𝑗   Fractional: Equal to fraction of demand point 𝑖 met by facility is located at 𝑗 

4.2.2 Deterministic Formulation 

The objective (18) is to minimize the sum of the fixed and variable costs. (19) restricts the 

fractional demand variable, 𝑥𝑖𝑗, to be equal to one across a set of facility locations. This implies 

that all demand must be met. (20) ensures demand does not exceed capacity. (21) restricts the 

fraction of demand to be allocated only if a facility is located. (22, 23) are variable definitions. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒        ∑ 𝑓𝑗𝑦𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖∈𝐼        (18) 

𝑆. 𝑇𝑜.                                                    ∑ 𝑥𝑖𝑗 = 1𝑗∈𝐽 ,     ∀ 𝑖 ∈ 𝐼    (19) 

∑ 𝑑𝑖𝑥𝑖𝑗 ≤ 𝑢𝑗𝑦𝑗 ,𝑖 ∈𝐼      ∀ 𝑗 ∈ 𝐽   (20) 

𝑥𝑖𝑗 ≤ 𝑦𝑗 ,     ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   (21) 

𝑥𝑖𝑗 ∈ [0,1],    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   (22) 

𝑦𝑗 ∈ {0, 1},    ∀ 𝑗 ∈ 𝐽   (23) 

4.2.3 Robust Formulation 

Using the deterministic formulation, (24) is used in place of (20) to create a robust model. 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒        ∑ 𝑓𝑗𝑦𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖∈𝐼        (18) 

𝑆. 𝑇𝑜.                                                    ∑ 𝑥𝑖𝑗 = 1𝑗∈𝐽 ,     ∀ 𝑖 ∈ 𝐼    (19) 

𝑃(∑ �̃�𝑖𝑥𝑖𝑗𝑖 ∈𝐼 ≤ 𝑢𝑗𝑦𝑗) ≤ 1 − 𝜀,     ∀ 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ  (24) 

𝑥𝑖𝑗 ≤ 𝑦𝑗 ,     ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   (21) 

𝑥𝑖𝑗 ∈ [0,1],    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   (22) 

𝑦𝑗 ∈ {0, 1},    ∀ 𝑗 ∈ 𝐽   (23) 

Equation (24) can then be rewritten as 

sup
𝑃∈ℙ

𝑃 (∑ �̃�𝑖𝑥𝑖𝑗𝑖 ∈𝐼 ≤ 𝑢𝑗𝑦𝑗) ≥ 1 − 𝜀,     ∀ 𝑗 ∈ 𝐽   (25) 

Let VAR1−𝜀,𝑃 be the 1 − 𝜀 quantile under probability distribution P. 

VAR1−𝜀,𝑃(∑ �̃�𝑖𝑥𝑖𝑗𝑖∈𝐼 ) = inf
𝑥∈ℝ

{𝑃(∑ �̃�𝑖𝑥𝑖𝑗 ≤ 𝑥𝑖∈𝐼 ) ≥ 1 − 𝜀}  

We know 

𝑃(∑ �̃�𝑖𝑥𝑖𝑗 ≤ 𝑢𝑗𝑦𝑗𝑖∈𝐼 ) ≥ 1 − 𝜀 ⟹ VAR1−𝜀,𝑃(�̃�𝑖𝑥𝑖𝑗) ≤ 𝑢𝑗𝑦𝑗  

Therefore equation (25) can be rewritten as 

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑥𝑖𝑗𝑖∈𝐼 ) ≤ 𝑢𝑗𝑦𝑗  

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) ≤ 𝑢𝑗𝑦𝑗  

Where 𝐼𝑗 = {𝑖 ∈ 𝐼, 𝑥𝑖𝑗 = 1} 

If the following three conditions are satisfied: 

𝑃(�̃�𝑖 ∈ [ 𝑑𝑖, 𝑑𝑖]) = 1,    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ   (26) 

𝔼𝑃[�̃�𝑖] = 𝑑𝑖 ,    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ   (27) 

𝔼𝑃 [ (�̃�𝑖 − 𝑑𝑖)
2

] ≤ 𝜎𝑖
2,    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ   (28) 
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Based on theorem 2 and proposition 3 of (Ghosal and Wiesemann, 2020), for all probability 

distributions 𝑃 ∈ ℙ satisfying equations (26, 27, 28), we have 

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) = ∑ sup

𝑃∈ℙ
VAR1−𝜀,𝑃 (�̃�𝑖)𝑖∈𝐼𝑗

  

and 

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (�̃�𝑖) =  𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,
1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2}     ∀ 𝑖 ∈ 𝐼  

Therefore, we can substitute equation (24) with equation (29) to obtain the distributionally robust 

formulation. 

∑ 𝑑𝑖
∗𝑥𝑖𝑗𝑖 ∈𝐼 ≤ 𝑢𝑗𝑦𝑗 ,     ∀ 𝑗 ∈ 𝐽    (29) 

where, 

𝑑𝑖
∗ =  𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,

1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2}     ∀ 𝑖 ∈ 𝐼   (30) 

Similar to the maximum coverage facility location problem, 𝑑𝑖 and 𝑑𝑖 are the upper and lower 

bounds for �̃�𝑖 determined by the deviation parameter, 𝛾 in accordance with equations (14-15). 

Inequality (16) shows how the variance is determined. 
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5 NUMERICAL ANALYSIS AND RESULTS 

For numerical analysis, simple Monte Carlo simulation (MCS) was used to test the feasibility of 

the models’ solutions. When infeasibility was encountered, a greedy heuristic was employed to 

arrive at a feasible solution which would be used for evaluation. 

5.1 Maximum Coverage FLP 

The robust and deterministic models were solved using the network adopted from (Osman and 

Christofides, 1994) shown in table 1. The robust model was always solved with the probability 

parameter 𝜀 equal to 0.1. Other input parameters will be varied and explored in later sections. 1000 

MCS iterations were conducted with the models’ solutions. Model coverage was calculated as the 

fraction of nominal demand covered over total nominal demand in the system.  For each solution, 

different ranges were set on the demand. Using these bounds, uncertain demands were randomly 

generated in accordance with a uniform distribution for each MCS iteration. For each range of 

demands, different capacities or coverage radii were tested to display the behavior of the models’ 

coverage. Infeasibility was then calculated by checking if deterministic constraint (2) or robust 

constraint (13) was satisfied for each iteration. When infeasibility was encountered, the greedy 

heuristic removed the smallest demand points until infeasibility was equal to zero. The greedy 

coverage shows this new coverage and coverage reduction shows how much coverage was 

removed after using the greedy heuristic.  

index i x coordinate y coordinate demand  index i x coordinate y coordinate demand 

1 2 62 3  26 12 2 16 

2 80 25 14  27 53 33 3 

3 36 88 1  28 53 10 7 

4 57 23 14  29 33 32 14 

5 33 17 19  30 69 67 17 

6 76 43 2  31 43 5 3 

7 77 85 14  32 10 75 3 

8 94 6 6  33 8 26 12 

9 89 11 7  34 3 1 14 

10 59 72 6  35 96 22 20 

11 39 82 10  36 6 48 13 

12 87 24 18  37 59 22 10 

13 44 76 3  38 66 69 9 

14 2 83 6  39 22 50 6 

15 19 43 20  40 75 21 18 

16 5 27 4  41 4 81 7 

17 58 72 14  42 41 97 20 
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18 14 50 11  43 92 34 9 

19 43 18 19  44 12 64 1 

20 87 7 15  45 60 84 8 

21 11 56 15  46 35 100 5 

22 31 16 4  47 38 2 1 

23 51 94 13  48 9 9 7 

24 55 13 13  49 54 59 9 

25 84 57 5  50 1 58 2 

Table 1: Network of Maximum Coverage FLP 

5.1.1 Effect of Varying Capacity 

For this analysis, an infinite coverage radius was assumed, and five facilities were located. 

Capacity was tested between 70 and 140. 

Model Capacity 
Demand 

Range 

Model 

Coverage 
Infeasibility 

Greedy 

Coverage 

Coverage 

Reduction 

Deterministic 

70 

[0.8d,1.2d] 

0.714 0.965 0.68 0.035 

80 0.816 0.982 0.784 0.032 

90 0.918 0.964 0.888 0.031 

100 1 0.924 0.981 0.019 

110 1 0.91 0.978 0.022 

120 1 0.917 0.977 0.023 

130 1 0.885 0.983 0.017 

140 1 0.886 0.981 0.019 

70 

[0,2d] 

0.714 0.963 0.591 0.124 

80 0.816 0.975 0.683 0.133 

90 0.918 0.964 0.775 0.143 

100 1 0.957 0.868 0.132 

110 1 0.939 0.869 0.131 

120 1 0.934 0.863 0.137 

130 1 0.869 0.887 0.113 

140 1 0.879 0.883 0.117 

Robust 

70 

[0.8d,1.2d] 

0.592 0 0.592 0 

80 0.673 0 0.673 0 

90 0.765 0 0.765 0 

100 0.847 0 0.847 0 

110 0.929 0 0.929 0 

120 1 0 1 0 

130 1 0 1 0 

140 1 0 1 0 

70 [0,2d] 0.357 0 0.357 0 
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80 0.408 0 0.408 0 

90 0.459 0 0.459 0 

100 0.51 0 0.51 0 

110 0.561 0 0.561 0 

120 0.612 0 0.612 0 

130 0.663 0 0.663 0 

140 0.714 0 0.714 0 

Table 2: Varying Capacity 

Table 2 shows the effect of varying capacity in the models. For the deterministic, higher 

capacities resulted in higher model coverage, higher greedy coverage, lower infeasibility, and a 

lower coverage reduction. A larger deviation of demand results in higher infeasibilities for 

capacities higher than 90, and lower infeasibilities for capacities lower than 90. Because the 

infeasibility is often equal to 1 for higher capacities, varying the coverage radius will also be 

explored. 

For the robust model, infeasibility is always equal to 0. The greedy heuristic does not remove 

any demands and thus the greedy coverage is equal to the model coverage. Unlike the 

deterministic, the robust model coverage changes as distribution changes. In this analysis, for 

lower deviations, the robust model outperforms the deterministic model when coverage is greater 

than 120, and the deterministic outperforms the robust for capacities less than 120. For higher 

deviation, the deterministic model always provides better coverage than the robust model. 

5.1.2 Effect of Varying Coverage Radius 

For this experiment, 5 facilities are located, and the capacity is 122.5. Coverage radius is varied 

ranging from 20 to 55. 

Model 
Coverage 

Radius 

Demand 

Range 

Model 

Coverage 
Infeasibility 

Greedy 

Coverage 

Coverage 

Reduction 

Deterministic 

20 

[0.8d,1.2d] 

0.867 0 0.867 0 

25 0.961 0.049 0.961 0 

30 1 0.188 0.998 0.002 

35 1 0.365 0.997 0.003 

40 1 0.225 0.997 0.003 

45 1 0.568 0.99 0.01 

50 1 0.468 0.996 0.004 

55 1 0.614 0.993 0.007 

20 [0,2d] 0.867 0.452 0.843 0.024 
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25 0.961 0.679 0.911 0.05 

30 1 0.728 0.941 0.059 

35 1 0.788 0.928 0.072 

40 1 0.829 0.919 0.081 

45 1 0.72 0.932 0.068 

50 1 0.707 0.952 0.048 

55 1 0.751 0.935 0.065 

Robust 

20 

[0.8d,1.2d] 

0.845 0 0.845 0 

25 0.918 0 0.918 0 

30 0.973 0 0.973 0 

35 1 0 1 0 

20 
[0,2d] 

0.622 0 0.622 0 

55 0.622 0 0.622 0 

Table 3: Varying Coverage Radius 

For the deterministic model there was more variation in the behavior of infeasibility, greedy 

coverage, and coverage reduction as the coverage radius increased shown in table 3. This is 

expected because the demand points which are available to a facility alter as the coverage radius 

changes. In general, as the coverage radius increased, the infeasibility increased. The greedy 

coverage also increased until coverage radius was equal to 30. For coverage radii greater than 30, 

there was no significant change to greedy coverage or coverage reduction. A coverage radius of 

30 produced the most optimal greedy coverage for both ranges of demand. 

The robust model produced similar results as shown in section 5.1.1. The MCS shows no 

infeasibility, and the greedy heuristic does not change the coverage. Using a larger variation 

range of demands shows that coverage does not change as the coverage radius is increased from 

20 to 55. For this analysis, the deterministic model always outperforms the robust model, expect 

when the variation range of demand is less and the coverage radius is at least 35 units. 

5.1.3 Effect of Varying Facilities Located  

For this experiment, the number of facilities located ranges from 1 to 8, the capacity of each facility 

is determined in accordance using the approximation proposed by (Pirkul and Schilling, 1989), 

and an infinite coverage radius is considered. 

Model Facilities 
Demand 

Range 
Capacity 

Model 

Coverage 
Infeasibility 

Greedy 

Coverage 

Coverage 

Reduction 

Deterministic 1 [0.8d,1.2d] 612.5 1 0 1 0 
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2 306.25 1 0.474 0.993 0.007 

3 204.17 1 0.725 0.989 0.011 

4 153.13 1 0.844 0.984 0.016 

5 122.5 1 0.928 0.978 0.022 

6 102.08 1 0.941 0.978 0.022 

7 87.5 1 0.926 0.981 0.019 

8 76.56 1 0.941 0.974 0.026 

1 

[0,2d] 

612.5 1 0.004 1 0 

2 306.25 1 0.488 0.941 0.059 

3 204.17 1 0.739 0.904 0.096 

4 153.13 1 0.878 0.885 0.115 

5 122.5 1 0.938 0.862 0.138 

6 102.08 1 0.939 0.876 0.124 

7 87.5 1 0.958 0.873 0.127 

8 76.56 1 0.976 0.855 0.145 

Robust 

1 

[0.8d,1.2d] 

612.5 1 0 1 0 

2 306.25 1 0 1 0 

3 204.17 1 0 1 0 

4 153.13 1 0 1 0 

5 122.5 1 0 1 0 

6 102.08 1 0 1 0 

7 87.5 1 0 1 0 

8 76.56 1 0 1 0 

1 

[0,2d] 

612.5 0.624 0 0.624 0 

2 306.25 0.624 0 0.624 0 

3 204.17 0.624 0 0.624 0 

4 153.13 0.620 0 0.620 0 

5 122.5 0.622 0 0.622 0 

6 102.08 0.624 0 0.624 0 

7 87.5 0.614 0 0.614 0 

8 76.56 0.620 0 0.620 0 

Table 4: Varying Facilities Located 

Using the capacity formula proposed by (Pirkul and Schilling, 1989) resulted in each model 

receiving 100% coverage when varying located facilities shown in table 4. As the number of 

facilities increased in the deterministic model, infeasibility increased, greedy coverage 

decreased, and coverage reduction increased for both ranges. However, after 5 facilities were 

located, there was no significant change in the greedy heuristic’s behavior. 
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The robust model provides as much model coverage as the deterministic for small ranges of 

demand, and significantly less model coverage for large ranges of demand. For this analysis, the 

robust can outperform the deterministic by providing complete coverage with no infeasibility if 

small range distributions of demand can be expected. For large ranges of demand, the 

deterministic model is preferred.  

5.1.4 Comparing Symmetric and Various Asymmetric Distributions 

For this analysis, a coverage radius of 30, 5 located facilities, and a capacity of 122.5 will be 

assumed. 

Model Distribution 
Demand 

Range 

Model 

Coverage 
Infeasibility 

Greedy 

Coverage 

Coverage 

Reduction 

Deterministic 

symmetric 
[0.8d,1.2d] 1 0.197 0.998 0.002 

[0,2d] 1 0.737 0.942 0.058 

Asymmetric 

[0.9d,1.2d] 1 0.73 0.991 0.009 

[0.5d,2d] 1 0.998 0.857 0.143 

[0.93d,1.2d] 1 0.91 0.985 0.015 

[0.67d,2d] 1 1 0.817 0.183 

[0.95d,1.2d] 1 0.971 0.982 0.018 

[0.75d,2d] 1 1 0.801 0.199 

Robust 

symmetric 
[0.8d,1.2d] 0.973 0 0.973 0 

[0,2d] 0.622 0 0.622 0 

Asymmetric 

[0.9d,1.2d] 0.973 0 0.973 0 

[0.5d,2d] 0.622 0 0.622 0 

[0.93d,1.2d] 0.973 0 0.973 0 

[0.67d,2d] 0.622 0 0.622 0 

[0.95d,1.2d] 0.973 0 0.973 0 

[0.75d,2d] 0.622 0 0.622 0 

Table 5: Symmetric vs Asymmetric Distributions 

Table 5 summarizes the results comparing symmetric to asymmetric distributions. The 

deterministic model performs worse as the asymmetric distributions begin to favor demands higher 

than the nominal demand with greater probabilities. There is no effect from analyzing the robust 

model with a symmetric or an asymmetric distribution as the upper bound of the demand range 

controls the robust model. The better performing model is mostly important on the range of 

demands rather than the degree of asymmetry. Even when considering highly asymmetric demands 

to favor the robust model, the deterministic still performs better. 
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5.1.5 Maximum Coverage FLP Discussion 

The results in tables 2, 3, and 4 identify that when complete coverage cannot be achieved, the 

deterministic solution provides more coverage across a range of capacities, coverage radii, or 

located facilities, and various deviations of �̃�𝑖. The capacity approximation to reach complete 

coverage proposed by (Pirkul and Schilling, 1989) is 122.5 when 5 facilities are located. It is not 

surprising that when capacity is above 120 for 5 located facilities, complete coverage is achieved, 

and the robust model performs better. Because the robust model is generated using the bounds of 

�̃�𝑖, it provides a better mapping of variables compared with the deterministic. However, exploring 

different coverage radii and located facilities shows that even when a capacity of 122.5 is assumed, 

the deterministic model performs better until coverage radius equals 35.  

The comparison of symmetric to asymmetric distributions in table 5 showed how much better the 

deterministic is as providing coverage under a practical coverage radius of 30. Even when 

considering very unlikely worst case asymmetric distributions, it is still observed that the 

deterministic performs better at providing maximum coverage. In practical application of FLPs, 

an infinite coverage radius would likely not be considered. However, there are other networks 

which could be explored with this formulation and there are scenarios in which coverage radius is 

not such an important factor. 

 

5.2 Minimum Cost FLP 

The network used in this model is adopted from (Beasley, 1988) and shown in tables 6, 7, and 8. 

The robust model was solved where the probability parameter equals 0.05. 10,000 MCS iterations 

were conducted with the models’ solutions. Random demands were generated in accordance with 

symmetric, and asymmetric uniform distributions. Infeasibility was calculated by checking if 

deterministic constraint (20) or robust constraint (29) was satisfied for each iteration. After 

calculating infeasibility within the solution, the greedy heuristic was used to evaluate the cost of 

facilities which could meet demands. 

i 1 2 3 4 5 6 7 8 9 10 

demand 146 87 672 1337 31 559 2370 1089 33 32 

i 11 12 13 14 15 16 17 18 19 20 

demand 5495 904 1466 143 615 564 226 3016 253 195 

i 21 22 23 24 25 26 27 28 29 30 
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demand 38 807 551 304 814 337 4368 577 482 495 

i 31 32 33 34 35 36 37 38 39 40 

demand 231 322 685 12912 325 366 3671 2213 705 328 

i 41 42 43 44 45 46 47 48 49 50 

demand 1681 1117 275 500 2241 733 222 49 1464 222 

Table 6: Minimum Cost FLP Network (Demands) 

 
j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

capacity 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 

fixed cost 7500 7500 7500 7500 7500 7500 7500 7500 7500 7500 0 7500 7500 7500 7500 7500 

Table 7: Minimum Cost FLP Network (Capacities and Fixed Costs) 

 
i   j 1 2 3 4 5 6 7 8 

1 6739.73 10355.05 7650.40 5219.50 5776.13 6641.18 4374.53 3847.10 

2 3204.86 5457.08 3845.40 2396.85 2628.49 3220.09 1838.96 2266.35 

3 4914.00 26409.60 19622.40 13876.80 9147.60 14977.20 21848.40 35330.40 

4 32372.11 29982.23 21024.33 29681.40 21275.01 20071.71 64292.99 80186.58 

5 1715.46 2152.18 1577.90 1061.75 1250.46 1363.61 1524.04 955.58 

6 6421.51 23701.60 16197.03 10383.43 7483.61 12332.94 15840.66 27251.25 

7 81972.38 28499.25 43134.00 65767.50 58805.63 48555.38 138615.38 155294.25 

8 33391.46 26544.38 6370.65 16770.60 13571.66 8861.74 51550.54 57907.58 

9 2020.84 2480.78 1869.45 1324.95 1525.84 1646.29 1817.06 1211.93 

10 1459.60 1995.20 1402.40 869.60 1050.80 1181.20 1133.20 546.40 

11 141015.44 205925.13 104130.25 12638.50 46089.31 66146.06 198300.81 220212.13 

12 17684.50 32069.40 15322.80 8429.80 1231.70 9073.90 32781.30 41335.40 

13 38207.63 42477.35 15319.70 15832.80 11526.43 5185.98 62653.18 71210.95 

14 1953.74 5044.33 4089.80 3428.43 2289.79 3530.31 5553.76 8308.30 

15 17181.56 36054.38 25399.50 16297.50 15828.56 21148.31 7310.81 21709.50 

16 25640.85 35602.50 25154.40 15763.80 18421.65 21255.75 18478.05 8135.70 

17 7031.43 10492.05 6305.40 2542.50 3918.28 4743.18 6856.28 7119.00 

18 78453.70 92515.80 36644.40 27445.60 23562.50 23034.70 126332.70 141375.00 

19 9452.71 12441.28 7754.45 3542.00 5082.14 6005.59 10274.96 10214.88 

20 8597.06 14113.13 10500.75 7254.00 7875.56 9152.81 5467.31 6371.63 

21 1581.28 2030.15 1326.20 693.50 924.83 1063.53 1628.78 1619.75 

22 23170.99 48702.45 36072.90 26166.98 23493.79 30494.51 14919.41 33813.30 

23 12087.56 19877.33 9670.05 3801.90 2252.21 5847.49 19650.04 23844.53 

24 4883.00 12851.60 10822.40 8930.00 6798.20 9435.40 11943.40 18148.80 

25 24063.88 39682.50 24603.15 11050.05 13644.68 18976.38 20197.38 24684.55 

26 4124.04 12148.85 8180.68 5611.05 2952.96 5851.16 11613.86 17111.18 

27 281463.00 406770.00 325852.80 253234.80 264755.40 294457.80 211356.60 210756.00 

28 11056.76 22113.53 11424.60 5582.48 2430.61 7436.09 19279.01 25460.13 

29 8585.63 22449.15 14122.60 7458.95 6609.43 10790.78 11525.83 20448.85 

30 12480.19 25455.38 22151.25 19069.88 15598.69 19892.81 23976.56 34080.75 

31 3727.76 11116.88 8229.38 5826.98 4628.66 6632.59 6476.66 11884.95 

32 4673.03 13346.90 7880.95 4330.90 2861.78 5655.13 9623.78 14610.75 

33 13451.69 35106.25 25927.25 17347.63 15249.81 21192.19 16808.19 32845.75 

34 372672.60 229188.00 203364.00 322800.00 261306.60 229995.00 681269.40 810550.80 

35 9745.94 18070.00 12049.38 7198.75 7592.81 9802.81 5780.94 10692.50 

36 12055.13 18181.05 11400.90 5307.00 7379.48 8870.93 10865.63 10202.25 

37 97602.71 73603.55 59561.98 83331.70 65940.34 56946.39 185247.84 222003.73 

38 60774.51 63568.43 27330.55 30982.00 20497.91 15076.06 97731.61 114578.08 

39 54470.06 65177.25 52117.13 40378.88 44494.31 47243.81 47631.56 34351.13 

40 7146.30 8618.20 6428.80 7822.80 5211.10 5621.10 15256.10 19762.00 

41 38011.61 70728.08 39587.55 15801.40 16494.81 27925.61 49862.66 62659.28 

42 39723.31 52917.88 32225.45 13627.40 20427.14 24504.19 41119.56 40854.28 

43 16111.56 20714.38 15620.00 11041.25 12598.44 13719.06 12502.19 7885.63 

44 16981.25 32575.00 23312.50 16250.00 16268.75 19856.25 9331.25 20750.00 

45 168663.26 210766.05 169251.53 131938.88 144628.54 153760.61 134768.14 109304.78 

46 57109.86 66703.00 53124.18 40919.73 45381.86 48057.31 52583.59 39050.58 
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47 15576.08 18481.50 14368.95 10672.65 12024.08 12834.38 14205.23 10134.30 

48 2542.49 3928.58 3020.85 2205.00 2361.19 2682.14 1756.04 1983.28 

49 34056.30 34221.00 24448.80 31329.60 21905.10 20807.10 69009.30 86632.20 

50 7095.68 11999.10 7886.55 4190.25 4847.93 6351.98 4903.43 6421.35 

         
i   j 9 10 11 12 13 14 15 16 

1 6429.48 5396.53 5219.50 4182.90 7391.25 5038.83 10349.58 6051.70 

2 3117.86 2582.81 2296.80 1779.15 5115.60 2189.14 5399.44 2838.38 

3 15111.60 23679.60 9828.00 19303.20 57472.80 11180.40 22957.20 15489.60 

4 25921.09 69206.46 23096.68 48700.23 135170.70 40527.81 60515.96 52911.78 

5 1318.66 1789.09 1133.05 1015.25 2005.70 1379.89 2512.94 1823.58 

6 12444.74 17769.21 7029.43 13919.10 45474.65 6966.54 20326.64 10956.40 

7 53176.88 147325.13 56998.50 102384.00 259515.00 96429.38 131920.13 118381.50 

8 10985.29 57376.69 12741.30 33595.65 105796.35 32220.79 60071.96 46527.53 

9 1593.49 2099.21 1395.90 1275.45 1940.40 1663.61 2869.76 2135.93 

10 1134.80 1406.80 928.80 768.80 1950.40 1145.20 2314.80 1500.80 

11 58178.31 241573.94 25277.00 97536.25 461992.13 106122.19 288418.81 185456.25 

12 9254.70 37595.10 2463.40 19775.00 79235.60 16712.70 41956.90 28589.00 

13 11563.08 70496.28 10371.95 38482.50 135275.15 36631.68 77569.73 55891.25 

14 3558.91 5947.01 2434.58 4897.75 13134.55 3283.64 4634.99 4204.20 

15 20779.31 12569.06 14621.63 11931.00 39913.50 11169.94 32479.69 14375.63 

16 20437.95 23300.25 16271.40 12619.50 35094.90 19253.55 39867.75 24957.00 

17 4415.48 8788.58 3062.30 2712.00 17458.50 5031.33 13093.88 8294.20 

18 11423.10 144881.10 22846.20 74042.80 274079.00 75211.50 159433.30 114834.20 

19 5638.74 12438.11 4123.90 5635.58 21789.63 8073.86 16239.44 11726.55 

20 8870.06 6729.94 7312.50 5869.50 9506.25 6695.81 13554.94 7707.38 

21 1008.43 1953.68 780.90 931.95 3066.60 1298.18 2600.63 1846.80 

22 30655.91 11166.86 22333.73 20982.00 56025.98 17380.76 40178.51 15978.60 

23 6260.74 22873.39 0.00 10703.18 46945.20 10145.29 26881.91 17728.43 

24 9496.20 11616.60 7106.00 10898.40 28226.40 7117.40 7725.40 7911.60 

25 17796.08 27157.08 10541.30 5270.65 59259.20 14845.33 44597.03 26495.70 

26 5918.56 12852.34 3268.90 9073.73 29479.08 5623.69 13172.49 8745.15 

27 289434.60 239639.40 248102.40 222222.00 124051.20 238875.00 392519.40 261534.00 

28 7551.49 22351.54 1601.18 11698.68 49650.85 9022.84 26549.21 16963.80 

29 10887.18 14092.48 5916.55 8953.15 37089.90 2958.28 20575.38 9917.15 

30 19991.81 23444.44 16099.88 22275.00 50490.00 16118.44 8049.94 17411.63 

31 6678.79 6101.29 4440.98 6843.38 18722.55 3693.11 8596.09 3285.98 

32 5719.53 11338.43 2398.90 6931.05 26701.85 3900.23 13310.68 7961.45 

33 21329.19 15695.06 14693.25 19385.50 53121.75 10951.44 27888.06 7346.63 

34 258078.60 728398.20 261790.80 512606.40 1361570.4 451435.80 644793.00 575875.20 

35 9607.81 8559.69 6353.75 4891.25 21336.25 5951.56 17830.31 9514.38 

36 8340.23 13994.93 5984.10 4154.10 26946.75 8459.18 21470.48 13697.55 

37 73007.01 198738.76 65986.23 137295.40 378755.43 119995.81 174969.04 155375.08 

38 24757.94 109515.84 20525.58 63513.10 209073.18 58395.54 114439.76 87468.83 

39 46820.81 53659.31 42775.88 39250.88 40960.50 48318.94 73399.31 55712.63 

40 7047.90 16305.70 5658.00 11939.20 32644.20 9417.70 13583.30 12308.20 

41 26917.01 61965.86 10086.00 22567.43 133135.20 23134.76 81255.34 47404.20 

42 22884.54 50669.91 16196.50 20636.58 91957.03 31401.66 69686.84 47528.35 

43 13320.31 14853.44 11550.00 10071.88 13193.13 13052.19 23103.44 15654.38 

44 19556.25 9543.75 14550.00 13087.50 32087.50 12481.25 27518.75 12525.00 

45 150511.16 149278.61 136084.73 124879.73 89976.15 142499.59 224408.14 160511.63 

46 46994.46 58814.09 42605.63 40553.23 45922.45 49175.14 75966.29 61003.93 

47 12512.48 16103.33 11183.25 10561.65 14940.60 13172.93 21287.03 16755.45 

48 2611.09 2073.31 2174.38 1857.10 2006.55 2064.74 3788.31 2318.93 

49 27212.10 74352.90 23899.80 51935.40 147937.20 42986.70 64873.50 56510.40 

50 6030.08 6801.53 4001.55 2614.05 14979.45 4503.83 12617.93 7448.10 

Table 8: Minimum Cost FLP Network (Variable Costs) 
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5.2.1 Model Solution Networks 

Plots displaying which customers are mapped to which facility are generated to visualize each 

model’s solution. These are shown in figures 1, 2, and 3. 

 = Customer 

 = Facility 

  = Facility Serving Customer 

 

Figure 1: Deterministic Solution 

 

Figure 2: Robust Solution with γ = 0.2                                 Figure 3 Robust Solution with γ = 0.35 

The mapping is clearly different in each solution. Changing the deviation on demands greatly 

alters how many facilities will be located and which facility will serve a customer. The 

deterministic solution locates the least facilities, and the robust solution locates more facilities 
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when given greater deviations. For this network of 16 potential facilities, the deterministic model 

located 13, the robust model with γ = 0.2 located 15, and the robust model with γ = 0.35 located 

16. 

5.2.2 MCS Results Considering Symmetric and Asymmetric Distributions 

The robust and deterministic models were solved using the input network and parameters outlined 

in section 5.2.  

Model Distribution 
Demand 

Range 

Objective 

Value 
Infeasibility Greedy Cost 

Change in 

Cost 

Deterministic 

Symmetric 
[0.8d,1.2d] $1,040,444.38 0.9943 $925,048.35 -$115,396.02 

[0.65d,1.35d] $1,040,444.38 0.9940 $898,010.44 -$142,433.93 

Asymmetric 
[0.9d,1.2d] $1,040,444.38 1 $877,468.04 -$162,976.33 

[0.825d,1.35d] $1,040,444.38 1 $840,784.51 -$199,659.87 

Robust 

Symmetric 
[0.8d,1.2d] $1,183,964.33 0 $1,183,964.33 $0.00 

[0.65d,1.35d] $1,336,767.35 0 $1,336,767.35 $0.00 

Asymmetric 
[0.9d,1.2d] $1,183,964.33 0 $1,183,964.33 $0.00 

[0.825d,1.35d] $1,336,767.35 0 $1,336,767.35 $0.00 

Table 9: Minimum Cost FLP Results 

Looking at the results from table 9, the robust solution consistently costed more, meaning that 

the deterministic model was more effective at minimizing the total cost of the network. 

Accounting for infeasibility through the greedy heuristic shows that the deterministic cost is even 

less. However, this does not mean that the deterministic case is more effective. If this model 

were to be applied, the change in cost shows that more than 10% of a decision maker’s 

investment will not meet consumer demands under the best-case symmetric distribution and 

small range and almost 20% of investments will not meet consumer demands under a more 

worse case asymmetric distribution and large range. The deterministic case may provide a less 

efficient solution. 

5.2.3 Considering Penalty 

To account for the effect of investment not meeting demand, we consider using a penalty 

parameter. This is a simple parameter which accounts for many factors including but not limited 

to the missed opportunity cost and the negative consumer perception caused from not meeting 

demands. The calculation for penalty is shown in (29). 
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∑ 𝑓𝑦𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖𝑗�̃�𝑖𝑗𝑗∈𝐽𝑖∈𝐼 + ∑ ∑ 𝜌�̃�𝑖(𝑥𝑖𝑗 − �̃�𝑖𝑗)𝑗∈𝐽𝑖∈𝐼     (29) 

where, 

𝜌 = penalty 

�̃�𝑖𝑗 =  𝑥𝑖𝑗 after the greedy heuristic  

 

Demand Range Penalty 
Cost after greedy 

heuristic 
Change in Cost 

[0.8d,1.2d] 0 $925,048.35 -$115,396.02 

[0.65d,1.35d] 0 $898,010.44 -$142,433.93 

[0.8d,1.2d] 25 $1,158,736.63 $118,292.25 

[0.65d,1.35d] 25 $1,165,224.90 $124,780.53 

[0.8d,1.2d] 50 $1,393,468.75 $353,024.37 

[0.65d,1.35d] 50 $1,425,226.54 $384,728.16 

Table 10: Effect of Considering Penalty 

Table 10 shows the effects of various penalties on the deterministic model’s performance. The 

true value of penalty is unknown and varies based on location, products, market, and consumers. 

Because of this, a range of penalties are evaluated to capture these fluctuations. For penalties 

greater than 25, the robust model outperforms the deterministic. 

5.2.4 Minimum Cost FLP Discussion 

The results in table 7 show that the deterministic solution provides a lower cost. However, it is not 

realistic to consider this lower cost as better with 99.4% infeasibility in the model. We are almost 

completely certain that some demands will not be covered. For a symmetric, uniform deviation of 

0.2, uncovered demands make up 11.1% of the objective cost and for a symmetric, uniform 

deviation of 0.35, uncovered demands make up 13.7% of the objective cost. To rebalance the 

results, a penalty is added to account for shortages and lost opportunity cost. The penalty can vary 

based on local demands and prices, so table 10 shows results considering a range of values for 

penalty. It becomes clear that the penalty from not meeting demands can easily cause the robust 

model to outperform the deterministic.  
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5.3 Evaluation of 𝒅𝒊
∗ 

In the maximum coverage FLP, constraint (8) is satisfied with a probability of 1. The reason that 

a lower confidence was not produced is because of how 𝑑𝑖
∗ is evaluated from the second term in 

equation (13). For the demands and probability parameter used, the first entry of the minimum 

statement in (13) always controls. The result is that 𝑑𝑖
∗ is equal to �̅�𝑖  for the demands used in this 

problem. Similarly, in the minimum cost FLP, constraint (24) is satisfied with a probability of 1, 

and thus 𝑑𝑖
∗ is equal to �̅�𝑖. 

This result may be too conservative. While having 𝑑𝑖
∗ equal to �̅�𝑖 does satisfy the constraints of (8) 

and (24), the initial goal was to have a parameter which could provide an upper limit for �̃�𝑖 without 

using the upper bound. Doing so would cause a small amount infeasibility in the MCS and 

ultimately a more optimal solution. 
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6 CONCLUSION 

FLPs are network problems in which facilities are located to optimally meet objectives while 

satisfying constraints. Objectives and constraints vary based on the model’s application to meet 

certain goals. The objective of minimizing cost is used in the private sector because reducing cost 

is directly correlated to maximizing asset utilization. Public sector applications include postal 

services, waste management, fire departments, police, and others. Maximizing coverage is a better 

objective to suit these applications because they provide essential services. For any FLP, the 

constraints are modeled to provide more control of the objective. 

The two models considered in this paper, the minimum cost FLP and maximum coverage FLP, are 

archetypal examples of problems which have been popular in private or public sector applications. 

The constraints for the minimum cost FLP suit the idea of maximizing asset utilization because 

demands can be fractionally covered. The constraints for the maximum coverage FLP include a 

coverage radius, number of facilities to locate, and a binary decision variable to cover demands. 

These constraints also better fit the objective by giving more control over how coverage can be 

maximized. 

Even with this effort, these models are both deterministic, and their solutions can only be accurate 

with accurate assumptions. However, parameters like demand, capacity, and cost are never exact. 

Natural market fluctuations and extreme events will always cause these parameters to deviate. To 

get a better picture of each problem, robust problems can be developed for both the maximum 

coverage FLP and minimum cost FLP by considering each demand as uncertain.  

The methods by which the robust FLPs were developed in this paper provided convenient and fast 

computations. The deterministic maximum covering FLP provided better coverage when 

considering more common input parameters. However, there exist scenarios where the robust 

model performs better than the deterministic. The minimum cost FLP initially shows that the 

deterministic performs better than the robust. However, the deterministic solution was highly 

infeasible and penalty considerations show that the robust can easily outperform the deterministic. 

For both problems and networks, the equivalent uncertain demand 𝑑𝑖
∗ used in formulation was 

equal to the upper bound set by deviation. Other networks and problems should be explored to find 

scenarios where 𝑑𝑖
∗ is not always equal to the upper bound. 
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8 APPENDIX 

8.1 Python code for Maximum Coverage FLP 

8.1.1 Deterministic 

from gurobipy import * 

import numpy as np 

import random as rd 

 

f = open("DataFileLarge.txt", "r") 

for i in range(3): 

    line = f.readline() 

    data = line.split() 

I = list(range(int(data[0]))) 

J = list(range(int(data[0]))) 

N = int(data[0]) 

P = int(data[1]) 

xy_coor = np.zeros((50,2)) 

dem = a = np.zeros(50) 

for i in I: 

    line = f.readline() 

    data = line.split() 

    xy_coor[i,0] = int(data[1]) 

    xy_coor[i,1] = int(data[2]) 

    dem[i] = int(data[-1]) 

    a[i] = int(data[-1]) 

 

T = 1 #number of capacities tested 

U = np.ones(T) 

L = np.zeros((N,N)) 

M = np.zeros((N,N))  

s = np.zeros(T)#100000000 #coverage radius 

p = np.zeros(T) 

 

for u in range(T): 

    x_F = np.zeros(N) 

    y_F = np.zeros((N,N)) 

    s[u] = 30#100000#(u+4)*5 

    #print("s =", s[u]) 

    p[u] = P#(u+1)#P 

    print("p =", p[u]) 

     

    for i in I: 

        for j in J: 

            L[i][j] = round((np.sqrt((xy_coor[i,0] - xy_coor[j,0])**2 + (xy_coor[i,1] - 

xy_coor[j,1])**2)),2) 

            if L[i][j] <= s[u]: 

                M[i][j] = 1 

        else: 

            M[i][j] = 1000000 

 

    U[u] = sum(dem)/(0.8*p[u])#U[u]*70 + 10*u 

    print("Capacity =",U[u])            

     

    ######DETERMINISTIC MODEL####### 

       

    m = Model("facility location") 

    m.setParam('OutputFlag',0) 

    x = [] #facility locations 

    for j in J: 

        x.append(m.addVar(vtype=GRB.BINARY, name="x[%d]" % j))#vtype=GRB.BINARY accounts for 

objective 3  

         

    y = [] #Demand points 

    for i in I: 

        y.append([]) 

        for j in J: 
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            y[i].append(m.addVar(vtype=GRB.BINARY, name="y[%d,%d]" % (i,j)))#vtype=GRB.BINARY 

accounts for objective 4 

     

    m.setObjective(sum(sum(a[i]*y[i][j]*M[i][j] for j in J) for i in I), GRB.MAXIMIZE) #objective 

in Church and Revelle 

     

    for j in J: 

        m.addConstr(sum(M[i][j]*dem[i]*y[i][j] for i in I) <= U[u]*x[j], "2") #constraint to ensure 

demand <= capacity 

     

    for i in I: 

        m.addConstr(sum(M[i][j]*y[i][j] for j in J) <= 1, "3") 

     

    for i in I: 

        for j in J: 

            m.addConstr(y[i][j] <= x[j], "4") 

             

    m.addConstr(sum(x[j] for j in J) == p[u], "5") 

     

    m.optimize() 

     

    obj_F = m.ObjVal 

    print("Objective =",obj_F) 

    for j in J: 

        for i in I: 

            x_F[j] = int(abs(x[j].X)) 

            y_F[i][j] = int(abs(y[i][j].X)) 

             

    print("demand served =", sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in I)) 

    print("total demand =", sum(dem)) 

    print("coverage =", np.round(float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in 

I)/sum(dem)),3)) 

 

    ##########Robustness Test########## 

    rep = 1000 

    gam = 1 

    cdf = np.zeros((N,N)) #binary demand of facilities: 1 if covered, 0 otherwise [demand point, 

facility] 

    y_tilde = np.zeros((N,N)) 

    cov_ini = np.zeros((rep,T)) #Stores initial coverage for each [sim, capacity] 

    cov_fin = np.zeros((rep,T)) #Stores final coverage for each [sim, capacity] (after small demand 

points removed) 

    d_infeasability = np.zeros(T) 

    coverage_reduction = np.zeros((rep,T)) 

    avg_coverage_reduction = np.zeros(T) 

    avg_initial_coverage = np.zeros(T) 

    greedy_coverage = np.zeros(T) 

    d_infeas_counter = 0 

    coverage_infeas_counter = 0 

    file1 = open("Monte_Carlo_Results_gamma_equals_1.txt", "w") 

    for sim in range(rep): 

         

        d = np.zeros(N)#realization of demand 

        d_hat = np.zeros(N)#deviation of demand 

                 

        #generate realization of random demand, d[i] 

        for i in I: 

            d_hat[i] = dem[i]*rd.uniform(-1/4,1)*gam 

            d[i] = dem[i]+d_hat[i] 

     

        ####Test infeasability#### 

        if np.any( np.sum( np.multiply( np.multiply(y_F,M) , d[:,None] ) , axis=0 ) > x_F*U[u] ): 

            d_infeas_counter += 1 

         

        #Assign cdf and y_tilde 

        for i in I: 

            for j in J: 

                cdf[i,j] = y_F[i,j]*d[i]*M[i,j] 

                y_tilde[i,j] = y_F[i,j] 

                 

        #Greedy Heuristic 
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        for j in J: 

            while sum(cdf[:,j]) > x_F[j]*U[u] and x_F[j] != 0: 

                minval = 10000000000 

                for i in cdf[:,j]: 

                    if minval > i and i > 0: 

                        minval = i 

                for i in I: 

                    if minval == cdf[i,j]: 

                        cdf[i,j] = 0 

                        y_tilde[i,j] = 0 

         

        #To show greedy heuristic is effective                 

        for j in J: 

            if sum(cdf[:,j] > x_F[j]*U[u]): 

                coverage_infeas_counter += 1 

             

        cov_fin[sim][u]= float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in 

I)/sum(dem)) 

        coverage_reduction[sim][u] = float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in 

I)/sum(dem))-(float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in I)/sum(dem))) 

    d_infeasability[u] = d_infeas_counter/rep 

    coverage_infeasability = coverage_infeas_counter/rep 

     

    print("infeasability =", str(d_infeasability[u])) 

    print("greedy coverage =", np.round(float(sum(cov_fin[sim][u] for sim in range(rep))/rep),3)) 

    print("coverage reduction =", np.round(float(sum(coverage_reduction[sim][u] for sim in 

range(rep))/rep),3)) 

    print("###########################") 

8.1.2 Robust 

from gurobipy import * 

import numpy as np 

import random as rd 

 

f = open("DataFileLarge.txt", "r") 

for i in range(3): 

    line = f.readline() 

    data = line.split() 

I = list(range(int(data[0]))) 

J = list(range(int(data[0]))) 

N = int(data[0]) 

P = int(data[1]) 

xy_coor = np.zeros((50,2)) 

dem = a = np.zeros(50) 

for i in I: 

    line = f.readline() 

    data = line.split() 

    xy_coor[i,0] = int(data[1]) 

    xy_coor[i,1] = int(data[2]) 

    dem[i] = int(data[-1]) 

    a[i] = int(data[-1]) 

T = 1 #number of capcities/coverage radii/facilities tested 

U = np.ones(T) #Capacity 

L = np.zeros((N,N)) 

M = np.zeros((N,N))  

d_star = np.zeros(N) #Robust demand 

s = np.zeros(T)#100000000 #coverage radius 

p = np.zeros(T) 

gam = .2 #Devation Parameter 

eps = 0.1 #probability parameter 

 

 

for u in range(T): 

    x_F = np.zeros(N) 

    y_F = np.zeros((N,N)) 

    s[u] = 30#100000#(u+4)*5 

    #print("s =", s[u]) 

    p[u] = P#u+1#P 

    print("p =", p[u]) 
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    for i in I: 

        for j in J: 

            L[i][j] = round((np.sqrt((xy_coor[i,0] - xy_coor[j,0])**2 + (xy_coor[i,1] - 

xy_coor[j,1])**2)),2) 

            if L[i][j] <= s[u]: 

                M[i][j] = 1 

            else: 

                M[i][j] = 1000000 

             

 

    U[u] = sum(dem)/(0.8*p[u])#122.5#U[u]*70 + 10*u 

    print("Capacity =",U[u])            

       

    ######ROBUST MODEL####### 

     

    for i in I: 

        d_star[i] = dem[i] + min(((1+gam)*dem[i])-dem[i],(((1-eps)/eps)*(dem[i]-((1-

gam)*dem[i]))),np.sqrt(((1-eps)/eps)*((((1+gam)*dem[i])-dem[i])*(dem[i]-(dem[i]*(1-gam))))))      

     

    m = Model("facility location") 

    m.setParam('OutputFlag',0) 

    x = [] #facility locations 

    for j in J: 

        x.append(m.addVar(vtype=GRB.BINARY, name="x[%d]" % j))#vtype=GRB.BINARY accounts for 

objective 3  

         

    y = [] #Demand points 

    for i in I: 

        y.append([]) 

        for j in J: 

            y[i].append(m.addVar(vtype=GRB.BINARY, name="y[%d,%d]" % (i,j)))#vtype=GRB.BINARY 

accounts for objective 4 

     

    m.setObjective(sum(sum(a[i]*M[i,j]*y[i][j] for j in J) for i in I), GRB.MAXIMIZE) #objective 

in Church and Revelle 

     

    for j in J: 

        m.addConstr(sum(M[i][j]*d_star[i]*y[i][j] for i in I) <= U[u]*x[j], "2") #constraint to 

ensure demand <= capacity 

     

    for i in I: 

        m.addConstr(sum(M[i][j]*y[i][j] for j in J) <= 1, "3") 

     

    for i in I: 

        for j in J: 

            m.addConstr(y[i][j] <= x[j], "4") 

             

    m.addConstr(sum(x[j] for j in J) == p[u], "5") 

     

    m.optimize() 

     

    obj_F = m.ObjVal 

    print("Objective =", obj_F) 

    for j in J: 

        for i in I: 

            x_F[j] = int(abs(x[j].X)) 

            y_F[i][j] = int(abs(y[i][j].X)) 

             

    print("demand served = ", sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in I)) 

    print("total demand = ", sum(dem)) 

    print("coverage =", np.round(float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in 

I)/sum(dem)),3)) 

             

    ##########Robustness Test########## 

    rep = 1000 

    cdf = np.zeros((N,N)) #binary demand of facilities: 1 if covered, 0 otherwise [demand point, 

facility] 

    y_tilde = np.zeros((N,N)) 

    cov_ini = np.zeros((rep,T)) #Stores initial coverage for each [sim, capacity] 
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    cov_fin = np.zeros((rep,T)) #Stores final coverage for each [sim, capacity] (after small demand 

points removed) 

    d_infeasability = np.zeros(T) 

    coverage_reduction = np.zeros((rep,T)) 

    avg_coverage_reduction = np.zeros(T) 

    avg_initial_coverage = np.zeros(T) 

    greedy_coverage = np.zeros(T) 

    d_infeas_counter = 0 

    coverage_infeas_counter = 0 

    file1 = open("Robust_Monte_Carlo_Results_gamma_equals_1.txt", "w") 

    for sim in range(rep): 

         

        d = np.zeros(N)#realization of demand 

        d_hat = np.zeros(N)#deviation of demand 

         

        #generate realization of random demand, d[i] 

        for i in I: 

            d_hat[i] = dem[i]*rd.uniform(-1/4,1)*gam 

            d[i] = dem[i]+d_hat[i] 

         

        ####Test infeasability#### 

        if np.any( np.sum( np.multiply( np.multiply(y_F,M) , d[:,None] ) , axis=0 ) > x_F*U[u] ): 

            d_infeas_counter += 1 

             

        #Assign cdf and y_tilde 

        for i in I: 

            for j in J: 

                cdf[i,j] = y_F[i,j]*d[i] 

                y_tilde[i,j] = y_F[i,j] 

                 

        #Greedy Heuristic 

        for j in J: 

            while sum(cdf[:,j]) > x_F[j]*U[u] and x_F[j] != 0: 

                minval = 10000000 

                for i in cdf[:,j]: 

                    if minval > i and i > 0: 

                        minval = i 

                for i in I: 

                    if minval == cdf[i,j]: 

                        cdf[i,j] = 0 

                        y_tilde[i,j] = 0     

         

        #To show greedy Heuristic is effective                 

        for j in J: 

            if sum(cdf[:,j] > x_F[j]*U[u]): 

                coverage_infeas_counter += 1 

         

        cov_fin[sim][u]= float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in 

I)/sum(dem)) 

        coverage_reduction[sim][u] = float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in 

I)/sum(dem))-(float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in I)/sum(dem))) 

    d_infeasability[u] = d_infeas_counter/rep 

    coverage_infeasability = coverage_infeas_counter/rep 

     

    print("infeasability =", str(d_infeasability[u])) 

    print("greedy coverage =", np.round(float(sum(cov_fin[sim][u] for sim in range(rep))/rep),3)) 

    print("coverage reduction =", np.round(float(sum(coverage_reduction[sim][u] for sim in 

range(rep))/rep),3)) 

    print("###########################") 

8.2 Python code for Minimum Cost FLP 

8.2.1 Deterministic 

from gurobipy import * 

import numpy as np 

import random as rd 

 

# 1040444.375 
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# J.E.Beasley "An algorithm for solving   

# large capacitated warehouse location problems" European  

# Journal of Operational Research 33 (1988) 314-325. 

 

f = open("cap41.txt", "r") 

line = f.readline()  

data = line.split() 

num_loc = int(data[0]) 

num_cust = int(data[1]) 

I = list(range(num_cust)) 

J = list(range(num_loc)) 

u = np.zeros(num_loc) 

fc = np.zeros(num_loc) 

d = np.zeros(num_cust) 

c = np.zeros((num_cust,num_loc)) 

gam = 0.35 

rep = 1000 

penalty = 0 

 

for j in J: 

    line = f.readline() 

    data = line.split() 

    u[j] = int(data[0]) 

    fc[j] = float(data[1]) 

for i in I: 

    line = f.readline() 

    d[i] = (int(line)) 

    line = f.readline() 

    data = line.split() 

    for j in J: 

        c[i,j] = (float(data[j])) 

f.close() 

 

m = Model("facility location") 

 

y = [] 

for j in J: 

    y.append(m.addVar(vtype=GRB.BINARY, name="open[%d]" % i)) 

     

x = [] 

for i in I: 

    x.append([]) 

    for j in J: 

        x[i].append(m.addVar(lb = 0, ub = 1, name="trans[%d,%d]" % (i, j))) 

 

m.setObjective(quicksum(fc[j]*y[j] for j in J) + quicksum(c[i][j]*x[i][j] for j in J for i in I), 

GRB.MINIMIZE) 

 

for i in I: 

    m.addConstr(sum(x[i][j] for j in J) == 1, "Demand[%d]" % i) 

 

for j in J: 

     m.addConstr(sum(d[i]*x[i][j] for i in I) <= u[j]*y[j], "Capacity[%d]" % j) 

 

for i in I: 

    for j in J: 

        m.addConstr(x[i][j] <= y[j], "Feasibility[%d][%d]" %(i,j)) 

 

m.optimize() 

''' 

# Print solution 

f = open("output.txt", "w") 

f.write('\nTOTAL COSTS: %g' % m.objVal) 

f.write('\nSOLUTION:') 

for j in J: 

    if y[j].x > 0.99: 

        f.write('\nPlant %s open' % j) 

        for i in I: 

            if x[i][j].x > 0: 

                f.write('\n Transport %g units to customer %s' % (x[i][j].x, i)) 

    else: 
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        f.write('\nPlant %s closed!' % j) 

f.close() 

''' 

import networkx as nx 

import matplotlib.pyplot as plt 

 

plt.figure(figsize=(10,10)) 

 

cust_x = [rd.uniform(1,10) for i in I] 

cust_y = [rd.uniform(0,10) for i in I] 

 

fac_x = [rd.uniform(0,1) for j in J] 

fac_y = [rd.uniform(0,10) for j in J] 

 

connection = [(i,50+j) for i in I for j in J if x[i][j].x > 0] 

fac_nodes = [j for j in J if y[j].x > 0] 

cust_nodes = [i for i in I] 

 

G = nx.Graph() 

G.add_edges_from(connection) 

 

for i in I: 

    G.add_node(i, pos = (cust_x[i], cust_y[i])) 

 

print("Number of nodes: ", G.number_of_nodes()) 

     

for i in J: 

    if y[i].x > 0: 

        G.add_node(50+i, pos = (fac_x[i],fac_y[i])) 

 

print("Number of nodes: ", G.number_of_nodes())        

#node_col = nx.get_node_attributes(G,'color') 

node_col = ['blue' if node < len(I) else 'red' for node in G.nodes()] 

 

node_pos=nx.get_node_attributes(G,'pos') 

 

#nx.draw_networkx(G,node_pos, node_color = node_col) 

nx.draw(G,node_pos, node_color = node_col) 

#nx.draw_networkx_edges(G, node_pos) 

#plt.axis('off') 

# Show the plot 

plt.show() 

 

 

obj_F = m.ObjVal 

y_F = np.zeros(num_loc) 

x_F = np.zeros((num_cust,num_loc)) 

for j in J: 

    for i in I: 

        y_F[j] = int(abs(y[j].X)) 

        x_F[i][j] = (abs(x[i][j].X)) 

 

cdf = np.zeros((num_cust,num_loc)) 

cov_ini = np.zeros(rep) 

cov_fin = np.zeros(rep) 

cost_ini = np.zeros(rep) 

cost_fin = np.zeros(rep) 

change_x = np.zeros(rep) 

x_fin = np.zeros((num_cust,num_loc)) #x value after removing infeasible points 

 

####Monte Carlo Simulation##### 

 

infeas_counter = 0 

coverage_infeas_counter = 0 

file1 = open("Monte_Carlo_Results_gamma_equals_1.txt", "w") 

for sim in range(rep): 

     

    d_hat = np.zeros(num_cust) 

    d_rd = np.zeros(num_cust) 

            

    #generate realization of random demand, d[i] 
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    for i in I: 

        d_hat[i] = d[i]*rd.uniform(-1,1)*gam 

        d_rd[i] = d[i]+d_hat[i] 

 

    ####Test infeasability####    

    if np.any( np.sum( np.multiply(d_rd[:,None],x_F) ) > y_F*u[u] , axis=0): 

        infeas_counter += 1 

     

    #Calculate cost initially 

    cost_ini[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_F[i,j] for j in J) for i in I) 

     

    ####Test Coverage#### 

    for i in I: 

        for j in range(int(sum(y_F))): 

            cdf[i,j] = x_F[i,j]*d_rd[i] 

    cov_ini[sim] = np.sum(cdf) 

     

    for i in I: 

        for j in J: 

            x_fin[i,j] = x_F[i,j] 

     

    #Greedy Heuristic 

    for j in J:            

        while sum(cdf[:,j]) > u[j]: 

            minval = 10000000000 

            for i in cdf[:,j]: 

                if minval > i and i > 0: 

                    minval = i 

            for i in I: 

                if minval == cdf[i,j]: 

                    cdf[i,j] = 0 

                    x_fin[i,j] = 0 

     

    change_x[sim] = np.sum(x_F) - np.sum(x_fin) 

    cov_fin[sim] = np.sum(cdf) 

    cost_fin[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_fin[i,j] for j in J) for i in 

I) + sum(sum(penalty*d[i]*(x_F[i,j]-x_fin[i,j]) for i in I) for j in J)   

 

print("infeasibility = ", infeas_counter/rep) 

print("initial coverage = ", sum(cov_ini)/rep) 

print("final coverage =", sum(cov_fin)/rep) 

print("initial cost = ", sum(cost_ini)/rep) 

print("final cost = ", sum(cost_fin)/rep) 

print("change in cost = ", (sum(cost_ini)/rep)-(sum(cost_fin)/rep)) 

8.2.2 Robust 

from gurobipy import * 

import numpy as np 

import random as rd 

 

# 1040444.375 

# J.E.Beasley "An algorithm for solving   

# large capacitated warehouse location problems" European  

# Journal of Operational Research 33 (1988) 314-325. 

 

f = open("cap41.txt", "r") 

line = f.readline()  

data = line.split() 

num_loc = int(data[0]) 

num_cust = int(data[1]) 

I = list(range(num_cust)) 

J = list(range(num_loc)) 

u = np.zeros(num_loc) #capcity 

fc = np.zeros(num_loc) #fixed cost 

d = np.zeros(num_cust) #demand 

d_star = np.zeros(num_cust) #robust demand 

c = np.zeros((num_cust,num_loc)) #cost of serving customer 

gamma = 0.2 

epsilon = 0.05 
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rep = 1000 

 

for j in J: 

    line = f.readline() 

    data = line.split() 

    u[j] = int(data[0]) 

    fc[j] = float(data[1]) 

for i in I: 

    line = f.readline() 

    d[i] = (int(line)) 

    line = f.readline() 

    data = line.split() 

    for j in J: 

        c[i,j] = (float(data[j])) 

f.close() 

 

for i in I: 

    d_star[i] = d[i] + min(((1+gamma)*d[i])-d[i],((1-epsilon)/epsilon)*(d[i]-(d[i]*(1-

gamma))),(np.sqrt(((1-epsilon)/epsilon)*((((1+gamma)*d[i])-d[i])*(d[i]-(d[i]*(1-gamma))))))) 

 

m = Model("facility location") 

 

y = [] 

for j in J: 

    y.append(m.addVar(vtype=GRB.BINARY, obj=fc[j],  name="open[%d]" % i)) 

 

x = [] 

for i in I: 

    x.append([]) 

    for j in J: 

        x[i].append(m.addVar(obj=c[i][j], lb = 0, ub = 1, name="trans[%d,%d]" % (i, j))) 

 

# Other ways to add variables 

#y = m.addVars(num_loc, vtype=GRB.BINARY, obj=fc, name="open") 

#x = m.addVars(num_cust, num_loc, obj=c, lb = 0, ub = 1, name="trans") 

#x = [] 

#for i in cust: 

#    for j in loc: 

#        x[i][j] = m.addVar(obj=c[i][j], lb = 0, ub = 1, name="trans[%d,%d]" % (i, j)) 

 

m.modelSense = GRB.MINIMIZE 

 

for i in I: 

    m.addConstr(sum(x[i][j] for j in J) == 1, "Demand[%d]" % i) 

 

for j in J: 

     m.addConstr(sum(d_star[i]*x[i][j] for i in I) <= u[j]*y[j], "Capacity[%d]" % j) 

 

for i in I: 

    for j in J: 

        m.addConstr(x[i][j] <= y[j], "Feasibility[%d][%d]" %(i,j)) 

 

m.optimize() 

''' 

# Print solution 

f = open("robust_output.txt", "w") 

f.write('\nTOTAL COSTS: %g' % m.objVal) 

f.write('\nSOLUTION:') 

for j in J: 

    if y[j].x > 0.99: 

        f.write('\nPlant %s open' % j) 

        for i in I: 

            if x[i][j].x > 0: 

                f.write('\n Transport %g units to customer %s' % (x[i][j].x, i)) 

    else: 

        f.write('\nPlant %s closed!' % j) 

f.close() 

''' 

 

import networkx as nx 

import matplotlib.pyplot as plt 
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plt.figure(figsize=(10,10)) 

 

cust_x = [rd.uniform(1,10) for i in I] 

cust_y = [rd.uniform(0,10) for i in I] 

 

fac_x = [rd.uniform(0,1) for j in J] 

fac_y = [rd.uniform(0,10) for j in J] 

 

connection = [(i,50+j) for i in I for j in J if x[i][j].x > 0] 

fac_nodes = [j for j in J if y[j].x > 0] 

cust_nodes = [i for i in I] 

 

G = nx.Graph() 

G.add_edges_from(connection) 

 

for i in I: 

    G.add_node(i, pos = (cust_x[i], cust_y[i])) 

 

print("Number of nodes: ", G.number_of_nodes()) 

     

for i in J: 

    if y[i].x > 0: 

        G.add_node(50+i, pos = (fac_x[i],fac_y[i])) 

 

print("Number of nodes: ", G.number_of_nodes())        

#node_col = nx.get_node_attributes(G,'color') 

node_col = ['blue' if node < len(I) else 'red' for node in G.nodes()] 

 

node_pos=nx.get_node_attributes(G,'pos') 

 

#nx.draw_networkx(G,node_pos, node_color = node_col) 

nx.draw(G,node_pos, node_color = node_col) 

#nx.draw_networkx_edges(G, node_pos) 

#plt.axis('off') 

# Show the plot 

plt.show() 

 

obj_F = m.ObjVal 

y_F = np.zeros(num_loc) 

x_F = np.zeros((num_cust,num_loc)) 

for j in J: 

    for i in I: 

        y_F[j] = int(abs(y[j].X)) 

        x_F[i][j] = (abs(x[i][j].X)) 

 

 

cdf = np.zeros((num_cust,num_loc)) 

cov_ini = np.zeros(rep) 

cov_fin = np.zeros(rep) 

cost_ini = np.zeros(rep) 

cost_fin = np.zeros(rep) 

change_x = np.zeros(rep) 

x_fin = np.zeros((num_cust,num_loc)) #x value after removing infeasible points 

 

####Monte Carlo Simulation##### 

 

infeas_counter = 0 

coverage_infeas_counter = 0 

file1 = open("Monte_Carlo_Results_gamma_equals_1.txt", "w") 

for sim in range(rep): 

     

    d_hat = np.zeros(num_cust) 

    d_rd = np.zeros(num_cust) 

             

    #generate realization of random demand, d[i] 

    for i in I: 

        d_hat[i] = d[i]*rd.uniform(-0.5,1)*gamma 

        d_rd[i] = d[i]+d_hat[i] 

 

    ####Test infeasability####    
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    if np.any( np.sum( np.multiply(d_rd[:,None],x_F) ) > y_F*u[u] , axis=0): 

        infeas_counter += 1 

    #Calculate cost initially 

    cost_ini[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_F[i,j] for j in J) for i in I) 

         

    ####Test Coverage#### 

    for i in I: 

        for j in J: 

            cdf[i,j] = x_F[i,j]*d_rd[i] 

    cov_ini[sim] = np.sum(cdf) 

         

    for i in I: 

        for j in J: 

            x_fin[i,j] = x_F[i,j] 

     

    #Greedy Heuristic 

    for j in J:            

        while sum(cdf[:,j]) > u[j]: 

            minval = 10000000000 

            for i in cdf[:,j]: 

                if minval > i and i > 0: 

                    minval = i 

            for i in I: 

                if minval == cdf[i,j]: 

                    cdf[i,j] = 0 

                    x_fin[i,j] = 0 

 

    change_x[sim] = np.sum(x_F) - np.sum(x_fin) 

    cov_fin[sim] = np.sum(cdf) 

    cost_fin[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_fin[i,j] for j in J) for i in 

I)                 

 

print("infeasibility = ", infeas_counter/rep) 

print("initial coverage = ", sum(cov_ini)/rep) 

print("final coverage =", sum(cov_fin)/rep) 

print("initial cost = ", sum(cost_ini)/rep) 

print("final cost = ", sum(cost_fin)/rep) 

print("change in cost = ", (sum(cost_ini)/rep)-(sum(cost_fin)/rep)) 

print("change in x = ", sum(change_x)/rep) 
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