
Portland State University Portland State University

PDXScholar PDXScholar

Civil and Environmental Engineering
Undergraduate Honors Theses Civil and Environmental Engineering

Spring 2021

Distributionally Robust Optimization Utilizing Facility Distributionally Robust Optimization Utilizing Facility

Location Problems Location Problems

Elijah Kling
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_honorstheses

 Part of the Civil Engineering Commons, and the Transportation Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Kling, Elijah, "Distributionally Robust Optimization Utilizing Facility Location Problems" (2021). Civil and
Environmental Engineering Undergraduate Honors Theses. 12.
https://doi.org/10.15760/honors.1147

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Civil and
Environmental Engineering Undergraduate Honors Theses by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/cengin_honorstheses
https://pdxscholar.library.pdx.edu/cengin_honorstheses
https://pdxscholar.library.pdx.edu/cengin
https://pdxscholar.library.pdx.edu/cengin_honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fcengin_honorstheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=pdxscholar.library.pdx.edu%2Fcengin_honorstheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=pdxscholar.library.pdx.edu%2Fcengin_honorstheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/cengin_honorstheses/12
https://doi.org/10.15760/honors.1147
mailto:pdxscholar@pdx.edu

DISTRIBUTIONALLY ROBUST OPTIMIZATION UTILIZING

FACILITY LOCATION PROBLEMS

BY

Elijah Kling

A thesis submitted in partial fulfillment

of the requirement for the degree of

BACHELOR OF SCIENCE

IN

CIVIL AND ENVIRONMENTAL ENGINEERING

Thesis Advisor:

Dr. Avinash Unnikrishnan

Portland State University

©2021

ii

ACKNOWLEDGMENTS

I extend a huge thank you to Dr. Avinash Unnikrishnan, whose guidance and brilliance made this

work possible.

I would like to thank Darshan Chauhan, who provided the tools and examples which allowed for

this thesis to be completed.

I would also like to thank the National Science Foundation Grant number 1826337 “Collaborative

Research: Real-Time Stochastic Matching Models for Freight Electronic Marketplace” for

supporting this research.

Lastly, I would like to thank my instructors, professors, and peers for creating a unique and

motivating learning environment.

iii

ABSTRACT

Facility location problems are a used in widespread application in transportation, freight, supply

chain, and logistics problems. Models can be developed as deterministic, where all parameters are

known, or robust, where a parameter has uncertainty. This thesis explores a new method for

developing robust formulation and compares the implications of assuming values for this uncertain

parameter. Two models are solved, and both are compared against their deterministic counterparts

using numerical analysis. By manipulating the input parameters and considering real world

implications of the solutions, either the robust or deterministic can show better performance.

iv

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 PURPOSE .. 2

3 LITERATURE REVIEW ... 3

4 MODELS ... 4

4.1 MAXIMUM COVERAGE FLP .. 4
4.1.1 Nomenclature ... 4
4.1.2 Deterministic Formulation .. 5
4.1.3 Robust Formulation ... 5

4.2 MINIMUM COST FLP .. 7
4.2.1 Nomenclature ... 7
4.2.2 Deterministic Formulation .. 8
4.2.3 Robust Formulation ... 8

5 NUMERICAL ANALYSIS AND RESULTS .. 11

5.1 MAXIMUM COVERAGE FLP .. 11
5.1.1 Effect of Varying Capacity ... 12
5.1.2 Effect of Varying Coverage Radius .. 13
5.1.3 Effect of Varying Facilities Located .. 14
5.1.4 Comparing Symmetric and Various Asymmetric Distributions ... 16
5.1.5 Maximum Coverage FLP Discussion .. 17

5.2 MINIMUM COST FLP .. 17
5.2.1 Model Solution Networks ... 20
5.2.2 MCS Results Considering Symmetric and Asymmetric Distributions .. 21
5.2.3 Considering Penalty .. 21
5.2.4 Minimum Cost FLP Discussion ... 22

5.3 EVALUATION OF 𝒅𝒊
∗ .. 23

6 CONCLUSION .. 24

7 REFERENCES .. 25

8 APPENDIX .. 27

8.1 PYTHON CODE FOR MAXIMUM COVERAGE FLP ... 27
8.1.1 Deterministic.. 27
8.1.2 Robust .. 29

8.2 PYTHON CODE FOR MINIMUM COST FLP .. 31
8.2.1 Deterministic.. 31
8.2.2 Robust .. 34

v

LIST OF TABLES

Table 1: Network of Maximum Coverage FLP ... 12
Table 2: Varying Capacity ... 13
Table 3: Varying Coverage Radius .. 14
Table 4: Varying Facilities Located... 15
Table 5: Symmetric vs Asymmetric Distributions ... 16
Table 6: Minimum Cost FLP Network (Demands) ... 18
Table 7: Minimum Cost FLP Network (Capacities and Fixed Costs) ... 18
Table 8: Minimum Cost FLP Network (Variable Costs) ... 19
Table 9: Minimum Cost FLP Results .. 21
Table 10: Effect of Considering Penalty .. 22

LIST OF FIGURES

Figure 1: Deterministic Solution ... 20
Figure 2: Robust Solution with γ = 0.2 .. 20
Figure 3 Robust Solution with γ = 0.35 ... 20

1

1 INTRODUCTION

Transportation, supply chain, and freight systems are typically designed through maximizing

efficiency. This paper will primarily focus on facility location problems (FLP), which have

widespread application. Facility is used as a broad term including but not limited to factories,

seaports, schools, public transit stops, and more. A maximum coverage FLP is used in public sector

applications to locate facilities by maximizing the demand served. Examples of public sector

applications include locating post offices, health clinics, ambulances, fire departments, etc. FLPs

are also used in the private sector. Private sector applications will often use a cost minimization

perspective as maximizing coverage is not essential.

The FLPs which will be considered in this paper will include one public and one private sector

application. The problems are initially deterministic, meaning that no randomness is involved to

develop a solution. Each constraint which is accounted for in the problem is known, unchanging,

and not affected by chance. Using deterministic problems as a basis for development poses

concerns because many deterministic constraints are not a reality.

A robust problem will account for uncertainty. There are multiple ways to achieve this. For our

purposes, one parameter will be assumed to have a distribution with defined bounds. Using the

methods from (Ghosal and Wiesemann, 2020), an equivalent parameter will be generated to

encapsulate the uncertain parameter. The goal of this paper will be to create robust models which

are computationally quicker and easier to solve.

2

2 PURPOSE

An important theme in civil engineering problems is how much do we design for? That is, how

can we be certain that a design will meet the criteria without using too many resources, effort, and

labor? Designing to meet an average doesn’t work because failure occurs 50% of the time.

Designing something to never fail is incredibly costly and overengineered. Canon 1 of The

American Society of Civil Engineers (ASCE) Code of Ethics states that “Engineers shall hold

paramount the safety, health, and welfare of the public and shall strive to comply with the

principles of sustainable development in the performance of their professional duties.” (Code of

Ethics)

Above all else, a design should be safe and healthy to use. The most important criterion after that

is welfare of the public. The problem we are evaluating becomes clearer. When dealing with

uncertainty, we must be able to quantify what can be expected. From there we can ensure that

whatever we are designing for captures safety, health, and welfare of the public. When choosing

how to locate facilities, it is important to ensure that a decision maker can see how the uncertainty

is quantified. By creating a stochastic model, the certainty for which a constraint will be satisfied

can be controlled. For the purposes of this research, demand is considered as uncertain. Uncertain

demand will be implemented into two facility location models to show how well the stochastic

solution meets the objectives. To provide a reasonable design, the uncertain demand should be

permitted to exceed the capacity of the facility a very small fraction of the time. In both models

this is less than five percent of the time. A theme of this paper is to obtain a practical robust model

which provides better performance than its deterministic counterpart.

3

3 LITERATURE REVIEW

A plethora of work has been conducted on FLPs. (Church and ReVelle, 1974) outlines the

maximum coverage FLP which paved the road for the continuous development of problems in this

field. This literature review aims to illustrate the diversity of application though the following

relevant work. (Current et al., 2002) outlines the widespread application and usefulness of

maximum coverage FLPs. A model from (Esnaf and Küçükdeniz, 2009) shows a broader method

of locating facilities by eliminating the set of facilities to choose from. Instead, facilities are located

anywhere to maximize demand. (Arabani and Farahani, 2012) show the dynamics between

different minimum cost FLPs. (Chauhan et al., 2019) applies a maximum coverage FLP to drone-

delivery and demonstrates how FLPs will be adapted to changing infrastructure. (Karatas and

Dasci, 2020) shows how a FLP can incorporate more levels of facilities to maximize demand over

an entire supply chain system. (Arslan, 2021) develops a solution considering the choice to locate

a facility or route a vehicle. FLPs are incredibly diverse in their applications and continue to evolve

with development.

Many works also consider uncertainty. (Snyder, 2006) reviews FLP problems under uncertainty

and shows the diversity in objectives which have been developed. A study on linear optimization

problems by (Bertsimas and Sim, 2004) shows how robust solutions may be too conservative.

(Wang et al., 2002) shows algorithms considering M/M/1 queueing systems met with stochastic

demand. (Miranda and Garrido, 2004) utilize stochastic demand in their network design model

aimed at incorporating short- and medium-term decisions. (Baron et al., 2011) and (Gülpınar et

al., 2013) show various robust strategies for FLPs under uncertain demands. (Naoum-Sawaya and

Elhedhli, 2013) present a stochastic optimization model applied to ambulance deployment.

(Berglund and Kwon, 2014) present a robust FLP to minimize cost of hazardous waste

transportation. (Lutter et al., 2017) explore robust solutions to set covering problems through

studying mixed integer linear program problems. (Zhong et al., 2020) apply optimization to a

facility location and vehicle routing problem. (Chauhan et al., 2020) extends the work of (Chauhan

et al., 2019) and applies a robust optimization approach to an integer linear programming model.

(Basciftci et al., 2021) considers stochastic demands for a two-stage decision-dependent

optimization model. Considering uncertain parameters, particularly demand, is incredibly common

in FLPs and other network optimization models.

4

4 MODELS

The two models used to study the robust solution are a maximum coverage FLP and a minimum

cost FLP. The robust models will be developed using a method proposed by (Ghosal and

Wiesemann, 2020)

4.1 Maximum Coverage FLP

The objective of a maximum coverage FLP is in its name: to maximize the coverage. This type of

FLP is more applicable in the case of public sector development. The model presented is

capacitated and includes a coverage radius. For the purposes of maximizing infeasibility in

numerical analysis, the model will be assumed to have an infinite coverage radius.

4.1.1 Nomenclature

Sets

𝐼 Set of demand points

𝐽 Set of potential facility locations

Indices

𝑖 ∈ 𝐼

𝑗 ∈ 𝐽

Parameters

𝜀 Probability Parameter

 𝛾 Deviation Parameter

𝑎𝑗 Importance of meeting demand point j

�̃�𝑖 Probabilistic demand of point 𝑖

𝑑𝑖 Nominal demand of point 𝑖

𝑈 Capacity

𝑠 Coverage radius

𝐿𝑖𝑗 Distance between demand point and facility location

𝑀𝑖𝑗 1 if 𝐿𝑖𝑗 ≤ 𝑠; ꝏ otherwise

𝑝 Maximum number of facilities to locate

Decision Variables

𝑥𝑗 Binary: Equal to 1 if facility 𝑖 is opened; 0 otherwise

5

𝑦𝑖𝑗 Binary: Equal to 1 if demand point 𝑖 is serving facility 𝑗; 0 otherwise

4.1.2 Deterministic Formulation

The objective is to maximize the coverage across all demand points (1).

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑎𝑖𝑦𝑖𝑗𝑗∈𝐽𝑖∈𝐼 (1)

𝑆. 𝑇𝑜. ∑ 𝑀𝑖𝑗𝑑𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼 , ∀ 𝑗 ∈ 𝐽 (2)

∑ 𝑀𝑖𝑗𝑦𝑖𝑗 ≤ 1,𝑗 ∈𝐽 ∀ 𝑖 ∈ 𝐼 (3)

𝑦𝑖𝑗 ≤ 𝑥𝑗 , ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (4)

∑ 𝑥𝑗 ≤ 𝑝𝑗∈𝐽 (5)

𝑥𝑗 ∈ {0, 1}, ∀ 𝑗 ∈ 𝐽 (6)

𝑦𝑖𝑗 ∈ {0, 1}, ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (7)

(2) ensures that demand does not exceed capacity. Constraint (3) prevents a single demand

point from mapping to more than one facility and (4) ensures that demand points are not

mapped to closed facilities. (5) controls how many facilities are opened and (6-7) are

variable definitions.

4.1.3 Robust Formulation

We begin with the deterministic problem. The nominal demand will now be considered as

uncertain. Letting �̃�𝑖 represent the uncertain demand, equation (8) is employed in place of (2) with

a confidence of at least 1 − 𝜀.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑎𝑖𝑦𝑖𝑗𝑀𝑖𝑗𝑗∈𝐽𝑖∈𝐼 (1)

𝑆. 𝑇𝑜. 𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼) ≥ 1 − 𝜀, ∀ 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (8)

∑ 𝑀𝑖𝑗𝑦𝑖𝑗 ≤ 1,𝑗 ∈𝐽 ∀ 𝑖 ∈ 𝐼 (3)

𝑦𝑖𝑗 ≤ 𝑥𝑗 , ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (4)

∑ 𝑥𝑗 ≤ 𝑝𝑗∈𝐽 (5)

6

𝑥𝑗 ∈ {0, 1}, ∀ 𝑗 ∈ 𝐽 (6)

𝑦𝑖𝑗 ∈ {0, 1}, ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (7)

Equation (8) can then be rewritten as

sup
𝑃∈ℙ

𝑃 (∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼) ≥ 1 − 𝜀, ∀ 𝑗 ∈ 𝐽 (9)

Let VAR1−𝜀,𝑃 be the 1 − 𝜀 quantile under probability distribution P.

VAR1−𝜀,𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗𝑖∈𝐼) = inf
𝑥∈ℝ

{𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑥𝑖∈𝐼) ≥ 1 − 𝜀}

We know

𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼) ≥ 1 − 𝜀 ⟹ VAR1−𝜀,𝑃(∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗𝑖∈𝐼) ≤ 𝑈𝑥𝑗

Therefore equation (9) can be rewritten as

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ 𝑀𝑖𝑗�̃�𝑖𝑦𝑖𝑗𝑖∈𝐼) ≤ 𝑈𝑥𝑗

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) ≤ 𝑈𝑥𝑗

Where 𝐼𝑗 = {𝑖 ∈ 𝐼, 𝑦𝑖𝑗 = 1}

If the following three conditions are satisfied

𝑃(�̃�𝑖 ∈ [𝑑𝑖, 𝑑𝑖]) = 1, ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (10)

𝔼𝑃[�̃�𝑖] = 𝑑𝑖 , ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (11)

𝔼𝑃 [(�̃�𝑖 − 𝑑𝑖)
2

] ≤ 𝜎𝑖
2, ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (12)

Based on theorem 2 and proposition 3 of (Ghosal and Wiesemann, 2020), for all probability

distributions 𝑃 ∈ ℙ satisfying equations (10, 11, 12), we have

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) = ∑ sup

𝑃∈ℙ
VAR1−𝜀,𝑃 (�̃�𝑖)𝑖∈𝐼𝑗

7

and

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (�̃�𝑖) = 𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,
1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2} ∀ 𝑖 ∈ 𝐼

Therefore, we can substitute equation (8) with equation (13) to obtain the distributionally robust

formulation.

∑ 𝑀𝑖𝑗𝑑𝑖
∗𝑦𝑖𝑗 ≤ 𝑈𝑥𝑗𝑖∈𝐼 , ∀ 𝑗 ∈ 𝐽 (13)

where,

𝑑𝑖
∗ = 𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,

1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2} ∀ 𝑖 ∈ 𝐼 (14)

𝑑𝑖 and 𝑑𝑖 are the upper and lower bounds for �̃�𝑖 determined by the deviation parameter, 𝛾 (14-15).

Further, to simplify considering a large variety of distributions, we utilize the Bhatia-Davis

inequality (Bhatia and Davis, 2000) shown in (16). (16) provides upper bounds for variance for

any bounded probability distribution. For numerical analysis, the solution will be tested assuming

a uniform distribution such that the variance will be in accordance with a uniform distribution (17),

which is easily verified to be within the bounds of (16).

𝑑𝑖 = (1 + 𝛾)𝑑𝑖 (14)

𝑑𝑖 = (1 − 𝛾)𝑑𝑖 (15)

Bhatia-Davis inequality: 𝜎𝑖
2 ≤ (𝑑𝑖 − 𝑑𝑖)(𝑑𝑖 − 𝑑𝑖) (16)

𝜎𝑖
2 =

1

3
𝛾2𝑑𝑖

2 (17)

4.2 Minimum Cost FLP

The minimum cost facility location model utilizes a capacitated model presented by (Beasley,

1988). The objective of minimizing cost is more applicable to the private sector.

4.2.1 Nomenclature

Sets

𝐼 Set of demand points

8

𝐽 Set of potential facility locations

Indices

𝑖 ∈ 𝐼

𝑗 ∈ 𝐽

Parameters

𝑑𝑖 Demand of point 𝑖

𝑓𝑗 Fixed cost for establishing facility at point 𝑗

𝑢𝑗 Capacity of facility of location 𝑗

𝑑𝑖 Cost of meeting demand at point 𝑖 from facility 𝑗

Decision Variables

𝑦𝑗 Binary: Equal to 1 if a facility is located at 𝑗; 0 otherwise

𝑥𝑖𝑗 Fractional: Equal to fraction of demand point 𝑖 met by facility is located at 𝑗

4.2.2 Deterministic Formulation

The objective (18) is to minimize the sum of the fixed and variable costs. (19) restricts the

fractional demand variable, 𝑥𝑖𝑗, to be equal to one across a set of facility locations. This implies

that all demand must be met. (20) ensures demand does not exceed capacity. (21) restricts the

fraction of demand to be allocated only if a facility is located. (22, 23) are variable definitions.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑓𝑗𝑦𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖∈𝐼 (18)

𝑆. 𝑇𝑜. ∑ 𝑥𝑖𝑗 = 1𝑗∈𝐽 , ∀ 𝑖 ∈ 𝐼 (19)

∑ 𝑑𝑖𝑥𝑖𝑗 ≤ 𝑢𝑗𝑦𝑗 ,𝑖 ∈𝐼 ∀ 𝑗 ∈ 𝐽 (20)

𝑥𝑖𝑗 ≤ 𝑦𝑗 , ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (21)

𝑥𝑖𝑗 ∈ [0,1], ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (22)

𝑦𝑗 ∈ {0, 1}, ∀ 𝑗 ∈ 𝐽 (23)

4.2.3 Robust Formulation

Using the deterministic formulation, (24) is used in place of (20) to create a robust model.

9

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑓𝑗𝑦𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖∈𝐼 (18)

𝑆. 𝑇𝑜. ∑ 𝑥𝑖𝑗 = 1𝑗∈𝐽 , ∀ 𝑖 ∈ 𝐼 (19)

𝑃(∑ �̃�𝑖𝑥𝑖𝑗𝑖 ∈𝐼 ≤ 𝑢𝑗𝑦𝑗) ≤ 1 − 𝜀, ∀ 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (24)

𝑥𝑖𝑗 ≤ 𝑦𝑗 , ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (21)

𝑥𝑖𝑗 ∈ [0,1], ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (22)

𝑦𝑗 ∈ {0, 1}, ∀ 𝑗 ∈ 𝐽 (23)

Equation (24) can then be rewritten as

sup
𝑃∈ℙ

𝑃 (∑ �̃�𝑖𝑥𝑖𝑗𝑖 ∈𝐼 ≤ 𝑢𝑗𝑦𝑗) ≥ 1 − 𝜀, ∀ 𝑗 ∈ 𝐽 (25)

Let VAR1−𝜀,𝑃 be the 1 − 𝜀 quantile under probability distribution P.

VAR1−𝜀,𝑃(∑ �̃�𝑖𝑥𝑖𝑗𝑖∈𝐼) = inf
𝑥∈ℝ

{𝑃(∑ �̃�𝑖𝑥𝑖𝑗 ≤ 𝑥𝑖∈𝐼) ≥ 1 − 𝜀}

We know

𝑃(∑ �̃�𝑖𝑥𝑖𝑗 ≤ 𝑢𝑗𝑦𝑗𝑖∈𝐼) ≥ 1 − 𝜀 ⟹ VAR1−𝜀,𝑃(�̃�𝑖𝑥𝑖𝑗) ≤ 𝑢𝑗𝑦𝑗

Therefore equation (25) can be rewritten as

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑥𝑖𝑗𝑖∈𝐼) ≤ 𝑢𝑗𝑦𝑗

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) ≤ 𝑢𝑗𝑦𝑗

Where 𝐼𝑗 = {𝑖 ∈ 𝐼, 𝑥𝑖𝑗 = 1}

If the following three conditions are satisfied:

𝑃(�̃�𝑖 ∈ [𝑑𝑖, 𝑑𝑖]) = 1, ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (26)

𝔼𝑃[�̃�𝑖] = 𝑑𝑖 , ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (27)

𝔼𝑃 [(�̃�𝑖 − 𝑑𝑖)
2

] ≤ 𝜎𝑖
2, ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑃 ∈ ℙ (28)

10

Based on theorem 2 and proposition 3 of (Ghosal and Wiesemann, 2020), for all probability

distributions 𝑃 ∈ ℙ satisfying equations (26, 27, 28), we have

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (∑ �̃�𝑖𝑖∈𝐼𝑗
) = ∑ sup

𝑃∈ℙ
VAR1−𝜀,𝑃 (�̃�𝑖)𝑖∈𝐼𝑗

and

sup
𝑃∈ℙ

VAR1−𝜀,𝑃 (�̃�𝑖) = 𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,
1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2} ∀ 𝑖 ∈ 𝐼

Therefore, we can substitute equation (24) with equation (29) to obtain the distributionally robust

formulation.

∑ 𝑑𝑖
∗𝑥𝑖𝑗𝑖 ∈𝐼 ≤ 𝑢𝑗𝑦𝑗 , ∀ 𝑗 ∈ 𝐽 (29)

where,

𝑑𝑖
∗ = 𝑑𝑖 + 𝑚𝑖𝑛 {�̅�𝑖 − 𝑑𝑖,

1−𝜀

𝜀
(𝑑𝑖 − 𝑑𝑖), √

1−𝜀

𝜀
∗ 𝜎𝑖

2} ∀ 𝑖 ∈ 𝐼 (30)

Similar to the maximum coverage facility location problem, 𝑑𝑖 and 𝑑𝑖 are the upper and lower

bounds for �̃�𝑖 determined by the deviation parameter, 𝛾 in accordance with equations (14-15).

Inequality (16) shows how the variance is determined.

11

5 NUMERICAL ANALYSIS AND RESULTS

For numerical analysis, simple Monte Carlo simulation (MCS) was used to test the feasibility of

the models’ solutions. When infeasibility was encountered, a greedy heuristic was employed to

arrive at a feasible solution which would be used for evaluation.

5.1 Maximum Coverage FLP

The robust and deterministic models were solved using the network adopted from (Osman and

Christofides, 1994) shown in table 1. The robust model was always solved with the probability

parameter 𝜀 equal to 0.1. Other input parameters will be varied and explored in later sections. 1000

MCS iterations were conducted with the models’ solutions. Model coverage was calculated as the

fraction of nominal demand covered over total nominal demand in the system. For each solution,

different ranges were set on the demand. Using these bounds, uncertain demands were randomly

generated in accordance with a uniform distribution for each MCS iteration. For each range of

demands, different capacities or coverage radii were tested to display the behavior of the models’

coverage. Infeasibility was then calculated by checking if deterministic constraint (2) or robust

constraint (13) was satisfied for each iteration. When infeasibility was encountered, the greedy

heuristic removed the smallest demand points until infeasibility was equal to zero. The greedy

coverage shows this new coverage and coverage reduction shows how much coverage was

removed after using the greedy heuristic.

index i x coordinate y coordinate demand index i x coordinate y coordinate demand

1 2 62 3 26 12 2 16

2 80 25 14 27 53 33 3

3 36 88 1 28 53 10 7

4 57 23 14 29 33 32 14

5 33 17 19 30 69 67 17

6 76 43 2 31 43 5 3

7 77 85 14 32 10 75 3

8 94 6 6 33 8 26 12

9 89 11 7 34 3 1 14

10 59 72 6 35 96 22 20

11 39 82 10 36 6 48 13

12 87 24 18 37 59 22 10

13 44 76 3 38 66 69 9

14 2 83 6 39 22 50 6

15 19 43 20 40 75 21 18

16 5 27 4 41 4 81 7

17 58 72 14 42 41 97 20

12

18 14 50 11 43 92 34 9

19 43 18 19 44 12 64 1

20 87 7 15 45 60 84 8

21 11 56 15 46 35 100 5

22 31 16 4 47 38 2 1

23 51 94 13 48 9 9 7

24 55 13 13 49 54 59 9

25 84 57 5 50 1 58 2

Table 1: Network of Maximum Coverage FLP

5.1.1 Effect of Varying Capacity

For this analysis, an infinite coverage radius was assumed, and five facilities were located.

Capacity was tested between 70 and 140.

Model Capacity
Demand

Range

Model

Coverage
Infeasibility

Greedy

Coverage

Coverage

Reduction

Deterministic

70

[0.8d,1.2d]

0.714 0.965 0.68 0.035

80 0.816 0.982 0.784 0.032

90 0.918 0.964 0.888 0.031

100 1 0.924 0.981 0.019

110 1 0.91 0.978 0.022

120 1 0.917 0.977 0.023

130 1 0.885 0.983 0.017

140 1 0.886 0.981 0.019

70

[0,2d]

0.714 0.963 0.591 0.124

80 0.816 0.975 0.683 0.133

90 0.918 0.964 0.775 0.143

100 1 0.957 0.868 0.132

110 1 0.939 0.869 0.131

120 1 0.934 0.863 0.137

130 1 0.869 0.887 0.113

140 1 0.879 0.883 0.117

Robust

70

[0.8d,1.2d]

0.592 0 0.592 0

80 0.673 0 0.673 0

90 0.765 0 0.765 0

100 0.847 0 0.847 0

110 0.929 0 0.929 0

120 1 0 1 0

130 1 0 1 0

140 1 0 1 0

70 [0,2d] 0.357 0 0.357 0

13

80 0.408 0 0.408 0

90 0.459 0 0.459 0

100 0.51 0 0.51 0

110 0.561 0 0.561 0

120 0.612 0 0.612 0

130 0.663 0 0.663 0

140 0.714 0 0.714 0

Table 2: Varying Capacity

Table 2 shows the effect of varying capacity in the models. For the deterministic, higher

capacities resulted in higher model coverage, higher greedy coverage, lower infeasibility, and a

lower coverage reduction. A larger deviation of demand results in higher infeasibilities for

capacities higher than 90, and lower infeasibilities for capacities lower than 90. Because the

infeasibility is often equal to 1 for higher capacities, varying the coverage radius will also be

explored.

For the robust model, infeasibility is always equal to 0. The greedy heuristic does not remove

any demands and thus the greedy coverage is equal to the model coverage. Unlike the

deterministic, the robust model coverage changes as distribution changes. In this analysis, for

lower deviations, the robust model outperforms the deterministic model when coverage is greater

than 120, and the deterministic outperforms the robust for capacities less than 120. For higher

deviation, the deterministic model always provides better coverage than the robust model.

5.1.2 Effect of Varying Coverage Radius

For this experiment, 5 facilities are located, and the capacity is 122.5. Coverage radius is varied

ranging from 20 to 55.

Model
Coverage

Radius

Demand

Range

Model

Coverage
Infeasibility

Greedy

Coverage

Coverage

Reduction

Deterministic

20

[0.8d,1.2d]

0.867 0 0.867 0

25 0.961 0.049 0.961 0

30 1 0.188 0.998 0.002

35 1 0.365 0.997 0.003

40 1 0.225 0.997 0.003

45 1 0.568 0.99 0.01

50 1 0.468 0.996 0.004

55 1 0.614 0.993 0.007

20 [0,2d] 0.867 0.452 0.843 0.024

14

25 0.961 0.679 0.911 0.05

30 1 0.728 0.941 0.059

35 1 0.788 0.928 0.072

40 1 0.829 0.919 0.081

45 1 0.72 0.932 0.068

50 1 0.707 0.952 0.048

55 1 0.751 0.935 0.065

Robust

20

[0.8d,1.2d]

0.845 0 0.845 0

25 0.918 0 0.918 0

30 0.973 0 0.973 0

35 1 0 1 0

20
[0,2d]

0.622 0 0.622 0

55 0.622 0 0.622 0

Table 3: Varying Coverage Radius

For the deterministic model there was more variation in the behavior of infeasibility, greedy

coverage, and coverage reduction as the coverage radius increased shown in table 3. This is

expected because the demand points which are available to a facility alter as the coverage radius

changes. In general, as the coverage radius increased, the infeasibility increased. The greedy

coverage also increased until coverage radius was equal to 30. For coverage radii greater than 30,

there was no significant change to greedy coverage or coverage reduction. A coverage radius of

30 produced the most optimal greedy coverage for both ranges of demand.

The robust model produced similar results as shown in section 5.1.1. The MCS shows no

infeasibility, and the greedy heuristic does not change the coverage. Using a larger variation

range of demands shows that coverage does not change as the coverage radius is increased from

20 to 55. For this analysis, the deterministic model always outperforms the robust model, expect

when the variation range of demand is less and the coverage radius is at least 35 units.

5.1.3 Effect of Varying Facilities Located

For this experiment, the number of facilities located ranges from 1 to 8, the capacity of each facility

is determined in accordance using the approximation proposed by (Pirkul and Schilling, 1989),

and an infinite coverage radius is considered.

Model Facilities
Demand

Range
Capacity

Model

Coverage
Infeasibility

Greedy

Coverage

Coverage

Reduction

Deterministic 1 [0.8d,1.2d] 612.5 1 0 1 0

15

2 306.25 1 0.474 0.993 0.007

3 204.17 1 0.725 0.989 0.011

4 153.13 1 0.844 0.984 0.016

5 122.5 1 0.928 0.978 0.022

6 102.08 1 0.941 0.978 0.022

7 87.5 1 0.926 0.981 0.019

8 76.56 1 0.941 0.974 0.026

1

[0,2d]

612.5 1 0.004 1 0

2 306.25 1 0.488 0.941 0.059

3 204.17 1 0.739 0.904 0.096

4 153.13 1 0.878 0.885 0.115

5 122.5 1 0.938 0.862 0.138

6 102.08 1 0.939 0.876 0.124

7 87.5 1 0.958 0.873 0.127

8 76.56 1 0.976 0.855 0.145

Robust

1

[0.8d,1.2d]

612.5 1 0 1 0

2 306.25 1 0 1 0

3 204.17 1 0 1 0

4 153.13 1 0 1 0

5 122.5 1 0 1 0

6 102.08 1 0 1 0

7 87.5 1 0 1 0

8 76.56 1 0 1 0

1

[0,2d]

612.5 0.624 0 0.624 0

2 306.25 0.624 0 0.624 0

3 204.17 0.624 0 0.624 0

4 153.13 0.620 0 0.620 0

5 122.5 0.622 0 0.622 0

6 102.08 0.624 0 0.624 0

7 87.5 0.614 0 0.614 0

8 76.56 0.620 0 0.620 0

Table 4: Varying Facilities Located

Using the capacity formula proposed by (Pirkul and Schilling, 1989) resulted in each model

receiving 100% coverage when varying located facilities shown in table 4. As the number of

facilities increased in the deterministic model, infeasibility increased, greedy coverage

decreased, and coverage reduction increased for both ranges. However, after 5 facilities were

located, there was no significant change in the greedy heuristic’s behavior.

16

The robust model provides as much model coverage as the deterministic for small ranges of

demand, and significantly less model coverage for large ranges of demand. For this analysis, the

robust can outperform the deterministic by providing complete coverage with no infeasibility if

small range distributions of demand can be expected. For large ranges of demand, the

deterministic model is preferred.

5.1.4 Comparing Symmetric and Various Asymmetric Distributions

For this analysis, a coverage radius of 30, 5 located facilities, and a capacity of 122.5 will be

assumed.

Model Distribution
Demand

Range

Model

Coverage
Infeasibility

Greedy

Coverage

Coverage

Reduction

Deterministic

symmetric
[0.8d,1.2d] 1 0.197 0.998 0.002

[0,2d] 1 0.737 0.942 0.058

Asymmetric

[0.9d,1.2d] 1 0.73 0.991 0.009

[0.5d,2d] 1 0.998 0.857 0.143

[0.93d,1.2d] 1 0.91 0.985 0.015

[0.67d,2d] 1 1 0.817 0.183

[0.95d,1.2d] 1 0.971 0.982 0.018

[0.75d,2d] 1 1 0.801 0.199

Robust

symmetric
[0.8d,1.2d] 0.973 0 0.973 0

[0,2d] 0.622 0 0.622 0

Asymmetric

[0.9d,1.2d] 0.973 0 0.973 0

[0.5d,2d] 0.622 0 0.622 0

[0.93d,1.2d] 0.973 0 0.973 0

[0.67d,2d] 0.622 0 0.622 0

[0.95d,1.2d] 0.973 0 0.973 0

[0.75d,2d] 0.622 0 0.622 0

Table 5: Symmetric vs Asymmetric Distributions

Table 5 summarizes the results comparing symmetric to asymmetric distributions. The

deterministic model performs worse as the asymmetric distributions begin to favor demands higher

than the nominal demand with greater probabilities. There is no effect from analyzing the robust

model with a symmetric or an asymmetric distribution as the upper bound of the demand range

controls the robust model. The better performing model is mostly important on the range of

demands rather than the degree of asymmetry. Even when considering highly asymmetric demands

to favor the robust model, the deterministic still performs better.

17

5.1.5 Maximum Coverage FLP Discussion

The results in tables 2, 3, and 4 identify that when complete coverage cannot be achieved, the

deterministic solution provides more coverage across a range of capacities, coverage radii, or

located facilities, and various deviations of �̃�𝑖. The capacity approximation to reach complete

coverage proposed by (Pirkul and Schilling, 1989) is 122.5 when 5 facilities are located. It is not

surprising that when capacity is above 120 for 5 located facilities, complete coverage is achieved,

and the robust model performs better. Because the robust model is generated using the bounds of

�̃�𝑖, it provides a better mapping of variables compared with the deterministic. However, exploring

different coverage radii and located facilities shows that even when a capacity of 122.5 is assumed,

the deterministic model performs better until coverage radius equals 35.

The comparison of symmetric to asymmetric distributions in table 5 showed how much better the

deterministic is as providing coverage under a practical coverage radius of 30. Even when

considering very unlikely worst case asymmetric distributions, it is still observed that the

deterministic performs better at providing maximum coverage. In practical application of FLPs,

an infinite coverage radius would likely not be considered. However, there are other networks

which could be explored with this formulation and there are scenarios in which coverage radius is

not such an important factor.

5.2 Minimum Cost FLP

The network used in this model is adopted from (Beasley, 1988) and shown in tables 6, 7, and 8.

The robust model was solved where the probability parameter equals 0.05. 10,000 MCS iterations

were conducted with the models’ solutions. Random demands were generated in accordance with

symmetric, and asymmetric uniform distributions. Infeasibility was calculated by checking if

deterministic constraint (20) or robust constraint (29) was satisfied for each iteration. After

calculating infeasibility within the solution, the greedy heuristic was used to evaluate the cost of

facilities which could meet demands.

i 1 2 3 4 5 6 7 8 9 10

demand 146 87 672 1337 31 559 2370 1089 33 32

i 11 12 13 14 15 16 17 18 19 20

demand 5495 904 1466 143 615 564 226 3016 253 195

i 21 22 23 24 25 26 27 28 29 30

18

demand 38 807 551 304 814 337 4368 577 482 495

i 31 32 33 34 35 36 37 38 39 40

demand 231 322 685 12912 325 366 3671 2213 705 328

i 41 42 43 44 45 46 47 48 49 50

demand 1681 1117 275 500 2241 733 222 49 1464 222

Table 6: Minimum Cost FLP Network (Demands)

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

capacity 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000

fixed cost 7500 7500 7500 7500 7500 7500 7500 7500 7500 7500 0 7500 7500 7500 7500 7500

Table 7: Minimum Cost FLP Network (Capacities and Fixed Costs)

i j 1 2 3 4 5 6 7 8

1 6739.73 10355.05 7650.40 5219.50 5776.13 6641.18 4374.53 3847.10

2 3204.86 5457.08 3845.40 2396.85 2628.49 3220.09 1838.96 2266.35

3 4914.00 26409.60 19622.40 13876.80 9147.60 14977.20 21848.40 35330.40

4 32372.11 29982.23 21024.33 29681.40 21275.01 20071.71 64292.99 80186.58

5 1715.46 2152.18 1577.90 1061.75 1250.46 1363.61 1524.04 955.58

6 6421.51 23701.60 16197.03 10383.43 7483.61 12332.94 15840.66 27251.25

7 81972.38 28499.25 43134.00 65767.50 58805.63 48555.38 138615.38 155294.25

8 33391.46 26544.38 6370.65 16770.60 13571.66 8861.74 51550.54 57907.58

9 2020.84 2480.78 1869.45 1324.95 1525.84 1646.29 1817.06 1211.93

10 1459.60 1995.20 1402.40 869.60 1050.80 1181.20 1133.20 546.40

11 141015.44 205925.13 104130.25 12638.50 46089.31 66146.06 198300.81 220212.13

12 17684.50 32069.40 15322.80 8429.80 1231.70 9073.90 32781.30 41335.40

13 38207.63 42477.35 15319.70 15832.80 11526.43 5185.98 62653.18 71210.95

14 1953.74 5044.33 4089.80 3428.43 2289.79 3530.31 5553.76 8308.30

15 17181.56 36054.38 25399.50 16297.50 15828.56 21148.31 7310.81 21709.50

16 25640.85 35602.50 25154.40 15763.80 18421.65 21255.75 18478.05 8135.70

17 7031.43 10492.05 6305.40 2542.50 3918.28 4743.18 6856.28 7119.00

18 78453.70 92515.80 36644.40 27445.60 23562.50 23034.70 126332.70 141375.00

19 9452.71 12441.28 7754.45 3542.00 5082.14 6005.59 10274.96 10214.88

20 8597.06 14113.13 10500.75 7254.00 7875.56 9152.81 5467.31 6371.63

21 1581.28 2030.15 1326.20 693.50 924.83 1063.53 1628.78 1619.75

22 23170.99 48702.45 36072.90 26166.98 23493.79 30494.51 14919.41 33813.30

23 12087.56 19877.33 9670.05 3801.90 2252.21 5847.49 19650.04 23844.53

24 4883.00 12851.60 10822.40 8930.00 6798.20 9435.40 11943.40 18148.80

25 24063.88 39682.50 24603.15 11050.05 13644.68 18976.38 20197.38 24684.55

26 4124.04 12148.85 8180.68 5611.05 2952.96 5851.16 11613.86 17111.18

27 281463.00 406770.00 325852.80 253234.80 264755.40 294457.80 211356.60 210756.00

28 11056.76 22113.53 11424.60 5582.48 2430.61 7436.09 19279.01 25460.13

29 8585.63 22449.15 14122.60 7458.95 6609.43 10790.78 11525.83 20448.85

30 12480.19 25455.38 22151.25 19069.88 15598.69 19892.81 23976.56 34080.75

31 3727.76 11116.88 8229.38 5826.98 4628.66 6632.59 6476.66 11884.95

32 4673.03 13346.90 7880.95 4330.90 2861.78 5655.13 9623.78 14610.75

33 13451.69 35106.25 25927.25 17347.63 15249.81 21192.19 16808.19 32845.75

34 372672.60 229188.00 203364.00 322800.00 261306.60 229995.00 681269.40 810550.80

35 9745.94 18070.00 12049.38 7198.75 7592.81 9802.81 5780.94 10692.50

36 12055.13 18181.05 11400.90 5307.00 7379.48 8870.93 10865.63 10202.25

37 97602.71 73603.55 59561.98 83331.70 65940.34 56946.39 185247.84 222003.73

38 60774.51 63568.43 27330.55 30982.00 20497.91 15076.06 97731.61 114578.08

39 54470.06 65177.25 52117.13 40378.88 44494.31 47243.81 47631.56 34351.13

40 7146.30 8618.20 6428.80 7822.80 5211.10 5621.10 15256.10 19762.00

41 38011.61 70728.08 39587.55 15801.40 16494.81 27925.61 49862.66 62659.28

42 39723.31 52917.88 32225.45 13627.40 20427.14 24504.19 41119.56 40854.28

43 16111.56 20714.38 15620.00 11041.25 12598.44 13719.06 12502.19 7885.63

44 16981.25 32575.00 23312.50 16250.00 16268.75 19856.25 9331.25 20750.00

45 168663.26 210766.05 169251.53 131938.88 144628.54 153760.61 134768.14 109304.78

46 57109.86 66703.00 53124.18 40919.73 45381.86 48057.31 52583.59 39050.58

19

47 15576.08 18481.50 14368.95 10672.65 12024.08 12834.38 14205.23 10134.30

48 2542.49 3928.58 3020.85 2205.00 2361.19 2682.14 1756.04 1983.28

49 34056.30 34221.00 24448.80 31329.60 21905.10 20807.10 69009.30 86632.20

50 7095.68 11999.10 7886.55 4190.25 4847.93 6351.98 4903.43 6421.35

i j 9 10 11 12 13 14 15 16

1 6429.48 5396.53 5219.50 4182.90 7391.25 5038.83 10349.58 6051.70

2 3117.86 2582.81 2296.80 1779.15 5115.60 2189.14 5399.44 2838.38

3 15111.60 23679.60 9828.00 19303.20 57472.80 11180.40 22957.20 15489.60

4 25921.09 69206.46 23096.68 48700.23 135170.70 40527.81 60515.96 52911.78

5 1318.66 1789.09 1133.05 1015.25 2005.70 1379.89 2512.94 1823.58

6 12444.74 17769.21 7029.43 13919.10 45474.65 6966.54 20326.64 10956.40

7 53176.88 147325.13 56998.50 102384.00 259515.00 96429.38 131920.13 118381.50

8 10985.29 57376.69 12741.30 33595.65 105796.35 32220.79 60071.96 46527.53

9 1593.49 2099.21 1395.90 1275.45 1940.40 1663.61 2869.76 2135.93

10 1134.80 1406.80 928.80 768.80 1950.40 1145.20 2314.80 1500.80

11 58178.31 241573.94 25277.00 97536.25 461992.13 106122.19 288418.81 185456.25

12 9254.70 37595.10 2463.40 19775.00 79235.60 16712.70 41956.90 28589.00

13 11563.08 70496.28 10371.95 38482.50 135275.15 36631.68 77569.73 55891.25

14 3558.91 5947.01 2434.58 4897.75 13134.55 3283.64 4634.99 4204.20

15 20779.31 12569.06 14621.63 11931.00 39913.50 11169.94 32479.69 14375.63

16 20437.95 23300.25 16271.40 12619.50 35094.90 19253.55 39867.75 24957.00

17 4415.48 8788.58 3062.30 2712.00 17458.50 5031.33 13093.88 8294.20

18 11423.10 144881.10 22846.20 74042.80 274079.00 75211.50 159433.30 114834.20

19 5638.74 12438.11 4123.90 5635.58 21789.63 8073.86 16239.44 11726.55

20 8870.06 6729.94 7312.50 5869.50 9506.25 6695.81 13554.94 7707.38

21 1008.43 1953.68 780.90 931.95 3066.60 1298.18 2600.63 1846.80

22 30655.91 11166.86 22333.73 20982.00 56025.98 17380.76 40178.51 15978.60

23 6260.74 22873.39 0.00 10703.18 46945.20 10145.29 26881.91 17728.43

24 9496.20 11616.60 7106.00 10898.40 28226.40 7117.40 7725.40 7911.60

25 17796.08 27157.08 10541.30 5270.65 59259.20 14845.33 44597.03 26495.70

26 5918.56 12852.34 3268.90 9073.73 29479.08 5623.69 13172.49 8745.15

27 289434.60 239639.40 248102.40 222222.00 124051.20 238875.00 392519.40 261534.00

28 7551.49 22351.54 1601.18 11698.68 49650.85 9022.84 26549.21 16963.80

29 10887.18 14092.48 5916.55 8953.15 37089.90 2958.28 20575.38 9917.15

30 19991.81 23444.44 16099.88 22275.00 50490.00 16118.44 8049.94 17411.63

31 6678.79 6101.29 4440.98 6843.38 18722.55 3693.11 8596.09 3285.98

32 5719.53 11338.43 2398.90 6931.05 26701.85 3900.23 13310.68 7961.45

33 21329.19 15695.06 14693.25 19385.50 53121.75 10951.44 27888.06 7346.63

34 258078.60 728398.20 261790.80 512606.40 1361570.4 451435.80 644793.00 575875.20

35 9607.81 8559.69 6353.75 4891.25 21336.25 5951.56 17830.31 9514.38

36 8340.23 13994.93 5984.10 4154.10 26946.75 8459.18 21470.48 13697.55

37 73007.01 198738.76 65986.23 137295.40 378755.43 119995.81 174969.04 155375.08

38 24757.94 109515.84 20525.58 63513.10 209073.18 58395.54 114439.76 87468.83

39 46820.81 53659.31 42775.88 39250.88 40960.50 48318.94 73399.31 55712.63

40 7047.90 16305.70 5658.00 11939.20 32644.20 9417.70 13583.30 12308.20

41 26917.01 61965.86 10086.00 22567.43 133135.20 23134.76 81255.34 47404.20

42 22884.54 50669.91 16196.50 20636.58 91957.03 31401.66 69686.84 47528.35

43 13320.31 14853.44 11550.00 10071.88 13193.13 13052.19 23103.44 15654.38

44 19556.25 9543.75 14550.00 13087.50 32087.50 12481.25 27518.75 12525.00

45 150511.16 149278.61 136084.73 124879.73 89976.15 142499.59 224408.14 160511.63

46 46994.46 58814.09 42605.63 40553.23 45922.45 49175.14 75966.29 61003.93

47 12512.48 16103.33 11183.25 10561.65 14940.60 13172.93 21287.03 16755.45

48 2611.09 2073.31 2174.38 1857.10 2006.55 2064.74 3788.31 2318.93

49 27212.10 74352.90 23899.80 51935.40 147937.20 42986.70 64873.50 56510.40

50 6030.08 6801.53 4001.55 2614.05 14979.45 4503.83 12617.93 7448.10

Table 8: Minimum Cost FLP Network (Variable Costs)

20

5.2.1 Model Solution Networks

Plots displaying which customers are mapped to which facility are generated to visualize each

model’s solution. These are shown in figures 1, 2, and 3.

 = Customer

 = Facility

 = Facility Serving Customer

Figure 1: Deterministic Solution

Figure 2: Robust Solution with γ = 0.2 Figure 3 Robust Solution with γ = 0.35

The mapping is clearly different in each solution. Changing the deviation on demands greatly

alters how many facilities will be located and which facility will serve a customer. The

deterministic solution locates the least facilities, and the robust solution locates more facilities

21

when given greater deviations. For this network of 16 potential facilities, the deterministic model

located 13, the robust model with γ = 0.2 located 15, and the robust model with γ = 0.35 located

16.

5.2.2 MCS Results Considering Symmetric and Asymmetric Distributions

The robust and deterministic models were solved using the input network and parameters outlined

in section 5.2.

Model Distribution
Demand

Range

Objective

Value
Infeasibility Greedy Cost

Change in

Cost

Deterministic

Symmetric
[0.8d,1.2d] $1,040,444.38 0.9943 $925,048.35 -$115,396.02

[0.65d,1.35d] $1,040,444.38 0.9940 $898,010.44 -$142,433.93

Asymmetric
[0.9d,1.2d] $1,040,444.38 1 $877,468.04 -$162,976.33

[0.825d,1.35d] $1,040,444.38 1 $840,784.51 -$199,659.87

Robust

Symmetric
[0.8d,1.2d] $1,183,964.33 0 $1,183,964.33 $0.00

[0.65d,1.35d] $1,336,767.35 0 $1,336,767.35 $0.00

Asymmetric
[0.9d,1.2d] $1,183,964.33 0 $1,183,964.33 $0.00

[0.825d,1.35d] $1,336,767.35 0 $1,336,767.35 $0.00

Table 9: Minimum Cost FLP Results

Looking at the results from table 9, the robust solution consistently costed more, meaning that

the deterministic model was more effective at minimizing the total cost of the network.

Accounting for infeasibility through the greedy heuristic shows that the deterministic cost is even

less. However, this does not mean that the deterministic case is more effective. If this model

were to be applied, the change in cost shows that more than 10% of a decision maker’s

investment will not meet consumer demands under the best-case symmetric distribution and

small range and almost 20% of investments will not meet consumer demands under a more

worse case asymmetric distribution and large range. The deterministic case may provide a less

efficient solution.

5.2.3 Considering Penalty

To account for the effect of investment not meeting demand, we consider using a penalty

parameter. This is a simple parameter which accounts for many factors including but not limited

to the missed opportunity cost and the negative consumer perception caused from not meeting

demands. The calculation for penalty is shown in (29).

22

∑ 𝑓𝑦𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖𝑗�̃�𝑖𝑗𝑗∈𝐽𝑖∈𝐼 + ∑ ∑ 𝜌�̃�𝑖(𝑥𝑖𝑗 − �̃�𝑖𝑗)𝑗∈𝐽𝑖∈𝐼 (29)

where,

𝜌 = penalty

�̃�𝑖𝑗 = 𝑥𝑖𝑗 after the greedy heuristic

Demand Range Penalty
Cost after greedy

heuristic
Change in Cost

[0.8d,1.2d] 0 $925,048.35 -$115,396.02

[0.65d,1.35d] 0 $898,010.44 -$142,433.93

[0.8d,1.2d] 25 $1,158,736.63 $118,292.25

[0.65d,1.35d] 25 $1,165,224.90 $124,780.53

[0.8d,1.2d] 50 $1,393,468.75 $353,024.37

[0.65d,1.35d] 50 $1,425,226.54 $384,728.16

Table 10: Effect of Considering Penalty

Table 10 shows the effects of various penalties on the deterministic model’s performance. The

true value of penalty is unknown and varies based on location, products, market, and consumers.

Because of this, a range of penalties are evaluated to capture these fluctuations. For penalties

greater than 25, the robust model outperforms the deterministic.

5.2.4 Minimum Cost FLP Discussion

The results in table 7 show that the deterministic solution provides a lower cost. However, it is not

realistic to consider this lower cost as better with 99.4% infeasibility in the model. We are almost

completely certain that some demands will not be covered. For a symmetric, uniform deviation of

0.2, uncovered demands make up 11.1% of the objective cost and for a symmetric, uniform

deviation of 0.35, uncovered demands make up 13.7% of the objective cost. To rebalance the

results, a penalty is added to account for shortages and lost opportunity cost. The penalty can vary

based on local demands and prices, so table 10 shows results considering a range of values for

penalty. It becomes clear that the penalty from not meeting demands can easily cause the robust

model to outperform the deterministic.

23

5.3 Evaluation of 𝒅𝒊
∗

In the maximum coverage FLP, constraint (8) is satisfied with a probability of 1. The reason that

a lower confidence was not produced is because of how 𝑑𝑖
∗ is evaluated from the second term in

equation (13). For the demands and probability parameter used, the first entry of the minimum

statement in (13) always controls. The result is that 𝑑𝑖
∗ is equal to �̅�𝑖 for the demands used in this

problem. Similarly, in the minimum cost FLP, constraint (24) is satisfied with a probability of 1,

and thus 𝑑𝑖
∗ is equal to �̅�𝑖.

This result may be too conservative. While having 𝑑𝑖
∗ equal to �̅�𝑖 does satisfy the constraints of (8)

and (24), the initial goal was to have a parameter which could provide an upper limit for �̃�𝑖 without

using the upper bound. Doing so would cause a small amount infeasibility in the MCS and

ultimately a more optimal solution.

24

6 CONCLUSION

FLPs are network problems in which facilities are located to optimally meet objectives while

satisfying constraints. Objectives and constraints vary based on the model’s application to meet

certain goals. The objective of minimizing cost is used in the private sector because reducing cost

is directly correlated to maximizing asset utilization. Public sector applications include postal

services, waste management, fire departments, police, and others. Maximizing coverage is a better

objective to suit these applications because they provide essential services. For any FLP, the

constraints are modeled to provide more control of the objective.

The two models considered in this paper, the minimum cost FLP and maximum coverage FLP, are

archetypal examples of problems which have been popular in private or public sector applications.

The constraints for the minimum cost FLP suit the idea of maximizing asset utilization because

demands can be fractionally covered. The constraints for the maximum coverage FLP include a

coverage radius, number of facilities to locate, and a binary decision variable to cover demands.

These constraints also better fit the objective by giving more control over how coverage can be

maximized.

Even with this effort, these models are both deterministic, and their solutions can only be accurate

with accurate assumptions. However, parameters like demand, capacity, and cost are never exact.

Natural market fluctuations and extreme events will always cause these parameters to deviate. To

get a better picture of each problem, robust problems can be developed for both the maximum

coverage FLP and minimum cost FLP by considering each demand as uncertain.

The methods by which the robust FLPs were developed in this paper provided convenient and fast

computations. The deterministic maximum covering FLP provided better coverage when

considering more common input parameters. However, there exist scenarios where the robust

model performs better than the deterministic. The minimum cost FLP initially shows that the

deterministic performs better than the robust. However, the deterministic solution was highly

infeasible and penalty considerations show that the robust can easily outperform the deterministic.

For both problems and networks, the equivalent uncertain demand 𝑑𝑖
∗ used in formulation was

equal to the upper bound set by deviation. Other networks and problems should be explored to find

scenarios where 𝑑𝑖
∗ is not always equal to the upper bound.

25

7 REFERENCES

1. “Code of Ethics.” American Society of Civil Engineers (ASCE), www.asce.org/code-of-ethics/.

2. Church, R., and ReVell, C. (1974). “The maximal covering facility location problem.” Papers of

the Regional Science Association, 32(1), 101-118.

3. Current, J., Daskin, M., and Schilling, D. (2002). “Discrete network location models.” Facility

location: Applications and theory, 1, 81-118.

4. Esnaf, Ş., and Küçükdeniz, T. (2009). “A fuzzy clustering-based hybrid method for a multi-facility

location problem.” Journal of Intelligent Manufacturing, 20(2), 259-265.

5. Arabani, A. B., and Farahani, R. Z. (2012). “Facility location dynamics: An overview of

classifications and applications.” Computers & Industrial Engineering, 62(1), 408-420.

6. Chauhan, D., Unnikrishnan, A., and Figliozzi, M. (2019). “Maximum coverage capacitated facility

location problem with range constrained drones.” Transportation Research Part C: Emerging

Technologies, 99, 1-18.

7. Karatas, M., and Dasci, A. (2020). “A two-level facility location and sizing problem for maximal

coverage.” Computers & Industrial Engineering, 139, 106204.

8. Arslan, O. (2021). “The location-or-routing problem.” Transportation Research Part B:

Methodological, 147, 1-21.

9. Snyder, L. (2006). “Facility location under uncertainty: a review.” IIE transactions, 38(7), 547-

564.

10. Snyder, L. V., and Daskin, M. S. (2005). “Reliability models for facility location: the expected

failure cost case.” Transportation Science, 39(3), 400-416.

11. Bertsimas, D., and Sim, M. (2004). “The price of robustness.” Operations research, 52(1), 35-53.

12. Wang, Q., Batta, R., and Rump, C. M. (2002). “Algorithms for a facility location problem with

stochastic customer demand and immobile servers.” Annals of operations Research, 111(1), 17-

34.

13. Miranda, P. A., and Garrido, R. A. (2004). “Incorporating inventory control decisions into a

strategic distribution network design model with stochastic demand.” Transportation Research

Part E: Logistics and Transportation Review, 40(3), 183-207.

14. Baron, O., Milner, J., and Naseraldin, H. (2011). “Facility location: A robust optimization

approach.” Production and Operations Management, 20(5), 772-785.

15. Gülpınar, N., Pachamanova, D., and Çanakoğlu, E. (2013). “Robust strategies for facility location

under uncertainty.” European Journal of Operational Research, 225(1), 21-35.

16. Naoum-Sawaya, J., and S. Elhedhli, S. (2013). “A stochastic optimization model for real-time

ambulance redeployment.” Computers & Operations Research, 40(8), 1972-1978.

http://www.asce.org/code-of-ethics/

26

17. Berglund, P. G., and Kwon, C. (2014). “Robust facility location problem for hazardous waste

transportation.” Networks and spatial Economics, 14(1), 91-116.

18. Lutter, P., Degel, D., Büsing, C., Koster, A., and Werners B., (2017). “Improved handling of

uncertainty and robustness in set covering problems.” European Journal of Operational Research,

263(1), 35-49.

19. Zhong, S., Cheng, R., Jiang, Y., Wang, Z., Larsen, A., and Nielsen, O. A. (2020). “Risk-averse

optimization of disaster relief facility location and vehicle routing under stochastic

demand.” Transportation Research Part E: Logistics and Transportation Review, 141, 102015.

20. Chauhan, D. R., Unnikrishnan, A., Figliozzi, M., and Boyles, S. D. (2020). “Robust maximum

coverage facility location problem with drones considering uncertainties in battery availability and

consumption.” Transportation Research Record, 2675(2) 25–39.

21. Basciftci, B., Ahmed, S., and Shen, S. (2021). Distributionally robust facility location problem

under decision-dependent stochastic demand. European Journal of Operational Research, 292(2),

548-561.

22. Ghosal, S., and Wiesemann, W. (2020). “The distributionally robust chance constrained vehicle

routing problem.” Operations Research, 68(3), 716-732.

23. Bhatia, R., and Davis, C., (2000) “A better bound on the variance.” The American Mathematical

Monthly, 107(4):353–357.

24. Beasley, J., (1988). “An algorithm for solving large capacitated warehouse location problems.”

European Journal of Operational Research, 33, 314-325.

25. Osman, I.H., and Christofides, N. (1994). “Capacitated clustering problems by hybrid simulated

annealing and tabu search.” International Transactions in Operational Research, 1(3): 317-336.

26. Pirkul, H., and Schilling, D. (1989). “The capacitated maximal covering location problem with

backup service.” Annals of Operations Research, 18(1), 141-154.

27

8 APPENDIX

8.1 Python code for Maximum Coverage FLP

8.1.1 Deterministic

from gurobipy import *

import numpy as np

import random as rd

f = open("DataFileLarge.txt", "r")

for i in range(3):

 line = f.readline()

 data = line.split()

I = list(range(int(data[0])))

J = list(range(int(data[0])))

N = int(data[0])

P = int(data[1])

xy_coor = np.zeros((50,2))

dem = a = np.zeros(50)

for i in I:

 line = f.readline()

 data = line.split()

 xy_coor[i,0] = int(data[1])

 xy_coor[i,1] = int(data[2])

 dem[i] = int(data[-1])

 a[i] = int(data[-1])

T = 1 #number of capacities tested

U = np.ones(T)

L = np.zeros((N,N))

M = np.zeros((N,N))

s = np.zeros(T)#100000000 #coverage radius

p = np.zeros(T)

for u in range(T):

 x_F = np.zeros(N)

 y_F = np.zeros((N,N))

 s[u] = 30#100000#(u+4)*5

 #print("s =", s[u])

 p[u] = P#(u+1)#P

 print("p =", p[u])

 for i in I:

 for j in J:

 L[i][j] = round((np.sqrt((xy_coor[i,0] - xy_coor[j,0])**2 + (xy_coor[i,1] -

xy_coor[j,1])**2)),2)

 if L[i][j] <= s[u]:

 M[i][j] = 1

 else:

 M[i][j] = 1000000

 U[u] = sum(dem)/(0.8*p[u])#U[u]*70 + 10*u

 print("Capacity =",U[u])

 ######DETERMINISTIC MODEL#######

 m = Model("facility location")

 m.setParam('OutputFlag',0)

 x = [] #facility locations

 for j in J:

 x.append(m.addVar(vtype=GRB.BINARY, name="x[%d]" % j))#vtype=GRB.BINARY accounts for

objective 3

 y = [] #Demand points

 for i in I:

 y.append([])

 for j in J:

28

 y[i].append(m.addVar(vtype=GRB.BINARY, name="y[%d,%d]" % (i,j)))#vtype=GRB.BINARY

accounts for objective 4

 m.setObjective(sum(sum(a[i]*y[i][j]*M[i][j] for j in J) for i in I), GRB.MAXIMIZE) #objective

in Church and Revelle

 for j in J:

 m.addConstr(sum(M[i][j]*dem[i]*y[i][j] for i in I) <= U[u]*x[j], "2") #constraint to ensure

demand <= capacity

 for i in I:

 m.addConstr(sum(M[i][j]*y[i][j] for j in J) <= 1, "3")

 for i in I:

 for j in J:

 m.addConstr(y[i][j] <= x[j], "4")

 m.addConstr(sum(x[j] for j in J) == p[u], "5")

 m.optimize()

 obj_F = m.ObjVal

 print("Objective =",obj_F)

 for j in J:

 for i in I:

 x_F[j] = int(abs(x[j].X))

 y_F[i][j] = int(abs(y[i][j].X))

 print("demand served =", sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in I))

 print("total demand =", sum(dem))

 print("coverage =", np.round(float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in

I)/sum(dem)),3))

 ##########Robustness Test##########

 rep = 1000

 gam = 1

 cdf = np.zeros((N,N)) #binary demand of facilities: 1 if covered, 0 otherwise [demand point,

facility]

 y_tilde = np.zeros((N,N))

 cov_ini = np.zeros((rep,T)) #Stores initial coverage for each [sim, capacity]

 cov_fin = np.zeros((rep,T)) #Stores final coverage for each [sim, capacity] (after small demand

points removed)

 d_infeasability = np.zeros(T)

 coverage_reduction = np.zeros((rep,T))

 avg_coverage_reduction = np.zeros(T)

 avg_initial_coverage = np.zeros(T)

 greedy_coverage = np.zeros(T)

 d_infeas_counter = 0

 coverage_infeas_counter = 0

 file1 = open("Monte_Carlo_Results_gamma_equals_1.txt", "w")

 for sim in range(rep):

 d = np.zeros(N)#realization of demand

 d_hat = np.zeros(N)#deviation of demand

 #generate realization of random demand, d[i]

 for i in I:

 d_hat[i] = dem[i]*rd.uniform(-1/4,1)*gam

 d[i] = dem[i]+d_hat[i]

 ####Test infeasability####

 if np.any(np.sum(np.multiply(np.multiply(y_F,M) , d[:,None]) , axis=0) > x_F*U[u]):

 d_infeas_counter += 1

 #Assign cdf and y_tilde

 for i in I:

 for j in J:

 cdf[i,j] = y_F[i,j]*d[i]*M[i,j]

 y_tilde[i,j] = y_F[i,j]

 #Greedy Heuristic

29

 for j in J:

 while sum(cdf[:,j]) > x_F[j]*U[u] and x_F[j] != 0:

 minval = 10000000000

 for i in cdf[:,j]:

 if minval > i and i > 0:

 minval = i

 for i in I:

 if minval == cdf[i,j]:

 cdf[i,j] = 0

 y_tilde[i,j] = 0

 #To show greedy heuristic is effective

 for j in J:

 if sum(cdf[:,j] > x_F[j]*U[u]):

 coverage_infeas_counter += 1

 cov_fin[sim][u]= float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in

I)/sum(dem))

 coverage_reduction[sim][u] = float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in

I)/sum(dem))-(float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in I)/sum(dem)))

 d_infeasability[u] = d_infeas_counter/rep

 coverage_infeasability = coverage_infeas_counter/rep

 print("infeasability =", str(d_infeasability[u]))

 print("greedy coverage =", np.round(float(sum(cov_fin[sim][u] for sim in range(rep))/rep),3))

 print("coverage reduction =", np.round(float(sum(coverage_reduction[sim][u] for sim in

range(rep))/rep),3))

 print("###########################")

8.1.2 Robust

from gurobipy import *

import numpy as np

import random as rd

f = open("DataFileLarge.txt", "r")

for i in range(3):

 line = f.readline()

 data = line.split()

I = list(range(int(data[0])))

J = list(range(int(data[0])))

N = int(data[0])

P = int(data[1])

xy_coor = np.zeros((50,2))

dem = a = np.zeros(50)

for i in I:

 line = f.readline()

 data = line.split()

 xy_coor[i,0] = int(data[1])

 xy_coor[i,1] = int(data[2])

 dem[i] = int(data[-1])

 a[i] = int(data[-1])

T = 1 #number of capcities/coverage radii/facilities tested

U = np.ones(T) #Capacity

L = np.zeros((N,N))

M = np.zeros((N,N))

d_star = np.zeros(N) #Robust demand

s = np.zeros(T)#100000000 #coverage radius

p = np.zeros(T)

gam = .2 #Devation Parameter

eps = 0.1 #probability parameter

for u in range(T):

 x_F = np.zeros(N)

 y_F = np.zeros((N,N))

 s[u] = 30#100000#(u+4)*5

 #print("s =", s[u])

 p[u] = P#u+1#P

 print("p =", p[u])

30

 for i in I:

 for j in J:

 L[i][j] = round((np.sqrt((xy_coor[i,0] - xy_coor[j,0])**2 + (xy_coor[i,1] -

xy_coor[j,1])**2)),2)

 if L[i][j] <= s[u]:

 M[i][j] = 1

 else:

 M[i][j] = 1000000

 U[u] = sum(dem)/(0.8*p[u])#122.5#U[u]*70 + 10*u

 print("Capacity =",U[u])

 ######ROBUST MODEL#######

 for i in I:

 d_star[i] = dem[i] + min(((1+gam)*dem[i])-dem[i],(((1-eps)/eps)*(dem[i]-((1-

gam)*dem[i]))),np.sqrt(((1-eps)/eps)*((((1+gam)*dem[i])-dem[i])*(dem[i]-(dem[i]*(1-gam))))))

 m = Model("facility location")

 m.setParam('OutputFlag',0)

 x = [] #facility locations

 for j in J:

 x.append(m.addVar(vtype=GRB.BINARY, name="x[%d]" % j))#vtype=GRB.BINARY accounts for

objective 3

 y = [] #Demand points

 for i in I:

 y.append([])

 for j in J:

 y[i].append(m.addVar(vtype=GRB.BINARY, name="y[%d,%d]" % (i,j)))#vtype=GRB.BINARY

accounts for objective 4

 m.setObjective(sum(sum(a[i]*M[i,j]*y[i][j] for j in J) for i in I), GRB.MAXIMIZE) #objective

in Church and Revelle

 for j in J:

 m.addConstr(sum(M[i][j]*d_star[i]*y[i][j] for i in I) <= U[u]*x[j], "2") #constraint to

ensure demand <= capacity

 for i in I:

 m.addConstr(sum(M[i][j]*y[i][j] for j in J) <= 1, "3")

 for i in I:

 for j in J:

 m.addConstr(y[i][j] <= x[j], "4")

 m.addConstr(sum(x[j] for j in J) == p[u], "5")

 m.optimize()

 obj_F = m.ObjVal

 print("Objective =", obj_F)

 for j in J:

 for i in I:

 x_F[j] = int(abs(x[j].X))

 y_F[i][j] = int(abs(y[i][j].X))

 print("demand served = ", sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in I))

 print("total demand = ", sum(dem))

 print("coverage =", np.round(float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in

I)/sum(dem)),3))

 ##########Robustness Test##########

 rep = 1000

 cdf = np.zeros((N,N)) #binary demand of facilities: 1 if covered, 0 otherwise [demand point,

facility]

 y_tilde = np.zeros((N,N))

 cov_ini = np.zeros((rep,T)) #Stores initial coverage for each [sim, capacity]

31

 cov_fin = np.zeros((rep,T)) #Stores final coverage for each [sim, capacity] (after small demand

points removed)

 d_infeasability = np.zeros(T)

 coverage_reduction = np.zeros((rep,T))

 avg_coverage_reduction = np.zeros(T)

 avg_initial_coverage = np.zeros(T)

 greedy_coverage = np.zeros(T)

 d_infeas_counter = 0

 coverage_infeas_counter = 0

 file1 = open("Robust_Monte_Carlo_Results_gamma_equals_1.txt", "w")

 for sim in range(rep):

 d = np.zeros(N)#realization of demand

 d_hat = np.zeros(N)#deviation of demand

 #generate realization of random demand, d[i]

 for i in I:

 d_hat[i] = dem[i]*rd.uniform(-1/4,1)*gam

 d[i] = dem[i]+d_hat[i]

 ####Test infeasability####

 if np.any(np.sum(np.multiply(np.multiply(y_F,M) , d[:,None]) , axis=0) > x_F*U[u]):

 d_infeas_counter += 1

 #Assign cdf and y_tilde

 for i in I:

 for j in J:

 cdf[i,j] = y_F[i,j]*d[i]

 y_tilde[i,j] = y_F[i,j]

 #Greedy Heuristic

 for j in J:

 while sum(cdf[:,j]) > x_F[j]*U[u] and x_F[j] != 0:

 minval = 10000000

 for i in cdf[:,j]:

 if minval > i and i > 0:

 minval = i

 for i in I:

 if minval == cdf[i,j]:

 cdf[i,j] = 0

 y_tilde[i,j] = 0

 #To show greedy Heuristic is effective

 for j in J:

 if sum(cdf[:,j] > x_F[j]*U[u]):

 coverage_infeas_counter += 1

 cov_fin[sim][u]= float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in

I)/sum(dem))

 coverage_reduction[sim][u] = float(sum(sum(dem[i]*M[i,j]*y_F[i][j] for j in J) for i in

I)/sum(dem))-(float(sum(sum(dem[i]*M[i,j]*y_tilde[i][j] for j in J) for i in I)/sum(dem)))

 d_infeasability[u] = d_infeas_counter/rep

 coverage_infeasability = coverage_infeas_counter/rep

 print("infeasability =", str(d_infeasability[u]))

 print("greedy coverage =", np.round(float(sum(cov_fin[sim][u] for sim in range(rep))/rep),3))

 print("coverage reduction =", np.round(float(sum(coverage_reduction[sim][u] for sim in

range(rep))/rep),3))

 print("###########################")

8.2 Python code for Minimum Cost FLP

8.2.1 Deterministic

from gurobipy import *

import numpy as np

import random as rd

1040444.375

32

J.E.Beasley "An algorithm for solving

large capacitated warehouse location problems" European

Journal of Operational Research 33 (1988) 314-325.

f = open("cap41.txt", "r")

line = f.readline()

data = line.split()

num_loc = int(data[0])

num_cust = int(data[1])

I = list(range(num_cust))

J = list(range(num_loc))

u = np.zeros(num_loc)

fc = np.zeros(num_loc)

d = np.zeros(num_cust)

c = np.zeros((num_cust,num_loc))

gam = 0.35

rep = 1000

penalty = 0

for j in J:

 line = f.readline()

 data = line.split()

 u[j] = int(data[0])

 fc[j] = float(data[1])

for i in I:

 line = f.readline()

 d[i] = (int(line))

 line = f.readline()

 data = line.split()

 for j in J:

 c[i,j] = (float(data[j]))

f.close()

m = Model("facility location")

y = []

for j in J:

 y.append(m.addVar(vtype=GRB.BINARY, name="open[%d]" % i))

x = []

for i in I:

 x.append([])

 for j in J:

 x[i].append(m.addVar(lb = 0, ub = 1, name="trans[%d,%d]" % (i, j)))

m.setObjective(quicksum(fc[j]*y[j] for j in J) + quicksum(c[i][j]*x[i][j] for j in J for i in I),

GRB.MINIMIZE)

for i in I:

 m.addConstr(sum(x[i][j] for j in J) == 1, "Demand[%d]" % i)

for j in J:

 m.addConstr(sum(d[i]*x[i][j] for i in I) <= u[j]*y[j], "Capacity[%d]" % j)

for i in I:

 for j in J:

 m.addConstr(x[i][j] <= y[j], "Feasibility[%d][%d]" %(i,j))

m.optimize()

'''

Print solution

f = open("output.txt", "w")

f.write('\nTOTAL COSTS: %g' % m.objVal)

f.write('\nSOLUTION:')

for j in J:

 if y[j].x > 0.99:

 f.write('\nPlant %s open' % j)

 for i in I:

 if x[i][j].x > 0:

 f.write('\n Transport %g units to customer %s' % (x[i][j].x, i))

 else:

33

 f.write('\nPlant %s closed!' % j)

f.close()

'''

import networkx as nx

import matplotlib.pyplot as plt

plt.figure(figsize=(10,10))

cust_x = [rd.uniform(1,10) for i in I]

cust_y = [rd.uniform(0,10) for i in I]

fac_x = [rd.uniform(0,1) for j in J]

fac_y = [rd.uniform(0,10) for j in J]

connection = [(i,50+j) for i in I for j in J if x[i][j].x > 0]

fac_nodes = [j for j in J if y[j].x > 0]

cust_nodes = [i for i in I]

G = nx.Graph()

G.add_edges_from(connection)

for i in I:

 G.add_node(i, pos = (cust_x[i], cust_y[i]))

print("Number of nodes: ", G.number_of_nodes())

for i in J:

 if y[i].x > 0:

 G.add_node(50+i, pos = (fac_x[i],fac_y[i]))

print("Number of nodes: ", G.number_of_nodes())

#node_col = nx.get_node_attributes(G,'color')

node_col = ['blue' if node < len(I) else 'red' for node in G.nodes()]

node_pos=nx.get_node_attributes(G,'pos')

#nx.draw_networkx(G,node_pos, node_color = node_col)

nx.draw(G,node_pos, node_color = node_col)

#nx.draw_networkx_edges(G, node_pos)

#plt.axis('off')

Show the plot

plt.show()

obj_F = m.ObjVal

y_F = np.zeros(num_loc)

x_F = np.zeros((num_cust,num_loc))

for j in J:

 for i in I:

 y_F[j] = int(abs(y[j].X))

 x_F[i][j] = (abs(x[i][j].X))

cdf = np.zeros((num_cust,num_loc))

cov_ini = np.zeros(rep)

cov_fin = np.zeros(rep)

cost_ini = np.zeros(rep)

cost_fin = np.zeros(rep)

change_x = np.zeros(rep)

x_fin = np.zeros((num_cust,num_loc)) #x value after removing infeasible points

####Monte Carlo Simulation#####

infeas_counter = 0

coverage_infeas_counter = 0

file1 = open("Monte_Carlo_Results_gamma_equals_1.txt", "w")

for sim in range(rep):

 d_hat = np.zeros(num_cust)

 d_rd = np.zeros(num_cust)

 #generate realization of random demand, d[i]

34

 for i in I:

 d_hat[i] = d[i]*rd.uniform(-1,1)*gam

 d_rd[i] = d[i]+d_hat[i]

 ####Test infeasability####

 if np.any(np.sum(np.multiply(d_rd[:,None],x_F)) > y_F*u[u] , axis=0):

 infeas_counter += 1

 #Calculate cost initially

 cost_ini[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_F[i,j] for j in J) for i in I)

 ####Test Coverage####

 for i in I:

 for j in range(int(sum(y_F))):

 cdf[i,j] = x_F[i,j]*d_rd[i]

 cov_ini[sim] = np.sum(cdf)

 for i in I:

 for j in J:

 x_fin[i,j] = x_F[i,j]

 #Greedy Heuristic

 for j in J:

 while sum(cdf[:,j]) > u[j]:

 minval = 10000000000

 for i in cdf[:,j]:

 if minval > i and i > 0:

 minval = i

 for i in I:

 if minval == cdf[i,j]:

 cdf[i,j] = 0

 x_fin[i,j] = 0

 change_x[sim] = np.sum(x_F) - np.sum(x_fin)

 cov_fin[sim] = np.sum(cdf)

 cost_fin[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_fin[i,j] for j in J) for i in

I) + sum(sum(penalty*d[i]*(x_F[i,j]-x_fin[i,j]) for i in I) for j in J)

print("infeasibility = ", infeas_counter/rep)

print("initial coverage = ", sum(cov_ini)/rep)

print("final coverage =", sum(cov_fin)/rep)

print("initial cost = ", sum(cost_ini)/rep)

print("final cost = ", sum(cost_fin)/rep)

print("change in cost = ", (sum(cost_ini)/rep)-(sum(cost_fin)/rep))

8.2.2 Robust

from gurobipy import *

import numpy as np

import random as rd

1040444.375

J.E.Beasley "An algorithm for solving

large capacitated warehouse location problems" European

Journal of Operational Research 33 (1988) 314-325.

f = open("cap41.txt", "r")

line = f.readline()

data = line.split()

num_loc = int(data[0])

num_cust = int(data[1])

I = list(range(num_cust))

J = list(range(num_loc))

u = np.zeros(num_loc) #capcity

fc = np.zeros(num_loc) #fixed cost

d = np.zeros(num_cust) #demand

d_star = np.zeros(num_cust) #robust demand

c = np.zeros((num_cust,num_loc)) #cost of serving customer

gamma = 0.2

epsilon = 0.05

35

rep = 1000

for j in J:

 line = f.readline()

 data = line.split()

 u[j] = int(data[0])

 fc[j] = float(data[1])

for i in I:

 line = f.readline()

 d[i] = (int(line))

 line = f.readline()

 data = line.split()

 for j in J:

 c[i,j] = (float(data[j]))

f.close()

for i in I:

 d_star[i] = d[i] + min(((1+gamma)*d[i])-d[i],((1-epsilon)/epsilon)*(d[i]-(d[i]*(1-

gamma))),(np.sqrt(((1-epsilon)/epsilon)*((((1+gamma)*d[i])-d[i])*(d[i]-(d[i]*(1-gamma)))))))

m = Model("facility location")

y = []

for j in J:

 y.append(m.addVar(vtype=GRB.BINARY, obj=fc[j], name="open[%d]" % i))

x = []

for i in I:

 x.append([])

 for j in J:

 x[i].append(m.addVar(obj=c[i][j], lb = 0, ub = 1, name="trans[%d,%d]" % (i, j)))

Other ways to add variables

#y = m.addVars(num_loc, vtype=GRB.BINARY, obj=fc, name="open")

#x = m.addVars(num_cust, num_loc, obj=c, lb = 0, ub = 1, name="trans")

#x = []

#for i in cust:

for j in loc:

x[i][j] = m.addVar(obj=c[i][j], lb = 0, ub = 1, name="trans[%d,%d]" % (i, j))

m.modelSense = GRB.MINIMIZE

for i in I:

 m.addConstr(sum(x[i][j] for j in J) == 1, "Demand[%d]" % i)

for j in J:

 m.addConstr(sum(d_star[i]*x[i][j] for i in I) <= u[j]*y[j], "Capacity[%d]" % j)

for i in I:

 for j in J:

 m.addConstr(x[i][j] <= y[j], "Feasibility[%d][%d]" %(i,j))

m.optimize()

'''

Print solution

f = open("robust_output.txt", "w")

f.write('\nTOTAL COSTS: %g' % m.objVal)

f.write('\nSOLUTION:')

for j in J:

 if y[j].x > 0.99:

 f.write('\nPlant %s open' % j)

 for i in I:

 if x[i][j].x > 0:

 f.write('\n Transport %g units to customer %s' % (x[i][j].x, i))

 else:

 f.write('\nPlant %s closed!' % j)

f.close()

'''

import networkx as nx

import matplotlib.pyplot as plt

36

plt.figure(figsize=(10,10))

cust_x = [rd.uniform(1,10) for i in I]

cust_y = [rd.uniform(0,10) for i in I]

fac_x = [rd.uniform(0,1) for j in J]

fac_y = [rd.uniform(0,10) for j in J]

connection = [(i,50+j) for i in I for j in J if x[i][j].x > 0]

fac_nodes = [j for j in J if y[j].x > 0]

cust_nodes = [i for i in I]

G = nx.Graph()

G.add_edges_from(connection)

for i in I:

 G.add_node(i, pos = (cust_x[i], cust_y[i]))

print("Number of nodes: ", G.number_of_nodes())

for i in J:

 if y[i].x > 0:

 G.add_node(50+i, pos = (fac_x[i],fac_y[i]))

print("Number of nodes: ", G.number_of_nodes())

#node_col = nx.get_node_attributes(G,'color')

node_col = ['blue' if node < len(I) else 'red' for node in G.nodes()]

node_pos=nx.get_node_attributes(G,'pos')

#nx.draw_networkx(G,node_pos, node_color = node_col)

nx.draw(G,node_pos, node_color = node_col)

#nx.draw_networkx_edges(G, node_pos)

#plt.axis('off')

Show the plot

plt.show()

obj_F = m.ObjVal

y_F = np.zeros(num_loc)

x_F = np.zeros((num_cust,num_loc))

for j in J:

 for i in I:

 y_F[j] = int(abs(y[j].X))

 x_F[i][j] = (abs(x[i][j].X))

cdf = np.zeros((num_cust,num_loc))

cov_ini = np.zeros(rep)

cov_fin = np.zeros(rep)

cost_ini = np.zeros(rep)

cost_fin = np.zeros(rep)

change_x = np.zeros(rep)

x_fin = np.zeros((num_cust,num_loc)) #x value after removing infeasible points

####Monte Carlo Simulation#####

infeas_counter = 0

coverage_infeas_counter = 0

file1 = open("Monte_Carlo_Results_gamma_equals_1.txt", "w")

for sim in range(rep):

 d_hat = np.zeros(num_cust)

 d_rd = np.zeros(num_cust)

 #generate realization of random demand, d[i]

 for i in I:

 d_hat[i] = d[i]*rd.uniform(-0.5,1)*gamma

 d_rd[i] = d[i]+d_hat[i]

 ####Test infeasability####

37

 if np.any(np.sum(np.multiply(d_rd[:,None],x_F)) > y_F*u[u] , axis=0):

 infeas_counter += 1

 #Calculate cost initially

 cost_ini[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_F[i,j] for j in J) for i in I)

 ####Test Coverage####

 for i in I:

 for j in J:

 cdf[i,j] = x_F[i,j]*d_rd[i]

 cov_ini[sim] = np.sum(cdf)

 for i in I:

 for j in J:

 x_fin[i,j] = x_F[i,j]

 #Greedy Heuristic

 for j in J:

 while sum(cdf[:,j]) > u[j]:

 minval = 10000000000

 for i in cdf[:,j]:

 if minval > i and i > 0:

 minval = i

 for i in I:

 if minval == cdf[i,j]:

 cdf[i,j] = 0

 x_fin[i,j] = 0

 change_x[sim] = np.sum(x_F) - np.sum(x_fin)

 cov_fin[sim] = np.sum(cdf)

 cost_fin[sim] = sum(fc[j]*y_F[j] for j in J) + sum(sum(c[i,j]*x_fin[i,j] for j in J) for i in

I)

print("infeasibility = ", infeas_counter/rep)

print("initial coverage = ", sum(cov_ini)/rep)

print("final coverage =", sum(cov_fin)/rep)

print("initial cost = ", sum(cost_ini)/rep)

print("final cost = ", sum(cost_fin)/rep)

print("change in cost = ", (sum(cost_ini)/rep)-(sum(cost_fin)/rep))

print("change in x = ", sum(change_x)/rep)

	Distributionally Robust Optimization Utilizing Facility Location Problems
	Let us know how access to this document benefits you.
	Recommended Citation

	1

