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Abstract

We present predictions of the distribution of groomed heavy jet mass in electron-positron collisions

at the next-to-next-to-leading order accuracy matched with the resummation of large logarithms

to next-to-next-to-next-to-leading logarithmic accuracy. Resummation at this accuracy is possible

through extraction of necessary two-loop constants and three-loop anomalous dimensions from

fixed-order codes.
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High-energy electron-positron collisions are considered as ideal tools for precision studies

of particle interactions. The initial state of the hard scattering event is colorless and known

precisely, which eliminates significant sources of uncertainties that are ubiquitous at hadron

colliders such as the LHC. For instance, the study of hadronic final states at the Large

Electron-Positron collider (LEP) was used extensively to study the dynamics of strong in-

teractions [1–11] and especially to determine the strong coupling αs. Yet, the current state

of the art does not support these expectations. Hence, it is somewhat disappointing that

presently the second largest spread and uncertainty of determination of αs among seven

sub-fields is found in the group of results based on jets and event shapes of hadronic final

states in electron-positron annihilation [12]. This failure of fulfilling expectations calls for

an investigation of the possible sources.

The comparison of event shape distributions obtained from data collected by the LEP

experiments and from theoretical predictions obtained in QCD perturbation theory reveal

the possible causes of such a failure [13, 14]: (i) the QCD radiative corrections are large, (ii)

the hadronization corrections are not well understood from first principles, (iii) the two-types

of corrections are strongly anti-correlated for analytic models of hadronization. As a result

the systematic theoretical uncertainties are large. In order to decrease these corrections,

one has to select the observables used for αs-extraction carefully. For instance, jet rates are

expected to be less sensitive to hadronization corrections than event shapes [15], which is

supported by a recent Monte Carlo evaluation, resulting in a competitive value for αs [16].

The latter study is based on the highest perturbative order available for two-jet rates: next-

to-next-to-next-to-leading order (N3LO) matched with the resummation of the first three

largest logarithms at all orders (N2LL) in perturbation theory.

For precision extraction of the strong coupling the logarithmic accuracy should extend

to next-to-next-to-next-to-leading logarithmic order (N3LL) that allows for simple additive

matching to fixed-order at N2LO. Such matched predictions are available for thrust [17]

and C-parameter [18], and were used for the extraction of αs from LEP data [19, 20].

However, even so high perturbative accuracy does not guarantee small uncertainty for the

determination of αs due to lack of good control over the hadronization. One way out is

to reduce the latter effect. The analysis techniques broadly referred to as jet grooming

have been introduced to mitigate contamination radiation in jets from outside of the jet.

Jet groomers identify such emissions in the jet and remove them from consideration. The
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modified mass-drop tagger (mMDT) [21, 22] and soft drop [23] algorithms are the best

understood groomers, due to their unique feature of elimination of non-global logarithms

(NGLs) [24] that are the leading correlations between in-jet and out-of-jet scales. Soft

drop was indeed found to reduce the hadronization corrections for event shapes in electron-

positron annihilation [25].

In this Letter, we present theoretical predictions for the mMDT groomed jet mass in

e+e− collisions at N2LO matched with N3LL accuracy in perturbation theory. Resumma-

tion at this accuracy is made possible by the factorization theorem for jet grooming from

Ref. [26] and recent extraction of necessary constants and anomalous dimensions at two-

and three-loop order [27–29]. A demonstration of reduction of scale uncertainties and good

convergence of the perturbation series will be presented here, but we leave a detailed study

of scale variations and inclusion of non-perturbative corrections to groomed jets established

in Ref. [30] for future work.

The modified mass-drop tagger groomer (mMDT) [21], or soft drop with angular exponent

β = 0 [23], proceeds as follows:

1. Divide the final state of an e+e− → hadrons event into two hemispheres in any infrared

and collinear safe way.

2. Define a clustering metric dij between particles i and j in the same hemisphere. The

metric appropriate for e+e− collisions is

dij = 1− cos θij , (1)

with θij being the angle between the trajectory of the particles.

3. In each hemisphere, apply the Cambridge/Aachen jet algorithm [31, 32] to produce

an angular-ordered pairwise clustering history of particles.

4. Starting with one of the hemispheres (say left) and at widest angle, step through the

Cambridge/Aachen particle branching tree. At each branching in the tree, test if

min[Ei, Ej]

Ei + Ej
> zcut (2)

is satisfied, where i and j are the daughter particles at that branching and zcut is some

fixed numerical value where 0 ≤ zcut < 0.5. If the condition (2) is true, then stop

and return all particles that remain in the left hemisphere. If it is false, remove the
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lower energy branch, and continue to the next branching at smaller angle. Repeat the

procedure for the other hemisphere.

5. Once the groomer has terminated, any observable can be measured on the particles

that remain in the two hemispheres.

In Ref. [26] a factorization theorem was derived for the cross section differential in the

groomed hemisphere masses

τi =
m2
i

E2
i

, i = L or R (3)

for mass mi and energy Ei of hemisphere i. For τi � zcut � 1, the cross section factorizes

at all orders in perturbation theory as follows:

1

σ0

d2σ

dτL dτR
= H(Q2)S(zcut) [J(τL)⊗ Sc(τL, zcut)] (4)

× [J(τR)⊗ Sc(τR, zcut)] ,

where σ0 is the leading-order cross section for e+e− → qq̄, H(Q2) is the hard function

for quark–antiquark production in e+e− collisions, S(zcut) is the global soft function for

mMDT grooming, J(τi) is the quark jet function for hemisphere mass τi, and Sc(τi, zcut)

is the collinear-soft function for hemisphere mass τi with mMDT grooming. The symbol

⊗ denotes convolution over the hemisphere mass τi. In the functions we suppressed the

dependence on the renormalization scale µ.

Transforming into Laplace space, the cross section assumes a genuine factorized form,

σ(νL, νR)

σ0
(5)

= H(Q2)S(zcut)J̃(νL)S̃c(νL, zcut)J̃(νR)S̃c(νR, zcut) ,

where νL (νR) is the Laplace conjugate of τL (τR). In this product form, each function in

the factorization theorem satisfies a simple renormalization group equation (RGE),

µ
∂F̃

∂µ
=

(
dFΓcusp log

µ2

µ2
F

+ γF

)
F̃ , F̃ = H , S , J̃ , S̃c (6)

where dF is a constant, µF is the canonical scale, and γF is the non-cusp anomalous dimen-

sion, all depending on the function F̃ . Γcusp is the cusp anomalous dimension for back-to-back

light-like Wilson lines in the fundamental representation of color SU(3). Large logarithms

of hemisphere masses can be resummed to all orders in αs using this renormalization group
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order Γcusp γF β cF matching

n = 0 αs - αs - -

n > 0 αn+1
s αns αn+1

s αn−1s αns

TABLE I. αs-order of ingredients needed for resummation to the logarithmic accuracy given by

logarithmic order NnLL. Γcusp is the cusp anomalous dimension, γF is the non-cusp anomalous

dimension for function F̃ , β is the QCD β-function, and cF are the low-scale constants for function

F̃ . The final column shows the relative order to which the resummed cross section can be additively

matched to fixed-order.

equation, whose exact solution is presented explicitly including O(α3
s ) terms in Ref. [19]. The

order to which logarithms can be resummed using the RGE (6) depends on the accuracy to

which its components are calculated. For the canonical definition of logarithmic accuracy

[33], Tab. I shows the order in αs to which the components of the RGE are needed. The

two-loop soft function constants were calculated by the SoftServe collaboration [27, 28].

In Ref. [29] we computed the last missing pieces needed for N3LL resummation of the distri-

bution of jet masses with mMDT, namely the two-loop constants cmMDT
Sc

of the collinear-soft

function and the three-loop anomalous dimension of the global soft function γmMDT
S (in

Laplace conjugate space),

cmMDT
Sc

=
(αs

4π

)2 [
C2
F (22± 4) + CFCA (41± 1) (7)

+CFTRnf (14.4± 0.1)] ,

with CF = 4/3, CA = 3, and TR = 1/2 in QCD, nf is the number of active quark flavors,

and

γmMDT
S =

(αs

4π

)3
[−11600± 2000] (nf = 5) . (8)

These results enable resummation to N3LL accuracy for jet substructure observables that

we present here for the first time.

We present predictions in perturbation theory for the single-differential cross section of

the groomed heavy hemisphere mass ρ
σ0

dσg
dρ

, defined as

dσg
dρ

=

∫
dτL dτR

d2σ

dτL dτR
[Θ(τL − τR) δ(ρ− τL) (9)

+Θ(τR − τL) δ(ρ− τR)] ,
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where the subscript g on the cross section indicates that it is groomed. This definition of the

heavy hemisphere mass differs from the standard definition of the ungroomed case when the

heavy hemisphere mass is defined as: ρ =
max(m2

L,m
2
R)

Q2 , withQ being the center-of-mass energy.

When hemispheres are groomed, the grooming eliminates their dominant correlations, and

so it is more natural to define the groomed mass with respect to the hemisphere energy, and

not the center-of-mass energy.

The CoLoRFulNNLO subtraction method was developed to compute QCD jet cross sec-

tions at the N2LO accuracy. Currently it is completed for processes without colored par-

ticles in the initial states, and it is implemented in the MCCSM code (Monte Carlo for the

CoLoRFulNNLO Subtraction Method) [34–38]. This program can be used to compute the

differential cross section of the mMDT groomed heavy hemisphere mass at fixed order in

perturbation theory. MCCSM calculates directly the ρ-dependent coefficients A, B, and C

(times their respective coupling factors) in the differential distribution

ρ
dσg,NNLO

dρ
=
αs
2π
Ag +

(αs
2π

)2
[Bg + Agβ0 ln ξ] (10)

+
(αs

2π

)3
[Cg + 2Bgβ0 ln ξ +Ag

(
β1
2

ln ξ + β2
0 ln2 ξ

)]
,

where αs = αs(µ) is the strong coupling evaluated at the renormalization scale µ = ξQ, β0

and β1 are the first two coefficients in the perturbative expansion of the QCD β-function

and Q is the center-of-mass collision energy. We present the predictions of MCCSM for the

normalized cross section ρ
σ0

dσg
dρ

at the first three orders in perturbation theory (LO, NLO

and N2LO) in the top panel of Fig. 1. The lower panels exhibit the K-factors defined as

KFO/LO(ξ) =
(dσg,FO(µ = ξQ)/dρ)

(dσg,LO(µ = Q)/dρ)
, (11)

and the ratio KNNLO/NLO. We see that the O(α3
s ) corrections stabilize the dependence on

the renormalization scale for large values of ρ (ρ > 0.1) as expected, while the predictions

are clearly not reliable for ρ � 0.1. To stabilize the latter we need to resum the large

logarithmic contributions.

All functions that appear in the factorization formula Eq. 5 can also be found explicitly

in Ref. [26], including their matrix-element definitions. Due to the factorized form of the

cross section, each function in the factorization theorem has its own natural scale at which it

is defined, and they can be varied independently to provide some estimate of residual scale

uncertainties. We leave a detailed scale variation study to future work, and here we just vary
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FIG. 1. Predictions for the groomed heavy jet mass in perturbation theory with zcut = 0.1. Top:

at LO, NLO and NNLO accuracies, and their ratios. The bands represent the uncertainties due

to the variation of the renormalization scale µ = ξQ in the range ξ ∈ [1/2, 2]. Bottom: N2LL and

N3LL accurate distributions. The bands represent the uncertainties due to the variation of the

collinear-soft scale µSc = ξSc2e
−γE√zcutρQ in the range ξSc ∈ [1/2, 2].

the scale of the collinear-soft function µSc = ξSc2e
−γE√zcutρQ in the range ξSc ∈ [1/2, 2].

The collinear-soft function is the lowest scale function in the factorization theorem, so varia-
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tions of its scale will at least be representative of a more complete analysis. Additionally, we

just use the central values of the two-loop constant and three-loop anomalous dimension of

Eqs. 7 and 8, with no inclusion of their uncertainty. We present the resummed predictions

at N2LL and N3LL accuracies for the normalized cross section ρ
σ0

dσg
dρ

in the bottom panel

of Fig. 1. We see that these predictions are stable against the variation of the collinear-soft

scale, but the range of validity is confined to ρ� zcut � 1.

The regions of validity of the predictions at N2LO and at N3LL are complementary, the

former gives a good description for large, while the latter for small values of ρ. In order

to extend the precise description over the full phase space, the fixed-order and resummed

predictions have to be matched. The additive matching requires the elimination of the

logarithmic terms that are present in both predictions. The coefficients in the expansion of

the resummed prediction in αs,

dσg,LP
dρ

= δ(ρ)Dδ,g +
αs

2π
(DA,g(ρ))+ +

(αs

2π

)2
(DB,g(ρ))+

+
(αs

2π

)3
(DC,g(ρ))+ , (12)

can be found in Ref. [29] including the O(α3
s ) coefficient. For ρ > 0 the δ-functions can

be ignored and +-distributions reduce to simple functions of ρ. We compare the DC,g(ρ)

function to the Cg(ρ) coefficient in the fixed-order expansion in the top panel of Fig. 2 where

we show the logarithmic expansion with two assumed values of the three-loop non-cusp

anomalous dimension γ
(2)
S : 0 and our extracted value with uncertainties from Eq. 8. As the

value of zcut is decreased, improved agreement between the MCCSM results and the singular

distribution is observed at small ρ, down to about ρ ∼ 10−4 where numerical instabilities in

MCCSM become significant.

Subtracting this singular distribution from the sum of the N2LO and N3LL, we obtain a

prediction in perturbation theory with highest available accuracy:

ρ

σ0

dσg
dρ

=
ρ

σ0

(
dσg,N3LL

dρ
+

dσg,N2LO

dρ
− dσg,LP

dρ

)
, (13)

which we present in the bottom panel of Fig. 2. Good convergence of the matched predictions

is observed for all values of ρ, with the results at N2LO+N3LL lying within the scale variation

bands of the NLO+N2LL prediction. We have truncated this perturbative prediction at

a value of ρ that lies above the region in which non-perturbative physics dominates the

distribution.
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FIG. 2. Predictions for the groomed heavy jet mass in perturbation theory. Top: Comparison of

the O(α3
s ) coefficients at full fixed order and at leading power in ρ. Bottom: Predictions at matched

NLO+N2LL and N2LO+N3LL accuracy with zcut = 0.1. The bands represent the uncertainties

due to the variation of the renormalization and collinear-soft scales in the range [1/2,2] times their

respective default scales.

We have demonstrated the highest precision perturbative predictions for groomed jets in

e+e− collisions. These results are sufficiently accurate to enable extraction of αs, when com-
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bined with leading corrections due to non-perturbative physics. While there is no currently-

running e+e− collider, analyses of archived LEP data have been completed [39], and the

results presented here motivate further measurements on these archived data. Due to the

elimination of soft radiation with mMDT grooming, the collinear-soft and jet functions in

the factorization theorem are identical to that for corresponding measurements at hadron

colliders. Thus, we anticipate these results can be used to further improve the theory-data

comparisons of groomed jet masses measured at ATLAS and CMS [40–42], and, along with

continual advances in fixed-order predictions, enable precision extractions of fundamental

constants at the LHC.
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