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DEPENDENCE AMONG SPACINGS

BAHA-ELDIN KHALEDI AND SUBHASH KOCHAR

Indian Statistical Institute
New Delhi-1100186, India
E-mail: kochar@isid.ac.in

In this paperwe study the dependence properties of spacitigs proved that if
Xi,..., X, are exchangeable random variables which argiif pairs and their joint
density is log-convex in each argumgtiten the spacings are M}Rlependent

Next we consider the case of independent but nonhomogeneous exponential ran-
dom variableslt is shown that in this casén generalthe spacings are not MLP
dependentHowever in the case of a single outlier when all except one parameters
are equalthe spacings are shown to be MJéependent andence they are as-
sociatedA consequence of this result is that in this gabe variances of the order
statistics are increasingf is also proved that in the case of the multiple-outliers
model all consecutive pairs of spacings are,ependent

1. INTRODUCTION

LetX4,..., X,benrandom variabledVe shall denote b, theith-order statistic of
Xi,..., X, LetDy., = Xi.n — Xi_1.n denote théth spacingi =1,..., n, with Xq.,=0.
It is well known that ifX4,..., X, is a random sample from an exponential distribu-
tion, thenDy.,,..., D,., are independentn this paperwe study the dependence
properties of spacings wheX)’s are not necessarily independent and identically
distributed as exponentialBhe related problem of stochastic orderings among spac-
ings has been extensively studied in the literatbkg detailsthe reader is referred
to a recent review paper on this topic by Kocp@l. Throughout this papeincreas-
ing means nondecreasing adécreasingneans nonincreasing

There are several notions of positive and negative dependences among random
variables with varying degrees of strengithere is a vast literature on this topic
with important contributions by Lehmamil], Esary and Proschd8], Barlow and
Proschan1], Block and Ting[2], and Karlin and Rinotf6,7], among othersPer-
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462 B.-E. Khaledi and S. Kochar

haps the strongest notion of positive dependence between random vaGahtEs
is that of TR dependenceéalso known adikelihooddependencgeSandT are TR
dependenif their joint densityf (s, t) is totally positive of order 2 isandt, or, more
preciselyif

f(S_Lvtl) f(Sth) -
fls,t) f(s,t)l

whenevers;, < s, andt; < t,.

We say thafT is right-tail increasingin Sif P[T > t|S> s] is increasing in
sfor all t, and we denote this relationship by RT|S). Finally, random variables
SandT areassociatedwritten A(ST)] if cov[['(ST),A(ST)] = 0 for all pairs
of increasing binary function§ and A. As shown in Barlow and Proschda,

p. 143], the following chain of implications holds among the above notions of
positive dependence

(1.1)

TP, (ST) = RTI(S|T) = A(ST). (1.2)

There are many other notions of dependeibee we will not discuss them here

These concepts of bivariate dependence can be easily extended to the multivar-
iate caseAfunctiony : R" — [0,c0) is said to benultivariate total positivity of order
2 (denoted by MTPR) if

Y(X)(y) = (xOy)y(x dy) for everyx andy in R",

where x Oy = (min(Xy,Y1),...,min(X,,Y,)) and x Oy = (max(Xy, Y1),
...,max(X,, Yn)). Random variable¥X,..., X,, are said to be MTPdependent if
their joint density function is MTR It is shown in Kempermaf8] (see also Block
and Ting[2]) that if the support of a random vectér= (X,..., X,) is a lattice(i.e.,
if x andy are in the support oX, then so ar [y andx [0y), thenX is MTP; if
and only if its density functiofi is TP, in each pair of its variables when the other
n — 2 variables are held fixedBee Karlin and Rinotf6] for more details on the
properties of MTR functions Random variableX,..., X, are conditionally in-
creasing in sequendeP[X; > x| X; =Xy, ..., Xj_1 =X;_1]isincreasing iy, ..., Xi_1
fori=2,...,n. Finally, a set of random variable§ = (X4,..., X,,) are associated if
cov(u(X),v(X)) = 0 for all increasing binary functionsandv. Karlin and Rinott
[6] proved that if a set of random variables are MTdependentthen they are
conditionally increasing in sequenaghich, in turn, implies that they are associated
(cf. Barlow and Proschald, p. 146]), a result which extendd..2) to the multivar-
iate case

It is known that spacings of a random sample from a OB&creasing failure
rate) distribution are conditionally increasing in sequefefeBarlow and Proschan
[1, p. 151]). Karlin and Rinott{6] have pointed out that if the DFR assumption is
strengthened to assume that the parent distribution has a log-convex dbesithe
spacings have the corresponding stronger property of being,M&pPendentin
Section 2we extend this result to the case when the random varidgles., X,, are
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dependentlt is proved that if the joint probability density functiqp.d.f.) of X;'s

is permutation symmetrjcTP, in pairs and log-convex in each argumenhen
their spacings are MTRlependen{Theorem 21). In Section 3 we study the de-
pendence properties of spacings of independent but nonidentically distributed ex-
ponential random variable®/e show with the help of a counterexample that in this
casethe spacings may not be MFBependentn fact, for n= 3, even RT[(D3.3| Dy.3)
does not hold for some values of the paramet&sample 31). However it is
shown that co(D,.3, D3.3) is nonnegativéCorollary 31) due to its Schur convexity
(Theorem ). It is also proved that in the case of a single outlier when all
except one of the parameters are eqtla spacings are MT.Rlependen{Theo-
rem 34). AconsequencéCorollary 32) of this resultis that in this casear(X,.,) =
var(Xy.,) = --- = var(X,.n). We also prove that in the case of the multiple-outliers
model(Theorem 3), any pair of consecutive spacings, andD; .., are TR de-
pendent foi =1,...,n—1.

2. DEPENDENCE AMONG SPACINGS OF EXCHANGEABLE
RANDOM VARIABLES

As pointed out in Karlin and Rinoft6, p. 483], the spacings of a random sample
from a distribution with log-convex density are MTBependentin Theorem 21,

we extend this result to the case when random variables are exchangeableg and TP
pairs

THeEOREM 2.1: Let X,,..., X, be exchangeable randovariables with absolutely
continuous joint po.f. fx(Xy,...,Xs), Which is posithe onIIL, Q", O, C RY
i =1,...,n, and satisfies the following conditions

(a) fxis TR in pairs.

(b) fx is log-corvex in each argument when remaining arguments are held

fixed
(c) The first partial dervative of f(x) with respect to xexists fori=1,...,n.

Then Dy.p,...,Dnn are MTR dependent
Proor: The joint pd.f. of Dy.p,...,Dpnis
2 i n
fD(dl,...,dn) = nlfx<d1,2 dj,...,z dj,...,z di).
j=1 j=1 j=1

By Theorem 15 of Karlin [5], fp(ds,...,d,) will be TP, in pairs ofd,,...,d, if and
only if for anyi # j, 1=1i,j = n, (3/dd,)log fp(dy,...,d,) is increasing ird;. Let
i < j. By the chain rule of differentiatign

9 n 9 2 i n
<_>|ngD(d1,...,dn):E<8_>Iogfx<d1,2dj,...,Edj,...,Edi),
k=i \ OX =1 j=1

ad; K j=1
2.1)
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wherex, = 3i_, d, for k € {1,..., n}. The term(9/ax,)log fx (x) is increasing in
fork € {1,...,n}, asfy is log-convex inx, for eachk. It is increasing irnx,,, m # k,

m & {1,...,n} becausdy is TP, in pairs Now, X, andx, are both increasing func-
tions ofd;. This implies thato/ad;)log f5(d;, ..., dy) is anincreasing function af.
Hence fy(dy,...,d,) is TR, in pairs Clearly the support of spacings is a lattice
under the given condition€ombining these factsve get the required result B

Remark: In Theorem 21, if instead of conditionga) and(b), we assume thdy is
RR, (reverse regular of orden 2two random variableSandT are RR, dependent
if the inequality in(1.1) is reversedlin pairs andy is log-concave in each argument
then one can prove that the jointdd. of spacings is RRin pairs

LemMma 2.1: For a bivariate randonwector (X,Y),

cov(Y — X, X) = 0= var(X) = var(Y). (2.2)

Proor: The inequality coyY — X, X) = 0 implies co(X,Y) = var(X), which, in
turn, implies that

{Var(x)} =p2AXY) =1,

var(Y) ] pAATI=

wherep(X,Y) is the correlation coefficient betweefiandY. The required result
follows from this u

This lemma and TheoremPXlead to the following interesting corollary
CoroLLARY 2.1: Under the assumptions of Theor@m,
Var(xl:n) = Var(xz:n) == Var(xn:n)-

Proor: Because under the given conditioDs,’'s are MTR, dependentthey are
associatedThis implies thatfon=1,...,j — 1,

-1
COV(Xj:n - Xj*l:n, Xj*l:n) = COV<Dj:n’ 2 Di:n) = 0’ (23)
i=1
asE{;i D.., andD;., are increasing functions ¢D,.p, ..., Dy,). The required result
follows from Lemma 21. n

Example 2.XInverted Dirichlet Distribution LetX;, i =0,...,n, be independent
gamma random variables each with scale parameter 1 suckgthas shape param-
eter 8 and X; has shape parameter for i € {1,...,n}. Then the joint pd.f. of

Y, = Xi/Xo, i =1,...,n,is
n a—1
F(na + B) <Hy>

:(F(a))“F(B)< " )B

fy v (Yoo Vo) fory, = 0.

1+ Dy,
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Itiseasytoseethdf v (y,...,Yn)isexchangeabldP,in pairs and log-convex
in each argument whenQ « < 1 andna + 8 = 1. Thus the conditions of Theorem
2.1 are satisfiedand as a resulthe spacings oYy,...,Y, are MTR dependentBy
Corollary 21, the variances of the successive order statistics increagmas from
lton.

3. THE CASE OF HETEROGENEOUS EXPONENTIALS

The exponential distribution plays a central role in reliability thebryhis section
we study the dependence properties of spacings when the observétiansX,, are
independent witlX; having exponential distribution with paramefgri =1,...,n.
Their joint density is given bycf. Kochar and Korwaf10])

n

HAi n n n
for o (X Xn) = 2 ———— 1] <2 A(rj)> exp{—xi > A(rj)}
r i=1\ j=i j=i
I DOPX(A R :
i=1j=i
(3.1)
forx, =0,i =1,...,n, where(r) = (r4,...,r,) is a permutation ofl,...,n) and

A(i) = A;. Itis a mixture of products of exponential distributiofsom (3.1), it is
easy to find that the joint.p.f. of (D, D;.n) for 1=i <j=nis

I

fo0 0, (% Y) = D %
(r) 1—[ E /\(rj)

i=1j=i

X <mE= A(m))@XD{—Xéi A(m)}(i A(rm)>e><p{—y 2 /\(rm)}

m=j m=j

(3.2)

forx,y=0.
The next example shows that the spacings may not be M&Pendent if the
A;'s are all different

Example 3.1:Let X4, X,, andX; be independent exponential random variables with
respective hazard rates4g and 1 Using(3.2), we find, after some simplifications
that

h(y) = P(Ds3 > 2|D25>Y)

1 1 1 1 1 1 1 1
2oy ——_ o+ _— [ =)a-10 = o= | Z)~-8 = 4 = a2
20e <<9egy+ 6e5y><5>e +<9e9y - 5e5y><4>e +<6eey+ 5e5y>e >

el + 4e'¥ + 5e'¥
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It is clear from Figure 1 that the functiom(y) is not monotonically increasing
proving thereby thabDa.; is even not RTI inD.,.;. Hence D,.; andDs.; are not TR
dependent

The covariance betwedd,., andD;., fori <jis

f[)‘i n -1 n -1
COV(Di:m Dj:n) :2 n i:nl {EA(rm)} {E)\(rm)}
(r) EE/\(H) m=i m=j
I A
- T{E A(rm)} 1—{2 A(rm)}
(r) EEA(rj) (r) EEA(rj)

We conjecture thain generalthe covariance betwedd., andD;., fori <jis
nonnegativeWe prove this conjecture for= 3 in Corollary 31. In fact, we prove
in Theorem 2 that the covariance betwe®&n.; andDs.53 is Schur convex in;’s.
Let{X1) =X = --- = X(n} denote the increasing arrangement of the compo-
nents of the vectax = (X4, Xo,..., X,). The vectoly is said to majorize the vectar
(writtenx < Y)if Sy =Slixg forj=1,...,n—1and3[; yi) = D11 X
Functions that preserve the ordering of majorization are said to be Schur gonvex
that is a real functionp defined on a setl C R"is said to be Schur convex ohif
x =< <y = ¢(X) = ¢p(y). See Marshall and OIkifl2, Chap 3] for properties and more

0.109}
0.10875 }

0.1085}

0.10825

0.10775

0.1075 f

0.10725 }

Ficure 1. Graph ofh(y).
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details of such functiond he following characterization of Schur-convex functions
will be used to prove Theorem2

TaEorREM 3.1. (cf. Marshall and Olkif 12 p.57]: Letl C R be an openinteal and
leté : 1" — R be continuously differentiabldecessary and sufficient conditions for
¢ to be Schur covex on I" are ¢ is symmetric on'l and, for all i # j,

(Zi _ZJ)[¢(|)(Z|)_¢(])(ZJ)]20 forall z € In,
whered;,(z) denotes the partial derative of ¢ with respect to its ith argument

THEOREM 3.2: Let X;, X,, and X be independent exponential randemriables
having hazard rates\,, A,, and A3, respectiely. Then cov(D,.5, Ds.3) is Schur
corvex ina;’'s.

Proor: The covariance betweddy,.; andDa.3 is
¢ (A1, Az, A3) = cOV(Da.g, D3.3)
= (A1 A2A3) (A + Ap+ Ag)7t
X [(A72 + A32) (A4 A2) 724 (A2 4+ A32) (AL + A5) 2
+ (A7 + 439 Az + A5) %]
— {1+ A+ A3) M (A3/(Ap + Ap) + Az /(Mg + Ag)
+ A /(Ao + A3))}
X {(A1A243) (A1 + Ap + A5) 7t
XA{(A22+ 239 (A + Ag) 7t
+ (A2 + A3 (A + A5) 7!
+ (A2 + 22D (A + A) M. (3.3)
After some simplifications we find that (A; — A){d)(A1, Az, A3) —
b2 (A1, A2, A3)} is equal to
8(A1— A5)2%A%
AL+ 22) A1+ A3) (Ao + Az) (AL + A+ Ag)]

which is nonnegative for all, A,, A3 > 0. Because the functio# is symmetric in
(A1, A5, A3), the required result follows from Theorenil3 |

CoroLLARY 3.1: Under the assumptions of Theor&®R, cov(D,.3, D3.3) = 0 and
var(Xys) = var(Xzs) = var(Xsa).

ProoF: Let A be the average of;’s. It is easy to see thdfA, A, A) < (Ag, A, Ag).
From Theorem 2, we get

(ﬁ(X,X, /_\) = (b(Al’/\Z’AS)’ (34)
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where the functionp is given by(3.3). The left-hand side 0f3.4) is zerg since
spacings of a random sample from an exponential distribution are indepenldisnt
proves that coD,.3, D3.5) = 0. SinceD..3is independent dD,.; andDs 3, it follows
that cou X3.3 — Xs.3, Xo.3) = 0. The required result follows from Lemmal2 ®

Gross Hunt, and Odeh 4] considered the single-outlier model in which all
except one of tha;’s are equalthatis Ay =AandA,= --- = A,,= A", A # A*. They
incorrectly pointed out that in this cagke spacing®;., andD;., are independent for
j —i=2. Although itis true thaD,.,is independent dD,.p, ..., Dy.n), the otheD;’s
are not independenin fact, for n = 4,

20 (A —A)2
(A" + D)X+ 1)2@BA +1)%
which is positive unless® = A. Theorem 34, which follows replaces the incorrect
result of Gross et a[4] for the single-outlier model

To prove the remaining results of this sectiare shall repeatedly use the fol-
lowing known result

CoV(D,.4, Dys) =

THEOREM 3.3 (Shaked and Spizzinchih3]): Letthe joint distribution function of
X =(Xy,..., X,) be

+oo n
F(X1,..0s %) = H Fi(x;[6;) dG(0),
—oo i=1
where F(-|6) is an absolutely continuous distribution function with respect to Le
besgue measure on R for eatn the support of® with density function f-|6) for
i =1,...,n. Suppose that the support 0K,..., X,) is a lattice If f;(x|0) is TP,
(RRy) in (x,0) foralli €{1,...,n}, then(Xy,..., X,) is MTP,.

In the next theoremwe prove that in the case of a single-outlier exponential
model the spacings are MTRlependent

THEOREM 3.4: Let X, i =1,...,n, be independent exponential randaariables
such that X has hazard rate\ and X has hazard rate\* fori € {2,...,n}. Then
(D1ny- -+, Dpp) is MTP, dependent

Proor: Using(3.1), we find that the joint p.f. of (Dy.p,..., Dnpn) in this case is
(n—=DIA(x*)1t

fo, oy (Xeseees Xn) = - \
HZlH((”_i)/‘*JFA) IT (n—i+21a

i=0+1

0
X JT((n=i)A" + A)e (DA +x
i=1

n
X H (n_ i+ 1)A*e—(n—i+1)/\*xl’
i=0+1
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which can be expressed as

+oco n

fo D (Xiseees Xn) = HfD (xi16) dPs(6),

—oo i=

where® is a discrete random variable with the probability mass function

(n—Dra(as)"*
Po(0) = — foro=1,...,n,
H((n— DA* + A) H (n—i+1)A*

i=6+1

and

{«n—DA“+Me(m””“K i=0
fo,, (X|6) = (3.5)

(N—i+1re (MiTDAX i=6+1

We show that the conditional densities as giverid§) are all TR if A < A* and are
all RR, if A > X*. Suppos®; < 6, andf4,6, € {1,...,n}. Then the ratio

1, i=6,
fDi:n(X|92) (n—i)A* + )t)e*((n*i)/\*Jr/\)x -
PR =
fo,., (X164) n_i+Dre mrox . isi=6

1’ 62 < |

is increasingdecreasingin xif A < (>) A*fori=1,...,n;thatis f,,_(x|6)is TP2
(RRy) in (x,0). The required result follows from Theorerm3

CoroLLARY 3.2: Under the assumptions of Theor&H,
Var(xlzn) = Var(XZ:n) == Var(xn:n)-

In the next theorepwe consider the multiple-outliers modélccording to this
model X4,..., X, are ii.d. exponentials with hazard ratdeandX, 1, ..., X, are ii.d.
exponentials with hazard rat& wherek € {2,...,n— 2}. We prove that in this case
D;., andD; 1., are TR dependent for = 1,...,n — 1. It is not known whether the
spacings are MTRdependent in this case

THEOREM 3.5: LetX,i=1,...,n, beindependent exponential randoariables such
that X has hazard rate\ fori € {1,...,k} and hazard rate\* fori € {k+1,...,n},
ke {2,...,n—2}. Then D;., and O, 1., are TP, dependent

Proor: Without loss of generalitywe assume thdt=n — k.
Case (i): Letk<i=n—k. From(3.2), the joint pd.f. of (D;.,, D; 1.n) for this set
of A;'s can be expressed as

+oo
fo.,.01, 0. (% Y) :f fo. (X|0) Tp,, . (y]0) AP (6),
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where® is a discrete random variable taking values B, ... ., 2k with the following
probability mass functiarFor6 = 0,2,4,...,2k,

Po(6) = XXM LS,

(ry)
I A
i=1j=i
where the summation is taken over all permutations of
k—6/2 i—1-k+6/2 1 6/2 n—i—6/2
N A
(o) = (Ao, AL XS LA A A A L AT) (3.6)

for which theith component ofr,) is A* and its lasin — i components consist of
(0/2) ’sand(n—i—60/2) \*'s.
For6 =13,5,...,2k — 1,

Pa(6) = )P~ 1S, i,
DI A

i=1j=i
where the summation is taken over all permutations of
k—(0+1)/2 i—1-k+(#+1)/2 1 (6+1)/2—1 n—i—(6+1)/2+1

A S A
() = (i Ay X X AL A A, A5 M) (3.7)

for which theith component ofr ) is A and the lash — i components ofr ;) consist
of (0 +1)/2—1) N'sand(n—i—(8+1)/2+1) A"s.
Foro € {0,...,2k},

fo, (X|6) = {(n—i —[(6 +1)/2] + DA* +[(6 + 1)/2]A}
X ef{(nfi7[(6+1)/2]+1)/\*+[(0+1)/2])L}x’ (38)
and
o, (x]@) ={(n—1i—1[6/2])A* + [0/2]A}e {(ni=10/2DA"+10/21A)x (3.9)

i+1n

where[ x] denotes the greatest integer less than or equal to
To prove the required resultve show thaf,_(x|#) andfp,
if A < A®andare all RRif A > A*,

(x]|0) are all TR

i+1n

fo (X0 +1)  {(n—i—[(6+2)/2] +1)A* + [(6 + 2)/2]A}e ("I -L0+2/2H DA (0422100
fo,(XI0) (=i —[(0+1)/2] + A" +[(6 + 1)/2] Abe {10 /2 DA L0172l
1, if 6 =1,35,...,2k— 1
=1{n—i—6/2A" +(6/2+1)A .
X : /X +(6/2+1) }e’“" X if 0=0,2,4,...,2k — 2.
{(n—i—6/2+ A"+ (6/2)A}

(3.10)
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From(3.10), we conclude that it < A* (A > A*), thenfy, (x|0) is TP, (RRy)
fori =1,...,n. Similarly, for fp, _(x|#), we have

+1:n

fo,X10+1)  {(n—i = [(6 +1)/2)A* +[(6 + 1)/2]A}e” "1+ /2D 410+ 1/20ix
fo(XI6) {(n—i—[0/2) X" +[0/2]A}e (0 i-Lor2DaLor21nx
{1, if0=0,24,...,2k—2
SV =i =+ DN (O +D/2N -
{(n—i—(0—1)/2)A*+((0—1)/2)A}e , if6=2135,...,2k—1.

(3.11)
Again, from (3.11), it follows thatfp, | (x]0) is TP, (RRy) if A <A™ (A > A¥).
Using these observationthe required result follows from Theorenil3

Case (ii): i>n—k. Inthiscasefop €{0,2,...,2(n—1i)}, (ry) is given by(3.6),

and for6 € {1,3,...,2(n — i) + 1}, (r,) is given by (3.7). Hence for 6 &
10,14,2,...,2(n—i+1) —1},fp_(x]|6) andfy,  (x]6) are the same as given £§.8)
and(3.9), respectivelyThe required result follows from the same kind of arguments
as in caséi).

Case (iii): i=k. The proof is similar to the previous caséhe vectordr,) and
(r4) corresponding t43.6) and(3.7) are as followsFor6 =0,2,...,2i — 2,
i—1-6/2 6/2 1 k—i+6/2 n—k—6/2

e Tl e N W A
(F0) = (Ao A A A% AL A A X, X))

for which theith component ofr ,) is A and the lash — i components ofr 4) consist
of (k—i+6/2) M'sand(n—k—6/2) A"s.
For6=13,...,2i — 1,

i—((0+1)/2) (0+1)/2—1 1 k—i+((0+1)/2) n—k—((6+1)/2)
A A
() = CA AL A5 LA AT, A LA, AT, A,
for which theith component ofr ;) is A* and the lash — i components ofr ;) consist

of(k—i+(0+1)/2) AN'sand(n—k— (6 +1)/2) \*'s.
Thereforefor 6 € {0,...,2i — 1},

fo. (X[0) ={(k—i+1+[6/2)A+ (n—k—[6/2])A*}
X @ {(k=i+1+[6/2)A+(n—k—[6/2)A"}x
and
fo, . (X[0) = {(k=1=[(0 +1)/2DA + (n—k—[(6 +1)/2]) A"}

X ef{(kfi7[(9+1)/2])A+(n7k7[(6’+1)/2])/\*}x.

The required result follows from the same kind of arguments as in(case H
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4. CONCLUDING REMARKS

In this paperwe have obtained some new results on dependence among spacings of
heterogeneous independent exponential random varidlitesreas in the case of a
single-outlier exponential modehe spacings are shown to be MIdependentt

is not known whether the same result holds for the multiple-outliers madéie

latter casgwe are only able to establish JBependence between consecutive spac-
ings Another unsettled question is to examine whether in the case of independent
exponential random variabldga generalthe spacings are positively correlat¥de

have given a proof of this conjecture for= 3.
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