




{h∗(yk) − g∗(yk)} are both decreasing. In addition, the sequences {xk} and {yk} converge

to critical points of the primal function g − h and the dual function h∗ − g∗, respectively;

see [2, 16, 17] and the references therein. The DCA is an effective algorithm for solving

many nonconvex optimization problems without requiring the differentiability of the data.

However, to deal with optimization problems of large scale, it is necessary to develop new

optimization techniques to accelerate the convergence rate of this algorithm.

In this project, we focus on applications of nonconvex optimization techniques to the prob-

lems of image reconstructions and dictionary learning. In particular, we develop new accel-

eration techniques for the DCA and apply them to the image reconstruction problem. A

digital (black and white) image M is represented by an N1×N2 matrix in which each entry

contains a numerical value (of bit depth 8) of each pixel of the image. The main focus is on

reconstructing a digital image in which several pixels are lost and/or corrupted by Gaussian

noise. After the image is corrupted by a linear sampling operator A and distorted by some

noise ξ, we observe only the image b = A(M) + ξ, and seek to recover the true image M .

Sampled image (SR=50%) Recovered Image

A vector is referred to as sparse when many of its entries are zeros. An image x ∈ Rn (in

vectorized form) is said to have a sparse representation y under D if there is some n ×K
matrix D, known as a dictionary, and a vector y ∈ RK such that x = Dy. In this case, the

dictionary D maps a sparse vector to a full image. The columns of D are called atoms, and

given a suitable dictionary in this model, theoretically any image can be built from a linear

combination of the columns (atoms) of the dictionary. Using a clever choice of dictionary

allows us to work with sparse vectors, thereby reducing the amount of computer memory

needed to store an image. Further, sparse representations tend to capture the true image

without extraneous noise.

2 Problem Formulation and Accomplished Goals

In this section, we formulate image reconstruction as an optimization problem and present

our accomplished goals within the first month of the project.

Consider a dictionary D and an observed image b which has been corrupted by a linear

operator A and distorted by some noise ξ. A vectorized image x ∈ Rd is a “good” image if
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it has a sparse representation y under the dictionary D, i.e.,

x = Dy, where y is sparse.

We require that A(x) = A(Dy) be as close to the corrupted image b as possible by min-

imizing ‖A(Dy) − b‖2, while making sure that y is sparse. We thus add an additional

regularization term to ‖A(Dy) − b‖2 to induce sparsity. The classical approach involves

using the `1−norm regularization:

minimize
1

2
‖A(Dy)− b‖2 + λ‖y‖1, (2.1)

where λ > 0 is a parameter

Another approach for sparsity-inducing uses a regularization term with differences of convex

functions known as (`1 − `2) regularization (see [14, 19, 20]):

minimize
1

2
‖A(Dy)− b‖2 + λ(‖y‖1 − ‖y‖2), (2.2)

where λ > 0 is a parameter.

The optimization problem in (2.2) can be solved using the DCA with smoothing techniques;

see [14]. However, we observe the slow convergence rate due to the high dimensionality of

the data and the use of smoothing parameters. Note that if M is a standard 512×512 image,

then the vectorized image belongs to R(512)2 = R262,144. In this project, we use different

accelerated versions of the DCA in combination with the patching approach, which is used

to divide the large image into small patches, to study (2.2) and compare our numerical

results with the state-of-the-art methods for image reconstructions applied to (2.1). We

also use the accelerated DCA to build a dictionary D instead of using an available one

obtained from the DCT (Discrete Cosine Transform).

3 Patching

Through dividing the image into smaller pieces before beginning image reconstruction,

improved results and execution speed are achieved. Patching is the process of dividing an

N1 ×N2 image into smaller rectangular subdivisions. The patches will be indexed by row

(1 ≤ i ≤ t1) and column (1 ≤ j ≤ t2), where t1 and t2 are the number of patches per row

and number of patches per column of the original image, respectively.

First, the original image M ∈ RN1×N2 is vectorized by adjoining the columns of M end-to-

end. In particular, if m1,m2, ...,mN2 ∈ RN1 are the columns M , then M = [m1m2...mN2 ]

and its vectorized form is [m>1 m
>
2 ...m

>
N2

]>. We denote this form by v(M).

For the patch in the ith row and the jth column, a patch extraction matrix Rij ∈ Rn1n2×N1N2

is defined through the indices of its upper-left corner (s, t), its number of rows n1 and its

number of columns n2. In order to build Rij , an indexing matrix J ∈ Rn1×n2 is first defined

by

Jrq = N1((t− 1) + (q − 1)) + s+ (r − 1)
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for 1 ≤ q ≤ n2 and 1 ≤ r ≤ n1. Next, the matrix J is vectorized by v and used to define

each row rk ∈ RN1N2 (1 ≤ k ≤ n1n2) of Rij :

rk = e>v(J)k
,

where {ek : k ∈ {1, ...N1N2}} is the set of standard basis vectors of RN1N2 . Thus, the patch

extraction matrix can be framed as an identity matrix with missing rows. Note that the

patch extraction matrices do not depend on the contents of the original image, only its size.

Therefore, a set of patching matrices can be generated once, saved to a file, and re-used for

all image reconstruction methods. The vectorized patch of the original image at index (i, j)

is given by Pij = Rijv(M) ∈ Rn1n2 .

4 Sampling and Noise

In order to distort the original image, a fraction of pixels are removed and Gaussian noise is

added. Given a sample rate S ∈ [0, 1], a set Ω ⊆ {1, 2, ..., N1N2} represents which pixels of

the image are sampled. For 1 ≤ k ≤ N1N2, a real number ωk ∈ [0, 1] is chosen at random.

If ωk ≤ S, then k ∈ Ω.

Next, each row of a sampling operator A ∈ R|Ω|×N1N2 is defined by

Ak: = e>k (4.1)

for all k ∈ Ω, where {ek : k ∈ {1, ...N1N2}} is the set of standard basis vectors of RN1N2 .

Given a vectorized image v(M) ∈ RN1N2 , Av(M) ∈ R|Ω| therefore represents the original

image with N1N2− |Ω| pixels deleted. Next, random noise ξ ∈ R|Ω| is generated and added

to create the blurred vectorized image B = Av(M) + ξ.

5 Reconstructions of Small Images

In this section, we show how to apply techniques for general image restoration to a small

blurred image b. The restored patch of size n1 × n2 (usually 8× 8) can be considered as a

part of a larger image.

To create the reconstructed image, a dictionary matrix D ∈ Rn1n2×K is used. The K

columns of D are called the atoms of the dictionary. The number of atoms is usually

chosen to be much larger than n1n2. Dictionaries are created from two sources: the DCT

(discrete cosine transform) or through a DCA-based dictionary learning process. The DCT

dictionary used is defined as

Dij =


√

1
n1n2

, j = 1√
2

n1n2
cos( π

n1n2
(j − 1)(i+ 1

2)), j = 2, ..., n1n2.

Since the sample operator for the entire image is large, computing products with it is inef-

ficient. Furthermore, it does not need to be explicitly calculated. For each patch extraction

4



operator Rij, we define A = A(R>ijD). The value of A does not need to be found explicitly,

so in practice functions y 7→ Ay and z 7→ A>z are computed for each patch.

The goal of our optimization for each patch is to find a vector y ∈ RK such that x = Dy

is close to the blurry patch b under the sample operator A and y is very sparse. Here, y is

called the sparse representation of x under D. In essence, finding the value of y amounts

to simultaneously minimizing two terms: an error term 1
2‖Ay − b‖

2 and a sparsity penalty

term ‖y‖0. However, the 0-norm cannot be used because it returns a discrete value (the

integer number of non-zero entries in y). Therefore, we use the `1 − `2 regularization;

‖y‖0 ≈ ‖y‖1 − ‖y‖2. Combining the two terms yields the overall function f : Rk → R
defined by

f(y) =
1

2
‖Ay − b‖2 + λ(‖y‖1 − ‖y‖2), (5.1)

where λ > 0 is a weight parameter which determines how sensitive the optimization is to

the sparsity of y. By finding y for each patch of the image and recombining all patches, the

restored image is generated.

6 The Boosted DCA Algorithm

In this section, we discuss the Boosted DCA algorithm. The Boosted DCA is an algorithm

which outperforms the traditional DCA both in computation time and number of iterations

for convergence. Below is the traditional DCA algorithm.

DCA Algorithm

INPUT: x1, N ∈ N

for k = 1, . . . , N do

Find yk ∈ ∂h(xk)

Find xk+1 ∈ ∂g∗(yk)

end for

OUTPUT: xN+1

The Boosted DCA is similar, except there is a line search which improves performance. We

outline the steps below.
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Boosted DCA Algorithm

INPUT: x0, N ∈ N,
α > 0, λ̄ > 0, 0 < β < 1.

for k = 0, . . . , N do

Find zk ∈ ∂h(xk).

Solve yk = argmin
x∈Rn

{g(x)− 〈zk, x〉}.

Set dk = yk − xk.
if dk = 0, stop, return xk. else continue.

Set λk = λ̄.

while f(yk + λkdk) > f(yk)− αλk‖dk‖2

Set λk = βλk
Set xk+1 = yk + λkdk.

if xk+1 = xk, stop, return xk.

end for

OUTPUT: xN+1

Note that xk+1 ∈ ∂g∗(yk) is equivalent to yk ∈ ∂g(xk+1) by a property of the Fenchel

conjugate. This in turn is equivalent to

xk+1 = argmin
x∈Rn

{g(x)− 〈yk, x〉}.

This is because

∂(g(x)− 〈yk, x〉) = ∂g(x)− yk
and 0 is in the subdifferential of a function at a local minimum. Thus, the first several steps

of the two algorithms are indeed equivalent. If λk = 0 then the steps of the Boosted DCA

and DCA are the same for that iteration. The term dk = yk − x− k is a descent direction

and the while loop initiates a line search which will give us a better xk+1 than the DCA.

7 DCA with Smoothing Algorithm

The DCA Algorithm is a useful tool for minimizing functions of the form f = g − h where

g and h are convex. In our case, f(x) = 1
2‖Ax− b‖

2 + λ(‖x‖1 − ‖x‖2). Since ‖x‖1 is non-

smooth, we wish to find a smooth approximation which will enable a faster computation of

the DCA. To do so, we use Nesterov’s Smoothing Technique. Given a function of the form

q(x) = max
u∈Q
{〈Ax, u〉 − φ(x)},

we may find a smooth approximation for a parameter µ > 0 by the function

qµ(x) = max
u∈Q
{〈Ax, u〉 − φ(x)− µ

2
‖u‖2}.

If Q = {x ∈ Rn | |xi| ≤ 1}, the unit box, we see that the function p(x) = ‖x‖1 can be

written

p(x) = max
u∈Q
{〈x, u〉},
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and hence a smooth approximation corresponding to µ > 0 is

pµ(x) = max
u∈Q
{〈x, u〉 − µ

2
‖u‖2}.

Note that

pµ(x) = max
u∈Q
{〈x, u〉 − µ

2
‖u‖2}

= −µ
2

min
u∈Q
{〈−2x

µ
, u〉+ ‖u‖2}

= −µ
2

min
u∈Q
{− 1

µ2
‖x‖2 +

1

µ2
‖x‖2 − 〈2x

µ
, u〉+ ‖u‖2}

=
1

2µ
‖x‖2 − µ

2
min
u∈Q
{‖u− x

µ
‖}

=
1

2µ
‖x‖2 − µ

2
d

(
x

µ
,Q

)2

.

This function has gradient

∇pµ(x) = ΠQ(x)

where ΠQ(x) is the projection onto Q. We approximate f(x) = 1
2‖Ax− b‖

2 +λ‖x‖1−λ‖x‖
by

fµ(x) =
1

2
‖Ax− b‖2 +

λ

2µ
‖x‖2 − λµ

2
d

(
x

µ
,Q

)2

− λ‖x‖

=
λ

2µ
‖x‖2 +

γ

2
‖x‖2 −

(
λµ

2
d

(
x

µ
,Q

)2

+ λ‖x‖ − 1

2
‖Ax− b‖2 +

γ

2
‖x‖2

)
.

We set g(x) =
(
λ+µγ

2µ

)
‖x‖2 and h(x) = λµ

2 d(xµ , Q)2 + λ‖x‖ − 1
2‖Ax − b‖

2 + γ
2‖x‖

2. The

constant γ > 0 is chosen so that the function γ
2‖x‖

2 − ‖Ax − b‖2 is convex and hence h

is convex. In our work, we set γ = 50/λ. Recall that we wish to find yk ∈ ∂h(xk). We

compute

∂h(x) = λµ(µ−1x−ΠQ(µ−1x)µ−1 −AT (Ax− b) + γx+ λ∂‖x‖

=

(
λ+ γµ

µ

)
x− λΠQ(µ−1x)−AT (Ax− b) + λ∂‖x‖.

Thus, we must compute ∂‖x‖. We know that p(x) = ‖x‖ is differentiable when x 6= 0 and

∇p(x) = x
‖x‖ in this case. When x = 0, ∂p(x) = B, the closed unit ball. Thus, we use the

function

ω(x) =

{
x
‖x‖ x 6= 0,

0 x = 0

to compute an element of ∂‖x‖. We note that for y = ΠQ(x),

yi =


1 xi ≥ 1

xi |xi| ≤ 1

−1 xi ≤ −1,
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and thus we have a simple formula for computing ΠQ(x). After computing yk ∈ ∂h(xk), we

must find xk+1 ∈ ∂g∗(yk) which is equivalent to finding xk+1 such that yk ∈ ∂g(xk+1). This

is easily achieved since g is differentiable with gradient

∇g(x) =

(
λ+ µγ

µ

)
x

and thus

yk =

(
λ+ µγ

µ

)
xk+1

implies

xk+1 =

(
µ

λ+ µγ

)
yk.

The algorithm thus works as follows.

DCA with Smoothing Algorithm

INPUT: x1, N ∈ N

for k = 1, . . . , N do

Compute yk =
(
λ+γµ
µ

)
x− λΠQ(µ−1xk)−AT (Axk − b) + λω(xk).

Compute xk+1 =
(

µ
λ+µγ

)
yk.

end for

OUTPUT: xN+1

8 Boosted DCA with Smoothing Algorithm

The algorithm we implemented combines the methods of the Boosted DCA and the DCA

with smoothing algorithms. First, we compute zk ∈ ∂h(xk) and then find yk ∈ ∂g∗(zk)

in the same manner as in the DCA with smoothing algorithm. Then we execute the line

search. The steps are as follows.

Boosted DCA with Smoothing Algorithm

INPUT: x0, N ∈ N,
α > 0, λ̄ > 0, 0 < β < 1.

for k = 0, . . . , N do

Compute zk =
(
λ+γµ
µ

)
x− λΠQ(µ−1xk)−AT (Axk − b) + λω(xk).

Compute yk =
(

µ
λ+µγ

)
zk.

Set dk = yk − xk.

if dk = 0, stop, return xk. else continue.

Set λk = λ̄.

while fµ(yk + λkdk) > fµ(yk)− αλk‖dk‖2

Set λk = βλk
Set xk+1 = yk + λkdk.

if xk+1 = xk, stop, return xk.

end for

OUTPUT: xN+1
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9 Results and Discussion

Sampled image

DCA, DCT Dictionary Boosted DCA, DCT Dictionary

DCA, DCT Dictionary Boosted DCA, DCT Dictionary

Figure 1: Results for denoising and inpainting problems using the DCA and Boosted DCA.

The DCT dictionary used for both algorithms. The PSNR, RE, and time are averaged.
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To evaluate the quality of our reconstructed image, we tested with two measurements; the

relative error (RE), measuring the difference between our original image and our recon-

structed image given as RE =
‖M−M̂‖
‖M‖ and the peak signal to noise ratio (PSNR) which

calculates the max possible value of a signal, represented roughly by the number of pixels,

and the value of the distorting noise that affects the quality of our image, measured as

PSNR = 20 log10

√
N1N2

‖M−M̂‖F
, where M is our original image, M̂ is our reconstructed image,

N1 and N2 is the image size. For the RE, the lower the percent, the better, while for our

PSNR, the higher the measurement, the better.

In terms of convergence rate for the inpainting test, the Boosted DCA with the line search

converged in fewer iterations, with approximately 600 iterations, as opposed to the DCA

convergence of approximately 800 iterations. For the relative error and peak signal to noise

ratio, the Boosted DCA had the best RE of 6.22% and a PSNR of 83.76 as compared to

the DCA which resulted in a RE of 7.04% and a PSNR of 82.68.When it came to time,

the DCA was faster at approximately 54 seconds as compared to the Boosted DCA time of

approximately 602 seconds.

These results play an important role when it comes to the real world, where computer

algorithms are used to enhance videos or images. This is especially useful in the police

force, where noisy images can prevent the identification and apprehension of criminals.

These applications may be further expanded by enhancing the algorithms in future work

through the exploration of dictionary learning to improve our image quality. This would

improve the image by creating a dictionary fit for the input data and greatly increase the

sparsity, rather than if we had used a predefined dictionary which may not be ideal for the

feature space of our images.
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