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EXECUTIVE SUMMARY 

Traffic oscillations are typical features of congested traffic flow that are characterized by 

recurring decelerations followed by accelerations (stop-and-go driving). The negative 

environmental impacts of these oscillations are widely accepted, but their impact on traffic safety 

has been debated. The primary objective of this study is to examine the impact of freeway traffic 

oscillations on traffic safety.  

The safety implications of oscillations have been studied largely by evaluating the significance 

of speed deviations on the likelihood of crash occurrence, though most existing studies did not 

make an explicit distinction between congested and uncongested traffic. Existing studies report 

contradictory findings and debates continue today, as existing studies exhibit shortcomings in 

data resolution and methodology. Moreover, only a few studies have investigated the 

characteristics of crashes in traffic congestion, and they used low-resolution traffic data (e.g., 

hourly or daily flow), which do not capture oscillatory driving conditions.  

This study employed a matched case-control design using high-resolution traffic and crash data 

from a freeway segment. The case-control design is prevalent and well established in 

epidemiology due to its simplicity, cost-effectiveness and theoretical soundness.  

A 12-mile stretch of Interstate 5 in Portland, OR, was selected as our study site since this 

segment exhibits fairly extensive recurrent congestion and oscillatory flows during morning and 

evening peak hours. Traffic conditions, including oscillations, were measured using 20-second 

aggregated data from inductive loop detectors. Crash data for the study corridor are available 

from the statewide crash database, and crash occurrence times were obtained or estimated from 

the incident database and time-series traffic data.  

Traffic conditions prior to each crash were taken as cases, while traffic conditions during the 

same periods on days without crashes were taken as controls. These were also matched by the 

presence of congestion, geometry and weather. In particular, the averages and the standard 

deviations of count, occupancy and speed during the 10 minutes prior to crash occurrences were 

adopted as potential measures of average traffic states and traffic oscillations, respectively. A 

total of 82 cases and about 80,000 candidate controls were extracted from more than three years 

of data from 2004 to 2007.  

Conditional logistic regression models were developed based on the case-control samples with 

two exposure variables, average traffic state and amplitude of oscillations. To verify consistency 

in the results, we evaluated our model by re-sampling controls for each case, repeating the model 

development process (described in Chapter 5) to find the best models based on the newly drawn 

samples, and conducting a sensitivity analysis with respect to the case-to-control ratio.   

Two major findings from our data analysis are: (1) Oscillations have a significant impact on 

crash occurrence: an additional unit increase in the standard deviation of speed increases the 

odds of (rear-end) crashes by about 8 percent; (2) The average traffic states in congestion are less 



 

2 

 

significant than deviations in speed. Nevertheless, their odds ratios are qualitatively consistent 

and suggest that the likelihood of crash occurrence increases as congestion becomes more severe.  

Our findings are notable given that the impact of speed variation on crash occurrence has been 

debated for decades. This study addresses the shortcomings of existing studies by using high-

resolution traffic and crash data and adopting the case-control design proven to be effective in 

the field of epidemiology. Given that oscillations are becoming more common in everyday 

traffic, the findings from this study may help prioritize countermeasures, such as ramp metering 

or adaptive speed control, to improve traffic safety and estimate their expected benefits.
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1.0 INTRODUCTION 

Traffic oscillations (also known as stop-and-go driving) on freeways, which arise in congested 

traffic, are characterized by recurring patterns of decelerations followed by accelerations. These 

oscillations are known to increase fuel consumption, engine emissions, and vehicle wear and tear 

(Bilbao-Ubillos 2008; Greenwood and Bennett 1995). They also decrease driving comfort, as 

drivers are forced to repeatedly adjust their acceleration rates. However, the externalities 

associated with traffic oscillations are yet to be assessed systematically, including the impacts on 

traffic safety.  

The safety implications of oscillations have been studied largely by evaluating the significance 

of speed deviations on the likelihood of crash occurrence, though most existing studies did not 

make an explicit distinction between congested and uncongested traffic. Some early studies 

(Lave 1985; Solomon 1964) report that larger speed deviations increase the probability of certain 

types of crashes (e.g., rear-end crashes). Many researchers have challenged this finding; Davis 

(2002) provides contradictory empirical evidence. Debates continue today, as existing studies 

exhibit shortcomings in data resolution and methodology. Moreover, only a few studies (Noland 

and Quddus 2005; Shefer 1997; Wang et al. 2009) have investigated the characteristics of 

crashes in traffic congestion, and they used low-resolution traffic data (e.g., hourly or daily 

flow), which do not capture oscillatory driving conditions.  

The present study seeks to understand the impact of traffic oscillations on the likelihood of 

freeway crash occurrences by analyzing event-based crash data and high-resolution (20 seconds) 

traffic data on a freeway segment. Oscillations are measured as variations in congested flow, 

speed and occupancy (a dimensionless measure of density) over a certain period. We adopted a 

matched case-control design in which a case corresponds to the average traffic state (e.g., 

average speed) and magnitude of oscillations prior to a crash. The matched control corresponds 

to the conditions in the same location on a day when a crash did not occur after controlling for 

geometry, weather and traffic states. Conditional logistic regression models were developed 

based on samples of cases and matched controls. The modeling results show not only that speed 

variations have a significant impact on (rear-end) crash occurrences but that these variations are 

more significant than average traffic states.  

This report is organized as follows: The following chapter discusses previous research related to 

the present study, and Chapter 3 describes in detail the features of the study site and our efforts 

to process the crash and traffic data. The design of the case-control study and the subsequent 

modeling efforts are explained in Chapters 4 and 5, respectively. Chapter 6 evaluates and 

interprets the models, while Chapter 7 offers concluding remarks and suggestions for future 

research. 
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2.0 BACKGROUND 

Three types of relevant literature are reviewed. We first discuss the previous studies that 

examined the impacts of speed variance and/or congestion on traffic safety. The review of these 

studies revealed that contradictory results have been reported primarily due to limitations in data 

resolutions and analysis methodologies. In light of this finding, various methods to relate crash 

characteristics to traffic features are reviewed. Finally, we provide a brief background of the 

case-control design and a rationale for selecting this method for our study.  

2.1 IMPACT OF SPEED VARIANCE AND CONGESTION ON TRAFFIC 

SAFETY 

Solomon (1964) appears to be the first study to report that speed variations have a larger impact 

on crash occurrences than average speeds. In his study, information from the accident records of 

nearly 10,000 drivers was extracted from the selected rural highways in 11 states during the three 

to four years prior to June 30, 1958. Their pre-crash speeds were obtained from the accident 

reports which were usually collected from drivers, police or witnesses, with about 20 percent 

missing speeds. For comparisons, speeds were measured for 290,000 crash-free drivers from the 

selected rural highways in these states.  The study sites were divided into 35 sections according 

to characteristics of main rural highways in the United States. One representative location was 

selected from each section, and crash-free speeds were collected at this location. A sample of the 

drivers were also stopped and interviewed for more information. 

In Solomon’s model the dependent variable was the accident involvement rate, which was 

defined as involvements per hundred million vehicle-miles. He found that 1) the relationship 

between crash risk and speed has a U-shaped curve; 2) vehicles with speeds of around 65 mph 

(105 km/h) have the lowest crash risk; and 3) the crash risk increases with increases in speed 

variations. This trend is consistent for both daytime and nighttime. 

Solomon’s findings received little attention until Lave (1985) claimed in his controversial paper 

that once one controls for speed variations, average speed has little impact on highway safety. He 

used the state average data from 1981 and 1982 based on highway statistics from the U.S. 

Department of Transportation. The analysis was carried out for six different highway types 

(Rural Interstate, Rural Arterial, Rural Collector, Urban Freeway, Urban Interstate and Urban 

Arterial) using the difference between average speeds and 85
th

 percentile speeds to measure 

speed variations. In total, 12 linear models were obtained (six for each year). The model results 

show that average speed is consistently insignificant and that the fatal rate would increase with 

the increase of speed variations. Therefore, the author claimed that speed laws should force 

drivers to coordinate their speeds instead of just limiting their speeds. 

Several studies (Davis 2002; Fowles and Loeb 1989; Lave 1989; Levy and Asch 1989; Synder 

1989) followed, debating Lave’s claim. Levy and Asch (1989) found that the mean and variance 
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of speeds were actually correlated, thus disputing Lave’s finding. Synder (1989) distinguished 

between fast and slow vehicles, examining the significance of the speed variance in each group 

and comparing the average speeds between the two groups. He found that average traffic speed is 

an important determinant of highway fatalities and that speed variance is important for fast 

vehicles only. 

More recently, Malyshkina and Mannering (2008) conducted a before-and-after study to assess 

the severity of accidents in relation to the increased speed limits (65 to 70 mph (105 to 113 

km/h)) in 2005 on some rural interstates in Indiana. They found that the increased speed limits 

did not have a statistically significant effect on the severity of accidents.   

The aforementioned studies used data that were highly aggregated temporally and spatially (e.g., 

annual statewide data) and may be subject to an ecological fallacy, as noted by Davis (2002). By 

focusing on the foundation of statistical inference and using a relationship between vehicle speed 

and pedestrian accident risk on residential streets as an example, Davis demonstrated how 

contradictory results can be obtained by using data generated at different levels of detail. A 

simulation model was used to generate hypothetical data of crash risk of heedless pedestrians on 

residential streets from three levels of aggregation: the individual vehicle/pedestrian encounter, 

the population of encounters at a given site, and the population of sites. Based on the simulated 

data, he found that at the individual encounter level and at a given site level, the collision 

probability increases with the increase of mean speeds, which is consistent with the observations. 

However, at the highest aggregated level (the population of sites), the mean speed essentially 

appears to have no significant impact on the collision risk. In this way, he demonstrated the 

potential danger introduced by highly aggregated data used in traffic safety studies. 

Moreover, in the aforementioned studies, no distinction was made between congested and 

uncongested traffic, even though traffic properties in the two regimes are not the same and may 

have different impacts on traffic safety.  

Fewer studies have examined the effect of traffic congestion on crash occurrences. Shefer et al. 

(1997) suggest that crash frequency increases in congestion due to increased interactions among 

vehicles, while crash severity decreases because of the lower speeds of congested traffic. 

However, they used simulated data to test the performance of their model, which undermines its 

validity. Noland and Quddus (2005) report conflicting results based on the analysis of 

enumeration district data for London, which imply that congestion in urban areas is unlikely to 

reduce crash severity and frequency. Wang et al. (2009) confirm this finding using the 

congestion index (CI), which is defined as the ratio of difference in actual and free-flow travel 

times to the free-flow travel time, to measure the congestion level of a motorway near London. 

However, the congestion index was calculated from hourly data averaged over a year. Thus, the 

data resolutions of these studies were not adequate to analyze the effect of oscillatory traffic flow 

in congestion. 

It is evident that existing studies report inconsistent findings on the effect of speed variance and 

congestion on crashes; this seems attributable to limited data resolution and analytical methods. 

Moreover, it appears that there has been limited effort, if any, to investigate the effect of traffic 

oscillations on freeway traffic safety.  
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In the following section, we briefly review methods to relate crash characteristics to traffic 

features in order to adopt a statistically sound methodology.  

2.2 METHODS TO RELATE CRASH CHARACTERISTICS TO 

TRAFFIC FEATURES 

For decades, researchers have used various methods to relate crash characteristics to traffic 

features. Many pioneering studies tried to establish a connection between crash and traffic 

conditions based on aggregated data (e.g., Lave 1985; Solomon 1964). In essence, they related 

aggregated indicators of traffic conditions, such as speed deviations (e.g., the annual 85th 

percentile speed minus the annual average speed), to crash frequency. As mentioned previously, 

using highly aggregated data, such as annually averaged data, can result in biased findings that 

are open to interpretation. 

Another common method uses the speeds of individual vehicles (e.g., Cirillo 1968; Research 

Triangle Institute 1970) to compare a crash-involved vehicle to other vehicles. This method 

imposes a great challenge on data collection endeavors, as the trajectories of vehicles in crashes 

are necessary to measure pre-crash speeds (Xin et al. 2008). 

Some researchers have attempted to use individual drivers’ accident histories (Fildes and 

Rumbold 1991; Tilden et al. 1936) by sampling speeds of selected drivers at a particular location 

and then analyzing their crash histories. The speeds of selected vehicles were measured using 

unobtrusive devices (e.g., a radar gun), and information on drivers (e.g., demographics, trip, 

vehicle data, and viewpoint to speeding) was collected by stopping them downstream of the road. 

Accident history details were accessed through the government database by matching vehicles’ 

registration numbers.  Fildes and Rumbold (1991) found that drivers who were traveling above 

the mean speed of the traffic or the posted speed limit were often found to have been involved in 

crashes over the past five years. Contrary to Solomon’s findings, no U-shaped relationship 

between crash involvement and speed deviations was found in their study, which might be 

partially due to the insufficient sample size in excessively fast and slow speeds, as they 

acknowledged.  

Comparatively, this study approach is easy to implement in practice. However, this approach has 

been criticized by Kloeden et al. (1997) for privacy issues and selection bias in the data 

collection as elaborated below: 

(1) This approach measures the pre-crash speed of a driver by sampling speeds 

independently at the crash location. The pre-crash speed measured in this way is highly 

likely to be biased due to different traffic conditions at different times; 

(2) This approach inherently cannot cover fatal accidents in which drivers were killed since it 

is impossible to sample deceased drivers on the location of interest and then access their 

accident history.  

Golob and Recker (Golob and Recker 2004) developed a novel approach to determine how crash 

characteristics are related to traffic flow conditions at the time of crash occurrence. They resorted 

to data mining techniques to study this issue from a pure data analysis perspective. To reduce the 
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dimensionality of the traffic data by accounting for correlations among traffic flow variables, the 

principal components analysis (PCA) was used in their study. Then a cluster analysis was 

deployed to find homogenous groups of traffic flow conditions, which were called “regimes.” 

For the data from more than 1,000 crashes in Southern California, they identified 21 traffic flow 

regimes for three different ambient conditions: dry roads during daylight (eight regimes), dry 

roads at night (six regimes), and wet conditions (seven regimes). Then the nonlinear canonical 

correlation analysis (NLCCA) based on the alternating least squares (ALS) algorithm was 

employed to evaluate the link strength between crash characteristics and each traffic flow 

regime.  

Their analysis has demonstrated that by controlling for environmental effects, the descriptive 

characteristics of crashes are distinguished by distinct traffic flow regimes. They have concluded 

that characteristics of freeway accidents are associated with the traffic flow conditions that 

prevail before an accident.  

The analysis techniques employed in their study are somewhat unconventional to this domain of 

study. Rather than building upon the foundation of traffic engineering principles, they instead 

viewed the problem as essentially a data analysis problem, and relied on statistical techniques to 

help reveal the structure of the underlying phenomena. One major advantage of this methodology 

is that creating a panel data (non-crash data) can be avoided and it is comparatively easier to 

implement the method. However, as mentioned before, this method is purely derived from data 

analysis techniques rather than being based on the theoretical background of traffic flow. In 

addition, too many traffic regimes were identified and criteria to meaningfully distinguish them 

are not straightforward. 

Finally, some traffic safety studies borrow the case-control design pioneered in the field of 

epidemiology (Kloeden et al. 1997; Abdel-Aty et al. 2005). This method is suitable for safety-

related research, as a crash is a rare event. The next section discusses case-control design in 

greater detail.  

2.3 REVIEW OF THE CASE-CONTROL DESIGN 

The case-control design is an efficient method to study rare events that is particularly prevalent 

in epidemiology (Manski 1995; Schlesselman and Stolley 1982) due to its simplicity, cost-

effectiveness, and theoretical soundness. The central idea of the case-control study is to compare 

two groups, one with the outcome of interest (such as disease, death and crashes) and one 

without it by incorporating potential explanatory factors (exposures) (Cornfield et al. 1959; 

Cornfield 1951; Fisher 1958a; Fisher 1958b). Cornfield (1951) proved theoretically the validity 

of the case-control method and demonstrated its effectiveness using epidemiological examples. 

The theoretical details of the case-control method are beyond the scope of this paper; interested 

readers should refer to Breslow and Day (1980) and Cornfield (1951) for more in-depth 

discussions.  

Traffic safety studies using a case-control design are scattered in the traffic literature. These 

studies can be approximately put into two categories according to their data collection methods: 

(1) case-control designs using data for individual vehicles that are involved in crashes or present 

at accident scenes and (2) case-control designs using loop detector data to measure traffic 
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conditions. Of note, these two types of case-control studies require different interpretation to 

identify the results. 

The most natural way to use a case-control design to study traffic safety is at the individual 

vehicle level. A vehicle involved in a crash is taken as a case, and other vehicles in the crash 

scene or in similar situations (but not involved in a crash) are taken as controls.  

It should be pointed out that case-control studies were also adopted in Solomon (1964), Cirillo 

(1968) and Research Triangle Institute (1970). However, the selection of controls in these studies 

is rather problematic as noted previously. Following these studies, the first notable case-control 

study in the traffic literature is Kloeden et al. (1997). The primary aim of their study was to 

quantify the relationship between freely traveling speed and the risk of involvement in a casualty 

crash for sober drivers in 38 mph (60 km/h) speed limit zones in the metropolitan area of 

Adelaide, Australia. Other aims were to examine the effect of hypothetical speed reductions on 

crashes and to study the impact of driver blood alcohol concentration (BAC) on traveling speeds.  

Kloeden et al. (1997) developed a case-control study by treating cars involved in casualty 

crashes as cases and cars not involved in crashes as controls by matching the location and time. 

In order to collect valid data on cases and controls, they carefully imposed the conditions in the 

data collection endeavor. Data were mainly collected from 9:30 a.m. to 4:30 p.m. Monday 

through Friday, as these times had the highest number of non-alcohol-related crashes in 

Adelaide. In order to isolate potential contributions to crash occurrence by confounding variables 

(e.g., driving under the influence of alcohol), drivers whose BACs were above zero were filtered 

out. For the same reason, cases related to illegal maneuvers prior to a crash also were not 

included in the analysis.  

Based on detailed information obtained from on-site crash investigations, crashes selected as 

cases were reconstructed using the computer reconstruction programs (M-SMAC) to estimate 

their pre-crash speeds. Furthermore, an expert panel reviewed crash-related data which were 

collected or estimated; cases that did not pass this review procedure were excluded from the 

analysis.  

A brief description on their data collection process follows. When the Road Accident Research 

Unit (RARU) received a notification of a crash either from the ambulance radio frequency or 

from a paging service provided by the South Australian Ambulance Service, RARU went to the 

crash scene and conducted a quick survey to decide whether the crash met the data collection 

criteria. If the crash indeed met the criteria, the crash investigation team documented the scene 

and collected information on the crash. Meanwhile, supplemental information on the crash (e.g., 

BAC) was extracted from the police accident report. Based on such information, the crash was 

reconstructed using M-SMAC to obtain the pre-crash speed. The validity of the reconstruction of 

the crash was evaluated by an expert panel. 

For each selected crash (case), vehicles in similar conditions were randomly selected and their 

speeds were measured unobtrusively by using a laser speed meter. Then, the selected vehicles 

were stopped further down the roadway by a police officer, who conducted breathalyzer tests. In 

their study, four selected vehicles whose drivers were confirmed by the test to have a zero BAC 

formed the control group for that case. 
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By statistically comparing speeds of the cases and the controls, they found that when a driver 

travels above 38 mph (60 km/h) in a 38 mph (60 km/h) speed zone, the likelihood of being 

involved in a fatal crash doubles with each 3 mph (5 km/h) increase in traveling speed. 

Overall, the study by Kloeden et al. (Kloeden 1997) was well done. The case-control study was 

carefully designed and an enormous data collection effort was executed. However, they 

acknowledged that it was difficult in the real world to arrange for police officers to do the 

breathalyzer test on selected drivers. This attempt was given up later, and thus the majority of 

controls were not subject to BAC verification.  The authors argued that BAC had no meaningful 

effect on the results since only a small proportion (3%) of the controls tested had a positive BAC. 

However, their results were possibly biased. Moreover, this study only focused on uncongested 

traffic flow conditions and only used speed to explain occurrences of fatal crashes.  

More recently, Davis et al. (2006) used a case-control design to investigate the effect of speed in 

run-off-road crashes since they believed that different crash types may be caused by 

fundamentally different processes. In their study, two datasets were used. One consisted of 14 

run-off-road fatal crashes in Adelaide, Australia, (the same data as in Kloeden et al. (1997)) and 

the other consisted of 10 run-off-road fatal crashes in Minnesota. A Bayesian approach was 

adopted in their analysis to address the small sample-size issue and pre-crash speed estimation 

uncertainties in crash reconstructions.  

Prior to modeling, they demonstrated the soundness of using logistic regression to model crash 

occurrences.  Then they proposed probabilistic versions of the crash reconstruction procedure by 

Kloeden et al. (1997) to estimate pre-crash speeds.  

In their case-control design, four controls were selected per case. They explicitly tested the U-

shaped relationship between fatal run-off-road crash occurrences and speed variations proposed 

by Solomon (1964).  They found that the likelihood of fatal run-off-road crashes increases with 

an increase in speed. However, the probability does not increase with speed decreases.  

Therefore, they claim that the U-shaped relationship hypothesized by Solomon (1964) does not 

exist for fatal run-off-road crashes in the two datasets.  

Although employing a case-control design at an individual vehicle level is ideal, collecting data 

for individual vehicles is difficult in practice. For example, the pre-crash speed of a vehicle is 

usually estimated using crash reconstruction methods. However, these reconstruction methods 

are often quite complex and the estimated speed is subject to bias, as noted by Davis et al. 

(2006). 

In an effort to remedy this shortcoming, Abdel-Aty et al. (2005) developed a case-control design 

using five-minute aggregated data from inductive loop detectors to develop a real-time crash 

prediction logistic model for multivehicle crashes on a 36-mile stretch on Interstate 4 in Central 

Florida. Their primary goal was to link crash occurrences with real-time traffic patterns observed 

through loop detector data, weather conditions, and geometric factors based on crash data and 

traffic data from 1999 to 2002.  

For each crash as a case, five controls were selected by controlling location, time of day and day 

of week in their study. Traffic data for a half-hour prior to the estimated crash occurrence were 
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extracted for each crash from the loop detector station nearest to the crash location as well as the 

four nearest upstream stations and two nearest downstream stations. Similarly, traffic data for 

five crash-free controls during the same period from these stations were extracted. Of note, the 

detailed estimation technique for crash occurrence time was not provided in their final report 

despite their claim that “findings… are based on accurately estimated time of the crash thereby 

evading the ‘cause and effect’ fallacy.” 

Based on the preliminary analysis, they included five-minute aggregated loop data with only 

multivehicle crashes to develop a final model based on 1,528 strata (each stratum consists of one 

crash and five corresponding non-crash controls). Their analysis on the spatio-temporal pattern 

of the hazard ratio shows that the speed variation, the average occupancy, and the standard 

deviation of volume 5-10 minutes prior to the crash are significantly associated with the 

likelihood of crashes on the freeway studied. 

However, they did not distinguish between the uncongested and congested traffic regime, and 

they did not focus on oscillations in congestion. 

Of note, some studies have employed case-control designs to examine the safety impact of 

certain risk factors. Gross and Jovanis (2007) provide a review of case-control studies used in the 

highway safety literature. They also developed a matched case-control design to quantify the 

effect of road geometry such as lane and shoulder widths. However, traffic operational features 

(oscillations in particular) were not examined in their study. 

In the present study, a case-control design is implemented in combination with event-based crash 

data and high-resolution (20-second) traffic data to examine the impact of traffic oscillations in 

congestion on the likelihood of crash occurrence.  
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3.0 STUDY SITE AND DATA PROCESSING 

This section describes the selection of a study site and processing of crash and traffic data. The 

traffic data used in this research were retrieved from the Portland Oregon Regional 

Transportation Archive Listing (PORTAL) (2009).  PORTAL (http://portal.its.pdx.edu) is the 

official Intelligent Transportation Systems (ITS) data archive for the Portland metropolitan 

region. PORTAL has been archiving 20-second speed, count, and occupancy data from inductive 

loop detectors on Portland-area freeways since July 2004. Crash-related data are obtained from 

two databases maintained by the Oregon Department of Transportation (ODOT). The statewide 

Crash Data System (CDS) contains all reported crashes on public roads in Oregon, and the 

incident database records all freeway incidents in the Portland metro area as logged by the 

Traffic Management and Operations Center (TMOC). 

3.1 STUDY SITE SELECTION 

A study site was selected among several freeway corridors in the Portland metro area (see Figure 

3.1), which consists of several interstates, U.S. highways and state routes. Several of them 

experience recurrent congestion during a.m. and/or p.m. peak hours. I-5 North was selected for 

this study based on a number of criteria: extent of congestion and oscillations, spacing of loop 

detector stations, traffic data quality, crash data availability, and crash sample size. 
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Figure 3.1: Freeway network in the Portland metro area 

The speed contour plot in Figure 3.2  illustrates the average traffic conditions of the study section 

during weekdays in January 2006. Time and space (in terms of mileposts) are shown on the x- 

and y-axes, respectively, and the color scale represents the estimated time-mean speeds over the 

month according to the legend in the figure. From the figure, two congestion patterns are 

identified. One started around 7 a.m. and ended around 9 a.m. This congestion was caused by a 

bottleneck located at about milepost 300 and propagated backward to as far as milepost 286. The 

second congestion period started around 4 p.m. and ended around 6 p.m. The bottleneck 

responsible for this congestion was located somewhere beyond milepost 307.9. The resulting 

queue propagated upstream to about milepost 296. These patterns on I-5 North were typical for 

most weekdays between 2004 and 2007.   
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Figure 3.2: Speed contour for I-5 North on weekdays in January 2006 

Traffic data from loop detectors often contain invalid data (e.g., missing value, negative value, 

and non-zero speed with zero count) due to malfunctioning detectors, communication failures, 

and other reasons (e.g., the loop detectors at milepost 293.74 in Figure 3.2 were malfunctioning 

for the entire month of January 2006.). Thus, it is necessary to evaluate the quality of traffic data 

collected from inductive loop detectors by the following steps: 

Step 1: Download data for I-5 North from PORTAL; 

Step 2:  Extract data for a.m. (7-9 a.m.) and p.m. (4-6 p.m.) peak hours; 

Step 3:  For each day, aggregate data from the detectors at the same stations based on mileposts; 

Step 4: For a.m. and p.m. peak hours for each day and each station, calculate the following 

indices: 

(1) Average speed, Avgspd, during each peak:  

∑

∑
=

t

t

tvol

tvoltspd

Avgspd

)(

)(*)(

 

Where, spd(t): time-mean-speed between time (t-15) minutes and t; 

vol(t): volume between (t-15) minutes and t. 
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Any records with no readings were disregarded in the computation. If data were missing 

throughout the entire peak period, Avgspd is set to N/A. 

(2) percentage of no-readings, P_no :  

)(

)(__

_
Countsum

tdatanoCount

noP t

∑
=

 

Where,Count_no_data(t): number of no readings between (t-15) minutes and t; 

sum(Count): total number of readings during the peak period. 

(3) percentage of valid data, P_ok: 

)(

)(_

_
Countsum

tokCount

okP t

∑
=  

Where, Count_ok(t): number of readings with a good quality between (t-15) minutes and 

t; 

sum(count): total number of readings during the peak period. 

(4) percentage of data with uncertain quality, P_suspect: 

)(

)(_

_
Countsum

tsusCount

suspectP t

∑
=  

Where, Count_sus(t): number of suspect readings between (t-15) minutes and t; 

sum(count): total number of readings during the peak period. 

 
Step 5: Output results in the format as shown in  

Table 3.1(Avgspd as an example): 
 

Table 3.1: A typical output structure for data quality matrix 

 Milepost 1 Milepost 2 … Milepost n 

Day 1 Avgspd Avgspd … Avgspd 

Day 2 Avgspd Avgspd … Avgspd 

… … … … … 

Day 31 Avgspd Avgspd … Avgspd 

To visually check monthly data quality at each station of I-5 North from 2004 to 2007, data 

quality maps were generated using the P_ok and P_suspect data for the a.m. and p.m. peak hours 

(see Figure 3.3 (a) and (b), respectively). The monthly percentages of valid data (defined as sum 

of P_ok and P_suspect) are shaded according the color scale shown in the legend; darker regions 

correspond to lower data quality. The figure reveals that the percentages of valid traffic data are 

below 85 percent for the segment between mileposts 295.18 and 283.93 in the a.m. and p.m. 

peak hours.  For the other segment of I-5 North (mileposts 296.26 - 307.9), the percentages of 

valid traffic data are generally larger than 85 percent. Furthermore, the traffic data have better 

quality in the p.m. peak hours than in the a.m. peak hours. Note that days with invalid traffic data 

prior to crashes were excluded in the further analysis. 
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(a) The a.m. peak hours 

 

 
 (b) The p.m. peak hours 

Figure 3.3: Data quality map for I-5 North Portland, OR 
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Figure 3.4 shows the crash counts for the a.m. and p.m. peak hours from 2004 to 2007. More 

crashes evidently occurred in the p.m. peak hours. Therefore, a larger crash sample size might be 

obtained from the p.m. peak hours.  

 

Figure 3.4: Crash number in p.m. peak hours vs. in a.m. peak hours in 2004-2007 

During the congested periods, traffic oscillations were examined visually using time-series speed 

plots to confirm their presence and amplitudes. For instance, Figure 3.5 shows speed over time 

(4:30-5:30 p.m.) at Jantzen Drive on May 14, 2007. The plot exhibits a recurring pattern of 

acceleration followed by deceleration, with the speed ranging from around 12 to 37 mph (19 to 

60 km/h). The figure also shows varied oscillation amplitudes, such that some periods exhibit 

larger speed variations (e.g., 4:50-5 p.m.) than others (e.g., 5:20-5:30 p.m.).  
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Figure 3.5: Speed-time series plot at Milepost 307.9 on May 14, 2007 

Based on the analysis above, a 12-mile (19-km) section (mileposts 296.26 to 307.9) of I-5 North 

(see Figure 3.6 for a schematic) has been selected. The most suitable time period for our study is 

the p.m. peak hours (from 4-6 p.m.) from 2004 to 2007.  

Note that this segment contains three lanes, and from mileposts 303 to 306 the left-most lane is 

dedicated to High Occupancy Vehicles (HOV). The HOV lane is limited to vehicles with at least 

two passengers from 3-6 p.m. on weekdays. Spacing between loop detector stations ranges from 

0.34 to 2.37 miles (0.6 to 3.9 km) with an average of about 1.06 miles (1.7 km). Data from the 

loop detectors (vehicle count, occupancy and time-mean speed during each 20-second interval) 

are available from PORTAL (2009).  
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Figure 3.6:  Schematic of the study site, northbound I-5, Portland, OR 

Loop detectors (black squares in Figure 3.6) measure traffic conditions at 12 locations on the 

selected freeway segment; these conditions are extrapolated to represent the conditions between 

measurement locations. Notably, we define “influence areas” that are bounded by the midpoints 

between neighboring stations. The shaded area in Figure 3.7 is an example of an influence area. 

A corresponds to the midpoint between Broadway Street and the Morrison Bridge, and B 

corresponds to the midpoint between Broadway and Going Street. Table 3.2 provides more 

detailed information on the influence areas of the study segment. 

Table 3.2: Mileposts of loop detector stations and influence areas, I-5 Northbound, Portland, OR 

ID Milepost Location Description Influence Area 

1 296.26 Spring Garden St.  (295.72 -296.43) 

2 296.6 Multnomah Blvd.  (296.43 - 296.97) 

3 297.33 Bertha Blvd  (296.97 - 298.52) 

4 299.7 Macadam Ave.  (298.52 - 300.40) 

5 301.09 Morrison Bridge  (300.40 - 301.80) 

6 302.5 Broadway St.  (301.80 - 303.19) 

7 303.88 Going St.  (303.19 - 304.14) 

8 304.4 Alberta St.  (304.14 - 304.76) 

9 305.12 Portland Blvd.  (304.76 - 305.82) 

10 306.51 Denver Ave.  (305.82 - 306.99) 

11 307.46 Marine Dr.  (306.99 - 307.68) 

12 307.9 Jantzen Dr.  (307.68 - 307.9) 
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We assume that traffic conditions (including oscillations) are the same within each influence area 

and are represented by the measurements taken at the corresponding detector station. This 

assumption was made due to the inherent limitation of loop detectors, which measure traffic 

conditions at specific points rather than over space. Moreover, the exact locations of crashes are 

unknown, and thus, it is not straightforward to estimate oscillations at the exact crash location. 

Nevertheless, we found that the assumption of uniform oscillations within an influence area is 

quite reasonable as demonstrated in the next section. 

3.2 CRASH DATA PROCESSING 

Crashes in the CDS are recorded to the nearest hour while the incident data is at much higher 

resolution (minutes). CDS was used to identify crashes, and the incident data were used to 

confirm the crashes and retrieve more detailed information about the crashes. 

A total of 242 crashes were reported in the study segment during the evening peak periods in 

2004 to 2007. Several steps were taken to obtain or estimate the occurrence times of these 

crashes. The occurrence times were extracted from the incident database since the incident 

database provides more accurate incident occurrence times than the crash database. For crashes 

missing from the incident database, 20-second traffic data are used to estimate the occurrence 

times based on the assumption that a crash in queued traffic will be reflected in the traffic 

characteristics (e.g., a sharp speed drop (increase) at an upstream (downstream) detector station).  

Figure 3.7 demonstrates this assumption using time-series speeds at the detector stations 

immediately upstream (Macadam Avenue) and downstream (Morrison Bridge) of a crash that 

occurred at milepost 300.31. According to the crash database, this crash occurred sometime 

between 4 and 5 p.m. on April 26, 2006. The time-series speed at the upstream detector station 

(3.7(a) initially displays relatively moderate congestion with a speed of 45 mph (73 km/h)). 

However, around 4:20 p.m. (marked by a star in the figure), the speed decreases markedly to 

around 10-15 mph (16-25 km/h), marking the arrival of the disturbance due to the crash 

downstream. The opposite trend is observed at the downstream location (b), which is initially 

characterized by a congested speed of about 30 mph (49 km/h). However, around 4:18 p.m., the 

speed increases to about 55-60 mph (89-97 km/h), marking the arrival of the crash-induced 

disturbance. Since this crash occurred in the influence area of the loop station at Macadam 

Avenue (see Table 3.2), data from this upstream station taken prior to 4:20 p.m. are used to 

represent pre-crash traffic conditions. Crashes whose occurrence times could not be determined 

from the incident database or traffic data were excluded from our analysis. (Traffic data from the 

days of these crashes were also excluded.) A total of 194 crashes remained (out of 242). 

The remaining 194 crash events were further scrutinized and removed if they met any of the 

following three criteria: (1) the crash occurred in an uncongested condition; (2) traffic data 

before the crash are invalid; or (3) an involved driver was impaired by drugs/alcohol. After these 

filtering processes, a total of 82 crashes remained; these were used in the analysis. Table 3.3 

summarizes the filtered crashes from each year. 
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a) Speed-time series at Macadam Ave. 

 

 

b) Speed time-series at Morrison Bridge 

Figure 3.7: Illustration of crash occurrence time estimation 
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Table 3.3: Yearly sample size of crashes 
 

Year 

Crashes 

in p.m. 

peak 

hours 

Crashes with occurrence time 

matched in the incident 

database 

Crashes with occurrence 

time estimated from the 

traffic data 

Crashes 

with no 

confirmed 

occurrence 

time 

Crashes 

filtered 

out due 

to other 

factors 

Filtered 

crashes 

2004
a
 50 34 0 16 31 3 

2005 52 37 9 6 28 18 

2006 80 49 16 15 25 40 

2007 60 26 23 11 28 21 

Total 242 146 48 48 112 82 
 
a
 Traffic data in 2004 were available only in September, October and December. 

 

The majority of the 82 crashes are rear-end crashes (71 out of 82), which seems reasonable.  

Nine sideswipe-overtaking crashes (vehicles traveling in the same direction on parallel paths 

collide) and one fixed or other object crash (a vehicle strikes a fixed or other object on the 

roadway or off roadway) were observed. One crash was coded as a turning movement crash, but 

inspection of the entire crash record indicates that this was probably miscoded. The crash 

occurred on the mainline in the vicinity of an exit ramp. Both vehicles were traveling in the same 

direction and likely collided when a vehicle made a maneuver towards the exit ramp (the reason 

for the turn code). As all of these crashes can occur due to oscillations, all 82 crashes were 

included in our analysis. Of further note, the descriptions of the turning-movement and fixed-or-

other-object crashes were not clear enough to determine if the crashes were potentially induced 

by oscillations. To be on the conservative side, these crashes were included in the analysis. 

Nevertheless, these crashes are unlikely to affect our results significantly since there were only 

two crashes of these crash types. 

Finally, the 82 crash events were linked to traffic data based on their mileposts and the 

corresponding influence areas. Of note, we used one-minute moving averages of traffic measures 

(speed) in order to smooth out noises while preserving the underlying trend. Measurements were 

also combined for all lanes to incorporate influences from adjacent lanes and maximize the 

sample size (sample size can be maximized by using measurements taken in other lanes in case 

of a malfunctioning loop) in view of Abdel-Aty et al. (2005). Weather information (e.g., rainfall) 

was obtained from PORTAL (2009) and incorporated into crash and traffic data. 

We now turn our attention to verifying the assumption of uniform oscillations within each 

influence area. We sampled oscillations during a 10-minute period (around 5 p.m.) each day at 

the most downstream location and measured the amplitude of oscillations by taking the standard 

deviation of speeds. Note that the duration of 10 minutes was used since oscillations typically 

exhibited a comparative period. This is further elaborated in the following section. The 

amplitudes of the sampled oscillations were then traced at all upstream locations by accounting 

for the oscillation propagation speed. As noted in Mauch and Cassidy (2002) and Ahn and 

Cassidy (2007), oscillations in congestion propagate upstream against traffic flow at nearly 

constant speeds independent of traffic states. We estimated the propagation speed from one 

detector station to the station immediately upstream using the cross-correlation technique. The 

basic idea is to search for a time lag which maximizes the correlation coefficient between the 



 

24 

 

time series from two detector stations. The optimal time lag corresponds to the travel time of 

oscillations between the two locations. The propagation speed corresponding to the optimal time 

lag was found to be around 12 mph.  

 

Figure 3.8 shows the basic statistics (e.g., average and standard deviations) of oscillation 

amplitude at each detector station for all crash-free days, as well as the spatial distribution of the 

identified crashes. The bars stand for number of crashes, the solid line is for average oscillations, 

and the dotted lines are variations of oscillations over time bounded by one standard deviation.  

The figure shows that the average amplitudes of oscillations are reasonably stable over space, 

such that, on average, they did not deviate more than 0.4 mph within each influence area. The 

largest difference of 0.8 mph is observed at the Multnomah station based on linearly interpolated 

amplitudes, though only four crashes occurred within this influence area. Thus, it seems 

reasonable to assume that oscillations within an influence area can be reasonably approximated 

by the oscillations measured at the corresponding loop detector station.  

 

 
Figure 3.8 Spatial distributions of oscillations in a 10-minute period from 2004-07 and number of crashes sampled 

for this study.   
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4.0 METHODOLOGY: THE CASE-CONTROL DESIGN 

The matched case-control method was selected to study the relationship between traffic 

oscillations and crash occurrences in congestion. The explanatory variables are oscillations and 

average traffic states during a period of time (10 minutes, as explained below) prior to crashes. 

Potential measures of oscillations include standard deviations of speed, count, and occupancy. 

The mean speed, count and occupancy are used as measures of average traffic states.   

The measurement duration of the explanatory variables was determined based on their temporal 

characteristics: an ideal duration would be long enough to capture at least one oscillation cycle 

but short enough to preclude changes in longer-term average traffic states. We determined the 

ideal sampling duration using oblique curves of cumulative time-mean speed since time-series 

plots of count, occupancy and speed typically display a large amount of noise, making it difficult 

to identify different traffic states and the times of state changes. However, cumulative curves of 

traffic observations constructed on an oblique time axis can smooth the noise in the data and 

better reveal the underlying trends. This technique is described in detail in Munoz and Daganzo 

(2002). 

On an orthogonal axis, an oblique curve is obtained by taking the difference between the 

cumulative speed at time t, V(t), and its background reduction, V0 (t-t0), where V0 is a scaling 

factor and t0 is the starting time of the curve. Figure 4.1 presents an oblique curve of cumulative 

speed, V(x, t) – V0 (t-t0), versus time, t, at Jantzen Drive between 4:30 and 5:30 p.m. on May 14, 

2007. The figure shows a series of oscillations with a cyclic pattern of an increase in slope (i.e., 

speed) followed by a decrease. Judging from the figure, oscillations typically have a period of 

about 10 minutes; we use this as the sampling duration for our study. 

 

Figure 4.1: Oblique curve of cumulative speed at Jantzen Drive between 4:30 and 5:30 p.m. on May 14, 2007 
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In the literature, it has been reported that a crash occurrence time is often rounded to the nearest 

five minutes (Golob and Recker 2003; Kockelman and Ma 2007). In such cases, traffic data 

within five minutes before each crash should be excluded from analysis to avoid “cause and 

effect” ambiguity. We inspected our original dataset to assess if the crash occurrence times were 

rounded to the nearest five minutes in Oregon. Our analysis shows that the majority (68 out of 

82) of the crash occurrence times are not in multiples of five minutes. Therefore, we believe that 

the crash occurrence times used in this research were not rounded to the nearest five minutes and 

thus did not further exclude any data.  

The dependent variable is binary (crash-prone or not-crash-prone traffic conditions). Of note, 

cases here are not the crashes themselves, but the traffic conditions immediately before the crash 

occurrences while controls are congested traffic conditions under which no crash has occurred.  

To control for the potential impacts of other factors on crash occurrences, several confounding 

variables (time of day, location, weather, and presence of congestion) are used to limit the 

selection of controls. Of note, each location is treated as a unique geometric factor to be 

conservative. For instance, a crash occurred in the influence area of the Broadway Street detector 

station at 4:11 p.m. on the rainy day of October 6, 2005. Measurements taken from 4:01 to 4:11 

p.m. on this day are used as a case. Then, measurements are taken at the same location during the 

same period on the crash-free days in 2004 to 2007 that exhibited congestion (average speed less 

than 50 mph (81 km/h)) and similar weather conditions. These extracted measurements are used 

as potential candidates for controls. Among the candidates, n observations are randomly selected 

as the controls for that particular crash (case). In our study, about 1,000 candidate controls are 

available for each case. All legitimate controls were stored for the model evaluation, as discussed 

in Chapter 6. 

The above procedure is applied to each crash, resulting in the 82 cases matched with 82×n 

controls. It is difficult to theoretically determine the optimal control-to-case ratio. As a rule of 

thumb, a control-to-case ratio around 4:1 is recommended since the statistical power generally 

does not increase significantly beyond a 4:1 ratio (Ahrens and Pigeot 2005; Hennekens and 

Buring 1987; Rothman and Greenland 1998; Schlesselman and Stolley 1982). Therefore, the 

control-to-case ratio of 4:1 was implemented in this study.   

Our modeling efforts essentially consist of two main phases: 1) model development using a set 

of sampled controls and 2) model evaluation via repeated model developments using different 

samples of controls and sensitivity analysis with respect to the control-to-case ratio (4:1 to 7:1). 

The latter is designed to evaluate the consistency of modeling results with respect to multiple 

(unique) control samples and control-to-case ratios. These efforts are presented in detail in 

chapters 5 and 6. 
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5.0 MODELING EFFORT AND RESULT 

Conditional logistic regression is employed to model the association between traffic oscillations 

and crash occurrences in the study segment. This is a standard technique for analyzing matched 

case-control data. Conditional inference can be adopted easily in the conventional 

(unconditional) logistic regression model if the constant for each stratum is excluded in the 

estimation by treating it as a “nuisance” parameter (Hosmer and Lemeshow 2004). Estimates 

from a conditional logistic regression have been proven to be consistent and asymptotically 

normally distributed. Cox and Hinkley (1974) provide the mathematical details of conditional 

likelihood analysis.  

Conditional logistic regression analysis is implemented in Stata
®

/IC10 (StataCorp 2009) by 

taking average traffic states and traffic oscillations as the independent variables. It is well 

acknowledged in the literature that the control-to-case ratio should be around 4:1, as cited in the 

previous section, since 80 percent of the maximum efficiency can be obtained around that ratio.  

Table 5.1 lists all the potential explanatory variables and their basic statistics (the 4:1 control-to-

case ratio is taken here as an example). The average speed is about 25 mph (40 km/h), indicating 

heavy congestion. The mean amplitude of traffic oscillations in terms of standard deviation of 

speed is 5 mph (8 km/h). The standard deviation of oscillations (also in terms of standard 

deviation of speed) is 3 mph (5 km/h), ranging from 0.3 mph (0.5 km/h) to nearly 20 mph (32 

km/h), confirming that the samples (a total of 82 cases and 328 controls) contain variations in 

traffic oscillations.  

Table 5.1: Basic statistics for the potential explanatory variables (4:1 control-to-case ratio) 

Potential Variable Mean Std. Dev. Min 25% Percentile 
75% 

Percentile 
Max 

Average speed
b
 24.743 11.237 2.303 16.542 30.448 49.938 

Average count
c
 5.294 1.656 0.703 4.072 6.444 9.559 

Average occupancy
d
 20.955 14.913 0.486 4.968 33.401 64.294 

Std. dev. of speed
e
 4.982 3.057 0.327 2.928 6.015 19.957 

Std. dev. of count 0.894 0.402 0.0993 0.595 1.098 2.460 

Std. dev. of occupancy 4.364 3.829 0.380 1.233 6.386 30.609 
 

b
 the average speed across all travel lanes at all detector stations during the 10-minute periods right before the crash 

occurrences 
c
 the average number of vehicles per lane per 20 seconds at all detector stations during the 10-minute periods right 

before the crash occurrences 
d
 the average percentage of time that the detectors are occupied by vehicles across all travel lanes during the 10-

minute periods right before the crash occurrences 
e
 the standard deviation of speed during the 10-minute periods right before the crash occurrences; and std. dev. of 

count and std. dev. of occupancy are similarly defined. 

 

We followed a sound model development practice. Namely, different combinations of potential 

explanatory factors were incorporated via conditional logistic regression, following a univariate 

analysis. Since a logistic regression generally requires a large sample size (Hosmer and 

Lemeshow 2004; Good and Hardin 2006) (and we have 82 cases), no more than two explanatory 

variables are considered simultaneously in the model and interactions between the variables are 
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also not considered. The performance of each model was evaluated based on the theoretical 

soundness (e.g., signs of estimated coefficients), the p-value for the overall model, R
2
 and 

likelihood ratio tests, rather than the statistical significance of each estimated parameter. Our 

threshold p-value for the overall model performance is set to 0.1; models with overall p-values 

less than 0.1 were considered as candidates for the best model. Finally, a model with the best 

performance was selected. Of note, during our model development (in this section) and 

evaluation procedure (in Chapter 6), we emphasized replication/consistency rather than a 

statistical significance test. We did this because there are many criticisms (Good and Hardin 

2006; Johnson 1999; Sterne and Smith 2001) of overemphasizing significance tests, such as the 

p-values of individual parameters and (Pseudo) R
2
, to evaluate models, as these tests can be 

arbitrarily manipulated (by changing the sample size or adding unnecessary variables, for 

example) and are difficult to interpret correctly.  

 

Table 5.2 shows the statistics of the best model for a set of sampled controls with 4:1 control-to-

case ratio. The result shows that the odds ratio for the standard deviation of speed is about 1.096, 

with a 95 percent confidence interval of 1.016 to 1.183. This implies that an additional standard 

deviation unit of speed (1 mph in this case) increases the odds ratio of crash occurrence by 9.6 

percent.. 
 

Table 5.2: Results from the conditional logistic regression analysis  

(4:1 control-to-case ratio) 

Crash_prone Odds Ratio Std. Err. Z P>|z| 95% Confidence Interval (CI) 

Std. dev. of speed
f
 1.096 .0424 2.37 0.02 1.016 1.183 

 
f
 Number of observations=410; LR chi2(1) = 5.37; Prob > chi2 =0.0205; Log likelihood = -129.29096. 
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Since the independent variables in our model are continuous, the linearity assumption in the 

logistic model has been tested using fractional polynomials (FP), as recommended by Hosmer 

and Lemeshow (2004). The fractional polynomials allow us to build several models with 

different power functions of a continuous explanatory variable and then to choose the most 

suitable one by conducting the partial likelihood ratio test.  

For illustration purposes, we use the standard deviation of speed to explain the fractional 

polynomial analysis used in our research. For our model, a fractional polynomial of degree � for 

the standard deviation of speed, �������. �
�. �
 ��

�; ���, … , ����, is defined as 

�������. �
�. �
 ��

�; ���, … , ����

� �� � ������. �
�. �
 ��

���� � � � ������. �
�. �
 ��

���� 

Where �� � � � � � �� denotes powers (integer or fractional); and 

 ����. �
�. �
 ��

����!� � �
ln����. �
�. �
 ��

��    $
 �% � 0 

����. �
�. �
 ��

���!    $
 �% ' 0
 

For a given degree (e.g., �), the best fitting powers  ��, … , �� are obtained by choosing the 

model with the smallest deviance. Royston and Altman (1994) provide more technical details of 

the fractional polynomial analysis. 

The simplest functional form of log-relative ratio in the standard deviation of speed is linear, 

which corresponds to an FP of first degree (� � 1) with a power of one (�� � 1). We have 

tested a second-degree (see Table 5.3 for the result) and a first-degree (see Table 5.4) fractional 

polynomials. Higher-degree fractional polynomials are not considered to keep our model 

parsimonious.   

Table 5.3: Summary of the second-degree FP comparisons for standard deviation of speed 

Degree of FP, m Powers Degree of Freedom Deviance Dev. Dif. P
g
 

0 

(Not in model) 
N/A 0 263.948 10.026 0.04 

1 1 1 258.582 4.66 0.198 

1 2 2 258.316 4.393 0.111 

2 -0.5,0 4 253.922 N/A N/A 

g -P-value from deviance difference comparing reported model with m = 2 model. 

 

Table 5.3 shows that �� ����. �
�. �
 ��

�; �)0.5,0�� model has the smallest deviance of 

253.922 and is better than the model without any variables. However, no significant performance 

improvement is gained compared to �������. �
�. �
 ��

�; �2�� with deviance 258.316 at the 

95 percent confidence level (p-value=0.111). 

Similarly, according to Table 5.4, the performance of �������. �
�. �
 ��

�; �2�� model is not 

significantly better than the performance of the simple linear model at the 95 percent confidence 

level (p-value=0.606).  
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Table 5.4: Summary of the first-degree FP comparisons for standard deviation of speed 

Degree of FP, m Powers Degree of Freedom Deviance Dev. Dif. P
g
 

0  

(Not in model) 
N/A 0 263.948 5.632 0.06 

1 1 1 258.582 0.266 0.606 

1 2 2 258.316 N/A N/A 
 
g
 P-value from deviance difference comparing reported model with m = 1 model. 

 

The above analysis indicates that keeping the continuous variables linear in the logistic model is 

appropriate for the range of speeds we obtained. This procedure has been applied to other 

variables, which resulted in the same conclusion. 

Several techniques (e.g., computing residual variation, leverage) can be used to detect potential 

outliers in a conditional logistic regression (Hosmer and Lemeshow 2004). However, removing 

outliers can potentially lead to over-fitting, which diminishes the effectiveness of the model 

(Washington et al. 2003). Therefore, we include all data points in our modeling efforts and 

evaluate the effectiveness of the model using different samples of controls, as described in the 

following section.  
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6.0 MODEL EVALUATION AND INTERPRETATION 

Evaluation of statistical models for consistency prior to interpretation is essential since they are 

often subject to measurement errors, selection bias, invalid design, and/or human errors. Ideally, 

cases and controls should be free of any sources of bias, such as construction, lane closures, and 

other incidents. This issue was not directly addressed in our analysis given the extensive data 

collection efforts involved. Instead, we evaluated our model by re-sampling controls for each 

case and repeating the model development process (described in Section 5) to find the best 

model based on the newly drawn sample and conducting a sensitivity analysis with respect to the 

case-to-control ratio. For the former, 20 different sets of controls were sampled from the pool of 

candidate controls for the control-to-case ratio 4:1. Note that sampling the same control more 

than once is unlikely since each case has about 1,000 candidate controls. The best model for each 

re-sampled dataset was obtained according to the criteria described in Chapter 5. Table 6.1 

presents the modeling results from the 20 different runs for the control-to-case ratio of 4:1. 

The result indicates that in 18 out of 20 runs (90 percent), the standard deviation of speed is 

significant and its odds ratio is fairly consistent throughout the runs. Notably, the average odds 

ratio is 1.084 with the minimum of 1.066 and the maximum of 1.119, which is a fairly tight 

bound. Moreover, the average lower and upper limits of the 95 percent confidence intervals are 

1.003 and 1.171, respectively, indicating that the standard deviation of speed is a significant 

variable associated with the likelihood of a crash occurrence. For the study segment, an 

additional unit in the standard deviation of speed increased the odds ratio of crash occurrence by 

an average of 8.4 percent. This indicates that an average day is about 1.49 times more likely to 

have a crash than the day without any oscillations since the average standard deviation of speed 

on the study corridor is about 4.982 mph (see Table 5.1). This magnitude of impact seems 

reasonable since many other factors, such as human factors and vehicle conditions, also impact 

crash occurrences (Hauer 1997). 

It is also notable that the average occupancy is significant: nine times in the 20 runs. These nine 

appearances have an average odds ratio of 1.023. However, the p-values are relatively large 

(>0.1) in most runs, and the average lower limit of the 95 percent confidence interval for its odds 

ratio is lower than  one (0.997). Moreover, the average count appears significant in only one run, 

with an average odds ratio less than one (0.809). Thus, it is reasonable to conclude that speed 

variations in queued traffic (oscillations) have a larger impact on crash occurrence than average 

traffic states. Nevertheless, the average odd ratios for occupancy and count are qualitatively 

consistent: they both imply that the likelihood of crash occurrence increases as congestion 

becomes more severe. 
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Table 6.1: Model evaluation results (4:1 control-to-case ratio) 

Run Variables
h
 Odds Ratio P-value 95% CI 

1 std_spd 1.066 0.1 0.988 1.151 

2 avg_occ 1.03 0.04 1.002 1.058 

std_spd 1.119 <0.01 1.029 1.216 

3 std_spd 1.07 0.1 0.988 1.16 

4 std_spd 1.096 0.02 1.016 1.183 

5 std_spd 1.09 0.03 1.01 1.177 

6 std_spd 1.069 0.07 0.994 1.149 

7 std_spd 1.077 0.05 1.001 1.16 

8 std_spd 1.079 0.03 1.006 1.158 

9 avg_occ 1.02 0.09 0.997 1.043 

std_spd 1.071 0.08 0.991 1.157 

10 avg_occ 1.025 0.08 0.997 1.054 

std_spd 1.094 0.03 1.01 1.185 

11 avg_occ 1.028 0.06 0.999 1.058 

std_spd 1.118 <0.01 1.029 1.215 

12 avg_occ 1.019 0.12 0.995 1.042 

std_spd 1.089 0.03 1.008 1.176 

13 avg_occ 1.02 0.1 0.996 1.044 

std_spd 1.077 0.07 0.995 1.165 

14 std_spd 1.081 0.04 1.002 1.166 

15 N/A N/A N/A N/A N/A 

16 avg_cnt 0.809 0.06 0.646 1.013 

std_spd 1.089 0.04 1.005 1.179 

17 avg_occ 1.017 0.15 0.994 1.041 

std_spd 1.069 0.07 0.994 1.15 

18 avg_occ 1.021 0.13 0.994 1.05 

std_spd 1.081 0.06 0.997 1.172 

19 avg_occ 1.026 0.06 0.999 1.053 

20 std_spd 1.078 0.06 0.998 1.165 

Average std_spd 1.084 N/A 1.003 1.171 
 
h
 avg_occ is for average occupancy; std_spd is for standard deviation of speed; avg_cnt is for average count, and NA 

means not available. 
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Now we turn our attention to the sensitive analysis of the modeling results shown in 

Table 6.1 with varying control-to-case ratios. If the model results are robust, we expect 

similar or more consistent results for larger or smaller control-to-case ratios since the 

statistical power is expected to increase. To verify this, two sampling strategies were 

adopted. 

First, we randomly re-sampled totally different controls for each case in varying control-

to-case ratios (3:1 to 5:1). The results for the control-to-case ratios of 3:1 and 5:1 are 

fairly consistent with the results for the 4:1 ratio (For a brief summary, see Table 6.2; for 

details, see Appendix A ). The standard deviation of speed appears significant in more 

than 15 runs, and the average odds ratios are consistently around 1.08, which also 

supports the robustness of our findings. We think that the slight decrease in the number of 

significant runs (18 to 17) from ratios 4:1 to 5:1 is rather a result of uncertainty in the 

data than a decrease in statistical power. Therefore, to evaluate the model performance 

(consistency) with respect to statistical power, a different sampling strategy was 

developed, as described below.  

We conducted an additional analysis by increasing control-to-case ratios from 4:1 to 7:1 

with the set of controls used in 4:1 ratio as the base. In other words, additional controls 

were sampled and added to the controls for the 4:1 ratio. For example, for the 5:1 ratio, 

one additional control for each case was randomly sampled from the pool of candidates 

and added to the existing four controls. For each run and each increased control-to-case 

ratio, a best model was redeveloped based on the criteria described in Chapter 5 to 

examine the consistency of models in terms of significant explanatory variables, odds 

ratios, and confidence intervals. The results of this sensitivity analysis are summarized in 

Table 6.3 for the control-to-case ratios of 4:1 to 7:1. Table 6.3 reports the number of runs 

in which the standard deviation of speed (i.e., amplitude of oscillations) and average 

occupancy, speed, and count were significant over 20 different control samples for each 

control-to-case ratio. The table also reports the average odds ratios and average 

confidence intervals for the standard deviation of speed.  

 

The model results for the standard deviation of speed are quite consistent for different 

control samples and, as expected, the consistency improves with increasing ratios. More 

specifically, the standard deviation of speed is significant in more than 18 runs for all 

ratios, and the number of significant runs increases from 18 (90 percent of the runs) to 20 

(100 percent of the runs) as the ratio increases from 4:1 to 7:1. Moreover, the average 

odds ratios for the standard deviation of speed are consistently around 1.08 for different 

control-to-case ratios, and the average 95 percent confidence intervals tighten as the ratio 

increases. Thus, the results strongly support the existence of relation between oscillations 

(measured by the standard deviation of speed) and crash occurrences. To the contrary, 

other variables for average traffic states appeared to be significant in less than 10 runs, 

and the consistency does not improve with increasing control-to-case ratios. The results 

imply that traffic oscillations are more significantly associated with crash occurrences 

than average traffic states. The details of individual runs for each control-to-case ratio are 

presented in Appendix B. 
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Table 6.2: Model evaluation results for different control-to-case ratios (3:1 to 5:1) 

 

 Standard Deviation of Speed Number of Significant Runs out of 20
i 

Control-to-Case 

Ratio 
Average 

Odds Ratio 
Average 
 95% CI 

std_spd avg_occ avg_spd avg_cnt 

3:1 1.086 1.001 1.178 15  4 1 2 
4:1 1.084 1.003 1.171 18  9 0 1 
5:1 1.083 1.004 1.169 17  6 3 4 

 
i
 avg_occ is average occupancy; std_spd is standard deviation of speed; avg_cnt is average count, and 

avg_spd is average speed. 

 

 

 Table 6.3 Summary of model evaluation results for different control-to-case ratios (4:1 to 

7:1) 

 Standard Deviation of Speed Number of Significant Runs out of 20
j 

Control-to-Case 

Ratio 
Average 

Odds Ratio 
Average 
 95% CI 

std_spd avg_occ avg_spd avg_cnt 

4:1 1.084 1.003 1.171 18  9 0 1 
5:1 1.080 1.002 1.165 18  4 1 1 
6:1 1.080 1.003 1.163 19  8 1 1 
7:1 1.081 1.005 1.162 20 5 3 0 

 
j
 avg_occ is average occupancy; std_spd is standard deviation of speed; avg_cnt is average count, and 

avg_spd is average speed. 
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7.0 CONCLUSIONS AND DISCUSSION 

The present study examines the impact on crash occurrences of freeway traffic 

oscillations that arise in queued traffic. This research employs a 12-mile stretch of 

freeway in Portland, OR, where fairly extensive recurrent congestion and oscillatory flow 

are observed. Traffic conditions, including oscillations, were measured using 20-second 

aggregated data from inductive loop detectors. Crash data for the study corridor are 

available from the statewide crash database, and crash occurrence times were obtained or 

estimated from the incident database and time-series traffic data.  

A case-control study was designed using these data. A case was a traffic condition prior 

to a crash, and the controls were the conditions on days without any crashes matched for 

the confounding variables of time of day, presence of congestion, weather and geometry. 

The averages and standard deviations of count, occupancy and speed during the 10 

minutes prior to a crash were adopted as potential measures of average traffic states and 

traffic oscillations, respectively. A total of 82 cases and around 80,000 candidate controls 

were extracted from data from 2004-07.  

Models were developed based on a conditional logistic regression with two exposure 

variables, average traffic state and amplitude of oscillations. Of note, models were 

initially developed for the control-to-case ratio of 4:1. The model results were evaluated 

by randomly drawing 20 different sets of controls. To further assess the model’s 

consistency for different control-to-case ratios, two sampling strategies were adopted 

(one sampling strategy for 3:1 to 5:1 control-to-case ratios and the other for 4:1 to 7:1 

control-to-case ratios). The evaluation results show that the amplitude of oscillations was 

consistently significant for different control samples and control-to-case ratios. The 

evaluation results also displayed consistent average odds ratios (of about 1.08) and their 

confidence intervals. The consistency in the results demonstrates that oscillations have a 

significant impact on crash occurrence. An additional unit increase in the standard 

deviation of speed increases the odds of (rear-end) crashes by about 8 percent.  

Of further note, in this study the average traffic states in congestion were less significant 

than deviations in speed. For example, in the control-to-case ratio of 4:1, the average 

occupancy appeared to be significant in less than half of the runs. Nevertheless, its odds 

ratio was qualitatively consistent and suggests that the likelihood of crash occurrence 

increases as congestion becomes more severe. 

Our findings are notable given that the impact of speed variation on crash occurrence has 

been debated for decades. This study addresses the shortcomings of existing studies by 

using high-resolution traffic and crash data and adopting the case-control design proven 

to be effective in the field of epidemiology. Moreover, the present study elucidates the 

impact of oscillatory driving in queued traffic on safety, which is a rare contribution. 

Given that oscillations are becoming more common in everyday traffic, the findings from 

this study may help prioritize countermeasures, such as ramp metering or adaptive speed 

control, to improve traffic safety and estimate their expected benefits. Nevertheless, 
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future investigations are warranted to acquire a more complete understanding of the 

safety impact of oscillations, as elaborated below. 

Although a sufficient number of samples (82 crashes) were obtained to study the impact 

of oscillations, the sample size in this study was substantially reduced (from 242 to 82) 

due to missing traffic data and the inability to accurately estimate crash occurrence times. 

As a result, our modeling efforts were limited to one or two exposure variables at a time, 

and interactions among the variables were not considered. This may be addressed by 

employing the Bayesian approach, and work in this regard is ongoing. 

Furthermore, a single freeway corridor was selected in this study. Other freeway 

locations should be analyzed to confirm the current findings. It is likely that the impact of 

oscillations depends on various characteristics of roadways, such as traits of the driving 

population and the freeway geometry. Future investigations in this regard are necessary. 

Nevertheless, the present study provides a methodological framework for further 

investigations.  
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APPENDIX A: 

 

Model evaluation results for control-to-case ratios 3:1 and 5:1 

Model evaluation results for control-to-case ratios 3:1 and 5:1 from the first sampling 

strategy (a totally different set of controls was randomly sampled) are summarized in the 

tables below. 

Table A.1: Model evaluation results (3:1 and 5:1 control-to-case ratios) 

Control-to-case ratio 3:1 5:1 

Run Variables Odds Ratio
k
 95% CI Odds Ratio 95% CI 

1 std_spd 1.087 0.999 1.181 1.074 0.995 1.158 

2 avg_spd    0.979 1.013 1.191 

2 std_spd    1.098 0.997 1.043 

3 std_spd 1.115 1.021 1.217 1.09 1.009 1.176 

3 avg_occ 
   

1.02 0.997 1.043 

4 avg_spd 0.971 0.946 0.997 0.976 0.954 0.999 

4 std_spd 1.111 1.011 1.22 1.071 0.993 1.155 

5 avg_cnt 0.811 0.634 1.039    

5 std_spd 1.084 0.997 1.178 1.062 0.99 1.14 

6 avg_occ 1.021 0.996 1.046    

6 std_spd 1.123 1.032 1.223 1.088 1.007 1.175 

6 avg_cnt 
   

0.825 0.664 1.024 

7 avg_occ 1.025 0.994 1.057    

7 std_spd 1.075 0.998 1.157 1.088 1.009 1.173 

7 avg_cnt 
   

0.81 0.656 1.001 

8 std_spd        

9 std_spd 1.071 0.993 1.155 1.064 0.986 1.147 

9 avg_cnt 
   

0.811 0.642 1.023 

10 std_spd 1.085 1 1.176 1.109 1.026 1.198 

10 avg_spd 
   

0.977 0.955 1 

11 std_spd 1.066 0.992 1.146 1.122 1.037 1.213 

11 avg_occ 
   

1.035 1.006 1.064 

12 avg_occ 1.021 0.997 1.047 1.025 1 1.051 

12 std_spd 1.067 0.988 1.153 1.078 0.997 1.165 

13 std_spd     1.073 0.995 1.157 

14 std_spd    1.064 0.987 1.146 

14 avg_cnt    0.794 0.622 1.013 

15 avg_occ 1.033 1.004 1.064 1.02 0.997 1.044 

15 std_spd 1.096 1.005 1.194 1.106 1.026 1.192 
 
k
 The blank cell means that the corresponding variable did not appear in the final model. 
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16 avg_cnt 0.819 0.648 1.035    

16 std_spd 1.071 0.986 1.164 1.097 1.016 1.186 

16 avg_occ 
   

1.023 0.996 1.05 

17 std_spd 1.071 0.991 1.157    

18 std_spd    1.068 0.989 1.152 

18 avg_occ    1.018 0.996 1.041 

19 std_spd 1.099 1.012 1.194    

20 std_spd 1.069 0.992 1.153 1.066 0.99 1.148 

  



 

43 

APPENDIX B:  

 

Model evaluation results for 5:1 to 7:1 control-to-case ratios 

Model evaluation results for 5:1 to 7:1 control-to-case ratios from the second sampling 

strategy (additional controls were sampled and added to the controls for the 4:1 ratio to 

form a new set of controls) are summarized in the tables below. 

Table B.1  Model evaluation results (5:1 to 7:1 control-to-case ratios) 

control-to-case ratio 5:1 6:1 7:1 

Run variables odds 

ratio
l
 

95% CI odds 

ratio 

95% CI odds 

ratio 

95% CI 

1 std_spd 1.101 (1.020,1.190) 1.093 (1.018,1.172) 1.084 (1.008,1.165) 

2 std_spd 1.062 (0.986,1.143) 1.062 (0.987,1.144) 1.08 (1.002,1.165) 

3 std_spd 1.081 (1.003,1.165) 1.116 (1.033,1.206) 1.092 (1.016,1.174) 

3 avg_occ   1.027 (1.000,1.054) 1.018 (0.997,1.040) 

4 std_spd 1.079 (0.997,1.168) 1.075 (0.997,1.158) 1.093 (1.011,1.181) 

5 std_spd 1.090 (1.013,1.174) 1.077 (1.002,1.157) 1.088 (1.012,1.170) 

6 std_spd 1.069 (0.992,1.150) 1.080 (1.009,1.157) 1.084 (1.012,1.161) 

7 std_spd 1.080 (1.005,1.161) 1.077 (1.002,1.157) 1.075 (1.002,1.153) 

8 std_spd 1.076 (1.002,1.154) 1.085 (1.012,1.165) 1.066 (0.996,1.140) 

9 std_spd 1.071 (0.994,1.154) 1.080 (1.001,1.165) 1.069 (0.994,1.150) 

9 avg_occ 1.018 (0.996,1.041) 1.018 (0.995,1.042)   

10 std_spd 1.089 (1.009,1.176) 1.088 (1.006,1.177) 1.082 (1.005,1.164) 

10 avg_occ   1.024 (0.999,1.051)   

11 std_spd 1.121 (1.034,1.215) 1.078 (1.002,1.16) 1.085 (1.011,1.164) 

11 avg_occ 1.026 (0.999,1.054)     

12 std_spd 1.081 (1.005,1.161) 1.074 (0.999,1.155) 1.085 (1.009,1.167) 

12 avg_occ   1.017 (0.997,1.038) 1.02 (0.998,1.043) 

13 std_spd 1.066 (0.991,1.147) 1.072 (0.991,1.161) 1.068 (0.994,1.147) 

13 avg_occ     1.020 (0.997,1.044) 

13 avg_spd   0.981 (0.958,1.004)   

14 std_spd 1.066 (0.990,1.147) 1.074 (0.998,1.156) 1.062 (0.991,1.137) 

15 std_spd   1.071 (0.994,1.154) 1.080 (1.001,1.164) 

15 avg_occ   1.020 (0.995,1.044) 1.028 (1.000,1.056) 

16 std_spd 1.096 (1.014,1.185) 1.078 (0.997,1.166) 1.107 (1.019,1.202) 

16 avg_cnt 0.804 (0.645,1.003) 0.822 (0.662,1.019)   

16 avg_spd     0.978 (0.956,1.001) 

17 std_spd 1.070 (0.994,1.151) 1.070 (0.996,1.149) 1.087 (1.010,1.170) 

17 avg_spd 0.980 (0.958,1.003)   0.981 (0.959,1.004) 

17 avg_occ   1.019 (0.996,1.043)   
 
l
 the blank cell means that the corresponding variable did not appear in the final model. 
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18 std_spd 1.083 (1.001,1.173) 1.074 (0.996,1.16) 1.077 (0.997,1.162) 

18 avg_occ 1.024 (0.997,1.053) 1.021 (0.995,1.05)   

18 avg_spd     0.982 (0.960,1.005) 

19 std_spd     1.071 (0.998,1.150) 

19 avg_occ 1.022 (0.997,1.048) 1.020 (0.996,1.044) 1.023 (0.998,1.049) 

20 std_spd 1.067 (0.989,1.150) 1.093 (1.013,1.178) 1.075 (1.002,1.153) 
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